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Abstract Scatter search is an evolutionary metaheuristic that explores solution

spaces by evolving a set of reference points, operating on a small set of solutions

while making only limited use of randomization. We give a comprehensive descrip-

tion of the elements and methods that make up its template, including the most re-

cent elements incorporated in successful applications in both global and combinato-

rial optimization. Path-relinking is an intensification strategy to explore trajectories

connecting elite solutions obtained by heuristic methods such as scatter search, tabu

search, and GRASP. We describe its mechanics, implementation issues, randomiza-

tion, the use of pools of high-quality solutions to hybridize path-relinking with other

heuristic methods, and evolutionary path-relinking. We also describe the hybridiza-

tion of path-relinking with genetic algorithms to implement a progressive crossover

operator. Some successful applications of scatter search and of path-relinking are

also reported.
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1 Introduction

Scatter search (SS) is a metaheuristic that explores solution spaces by evolving a

set of reference points. It can be viewed as an evolutionary method that operates

on a small set of solutions and makes only limited use of randomization as a proxy

for diversification when searching for a globally optimal solution. The scatter search

framework is flexible, allowing the development of alternative implementations with

varying degrees of sophistication.

The fundamental concepts and principles of the method were first proposed in

the 1970s [5], based on formulations dating back to the 1960s for combining deci-

sion rules and problem constraints. In contrast to other evolutionary methods like

genetic algorithms, scatter search is founded on the premise that systematic designs

and methods for creating new solutions afford significant benefits beyond those de-

rived from recourse to randomization. It uses strategies for search diversification

and intensification that have proved effective in a variety of settings.

Scatter search orients its explorations systematically relative to a set of reference

points that typically consist of good solutions obtained by prior problem solving

efforts. The criteria for “good” are not restricted to objective function values, and

may apply to sub-collections of solutions rather than to a single solution, as in the

case of solutions that differ from each other according to certain specifications.

The scatter search template [7] has served as the main reference for most of

the scatter search implementations to date. The dispersion patterns created by these

designs have been found useful in several application areas. Section 2 gives a com-

prehensive description of the elements and methods of this template, based on the

formulation given in Laguna and Martı́ [13]. It includes the most recent elements

incorporated in successful applications in both global and combinatorial optimiza-

tion.

Path-relinking is an intensification strategy to explore trajectories connecting

elite solutions obtained by heuristic methods [6]. Path-relinking can be consid-

ered an extension of the combination method of scatter search. Instead of directly

producing a new solution when combining two or more original solutions, path-

relinking generates paths between and beyond the selected solutions in the neigh-

borhood space. It should be noted that the combination method in scatter search is

a problem-dependent element, which is customized depending on the problem and

the solution representation. In particular, in global optimization, where solutions are

represented as real vectors, most scatter search applications perform linear combi-

nations between pairs of solutions. Alternatively, in problems where solutions are

represented as permutations, such as ordering problems, voting methods have been

widely applied. In problems where solutions are represented as binary vectors, such

as knapsack problems, probabilistic scores have provided very good results [13].

This way, one can also view path-relinking as a unified combination method for

all types of problems and in this way it also generalizes the combination methods.

In Section 3, we focus on path-relinking, including its mechanics, implementation

issues, randomization, the use of pools of high-quality solutions to hybridize path-

relinking with other heuristic methods, and evolutionary path-relinking.
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Concluding remarks are made in Section 4, where some successful applications

of scatter search and of path-relinking are listed.

2 Scatter search

From an algorithmic point of view we can consider that scatter search basically

performs iterations over a set of good solutions called the Reference Set (RefSet). It

must be noted that the meaning of good is not restricted here to the quality of the

solutions, but also considers the diversity that they add to this set of solutions.

Once the initial RefSet is created, a global iteration of the method consists of three

steps: combine, improve, and update the solutions in the RefSet. We first describe

the five elements in the template. Next, we explain how they interact.

1. A Diversification Generation Method to generate a collection of diverse trial

solutions, using one or more arbitrary trial solutions (or seed solutions) as an

input.

2. An Improvement Method to transform a trial solution into one or more enhanced

trial solutions: neither the input nor the output solutions are required to be feasi-

ble, though the output solutions are typically feasible. If the input trial solution

is not improved as a result of the application of this method, the “enhanced”

solution is considered to be the same as the input solution.

3. A Reference Set Update Method to build and maintain a reference set consisting

of the b “best” solutions found (where the value of b is typically small, e.g.,

no more than 20), organized to provide efficient access by other parts of the

solution procedure. Several alternative criteria may be used to add solutions to

the reference set and delete solutions from the reference set.

4. A Subset Generation Method to operate on the reference set, to produce a subset

of its solutions as a basis for creating combined solutions. The most common

subset generation method is to generate all pairs of reference solutions (i.e., all

subsets of size 2).

5. A Solution Combination Method to transform a given subset of solutions pro-

duced by the Subset Generation Method into one or more combined solutions.

Figure 1 shows the interaction among these five methods and highlights the cen-

tral role of the reference set. This basic design starts with the creation of an initial

set of solutions P, and then extracts from it the reference set (RefSet) of solutions.

The darker circles represent improved solutions resulting from the application of the

Improvement Method.

The Diversification Generation Method is used to build a large set P of diverse

solutions. The size of P (PSize) is typically at least ten times the size of RefSet.

The initial reference set is built according to the Reference Set Update Method. For

example, the Reference Set Update Method could consist of selecting b distinct and

maximally diverse solutions from P.
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Fig. 1 Scatter search diagram.

A typical construction of the initial reference set starts with the selection of the

best b/2 solutions from P. These solutions are added to RefSet and deleted from P.

For each solution in P-RefSet, the minimum of the distances to the solutions in Ref-

Set is computed. Then, the solution with the maximum of these minimum distances

is selected. This solution is added to RefSet and deleted from P and the minimum

distances are updated. (In applying this max-min criterion, or any criterion based

on distances, it can be important to scale the problem variables, to avoid a situation

where a particular variable or subset of variables dominates the distance measure

and distorts the appropriate contribution of the vector components.) The process is

repeated b/2 times. The resulting reference set has b/2 high quality solutions and

b/2 highly-diverse solutions. Note that with this criterion we are considering as

equally important quality and diversity in the original RefSet. Alternative designs

may include a different composition of the b solutions in this set. For example, we

could consider just a single solution selected because of its quality (say the best

one in P) and the remaining b− 1 solutions in the Refset could be selected from

P because of their diversity. Since the reference set is the heart of a scatter search

procedure, its initial composition may result in significant changes during the search

process.

The solutions in RefSet are ordered according to quality, where the best solution

is the first one in the list. The search is then initiated applying the Subset Genera-

tion Method. In its simplest (and typical) form it consists of generating all pairs of

reference solutions. That is, the method would focus on subsets of size 2 resulting
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in (b2− b)/2 new subsets. The pairs are selected one at a time in lexicographical

order and the Solution Combination Method is applied to generate one or more trial

solutions. These trial solutions are subjected to the Improvement Method, if one is

available. The Reference Set Update Method is applied once again to build the new

RefSet with the best solutions, according to the objective function value, from the

current RefSet and the set of trial solutions. A global iteration finishes with the up-

date of the RefSet. Note that in subsequent iterations we only combine the pairs of

solutions not combined in previous iterations. The basic procedure terminates after

all the generated subsets are subjected to the Combination Method and none of the

improved trial solutions are admitted to RefSet under the rules of the Reference Set

Update Method. However, in advanced scatter search designs, the RefSet rebuilding

is applied at this point and the best b/2 solutions are kept in the RefSet and the other

b/2 are selected from P, replacing the worst b/2 solutions.

It is interesting to observe similarities and contrasts between scatter search and

the original Genetic Algorithm (GA) proposals. Both are instances of what are

sometimes called population-based or evolutionary approaches. Both incorporate

the idea that a key aspect of producing new elements is to generate some form of

combination of existing elements. However, original GA approaches were predi-

cated on the idea of choosing parents randomly to produce offspring, and further

on introducing randomization to determine which components of the parents should

be combined. By contrast, scatter search is based on deterministic designs in which

we implement strategic rules to generate new solutions. These rules do not resort to

randomization, as usually happens in GAs. They are based on the structure and

properties of the problem being solved, as well as on the search history. More-

over, GAs usually apply general purpose combination methods, such as the well-

known crossover operator, while scatter search customizes the combination method

for each particular problem. It should be noted, however, that GAs have been pro-

gressively incorporating more advanced design elements from more powerful meta-

heuristics and solution strategies.

2.1 New strategies in global optimization

Egea et al. [2] proposed an evolutionary method for global optimization of complex-

process models, which employs some elements of scatter search and path-relinking.

Regarding scatter search, the method uses a relatively small population size, par-

tially chosen by a quality criterion from an initial set of diverse solutions. It also

performs systematic combinations among the population members. Regarding path

relinking, the new solutions are generated within the areas defined by every pair of

solutions in the population, introducing a bias to generate new solutions which share

more properties with the best population members than with the rest. We mentioned

this method here because it introduces new strategies and modifies some standard

scatter search designs. Specifically, it employs:
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• a small population without memory structures, in which repeated sampling is

allowed;

• a new combination method based on wide hyper-rectangles;

• an aggressive population update for a quick convergence; and

• a new search intensification strategy called the go-beyond.

Considering its potential applicability to other domains, we describe the go-

beyond strategy, which consists in exploiting promising directions, extending the

combination method.

Figure 2 depicts the level curve (contour plots) of the 2-D dimensional uncon-

strained function f (x1,x2) in the range x1 ∈ [−6,6] ,x2 ∈ [−2,7], which presents

several minima:

f (x1,x2) = 2 + 0.01(x2− x2
1)

2 +(1− x1)
2 + 2(2− x2)

2 + 7sin(0.5x1)sin(0.7x1x2)

We illustrate in this diagram how the go-beyond strategy works. From a pair of

RefSet solutions x and y (labeled as population members in the figure and depicted

with black points) a new solution is generated in the corresponding hyper-rectangle,

z, and depicted in the figure (labeled as new solution and represented with a black

square). If z is better than x and y ( f (z) < f (x) and f (z) < f (y)), then we consider

that this is a promising direction and apply the go-beyond strategy, extending the

combination method. In the present problem, this means that we consider a new

hyper-rectangle (solid line) defined by the distance between z and y (its closest ref-

erence set solution). A new solution (depicted with a triangle) is created in this

hyper-rectangle and the process is repeated as long as good solutions are obtained.

Figure 2 shows a new solution (starred) created in an area very close to the global

minimum.

2.2 New strategies in combinatorial optimization

Martı́ et al. [16] proposed a scatter search algorithm for the well known Max-Cut

problem based on the standard design described in this section. Their method ex-

tends the basic scatter search implementation in three different ways. First, it uses

a new selection procedure for constructing a reference set from a population of

solutions. Traditionally, scatter search implementations have used the criterion of

maximizing the minimum distance between the solution under consideration and

the solutions already in the reference set. In such a process, diverse solutions are

selected one by one from the population P and the distances are updated after each

selection. In contrast, Martı́ et al. [16] propose a method that selects all the diverse

solutions at once by solving the maximum diversity problem (MDP). Given a set of

elements S and the corresponding distances between the elements of the set, the

MDP consists in finding the most diverse subset of S of a specified size. The di-

versity of the chosen subset is given by the sum of the distances between each pair
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of its elements. The distance between two Max-Cut solutions is defined to be the

number of different edges in the cut.

The use of the MDP within scatter search is based on recognizing that the original

set of elements is given by P \ {the b/2 best solutions}. The MDP scheme is also

used to complete the current RefSet, which is already partially populated with the

b/2 best solutions from P.

The second extension consists of a dynamic adjustment of the depth parameter

k associated with the ejection chain mechanism, which is at the core of the search-

based improvement method. This local search has an associated parameter that mea-

sures the depth of the search in the ejection chain process. The solution representa-

tion incorporates the information related to the particular k value used to generate

it. In this way, the depth of the ejection chain produced depends on the parameter

values associated with the solutions being combined.

The third extension implements a probabilistic selection of the combination

methods. The probability of selecting one of three methods proposed in [16] for the

Max-Cut problem is proportional to the number of high quality solutions generated

by the method in previous iterations. A probability-based mechanism is introduced

to select a combination method each time the solutions are combined. The probabil-

ity of selecting one of the three methods is set to 1/3 at the beginning of the search.

The probability values are then updated at the end of each SS iteration in order to

favor the combination methods that produce solutions of sufficiently high quality to

be included in the reference set.

3 Path-relinking

Path-relinking was originally proposed by Glover [6] as an intensification strategy

to explore trajectories connecting elite solutions obtained by tabu search or scat-

ter search [8, 9, 10]. In the remainder of this chapter, we focus on path-relinking,

including its mechanics, implementation issues, randomization, the use of pools

of high-quality solutions to hybridize path-relinking with other heuristic methods,

and evolutionary path-relinking. We conclude the chapter with some computational

results illustrating the effect of using path-relinking with other heuristics. For com-

pleteness, we have included in this section some material that also appears in the

chapter of the handbook on GRASP.

3.1 Mechanics of path-relinking

We consider an undirected graph G = (S,M) associated with the solution space,

where the nodes in S correspond to feasible solutions and the edges in M correspond

to moves in the neighborhood structure, i.e. (i, j) ∈ M if and only if i ∈ S, j ∈ S,

j ∈ N(i), and i ∈ N( j), where N(s) denotes the neighborhood of a solution s ∈
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S. Path-relinking is usually carried out between two solutions: one is called the

initial solution, while the other is the guiding solution. One or more paths in the

solution space graph connecting these solutions are explored in the search for better

solutions. Local search is applied to the best solution in each of these paths, since

there is no guarantee that this solution is locally optimal.

Let s ∈ S be a node on the path between an initial solution and a guiding solution

g∈ S. Not all solutions in the neighborhood N(s) are allowed to follow s on the path

from s to g. We restrict the choice to those solutions in N(s) that are more similar to

g than s is. This is accomplished by selecting moves from s that introduce attributes

contained in the guiding solution g. Therefore, path-relinking may be viewed as a

strategy that seeks to incorporate attributes of high quality solutions (i.e. the guiding

solutions), by favoring these attributes in the selected moves. After an analysis of

each potential move, the most common strategy is to select a move that results in the

best-quality restricted neighbor of s. The restricted neighbors of s are all solutions

in the neighborhood of s that incorporate an attribute of the guiding solution not

present in s.

Several alternatives for path-relinking have been considered and combined in re-

cent implementations. These include forward, backward, back-and-forward, mixed,

truncated, greedy randomized adaptive, and evolutionary path-relinking. All these

alternatives involve trade-offs between computation time and solution quality.

Suppose that path-relinking is be applied to a minimization problem between

solutions x1 and x2 such that z(x1) ≤ z(x2), where z(·) denotes the objective func-

tion. In forward path-relinking, the initial and guiding solutions are set to g = x1

and s = x2. Conversely, in backward path-relinking, we set g = x2 and s = x1. In

back-and-forward path-relinking, backward path-relinking is applied first, followed

by forward path-relinking. Path-relinking explores the neighborhood of the initial

solution more thoroughly than the neighborhood of the guiding solution because,

as it moves along the path, the size of the restricted neighborhood decreases. Con-

sequently, backward path-relinking tends to do better than forward path-relinking.

Back-and-forward path-relinking does at least as well as either backward or forward

path-relinking but takes about twice as long to compute.

In applying mixed path-relinking [11, 21] between feasible solutions s and t in

S, two paths are started simultaneously, one at s and the other at t. These two paths

meet at some solution r ∈ S, thus connecting s and t with a single path. Algorithm

1 describes a mixed path-relinking procedure for a 0-1 minimization problem, such

as the set covering problem, where xs and xt are binary vectors representing the

solutions to be linked.

The set ∆ = { j = 1, . . . ,n : xs
j 6= xt

j} of positions in which xs and xt differ is

computed in line 2. The cardinality of this set is called the Hamming distance be-

tween xs and xt . The best solution, x∗, among xt and xs and its cost, z∗ = z(x∗), are

determined in lines 3 and 4, respectively. The current path-relinking solution, x, is

initialized to xs is line 5. The loop in lines 6 to 16 progressively determines the next

solution in the path connecting xs and xt , until the entire path is traversed. For every

position ℓ∈ ∆ , we define x⊕ ℓ to be the solution obtained from x by complementing

the current value of xℓ. Line 7 determines the component ℓ∗ of ∆ for which x⊕ ℓ
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MixedPathRelinking1
∆ ←{ j = 1, . . . ,n : xs

j 6= xt
j};2

x∗← argmin{z(xs), z(xt )};3
z∗←min{z(xs), z(xt )};4
x← xs;5
while |∆ |> 1 do6

ℓ∗← argmin{z(x⊕ ℓ) : ℓ ∈ ∆};7
∆ ← ∆ \{ℓ∗};8
xℓ← 1− xℓ;9
if z(x) < z∗ then10

x∗← x;11

z∗← z(x);12

end13
xs← xt ;14
xt ← x;15

end16
x← LocalSearch(x);17
return x ;18

Algorithm 1: Mixed path-relinking procedure for problems where solu-

tions are represented by binary vectors.

results in the least-cost solution. This component is removed from ∆ in line 8 and

the current solution is updated in line 9 by complementing the value of its ℓ-th po-

sition. If the test in line 10 detects that the new current solution x improves the best

solution x∗ in the path, then x∗ and its cost are updated in lines 11 and 12, respec-

tively. The roles of the starting and target solutions are swapped in lines 14 and 15

to implement the mixed path-relinking strategy. If |∆ | = 0, then the local search is

applied to the best solution in the path in line 16 and the locally optimal solution is

returned by the procedure.

Like back-and-forward path-relinking, the mixed variant explores both neighbor-

hoods N(xs) and N(xt ). Unlike back-and-forward path-relinking, it is usually less

than twice as long as the backward or forward variants.

In the case of the set covering problem, there always exists a path connecting xs

and xt . We just need to observe that setting to one all components with value 0 in

xs and value 1 in xt results in a series of feasible covers leading from xs to some

feasible solution x. Next, by setting to zero those components with value 1 in x and

value 0 in xt results again in a series of feasible covers leading x to xt . Figure 3

illustrates the application of mixed path-relinking to solutions xs and xt for which

the Hamming distance is equal to five.

One can expect to see most solutions produced by path-relinking to come from

subpaths close to either the initiating or guiding solutions. Resende et al. [18]

showed that this occurs in instances of the max-min diversity problem. In that ex-

periment, a back and forward path-relinking scheme was tested. Figure 4 shows the

percentage of best solutions found by path-relinking taken over several instances

and several applications of path-relinking. The 0-10% range in the figure corre-
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Fig. 3 Mixed path-relinking between two solutions with Hamming distance of five: numbers above

the arrows represent the order in which the moves are performed.
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Fig. 4 Percentage of best solutions found at different depths of the path from the initial solution to

the guiding solution on instances of the max-min diversity problem.

sponds to subpaths near the initial solutions for the forward path-relinking phase as

well as the backward phase, while the 90-100% range are subpaths near the guiding

solutions. As the figure indicates, exploring the subpaths near the extremities may

produce solutions about as good as those found by exploring the entire path. There

is a higher concentration of better solutions close to the initial solutions explored by

path-relinking.
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As shown in Algorithm 2, it is simple to adapt path-relinking to explore only the

neighborhoods close to the extremes. Let ρ be a real parameter such that 0 < ρ ≤ 1

that defines the portion of the path to be explored. Instead of carrying out the main

loop while |∆ | > 1 as in the mixed path-relinking of Algorithm 1, the main loop is

applied while |∆ |> ρ ·δt , where δt is the cardinality of the initial set ∆ .

TruncatedMixedPathRelinking1
∆ ←{ j = 1, . . . ,n : xs

j 6= xt
j};2

δt ← |∆ |;3
x∗← argmin{z(xs), z(xt )};4
z∗←min{z(xs), z(xt )};5
x← xs;6

while |∆ |> ρ ·δt do7
ℓ∗← argmin{z(x⊕ ℓ) : ℓ ∈ ∆};8
∆ ← ∆ \{ℓ∗};9
xℓ← 1− xℓ;10
if z(x) < z∗ then11

x∗← x;12
z∗← z(x);13

end14
xs← xt ;15
xt ← x;16

end17
x← LocalSearch(x);18
return x ;19

Algorithm 2: Truncated mixed path-relinking procedure for problems

where solutions are represented by binary vectors.

3.2 Minimum distance required for path-relinking

We assume that we want to connect solutions s and t with path-relinking. If the

distance |∆(s,t)| between s and t, i.e. the number of components in which s and

t differs, is equal to one, then the path directly connects the two solutions and no

solution, other than s and t, is visited.

If we assume that s and t are both locally optimal, we know that z(s) ≤ z(r) for

all r ∈ N(s) and z(t) ≤ z(r) for all r ∈ N(t). If |∆(s,t)| = 2, then any path is of the

type s→ r→ t, where r ∈ N(s)∩N(t), and consequently r cannot be better than

either s or t. Likewise, if |∆(s,t)| = 3 then any path is of the type s→ rs→ rt → t,

where rs ∈ N(s) and rt ∈ N(t), and consequently neither rs nor rt can be better than

both s and t.

Therefore, things only get interesting for |∆(s,t)| > 3. For those cases, any path

is of the type s→ rs→ w1 → ··· → wp→ rt → t, where w1, . . . ,wp are candidates
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to be better than both s and t. Therefore, we do not consider relinking a pair of

solutions s,t unless |∆(s,t)| ≥ 4.

3.3 Randomization in path-relinking

Consider again a problem whose solution can be represented as a binary vector of

size n, such as the set covering problem, the satisfiability problem, or the max-cut

problem. Let us denote the set of solutions spanned by the common elements of

solutions s and t as

S (s,t) := {w ∈ {0,1}n : wi = si = ti, i /∈ ∆(s,t)} \ {s,t}, (1)

with |S (s,t)| = 2|∆ (s,t)|− 2. The underlying assumption of path-relinking is that

there exist good-quality solutions in S (s,t), since this space consists of all solutions

which contain the common elements of two good solutions s and t. Taking into

consideration that the size of this space is exponentially large, we normally adopt a

greedy search where a path of solutions

s = w0,w1, . . . ,w|∆ (s,t)| = t,

is constructed, such that |∆(wi,wi+1)|= 1, i = 0, . . . , |∆(s,t)|−1, and the best so-

lution from this path is chosen. However, by adopting the greedy strategy, we limit

ourselves to exploring a single path from a set of exponentially many paths. By

adding randomization to path-relinking, greedy randomized adaptive path-relinking

(GRAPR) [3] is not constrained to explore a single path.

The pseudo-code for GRAPR for a minimization problem is shown in Algo-

rithm 3. The main difference with respect to Algorithm 1 are lines 6, and 8–11.

Instead of selecting the move that results in the best solution as is the case in stan-

dard path-relinking, a restricted candidate list (RCL) is constructed with the moves

that result in solutions with costs in an interval that depends on the value of the best

move, the value of the worst move, and a random parameter α . From this set, one

move is selected at random to produce the next step in the path.

GRAPR is useful when path-relinking is applied more than once between the

same pair of solutions as it can occur in evolutionary path-relinking (discussed in

Subsection 3.5).

3.4 Hybridization with a pool of elite solutions

Path-relinking is a major enhancement to metaheuristics that generate a sequence of

locally optimal feasible solutions. These metaheuristics include, but are not limited

to, GRASP, variable neighborhood search, tabu search, scatter search, and simulated

annealing, To hybridize path-relinking with these metaheuristics, one usually makes
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GreedyRandomizedAdaptivePathRelinking1
∆ ←{ j = 1, . . . ,n : xs

j 6= xt
j};2

x∗← argmin{z(xs), z(xt )};3
z∗←min{z(xs), z(xt )};4
x← xs;5
Select α ∈ [0,1]⊂ R at random;6
while |∆ |> 1 do7

z−←min{z(x⊕ ℓ) : ℓ ∈ ∆};8
z+←max{z(x⊕ ℓ) : ℓ ∈ ∆};9
RCL←{ℓ ∈ ∆ : z(x⊕ ℓ) ≤ z−+α (z+− z−)};10
Select ℓ∗ ∈ RCL at random;11

∆ ← ∆ \{ℓ∗};12
xℓ← 1− xℓ;13
if z(x) < z∗ then14

x∗← x;15
z∗← z(x);16

end17
xs← xt ;18
xt ← x;19

end20
x← LocalSearch(x);21
return x ;22

Algorithm 3: Greedy randomized adaptive path-relinking with a mixed

variant of path-relinking.

use of an elite set, i.e. a diverse pool of high-quality solutions found during the

search. The elite set starts empty and is limited in size. Each locally optimal solution

produced by the metaheuristic is relinked with one or more solutions from the elite

set. Each solution produced by path-relinking is a candidate for inclusion in the elite

set where it can replace an elite solution of worse value.

The pool of elite solutions is initially empty. Each locally optimal solution pro-

duced by the metaheuristic and each solution resulting from path-relinking is con-

sidered as a candidate to be inserted into the pool. If the pool is not yet full, the

candidate is simply added to the pool if it differs from all pool members. If the pool

is full and the candidate is better than the incumbent, then it replaces an element

of the pool. In case the candidate is better than the worst element of the pool but

not better than the best element, then it replaces some element of the pool if it is

sufficiently different from every other solution currently in the pool. To balance the

impact on pool quality and diversity, the element selected to be replaced is the one

that is most similar to the entering solution among those elite solutions of quality no

better than the entering solution [20].

Given a local optimum s1 produced by the metaheuristic, we need to select at

random from the pool a solution s2 to be connected with s1 via path-relinking. In

principle, any solution in the pool could be selected. However, one should avoid

solutions that are too similar to s1, because relinking two solutions that are similar
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limits the scope of the path-relinking search. If the solutions are represented by

binary vectors, one should favor pairs of solutions for which the Hamming distance

between them is high. A strategy introduced in [20] is to select a pool element at

random with probability proportional to the Hamming distance between the pool

element and the local optimum s1. Since the number of paths between two solutions

grows exponentially with their Hamming distance, this strategy favors pool elements

that have a large number of paths connecting them to and from s1.

HEUR+PR1
Initialize elite set P← /0;2
while stopping criterion not satisfied do3

x← HeuristicLocalOptimal();4
if P = /0 then insert x into P;5
else6

xs← x;7
Choose, at random, a pool solution xt ∈ P;8
x← PathRelinking(xs,xt);9
Update the elite set P with x ;10

end11

end12
return P ;13

Algorithm 4: Hybridization of path-relinking with a heuristic that gen-

erates local optima.

Algorithm 4 illustrates the pseudo-code of a hybrid heuristic that uses path-

relinking for minimization. In line 2, the pool of elite solutions P is initially empty.

The loop in lines 3 to 12 makes up an iteration of the hybrid algorithm. In line 4, x is

a locally optimal solution generated by procedure HeuristicLocalOptimal(). If

the elite set is empty, then x is inserted into the pool in line 5. Otherwise, x becomes

the initiating solution in lines 7 and a guiding solution is selected at random from

the pool in line 8. The initiating and guiding solutions are relinked in line 9 and

the resulting solution is tested for inclusion into the elite set in line 10. The hybrid

procedure returns the set of elite solutions which includes the best solution found

during the search.

3.5 Evolutionary path-relinking

Path-relinking can also be applied between elite set solutions to search for new high-

quality solutions and to improve the average quality of the elite set. This can be done

in a post-optimization phase, after the main heuristic stops, or periodically, when the

main heuristic is still being applied [1, 18, 20].
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We describe two schemes called evolutionary path-relinking for this purpose.

Both schemes take as input the elite set and return either the same elite set or one

with an improved average cost.

The first scheme, described by Resende and Werneck [20], works with a popu-

lation that evolves over a number of generations. The initial population is the input

elite set. In the k-th generation the procedure builds the k-th population, which is

initially empty. Path-relinking is applied between all pairs of solutions in popula-

tion k−1. Each solution output from the path-relinking operation is a candidate for

inclusion in population k. The usual rules for inclusion into an elite set are adopted

in evolutionary path-relinking. If population k is not yet full, the solution is accepted

if it differs from all solutions in the population. After population k is full, the solu-

tion is accepted if either it is better than the best solution in the population or it is

better than the worst and is sufficiently different from all solutions in the population.

Once a solution is accepted for inclusion into population k, it replaces the solution

in population k that does not have a better cost and that is most similar to it. The

procedure halts when the best solution in population k does not have better cost than

the best solution in population k−1.

A variation of the above scheme is described by Resende et al. [18]. In that

scheme, while there exists a pair of solutions in the elite set for which path-relinking

has not yet been applied, the two solutions are combined with path-relinking and the

resulting solution is tested for membership in the elite set. If it is accepted, it then

replaces the elite solution most similar to it among all solutions having worse cost.

Since some elite solutions may remain in the elite set over several applications of

evolutionary path-relinking, greedy randomized adaptive path-relinking [3] can be

used in evolutionary path-relinking to avoid repeated explorations of the same paths

in the solution space in different applications of the procedure.

GRASP with evolutionary path-relinking and scatter search are evolutionary

methods based on evolving a small set of selected solutions (elite set in the for-

mer and reference set in the latter). We can, therefore, observe similarities between

them. In some implementations of scatter search, GRASP is used to populate the

reference set. Note, however, that other constructive methods can be used as well.

Similarly, path-relinking can be used to combine solutions in scatter search, but we

can use any other combination method. From an algorithmic point of view, we may

find two main differences between these methods. The first one is that in scatter

search we do not apply path-relinking to the solutions obtained with GRASP, but

rather, we only apply path-relinking as a combination method between solutions al-

ready in the reference set. The second difference is that in scatter search when none

of the new solutions obtained with combinations are admitted to the reference set

(elite set), it is rebuilt, removing some of its solutions, as specified in the reference

set update method. In GRASP with evolutionary path-relinking we do not remove

solutions from the elite set, but rather, we reapply GRASP and use the same rules

for inclusion in the elite set.
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3.6 Progressive crossover: Hybridization with genetic algorithms

Path-relinking was first applied in the context of a genetic algorithm by Ribeiro and

Vianna [22] in order to implement a progressive crossover operator. In this innova-

tive application, the hybridization strategy was applied to a phylogeny problem.

The original proposal was extended and improved in [23]. In this case, a bidi-

rectional (or back and forward) path-relinking strategy is used: given two parent

solutions s1 and s2, one path is computed leading from s1 to s2 and another leading

from s2 to s1. The best solution along them is returned as the offspring resulting

from crossover. This mechanism is an extension of the traditional crossover opera-

tor: instead of producing only one offspring, defined by one single combination of

two parents, it investigates many solutions that share characteristics of the selected

parents. The solution found by path-relinking corresponds to the best offspring that

could be obtained by applying the standard crossover to the parents.

The experiments reported in [23] make use of the results obtained on one ran-

domly generated instance (TST17) of the phylogeny problem to assess the evolu-

tion of the solutions found by three different genetic algorithm in one hour (3,600

seconds) of computations: the random-keys genetic algorithm RKGA [22], the pro-

posed genetic algorithm GA+PR using path-relinking to implement the progres-

sive crossover operator, and the simpler genetic algorithm GAUni using uniform

crossover. Figure 5 presents the solution value at the end of each generation for each

of the 100 individuals in the population. Since the original random-keys genetic al-

gorithm RKGA made use of elitism, the solution values are restricted to a smaller

interval ranging between 2500 and 2620. The solution values obtained by the two

other algorithms show more variability. The solutions found by algorithm GA+PR
are better than those obtained by RKGA and GAUni, illustrating the contribution of

the strategy based on path-relinking to implement the crossover operator.

Path-relinking was also applied by Zhang and Lai [25] following the strategy

proposed in [22] in the implementation of a genetic algorithm for the multiple-

level warehouse layout problem. Their approach also makes use of path-relinking

when the genetic algorithm seems to be trapped in a locally optimal solution. Once

again, path-relinking was used by Vallada and Ruiz [24] as a progressive crossover

operator within a genetic algorithm for the minimum tardiness permutation flow-

shop problem. It was also applied as an intensification strategy after a number of

generations without improvement to the best solution. The selected individuals are

marked in order to not be selected again during the application of path-relinking.

Path-relinking was also hybridized with a genetic algorithm as a post-optimization

procedure [17]. In this work, the solutions in the final population produced by the

genetic algorithm are progressively combined and refined.
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3.7 Hybridization of path-relinking with other heuristics

The basic implementation of GRASP is memoryless because it does not make use

of information collected in previous iterations. The use of path-relinking within a

GRASP procedure, as an intensification strategy applied to each locally optimal

solution, was first proposed by Laguna and Martı́ [12]. It was followed by several

extensions, improvements, and successful applications [19]. Each local minimum

produced by the GRASP is combined with a randomly selected elite solution. The

resulting solution is a candidate for inclusion into the elite set. Evolutionary path-

relinking can be applied periodically to improve the quality of the elite set.

Enhancing GRASP with path-relinking almost always improves the performance

of the heuristic. As an illustration, Figure 6 shows time-to-target plots for GRASP

and GRASP with path-relinking implementations for four different applications.

These time-to-target plots show the empirical cumulative probability distributions of

the time-to-target random variable when using pure GRASP and GRASP with path-

relinking, i.e., the time needed to find a solution at least as good as a prespecified

target value. For all problems, the plots show that GRASP with path-relinking is

able to find target solutions faster than GRASP.

4 Applications and concluding remarks

There are three main sources where successful applications of scatter search and

path-relinking can be found. First, Chapter 8 of the monograph on scatter search

by Laguna and Martı́ [13], identifies 14 applications, including neural networks,

multi and mono-objective routing problems, graph drawing, scheduling, and color-

ing problems. A second source of successful implementations of both methodolo-

gies is a special issue of EJOR [14] in which they are classified into the following

seven categories: Foundations, Nonlinear Optimization, Optimization in Graphs,

Parallel Optimization, Prediction and Clustering, Routing and Scheduling. There

is also a third source, which is frequently updated with current applications: the

web site http://www.uv.es/rmarti/scattersearch on scatter search

and path-relinking publications, in which more than 100 implementations are col-

lected.
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Fig. 5 Solutions obtained by genetic algorithms for random instance TST17 for 3,600 seconds of

computations.
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Fig. 6 Time to target plots comparing running times of pure GRASP and GRASP with path-

relinking on four instances of distinct problem types: three index assignment [1], maximum satis-

fiability [4], bandwidth packing [4], and quadratic assignment [15].


