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ABSTRACT

Motivation: The functions of non-coding RNAs are strongly related
to their secondary structures, but it is known that a secondary
structure prediction of a single sequence is not reliable. Therefore,
we have to collect similar RNA sequences with a common secondary
structure for the analyses of a new non-coding RNA without knowing
the exact secondary structure itself. Therefore, the sequence
comparison in searching similar RNAs should consider not only
their sequence similarities but their potential secondary structures.
Sankoff’s algorithm predicts the common secondary structures of the
sequences, but it is computationally too expensive to apply to large-
scale analyses. Because we often want to compare a large number
of cDNA sequences or to search similar RNAs in the whole genome
sequences, much faster algorithms are required.

Results: We propose a new method of comparing RNA sequences
based on the structural alignments of the fixed-length fragments
of the stem candidates. The implemented software, SCARNA
(Stem Candidate Aligner for RNAs), is fast enough to apply to
the long sequences in the large-scale analyses. The accuracy of
the alignments is better or comparable to the much slower existing
algorithms.

Availability: The web server of SCARNA with graphical structural
alignment viewer is available at http://www.scarna.org/

Contact: scarna@m.aist.go.jp

Supplementary information: The data and the supplementary
information are available at http://www.ncrna.org/papers/SCARNA/.

1 INTRODUCTION

One of the important foundation of biological sequence ys& is
comparing the sequences by the alignment with similarityress

prediction for a single sequence of lengthwithout considering
pseudoknots require®(n?) in memory andO(n?) in time for
computation (Nussinoet al., 1978; Zuker and Stiegler, 1981).
The structural RNA alignment is computationally so expemsiven
if the pseudoknots are ignored. The Sankoff’s algorithrmks#,
1985), which simultaneously allows the solution of the ctute
prediction and alignment problem, requi@$n*) in memory and
O(n®) in time for a pair of sequences of lengthSuch an algorithm
is applicable only for short RNAs and not for all of the furactal
RNA sequences. By restricting the distances of the bass ipetine
primary sequences it can be reducedn?) in time (Havgaard
et al., 2005; Hofackeet al., 1994) but it is still impractical for long
sequences. In order to compare the RNA sequences withgoiradi
them, a kernel method on Stochastic Context Free Gramm&G$C
is proposed (Kiret al., 2002).

Another way of finding the common secondary structures is to
use stem-based representations, where the structure of an RNA
sequence is represented by a number of sets of continuoes bas
pairs. For constructing a stem-based representation, gom®ach
is to use the predicted secondary structures (Kawtlial., 2005).
The predictions are not always accurate, however, thatoappr
has a high risk of using totally wrong secondary structutesiore
robust approach is to use a numberstam candidates derived by
the simple Watson-Crick base-pair rule or by scanning trseeba
pair probability matrix (McCaskill, 1990). Those represgions
may contain many false stems, which have to be excluded in
the end. Selecting the correspondence of the potential sstem
in two RNA sequences is also a combinatorial problem. DP
(Dynamic Programming) can solve the problem, but it recii@e
complexity of O(mS) for the number of potential stems even if
pseudoknots are not considered.

For the analyses of non-coding RNAs, we want to compare the Perriquetet al. (2003) proposed a fast heuristic stem-based
nucleotide sequences for many purposes, such as finding thggorithm implemented in CARNAC. It first determines anchor

relatives of a new non-coding RNA in the genome, classificati regions that are highly conserved in given RNA sequencesherd

of the cDNA sequences and so on. The standard sequencgeks a set of the other stems that have minimum folding gnerg

comparison methods are not accurate enough for RNA segsiencegainaet al. (2005) also proposed a stem-based method, which is
however, because the secondary structures play impo&im  gimjlar to Sankoff’s algorithm, implemented in RNAsc. lfférs

the functions and the evolutions of non-coding RNAs (Ed@0D).

The alignments and the similarity scores of RNA sequenceslgh

consider both the primary sequences and the secondaryusesic

also in the way of finding structurally conserved anchorsictvis
based on secondary structure similaritiesstdl. (2004) proposed
a graph theoretic approach which finds conserved stems aijoheul

Therefore, it is natural to try to find the common secondary RNA sequences, implemented in comRNA.

structures in order to align two RNA sequences. Secondeugtste

*to whom correspondence should be addressed

In this paper, we propose an efficient pairwise alignmenhot
based on fixed-lengtdtem fragments. The fragments are made by
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Fig. 1. Stem fragments. A stem candidate (marked by a red undeine)
decomposed into 4 overlapping stem fragments. One fragooersists of a
left component (red box) and a right component (blue box).

dividing the stem candidates in a number of overlapping fixed
length windows (Fig. 1). In order to align the stem fragments
strictly, we need to adopt a computationally expensive ritlgm.
Instead, we decoupl and3’ parts of the stem fragments and use a
pairwise alignment algorithm. TH parts (eft components) and the

3’ parts ¢ight components) of the stem fragments are fixed-length
subsequences of the stems that are complementary to eaah ot
Because such a simple pairwise alignment does not guartregee
consistency of matches in both side (left and right), we geréain
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Fig. 2. An example of decoupling the selected stem fragment intastem
components, 5'(left) stem components and 3'(right) stemmanents. Base

hpairing probability matrix of tRNA D38114.1 taken from Rfadatabase

(Griffiths-Jone=t al., 2003).

number of mismatched components. In our approach, the C“’mmofragments (typically 2 to 5), the matrix is scanned by a cent

secondary structure is made only from the matches thatdedboth
left and right components. After the matched stem fragmargs
fixed, a pairwise alignment algorithm with affine gaps is used
make complete nucleotide alignment of two sequences.

To make our algorithm work on practical data, it is important
to ensure the discovery afue stem fragments that belong to the
common secondary structure. For high specificity in compbne
matching, we designed the matching score of componentsl lugse
various properties, e.g., sequence similarity, stackireggy and the
distance to the complementary component. Unlike the otfesn-s
based representations, the fixed-length fragments enéfidem
computations of the matching score. The computation of hniradc
scores of two variable-length sequences requires andigansent
including gaps, which leads to an inefficient algorithm. Onay
think that it is difficult to take the stacking energy into aoat by
fixed-length representations of the stems. We devised anesrgd
dynamic programming algorithm that includes the stackingrgy
in the score function.

In benchmarking experiments, we will show that our alignmen
accuracy is comparable to state-of-the-art methods,
computational time is shorter by orders of magnitude.

2 METHOD

SCARNA takes two unaligned nucleotide sequences as thésinpu
and produces the alignment of the sequences based on thet@ded
common secondary structure. For efficiency, the stem fraggae
first aligned, and the nucleotide-level alignment is made [ppst-
processing. In the following, our algorithm is explainedpsby-
step.

2.1 Extracting Stem Candidates
We start by representing the potential secondary structieach

amrd th

diagonal window of lengthk. If all the values in the window is
larger than the threshold, that window is chosen as a part of a
stem candidate, which is a stem fragment.

2.2 Propertiesof Stem Components

Each fixed-length stem fragment is decomposed into two stem
components)’ (left) component ang’ (right) component, both of
which have the same fixed length (Fig. 2). A stem componént
has the following properties.

e Positionp(X,): the position of the leftmost base of the stem

componentX,.

Sequence(X,): the sequence of the stem compon&nt

Loop distancel(X,): the distance to the complementary stem
component of the same stem fragment along the nucleotide
sequence’’ (left) stem components have positive distances
and3’ (right) stem components have negative distances.

Partner sequencg X, ): the sequence of the complementary
stem component.

Confidence scorg(X,): the sum of the base-pair probabilities
in the fragment.

Stacking energy(X,.): the sum of stacking energy in the
fragment.

In order to perform pairwise alignment, the stem componkate
to be ordered as a sequence. A Stem Component Sequence $SCS) i
a sequence of all stem components sorted by their positiotisei
nucleotide sequence. Multiple stem components can talketlgxae
same position and their complementary components haverelift
positions. Such components are sorted according to thendistto
the complementary component (loop distance).

RNA sequence by a set of overlapping stem fragments. To thi€-3 Matching Score of Stem Components

aim, the base-pair probability matrix, is computed by meahs
McCaskill’s algorithm (McCaskill, 1990). When the sequeriias
n bases, that matrix has x n values, each of which represents

The matching score is used as the similarity measure of #ma st
components in the alignment. Because our goal is to captihetie
structure similarities and the sequence similarities,singlarities

the probability that the two bases form a base pair as a part obf the corresponding base pairs and the differences of tle tw

the whole secondary structure. Wheiis the fixed length of stem

loop distances are combined. Because we want to align the ste
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confidence scores and the stacking energy are also corthidere r

Let us describe the two SCSs to be aligned{as};-, and
{Y;}7L,, whereX; andY; describei-th andj-th stem components
in the two nucleotide sequences, respectively. We denote b{]'ig. 3. An r-continuous pair of stem fragments. For any two stem fragsnen
[Xa, X./] that a left componenfX, and a right componenk, that are a part ofqlonger stem, the left anc_i right comporténtﬁe two s_tgm
form a stem fragment. Als@ X, Y;) denotes a matched pair across fr_agment‘s are sh|_fted by bases in oppo;lte dlrectlon. If the marginis
the sequences in the alignment of SCSs. different in each side, the fragments are ill-continuous.

Because the stem components has a same fixed length, the
sequence similarity is calculated in linear time by substn J_[ -L L
probabilities using RIBOSUM (Klein and Eddy, 2003). Denbte —
R(X;,Y;) the sum of RIBOSUM scores.

If we take all of those scores into account, the matchingescor
s(i,7) of two corresponding stem componer(t¥;, Y;) can be

candidates that have higher scores by means of free enémgy, t f é
r

Fig. 4. An example of contradictory overlap of stem fragments. Téfe |
' components overlap while the right components do not. Ia taise, the
written as secondary structure cannot be uniquely determined at ttieatide level.

s(i,7) = R(X:,Yj) +m (f(Xi) + f(Y5))

— m(e(Xi)+e(Y;)) —mvd(Xi) —d(Y;). (1) e ill-continuousif X, overlapsX; andX,. overlapsX,, but (2)

does not hold.
Because the confidence scores and the stacking energy aralinut

correlated, and because we have to control the importantieeof
terms, the parameteng;, n. and ns are used. The term ofs
encourages the stems with similar loop distances to match.

e contradictory if only one side (left or right) of the components
overlap each other but the other side do not overlap (Fig. 4).

If two of the stem fragments of a nucleotide sequence appear i
2.4 Consistency in Alignment of Stem Components the alignment, they should not overlap at all or seontinuous.
Before explaining the DP algorithm for the alignment of stem 1he Overlapping stem components are carefully treatederstbS
components, we discuss on the consistency conditions fer thalignment that the left and right components of stem fragmen
stem components in the alignments. We discuss first on the ste Satisfy 7-continuous condition as explained later. Therefore, ill-

components of a single nucleotide sequence, and then omeich ~ continuous stem fragments never appear in our alignmerite. T
of the stem components of two nucleotide sequences. non-overlapping stem components, however, may have qynig
complementary stem components because the left and right

24.1 Consistency in a single SCS  The major difference of the  components of the stem fragments are separately alignedeftine,
alignment of stem components from a pairwise sequenceraéigh  contradictory overlaps do happen in our alignments.
is that only small number of the stem components safected to
be included in the alignment. For each nucleotide sequeneege 242 Consistency of matches of stem components Next we
number of combinations of stem components mutua”y cordrad discuss on the matches of the stem components from two rigdeo
and should not be included in the same alignment. sequences. For stem fragmes,, X./] and[Y;, Y3/] from two

If two stem fragments do not overlap in the nucleotide segeien SCSs{X:}i=; and{Y;}jZ,, if X matchesY; in the alignment,
there are three types of positions. If the two stem fragmentsX. should also matcly,. Let us define such a match adedt-

[Xa, X,/] [Xs, X,/] do not overlap each other, they are: right consistent match. Because the left component and the right
) component of each stem fragment are aligned separately, lef
o pardlel if p(Xa) < p(Xar) <p(Xp) < p(Xy) right consistency is not guaranteed in general. Howevérritght
or p(Xp) < p(Xpr) < p(Xa) <p(Xar). consistent matches occur frequently because the matchimgss
e nested if p(Xa) < p(Xp) < p(Xp) < p(Xor) encourage the matches of stem components that have sioolar |
orp(Xp) < p(Xa) < p(Xor) < p(Xpr). distances.

o pseudoknotted if p(Xa) < p(Xs) < p(Xar) < p(Xer) 2.4.3 Removing inconsistent matches The left-right inconsistent
orp(Xy) < p(Xe) < P(Xpy) < p(Xar)- matches are removed after the SCS alignment (Fig. 5). If any

All those three types, including pseudoknotted positioase  two of the stem components of a same SCS appear in the
permitted in the alignment of SCSs. SCS alignment and their complementary components overlap

If two stem fragments overlap in the nucleotide sequence, wdi-e. contradictory overlap), those complementary conepts
can also find the three cases. Two stem fragmghits X,/] and do not appear together in the alignment because the alignmen
[ Xy, Xy are: of complementary components are controlled to be either non
overlapping or-continuous. Therefore, the contradictory overlaps
of the stem fragments are removed just by removing the iigiftt-r
= p(Xp) — p(Xa) = p(Xar) — p(Xr). @) inconsistent matches of the components (Fig. 6).

e r-continuous if X, overlapsX,, X, overlapsX, and satisfy

If two overlapping stem fragments appear in a same alignment2->  Alignment Algorithm for Stem Components
they should be a part of a longer stem arcbntinuous (Fig. 3).  The alignment of SCSs is computed by two DP mattld(i, 7)
A pair of stacked fragments are 1-continuous fragments. andG(i,7). M(i,7) is the best score up to a pair of; andY;
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(a) One match is left-right inconsistent.

Fig. 5. Removing the inconsistent matches.
left components is left-right inconsistent because theesponding right
components do not match (a). By removing the componentsecoimg
the left-right inconsistent match (boxes by dotted linesjnaining matches
represent the estimated common secondary structure (b).

T o
1

el il

Fig. 6. Contradictory overlap and left-right consistency. The tpairs
of right components (blue boxes) may appear together in tBS& S
alignment, but the two pairs of left components (red boxesnot appear
together because they overlap without satisfyingrttentinuous condition.
Therefore, one of the matches in right components beconfesiglet
inconsistent.

given thatX; matches’; andG(3, j) is the best score given thaf;
mismatched’;.
The updates to deriv&/ (¢, j) andG(z, j) are described as

M(O‘Mﬂj)
+(0r(X:) + 0
+1a(07(Xi) +
—n5(0e(Xs) +

M(pi,q;) +

G(pi,q5) +

(7'_ 17])
M(i,j —1)
G(Z_ 17])
G(7'7] - 1)

r(Y5))
5f( i)

M) 5.(Y;))

3)
(i, 4)
s(4,7)

G(i,7) max 4)

with the initial conditions; M (0,0) = 0,M(-,0) =
G(0,0) = G(-,0) = G(0,-) = —oc0.

«; is the index (smaller than i) of the component which is 1-
continuous toX;, G; is that of Y;. p; is the index (smaller than
i) of the nearest component which does not overlap \&th g; is
that of Y;. n4 andns are control parameters.

M(0,-)

Non-OverIap<+>Overlap

xOOGOO0®O0O®
YOOO®0OLOGD

Non-OverIap<+>Overlap

Fig. 7. Dependency in DP matrix computation. Shown are the two
sequences of stem components. A group of components bounydeetd
poles have the same position in the original nucleotide execgy but the
different complementary components as their partners. Jdleulation

of M(i,j) depends onM («aj,3;), M(pi,q;) and G(pi,q;). The
componentsX,,; and Y, form 1-continuous fragments witkk’; and Y},

One of matches of thg'espectively. The closest non-overlapping components fk andY; are

denoted asYp, andYy,, respectively.

length of stem fragments and ensures that the adjacent esatch
are 1-continuous. The indicea; and 3; are determined such that
[Xa;, Xqo] and[Yp;, Y5, /] are 1-continuous fragments o¥;, X /]
and[Y;, Y;/], respectively. Sincey; and/3; do not always exist, the
first argument in (3) is taken into account only if bath and 3;
are available. Only the incremental parts of sequence aiitids,
the confidence scores and the stacking energy should bedattlu
in those continuous matches becaudseontinuous matches share
base pairs except one. The symbals(X;), d¢(X;) andde(X;),
correspond to the incremental differencesXor X, of RIBOSUM
scores, confidence scores and stacking energy respetdeelyig.

1 in supplement material for deltails).

The second and third arguments in (3) also take larger steyps t
a simple DP and ensure that the adjacent stem componentatiave
overlap. X;,, andYy; are the closest components in SCSs that do
not overlap withX; andY;, respectively.

Becausex; andp; for eachi, 3; andg; for eachyj, and the
correspondingr, 6y andd. are calculated before the DP process
in linear time, those calculations do not give any damageiroe t
complexity of the algorithm.

2.6 Post-processing and Nucleotide Alignment

The inconsistency in the matches of stem components arevezgmo
as the post-process. In order to guarantee the consisténisy,
sufficient to remove the left-right inconsistent matchesstdm
components as previously explained in section2.4.3. lerottords,
the matches of stem components whose complementary comtgone
do not match in the SCS alignment are removed as the postégsoc
The nucleotide sequence alignment is intended to aligniréenta
loop regions except the selected common stems representée b
consistent matches of stem components. It is simply imphteaeas
a pairwise alignment with affine gaps of whole nucleotidaiseges
by adding a large value in DP matrix to the positions for theeba
pairs indicated by the SCS alignment. Those values are ge that
the nucleotide alignment is forced to go through the pasitiand
subtracted afterwards to get the score of the alignment.

In a simple DP for pairwise alignment, DP matrices depends on

the adjacent elements. In our algorithm, howevé(;, ;) is derived
from the remote elements denoted &K «, 53;), M(ps,q;) and

3 RESULTS

G(pi,q;). That ensures the adjacent matches of stem components this section we show the performance of SCARNA for the

in DP being eithed -continuous or non-overlapping (Fig. 7).

alignment of RNA sequences by computational experiments on

The updates (3) takes the maximum of three arguments. The firshe benchmark dataset of tRNAs used by Gardeieal. (2005)

argument treats the case for continuous stems longer tledfixéd

and on the dataset from various families of non-coding RNA
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Fig. 8. SPS(left) and SClI(right) as functions of the sequence iyefior Gardner’s dataset of tRNAs. Lines are smoothed byeks(local weighted regression)

smoothing.

sequences in Rfam database (Griffiths-Jogteal., 2003). It has

Though all the structural alignment programs are not abkigm

been observed that SCARNA has a competitive performance t&®&NA sequences of more than 150 bases without any devicecémey

the other RNA structural alignment approaches using Sé&gskof
Algorithm (Sankoff, 1985).

align those short tRNA sequences of 71.8 nucleotides inageer
The sequences and the reference alignments for calcutagrgPS

We have evaluated the quality of the alignments by thewere obtained from the Rfam database.

sum-of-pairs score (SPS) and the structure conservatidexin

The experimental results are shown in Fig.8. The SPS and

(SCI) (Gardneet al., 2005). The SPS is defined as the fraction outthe SCI of SCARNA exceed those of sequence-based methods

of all possible nucleotide pairs that are aligned both inptteslicted
alignment and in the alignment of the reference. The SPSgesv
a measure of the sensitivity of the prediction.

(e.g. ClustalW (Chennat al., 2003), MUSCLE (Edgar, 2004),
PCMA (Pei et al., 2003), POA (gp) (Leeet al., 2002),
ProAlign (Loytynoja and Sharlow, 2003) and Prrn (Gotoh,

The structure conservation index (SCI) provides a measurd996)) and are comparable to those of structure-based dwetho
of the conserved secondary structure information conthine (e.g. Dynalign (Mathews and Turner, 2002; Mathews, 2005),

within the alignment (Washietét al., 2005). It is a derivative

Foldalign2.0 (Havgaardt al., 2005), PMcomp (Hofackeet al.,

of the score calculated by the RNAalifold consensus folding2004) and Stemloc (Holmes and Rubin, 2002; Holmes, 2004,

algorithm (Hofackeret al., 2002; Washietl and Hofacker, 2004)

2005)). While the sequence-based methods and structesstoaes

which is based upon the sum of the thermodynamic term and thbave a dramatic divergence in relative performances belmuta

covariance term. In contrast to the SPS, SCI is independent f

60% sequence identity, the SPS and the SCI of SCARNA do not

a reference alignment. The SCI is close to zero if RNAalifold come down. In particular, the SPSs of SCARNA outperform most

identifies no common RNA structure in the alignment, wheeeset
of perfectly conserved structures has an &Ql. The SCI points out
the structural aspect of alignment accuracy and, thergéouseful
measure in addition to the SPS.

All the following tests were performed on a Linux machinehwit
a AMD Optero™ Processor 850 2.4 GHz x 4 and 20GB RAM. The
length of stem fragments was set t@. The threshold of base-pair
probability - was set td.0001. The control parametersy, 1z, 13,
14 andns were set ta8.7, 0.1, 3.1, 9.4 and&.6, respectively. These
parameters were used to all RNA familywise dataset. The camim
line options of other tools is listed on tablel in the supmam
matrial.

3.1 Benchmark Dataset of tRNAS

Gardner’s benchmark datasets (Gardetaal., 2005) are composed
of pairs of tRNA sequences that are classified by sequenngtids.

of the structure-based methods in less th@% sequence identity.

3.2 Benchmark Dataset of other non-coding RNAs

In order to evaluate our algorithm by longer non-coding RNAs
we made a benchmark dataset from 5S ribosomal RNA, 5.8S
ribosomal RNA and Hammerhead ribozyme in the Rfam (Griffiths
Jonest al., 2003). The collection of reliable sequences is a difficult
task. We only used the 'seed’ alignments of Rfam because the
full” alignment includes computationally collected seees. It is
ovserved that even the 'seed’ alignments includes quesdtierones.

We tried to filter out unreliable sequences whose alignmentsde
inconsistend asignment of base pairs on gaps or very lorg §fé@
compared SCARNA to ClustalW and Foldalign2.0. The result is
that the SPS and SCI of SCARNA can be compared to those of
Foldalign2.0, favorably. (See supplement material, Figig.3 and
Fig.4 for details).
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Fig. 10. Comparison between SCARNA and CARNAC concerning

secondary structure prediction. Lines are smoothed bgespiterpolation.

4 DISCUSSION

4.1 Computational Complexity Each dataset is classified into several subgroups of RNACSERS
While the complexities of)(n?) in time andO(n?) in memory for by their sequence identities.
secondary structure prediction of RNA sequences of lengée After the alignment of SCSs and removing the inconsistesrnst

affordable in most case€(n°) andO(n*) in Sankoff's algorithm  components, the base pairs with base-pair probabilitie rir@an
for structural alignment can hardly be accepted. The coispaiof  0.95 have been recovered for the prediction of individualARN
execution time of SCARNA with other methods (Fig. 9) shoves it sequences. Sn (Sensitivity), Sp (Precision) and MCC (Maith
applicability to real sequences. SCARNA requit@gn?) in time Correlation Coefficient) (Matthews, 1975) have been used fo
andO(m?) in memory for the alignment of SCSs of lengih The  the performance measures of secondary structure prediGio is
length of the SCS for an RNA sequence depends on the lendtle of t sometimes better recognizedrasall. Sp is also known agositive
RNA sequence, the threshotdfor base-pair probabilities, and the predictive value (PPV). They are defined as
fixed lengthk of stem fragments. The lengths of the SCSs are linear
to the lengths of the RNA sequences for the reasonkidgSee ™ ™
supplement material for detail, Fig.5). Therefore, the potational Sn = ———, Sp=—"—

o . oyt TP+ FN TP+ FP
complexities of SCS alignment are evaluatedds~) in time and
O(n?) in memory. The computation of base-pair probabilities for pcc = TPx TN —FPx FN 7
SCS building require®(n?) in time andO(n?) in memory (See V/(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)
supplement material, Fig.6). For very long nucleotide seges,
however, it can be reduced @(n?) andO(n?) by restricting the
distance of base pairs to a fixed length. Therefore, SCARNrbea
used for long sequences in large scale analyses enjay{ng) of
computational time.

where TP, TN, FN and FP are respectively the numbers of bases
(NOT base pairs) that are correctly included, correctlylieed,
incorrectly excluded and incorrectly included in the poteld base
pairs. The bases that are predicted to form base pairs withgvr
L partners are coounted both in FP and in FN. MCC ranges from
4.2 Secondary Structure Prediction -1 for extremely inaccurate (TP=TN=0) to 1 for very accurate
The accuracy of the nucleotide alignments by SCARNA dependgpredictions(FP=FN=0). The results have been compared with
on the predicted common secondary structures. The perfaena the predictions of CARNAC (Perriquett al., 2003). CARNAC
of the alignment by SCARNA suggests high accuracy of theis one of the most accurate software for common secondary
predicted secondary structures. In order to evaluate tharacy  structures (Gardner and Giegerich, 2004). The result d#taset
of the secondary structure predictions for the individeuences  of 50% to 75% of base pairs is shown in Fig. 10. It can be observed
directly, a post-processing of recovering the high-sapbiase pairs that the performance of SCARNA is stable with the change of
that are consistent with the predicted common secondargtastes  sequence identities. The MCC of SCARNA outperforms CARNAC
has been tested. in all range of sequence identities. Resorting to anchaproach

We made datasets from RNA sequences in Rfam database lyased on sequence similarityy, CARNAC had problems in both
the fraction of base pairs. The datasets are filled with falig low and very high sequence identities. SCARNA has a qualfity o
conditions. (I)The parcentage of base pairs afé #550%. (Il)The secondary structure prediction, which results in accuratteotide
sequences are between 80 to 150 nucleotides in lengtith@i)  alignments. Another result for dataset of/2%0 50% of base pairs
reference alignments have more th&a &nd less than 5@ of gaps.  is showed in supplement material (Fig.7).




4.3 Ability to Capture Pseudoknots
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