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ABSTRACT
Motivation: The functions of non-coding RNAs are strongly related
to their secondary structures, but it is known that a secondary
structure prediction of a single sequence is not reliable. Therefore,
we have to collect similar RNA sequences with a common secondary
structure for the analyses of a new non-coding RNA without knowing
the exact secondary structure itself. Therefore, the sequence
comparison in searching similar RNAs should consider not only
their sequence similarities but their potential secondary structures.
Sankoff’s algorithm predicts the common secondary structures of the
sequences, but it is computationally too expensive to apply to large-
scale analyses. Because we often want to compare a large number
of cDNA sequences or to search similar RNAs in the whole genome
sequences, much faster algorithms are required.
Results: We propose a new method of comparing RNA sequences
based on the structural alignments of the fixed-length fragments
of the stem candidates. The implemented software, SCARNA
(Stem Candidate Aligner for RNAs), is fast enough to apply to
the long sequences in the large-scale analyses. The accuracy of
the alignments is better or comparable to the much slower existing
algorithms.
Availability: The web server of SCARNA with graphical structural
alignment viewer is available at http://www.scarna.org/
Contact: scarna@m.aist.go.jp
Supplementary information: The data and the supplementary
information are available at http://www.ncrna.org/papers/SCARNA/.

1 INTRODUCTION
One of the important foundation of biological sequence analyses is
comparing the sequences by the alignment with similarity scores.
For the analyses of non-coding RNAs, we want to compare the
nucleotide sequences for many purposes, such as finding the
relatives of a new non-coding RNA in the genome, classification
of the cDNA sequences and so on. The standard sequence
comparison methods are not accurate enough for RNA sequences,
however, because the secondary structures play important role in
the functions and the evolutions of non-coding RNAs (Eddy, 2001).
The alignments and the similarity scores of RNA sequences should
consider both the primary sequences and the secondary structures.

Therefore, it is natural to try to find the common secondary
structures in order to align two RNA sequences. Secondary structure
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prediction for a single sequence of lengthn without considering
pseudoknots requiresO(n2) in memory andO(n3) in time for
computation (Nussinovet al., 1978; Zuker and Stiegler, 1981).
The structural RNA alignment is computationally so expensive even
if the pseudoknots are ignored. The Sankoff’s algorithm (Sankoff,
1985), which simultaneously allows the solution of the structure
prediction and alignment problem, requiresO(n4) in memory and
O(n6) in time for a pair of sequences of lengthn. Such an algorithm
is applicable only for short RNAs and not for all of the functional
RNA sequences. By restricting the distances of the base pairs in the
primary sequences it can be reduced toO(n4) in time (Havgaard
et al., 2005; Hofackeret al., 1994) but it is still impractical for long
sequences. In order to compare the RNA sequences without aligning
them, a kernel method on Stochastic Context Free Grammar (SCFG)
is proposed (Kinet al., 2002).

Another way of finding the common secondary structures is to
use stem-based representations, where the structure of an RNA
sequence is represented by a number of sets of continuous base
pairs. For constructing a stem-based representation, one approach
is to use the predicted secondary structures (Karklinet al., 2005).
The predictions are not always accurate, however, that approach
has a high risk of using totally wrong secondary structures.A more
robust approach is to use a number ofstem candidates derived by
the simple Watson-Crick base-pair rule or by scanning the base-
pair probability matrix (McCaskill, 1990). Those representations
may contain many false stems, which have to be excluded in
the end. Selecting the correspondence of the potential stems
in two RNA sequences is also a combinatorial problem. DP
(Dynamic Programming) can solve the problem, but it requires time
complexity ofO(m6) for the number of potential stemsm even if
pseudoknots are not considered.

Perriquet et al. (2003) proposed a fast heuristic stem-based
algorithm implemented in CARNAC. It first determines anchor
regions that are highly conserved in given RNA sequences andthen
seeks a set of the other stems that have minimum folding energy.
Bafna et al. (2005) also proposed a stem-based method, which is
similar to Sankoff’s algorithm, implemented in RNAscf. It differs
also in the way of finding structurally conserved anchors, which is
based on secondary structure similarities. Jiet al. (2004) proposed
a graph theoretic approach which finds conserved stems of multiple
RNA sequences, implemented in comRNA.

In this paper, we propose an efficient pairwise alignment method
based on fixed-lengthstem fragments. The fragments are made by
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Fig. 1. Stem fragments. A stem candidate (marked by a red underline)is
decomposed into 4 overlapping stem fragments. One fragmentconsists of a
left component (red box) and a right component (blue box).

dividing the stem candidates in a number of overlapping fixed-
length windows (Fig. 1). In order to align the stem fragments
strictly, we need to adopt a computationally expensive algorithm.
Instead, we decouple5′ and3′ parts of the stem fragments and use a
pairwise alignment algorithm. The5′ parts (left components) and the
3′ parts (right components) of the stem fragments are fixed-length
subsequences of the stems that are complementary to each other.
Because such a simple pairwise alignment does not guaranteethe
consistency of matches in both side (left and right), we get acertain
number of mismatched components. In our approach, the common
secondary structure is made only from the matches that include both
left and right components. After the matched stem fragmentsare
fixed, a pairwise alignment algorithm with affine gaps is usedto
make complete nucleotide alignment of two sequences.

To make our algorithm work on practical data, it is important
to ensure the discovery oftrue stem fragments that belong to the
common secondary structure. For high specificity in component
matching, we designed the matching score of components based on
various properties, e.g., sequence similarity, stacking energy and the
distance to the complementary component. Unlike the other stem-
based representations, the fixed-length fragments enable efficient
computations of the matching score. The computation of matching
scores of two variable-length sequences requires another alignment
including gaps, which leads to an inefficient algorithm. Onemay
think that it is difficult to take the stacking energy into account by
fixed-length representations of the stems. We devised an engineered
dynamic programming algorithm that includes the stacking energy
in the score function.

In benchmarking experiments, we will show that our alignment
accuracy is comparable to state-of-the-art methods, and the
computational time is shorter by orders of magnitude.

2 METHOD
SCARNA takes two unaligned nucleotide sequences as the inputs
and produces the alignment of the sequences based on the predicted
common secondary structure. For efficiency, the stem fragments are
first aligned, and the nucleotide-level alignment is made bya post-
processing. In the following, our algorithm is explained step-by-
step.

2.1 Extracting Stem Candidates
We start by representing the potential secondary structureof each
RNA sequence by a set of overlapping stem fragments. To this
aim, the base-pair probability matrix, is computed by meansof
McCaskill’s algorithm (McCaskill, 1990). When the sequence has
n bases, that matrix hasn × n values, each of which represents
the probability that the two bases form a base pair as a part of
the whole secondary structure. Whenk is the fixed length of stem

cagagtgtagcttaacacaaagcacccaacttacacttaggagatttcaacttaacttgaccgctc tg a

cagagtgtagcttaacacaaagcacccaacttacacttaggagatttcaacttaacttgaccgctctgacagagtgtagcttaacacaaagcacccaacttacacttaggagatttcaacttaacttgaccgctctga

cagagtgtagcttaacacaaagcacccaacttacacttaggagatttcaacttaacttgaccgctctga

Xb

Xa
5’Stem Component(Xa)
p(Xa):10
s(Xa):gctt
d(Xa):6
c(Xa):aagc
f(Xa):3.84
e(Xa):-0.9

3’Stem Component(Xb)
p(Xb):20
s(Xb):aagc
d(Xb):-6
c(Xb):gctt
f(Xb):3.84
e(Xb):-0.9

Fig. 2. An example of decoupling the selected stem fragment into twostem
components, 5’(left) stem components and 3’(right) stem components. Base
pairing probability matrix of tRNA D38114.1 taken from Rfamdatabase
(Griffiths-Joneset al., 2003).

fragments (typically 2 to 5), the matrix is scanned by a counter-
diagonal window of lengthk. If all the values in the window is
larger than the thresholdτ , that window is chosen as a part of a
stem candidate, which is a stem fragment.

2.2 Properties of Stem Components
Each fixed-length stem fragment is decomposed into two stem
components,5′ (left) component and3′ (right) component, both of
which have the same fixed length (Fig. 2). A stem componentXa

has the following properties.

• Positionp(Xa): the position of the leftmost base of the stem
componentXa.

• Sequences(Xa): the sequence of the stem componentXa.

• Loop distanced(Xa): the distance to the complementary stem
component of the same stem fragment along the nucleotide
sequence.5′ (left) stem components have positive distances
and3′ (right) stem components have negative distances.

• Partner sequencec(Xa): the sequence of the complementary
stem component.

• Confidence scoref(Xa): the sum of the base-pair probabilities
in the fragment.

• Stacking energye(Xa): the sum of stacking energy in the
fragment.

In order to perform pairwise alignment, the stem componentshave
to be ordered as a sequence. A Stem Component Sequence (SCS) is
a sequence of all stem components sorted by their positions in the
nucleotide sequence. Multiple stem components can take exactly the
same position and their complementary components have different
positions. Such components are sorted according to the distance to
the complementary component (loop distance).

2.3 Matching Score of Stem Components
The matching score is used as the similarity measure of the stem
components in the alignment. Because our goal is to capture both the
structure similarities and the sequence similarities, thesimilarities
of the corresponding base pairs and the differences of the two
loop distances are combined. Because we want to align the stem
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candidates that have higher scores by means of free energy, the
confidence scores and the stacking energy are also considered.

Let us describe the two SCSs to be aligned as{Xi}
n
i=1 and

{Yj}
m
j=1, whereXi andYj describei-th andj-th stem components

in the two nucleotide sequences, respectively. We denote by
[Xa, Xa′ ] that a left componentXa and a right componentXa′

form a stem fragment. Also,(Xi, Yj) denotes a matched pair across
the sequences in the alignment of SCSs.

Because the stem components has a same fixed length, the
sequence similarity is calculated in linear time by substitution
probabilities using RIBOSUM (Klein and Eddy, 2003). Denoteby
R(Xi, Yi) the sum of RIBOSUM scores.

If we take all of those scores into account, the matching score
s(i, j) of two corresponding stem components(Xi, Yj) can be
written as

s(i, j) = R(Xi, Yj) + η1 (f(Xi) + f(Yj))

− η2(e(Xi) + e(Yj)) − η3

p

d(Xi) − d(Yj). (1)

Because the confidence scores and the stacking energy are mutually
correlated, and because we have to control the importance ofthe
terms, the parametersη1, η2 and η3 are used. The term ofη3

encourages the stems with similar loop distances to match.

2.4 Consistency in Alignment of Stem Components
Before explaining the DP algorithm for the alignment of stem
components, we discuss on the consistency conditions for the
stem components in the alignments. We discuss first on the stem
components of a single nucleotide sequence, and then on eachmatch
of the stem components of two nucleotide sequences.

2.4.1 Consistency in a single SCS The major difference of the
alignment of stem components from a pairwise sequence alignment
is that only small number of the stem components areselected to
be included in the alignment. For each nucleotide sequence,a large
number of combinations of stem components mutually contradict
and should not be included in the same alignment.

If two stem fragments do not overlap in the nucleotide sequence,
there are three types of positions. If the two stem fragments
[Xa, Xa′ ] [Xb, Xb′ ] do not overlap each other, they are:

• parallel if p(Xa) < p(Xa′) < p(Xb) < p(Xb′)
or p(Xb) < p(Xb′) < p(Xa) < p(Xa′).

• nested if p(Xa) < p(Xb) < p(Xb′) < p(Xa′)
or p(Xb) < p(Xa) < p(Xa′) < p(Xb′).

• pseudoknotted if p(Xa) < p(Xb) < p(Xa′) < p(Xb′)
or p(Xb) < p(Xa) < p(Xb′) < p(Xa′).

All those three types, including pseudoknotted positions,are
permitted in the alignment of SCSs.

If two stem fragments overlap in the nucleotide sequence, we
can also find the three cases. Two stem fragments[Xa, Xa′ ] and
[Xb, Xb′ ] are:

• r-continuous if Xa overlapsXb, Xa′ overlapsXb′ and satisfy

r = p(Xb) − p(Xa) = p(Xa′) − p(Xb′). (2)

If two overlapping stem fragments appear in a same alignment,
they should be a part of a longer stem andr-continuous (Fig. 3).
A pair of stacked fragments are 1-continuous fragments.

rr

Fig. 3. An r-continuous pair of stem fragments. For any two stem fragments
that are a part of a longer stem, the left and right componentsof the two stem
fragments are shifted byr bases in opposite direction. If the marginr is
different in each side, the fragments are ill-continuous.

Fig. 4. An example of contradictory overlap of stem fragments. The left
components overlap while the right components do not. In this case, the
secondary structure cannot be uniquely determined at the nucleotide level.

• ill-continuous if Xa overlapsXb andXa′ overlapsXb′ , but (2)
does not hold.

• contradictory if only one side (left or right) of the components
overlap each other but the other side do not overlap (Fig. 4).

If two of the stem fragments of a nucleotide sequence appear in
the alignment, they should not overlap at all or ber-continuous.
The overlapping stem components are carefully treated in the SCS
alignment that the left and right components of stem fragments
satisfy r-continuous condition as explained later. Therefore, ill-
continuous stem fragments never appear in our alignments. The
non-overlapping stem components, however, may have overlapping
complementary stem components because the left and right
components of the stem fragments are separately aligned. Therefore,
contradictory overlaps do happen in our alignments.

2.4.2 Consistency of matches of stem components Next we
discuss on the matches of the stem components from two nucleotide
sequences. For stem fragments[Xa, Xa′ ] and [Yb, Yb′ ] from two
SCSs{Xi}

n
i=1 and{Yj}

m
j=1, if Xa matchesYb in the alignment,

Xa′ should also matchYb′ . Let us define such a match as aleft-
right consistent match. Because the left component and the right
component of each stem fragment are aligned separately, left-
right consistency is not guaranteed in general. However, left-right
consistent matches occur frequently because the matching scores
encourage the matches of stem components that have similar loop
distances.

2.4.3 Removing inconsistent matches The left-right inconsistent
matches are removed after the SCS alignment (Fig. 5). If any
two of the stem components of a same SCS appear in the
SCS alignment and their complementary components overlap
(i.e. contradictory overlap), those complementary components
do not appear together in the alignment because the alignment
of complementary components are controlled to be either non-
overlapping orr-continuous. Therefore, the contradictory overlaps
of the stem fragments are removed just by removing the left-right
inconsistent matches of the components (Fig. 6).

2.5 Alignment Algorithm for Stem Components
The alignment of SCSs is computed by two DP matrix,M(i, j)
and G(i, j). M(i, j) is the best score up to a pair ofXi and Yj
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(a) One match is left-right inconsistent.

(b) All matches are left-right consistent.

Fig. 5. Removing the inconsistent matches. One of matches of the
left components is left-right inconsistent because the corresponding right
components do not match (a). By removing the components concerning
the left-right inconsistent match (boxes by dotted lines),remaining matches
represent the estimated common secondary structure (b).

Fig. 6. Contradictory overlap and left-right consistency. The twopairs
of right components (blue boxes) may appear together in the SCS
alignment, but the two pairs of left components (red boxes) cannot appear
together because they overlap without satisfying ther-continuous condition.
Therefore, one of the matches in right components becomes left-right
inconsistent.

given thatXi matchesYj andG(i, j) is the best score given thatXi

mismatchesYj .
The updates to deriveM(i, j) andG(i, j) are described as

M(i, j) = max

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

M(αi, βj)
+(δR(Xi) + δR(Yj))
+η4(δf (Xi) + δf (Yj))
−η5(δe(Xi) + δe(Yj))

M(pi, qj) + s(i, j)
G(pi, qj) + s(i, j)

(3)

G(i, j) = max

8

>

>

<

>

>

:

M(i − 1, j)
M(i, j − 1)
G(i − 1, j)
G(i, j − 1)

(4)

with the initial conditions;M(0, 0) = 0, M(·, 0) = M(0, ·) =
G(0, 0) = G(·, 0) = G(0, ·) = −∞.

αi is the index (smaller than i) of the component which is 1-
continuous toXi, βj is that of Yj . pi is the index (smaller than
i) of the nearest component which does not overlap withXi, qj is
that ofYj . η4 andη5 are control parameters.

In a simple DP for pairwise alignment, DP matrices depends on
the adjacent elements. In our algorithm, however,M(i, j) is derived
from the remote elements denoted asM(αi, βj), M(pi, qj) and
G(pi, qj). That ensures the adjacent matches of stem components
in DP being either1-continuous or non-overlapping (Fig. 7).

The updates (3) takes the maximum of three arguments. The first
argument treats the case for continuous stems longer than the fixed

iαipj

OverlapNon-Overlap

jβ
j

qj

OverlapNon-Overlap

X

Y

Fig. 7. Dependency in DP matrix computation. Shown are the two
sequences of stem components. A group of components boundedby red
poles have the same position in the original nucleotide sequence, but the
different complementary components as their partners. Thecalculation
of M(i, j) depends onM(αi, βj), M(pi, qj) and G(pi, qj). The
componentsXαi

andYβj
form 1-continuous fragments withXi andYj ,

respectively. The closest non-overlapping components from Xi andYj are
denoted asXpi

andYqj
, respectively.

length of stem fragments and ensures that the adjacent matches
are1-continuous. The indicesαi andβj are determined such that
[Xαi

, Xα′

i
] and[Yβj

, Yβj
′ ] are 1-continuous fragments of[Xi, Xi′ ]

and[Yj , Yj′ ], respectively. Sinceαi andβj do not always exist, the
first argument in (3) is taken into account only if bothαi andβj

are available. Only the incremental parts of sequence similarities,
the confidence scores and the stacking energy should be included
in those continuous matches because1-continuous matches share
base pairs except one. The symbols,δR(Xi), δf (Xi) andδe(Xi),
correspond to the incremental differences forXi-Xαi

of RIBOSUM
scores, confidence scores and stacking energy respectively(See Fig.
1 in supplement material for deltails).

The second and third arguments in (3) also take larger steps than
a simple DP and ensure that the adjacent stem components haveno
overlap.Xpi

andYqj
are the closest components in SCSs that do

not overlap withXi andYj , respectively.
Becauseαi and pi for eachi, βj and qj for eachj, and the

correspondingδR, δf andδe are calculated before the DP process
in linear time, those calculations do not give any damage on time
complexity of the algorithm.

2.6 Post-processing and Nucleotide Alignment
The inconsistency in the matches of stem components are removed
as the post-process. In order to guarantee the consistency,it is
sufficient to remove the left-right inconsistent matches ofstem
components as previously explained in section2.4.3. In other words,
the matches of stem components whose complementary components
do not match in the SCS alignment are removed as the post-process.

The nucleotide sequence alignment is intended to align remaining
loop regions except the selected common stems represented by the
consistent matches of stem components. It is simply implemented as
a pairwise alignment with affine gaps of whole nucleotide sequences
by adding a large value in DP matrix to the positions for the base
pairs indicated by the SCS alignment. Those values are so large that
the nucleotide alignment is forced to go through the positions and
subtracted afterwards to get the score of the alignment.

3 RESULTS
In this section we show the performance of SCARNA for the
alignment of RNA sequences by computational experiments on
the benchmark dataset of tRNAs used by Gardneret al. (2005)
and on the dataset from various families of non-coding RNA
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Fig. 8. SPS(left) and SCI(right) as functions of the sequence identity for Gardner’s dataset of tRNAs. Lines are smoothed by lowess(local weighted regression)
smoothing.

sequences in Rfam database (Griffiths-Joneset al., 2003). It has
been observed that SCARNA has a competitive performance to
the other RNA structural alignment approaches using Sankoff’s
Algorithm (Sankoff, 1985).

We have evaluated the quality of the alignments by the
sum-of-pairs score (SPS) and the structure conservation index
(SCI) (Gardneret al., 2005). The SPS is defined as the fraction out
of all possible nucleotide pairs that are aligned both in thepredicted
alignment and in the alignment of the reference. The SPS provides
a measure of the sensitivity of the prediction.

The structure conservation index (SCI) provides a measure
of the conserved secondary structure information contained
within the alignment (Washietlet al., 2005). It is a derivative
of the score calculated by the RNAalifold consensus folding
algorithm (Hofackeret al., 2002; Washietl and Hofacker, 2004)
which is based upon the sum of the thermodynamic term and the
covariance term. In contrast to the SPS, SCI is independent from
a reference alignment. The SCI is close to zero if RNAalifold
identifies no common RNA structure in the alignment, whereasa set
of perfectly conserved structures has an SCI≈ 1. The SCI points out
the structural aspect of alignment accuracy and, therefore, a useful
measure in addition to the SPS.

All the following tests were performed on a Linux machine with
a AMD OpteronTM Processor 850 2.4 GHz x 4 and 20GB RAM. The
length of stem fragmentsk was set to2. The threshold of base-pair
probabilityτ was set to0.0001. The control parameters,η1, η2, η3,
η4 andη5 were set to3.7, 0.1, 3.1, 9.4 and8.6, respectively. These
parameters were used to all RNA familywise dataset. The command
line options of other tools is listed on table1 in the supplement
matrial.

3.1 Benchmark Dataset of tRNAs
Gardner’s benchmark datasets (Gardneret al., 2005) are composed
of pairs of tRNA sequences that are classified by sequence identities.

Though all the structural alignment programs are not able toalign
RNA sequences of more than 150 bases without any device, theycan
align those short tRNA sequences of 71.8 nucleotides in average.
The sequences and the reference alignments for calculatingthe SPS
were obtained from the Rfam database.

The experimental results are shown in Fig.8. The SPS and
the SCI of SCARNA exceed those of sequence-based methods
(e.g. ClustalW (Chennaet al., 2003), MUSCLE (Edgar, 2004),
PCMA (Pei et al., 2003), POA (gp) (Leeet al., 2002),
ProAlign (Loytynoja and Sharlow, 2003) and Prrn (Gotoh,
1996)) and are comparable to those of structure-based methods
(e.g. Dynalign (Mathews and Turner, 2002; Mathews, 2005),
Foldalign2.0 (Havgaardet al., 2005), PMcomp (Hofackeret al.,
2004) and Stemloc (Holmes and Rubin, 2002; Holmes, 2004,
2005)). While the sequence-based methods and structure-based ones
have a dramatic divergence in relative performances below about
60% sequence identity, the SPS and the SCI of SCARNA do not
come down. In particular, the SPSs of SCARNA outperform most
of the structure-based methods in less than50% sequence identity.

3.2 Benchmark Dataset of other non-coding RNAs
In order to evaluate our algorithm by longer non-coding RNAs,
we made a benchmark dataset from 5S ribosomal RNA, 5.8S
ribosomal RNA and Hammerhead ribozyme in the Rfam (Griffiths-
Joneset al., 2003). The collection of reliable sequences is a difficult
task. We only used the ’seed’ alignments of Rfam because the
’full’ alignment includes computationally collected sequences. It is
ovserved that even the ’seed’ alignments includes questionable ones.
We tried to filter out unreliable sequences whose alignmentsinclude
inconsistend asignment of base pairs on gaps or very long gaps. We
compared SCARNA to ClustalW and Foldalign2.0. The result is
that the SPS and SCI of SCARNA can be compared to those of
Foldalign2.0, favorably. (See supplement material, Fig.2, Fig.3 and
Fig.4 for details).
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4 DISCUSSION

4.1 Computational Complexity
While the complexities ofO(n3) in time andO(n2) in memory for
secondary structure prediction of RNA sequences of lengthn are
affordable in most cases,O(n6) andO(n4) in Sankoff’s algorithm
for structural alignment can hardly be accepted. The comparison of
execution time of SCARNA with other methods (Fig. 9) shows its
applicability to real sequences. SCARNA requiresO(m2) in time
andO(m2) in memory for the alignment of SCSs of lengthm. The
length of the SCS for an RNA sequence depends on the length of the
RNA sequence, the thresholdτ for base-pair probabilities, and the
fixed lengthk of stem fragments. The lengths of the SCSs are linear
to the lengths of the RNA sequences for the reasonablek-s (See
supplement material for detail, Fig.5). Therefore, the computational
complexities of SCS alignment are evaluated asO(n2) in time and
O(n2) in memory. The computation of base-pair probabilities for
SCS building requiresO(n3) in time andO(n2) in memory (See
supplement material, Fig.6). For very long nucleotide sequences,
however, it can be reduced toO(n2) andO(n2) by restricting the
distance of base pairs to a fixed length. Therefore, SCARNA can be
used for long sequences in large scale analyses enjoyingO(n2) of
computational time.

4.2 Secondary Structure Prediction
The accuracy of the nucleotide alignments by SCARNA depends
on the predicted common secondary structures. The performance
of the alignment by SCARNA suggests high accuracy of the
predicted secondary structures. In order to evaluate the accuracy
of the secondary structure predictions for the individual sequences
directly, a post-processing of recovering the high-scoring base pairs
that are consistent with the predicted common secondary structures
has been tested.

We made datasets from RNA sequences in Rfam database by
the fraction of base pairs. The datasets are filled with following
conditions. (I)The parcentage of base pairs are 25% to 50%. (II)The
sequences are between 80 to 150 nucleotides in length. (III)Their
reference alignments have more than 5% and less than 50% of gaps.
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Fig. 10. Comparison between SCARNA and CARNAC concerning
secondary structure prediction. Lines are smoothed by spline interpolation.

Each dataset is classified into several subgroups of RNA sequences
by their sequence identities.

After the alignment of SCSs and removing the inconsistent stem
components, the base pairs with base-pair probabilities more than
0.95 have been recovered for the prediction of individual RNA
sequences. Sn (Sensitivity), Sp (Precision) and MCC (Matthews
Correlation Coefficient) (Matthews, 1975) have been used for
the performance measures of secondary structure prediction. Sn is
sometimes better recognized asrecall. Sp is also known aspositive
predictive value (PPV). They are defined as

Sn =
TP

TP+ FN
, Sp=

TP
TP+ FP

MCC =
TP× TN − FP× FN

p

(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)
,

where TP, TN, FN and FP are respectively the numbers of bases
(NOT base pairs) that are correctly included, correctly excluded,
incorrectly excluded and incorrectly included in the predicted base
pairs. The bases that are predicted to form base pairs with wrong
partners are coounted both in FP and in FN. MCC ranges from
-1 for extremely inaccurate (TP=TN=0) to 1 for very accurate
predictions(FP=FN=0). The results have been compared with
the predictions of CARNAC (Perriquetet al., 2003). CARNAC
is one of the most accurate software for common secondary
structures (Gardner and Giegerich, 2004). The result for the dataset
of 50% to 75% of base pairs is shown in Fig. 10. It can be observed
that the performance of SCARNA is stable with the change of
sequence identities. The MCC of SCARNA outperforms CARNAC
in all range of sequence identities. Resorting to anchoringapproach
based on sequence similarity, CARNAC had problems in both
low and very high sequence identities. SCARNA has a quality of
secondary structure prediction, which results in accuratenucleotide
alignments. Another result for dataset of 25% to 50% of base pairs
is showed in supplement material (Fig.7).
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4.3 Ability to Capture Pseudoknots
The major drawback of the DP algorithm for SCS alignment in
SCARNA is that the left-right consistency is not guaranteed. The
lack of the consistency, however, becomes a merit for capturing
pseudoknotted structures. SCARNA often finds pseudoknotted
structures without paying any additional computational costs
because the algorithm does not forbid two stem fragments having
pseudoknotted positions (See supplement material, Fig.8 and
Fig.9 for example of pseudoknot prediction), althogh McCaskill’s
algorithm does not consider the pseudoknots in the calculation of
the base-pair probabilities and the probabilities for pseudoknotted
base pairs may be underestimated. The DP algorithm for SCS
alignment can beimproved to be left-right consistent by using
pair stochastic context free grammars (PSCFGs) and by paying
expensive computational costs, but only for pseudoknot-free
structures.

4.4 Local Alignment
Sicne our global alignment algorithm (see section 2.5) is extendable
to local alienments, we are working on adding local alignment
capability to SCARNA, which allows to search non-coding RNAs
from genomic sequences based on the secondary structures aswell
as the sequence similarities.

5 CONCLUSION
We have proposed a new method for fast and accurate alignments
of RNA sequences based on the potential common secondary
structures. The method uses the fixed-length stem fragmentsas the
representation of the secondary structures. The3′ components and
the5′ components of the stem fragments are separately aligned by
an engineered dynamic programming and the inconsistent matches
are removed as the post-process. The base-pair probabilities,
substitution probabilities as the base pairs, stacking energy are
considered in the alignments. The method has been implemented
as SCARNA, whose accuracies of the alignments have been shown
to be much better than sequence-based methods and compatible to
the computationally expensive structure-based methods. The high
accuracies of SCARNA in the detections of common secondary
structures also supports the performance. SCARNA is fast enough
to align the sequences with more than 1000 nucleotides in length,
which most of the structure-based methods are unable to handle.
The computational complexity of the algorithm isO(n3) in time and
O(n2) in memory for the length of sequencen. The time complexity
can be reduced toO(n2) for long sequences by restricting the
distance of the bases in the base pairs. Pseudoknotted structures are
also found without paying extra computational costs.
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