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Abstract

Cache side-channel attacks can be leveraged as a building

block in attacks leaking secrets even in the absence of soft-

ware bugs. Currently, there are no practical and generic miti-

gations with an acceptable performance overhead and strong

security guarantees. The underlying problem is that caches

are shared in a predictable way across security domains.

In this paper, we eliminate this problem. We present SCAT-

TERCACHE, a novel cache design to prevent cache attacks.

SCATTERCACHE eliminates fixed cache-set congruences and,

thus, makes eviction-based cache attacks unpractical. For this

purpose, SCATTERCACHE retrofits skewed associative caches

with a keyed mapping function, yielding a security-domain-

dependent cache mapping. Hence, it becomes virtually impos-

sible to find fully overlapping cache sets, rendering current

eviction-based attacks infeasible. Even theoretical statistical

attacks become unrealistic, as the attacker cannot confine con-

tention to chosen cache sets. Consequently, the attacker has

to resort to eviction of the entire cache, making deductions

over cache sets or lines impossible and fully preventing high-

frequency attacks. Our security analysis reveals that even in

the strongest possible attacker model (noise-free), the con-

struction of a reliable eviction set for PRIME+PROBE in an 8-

way SCATTERCACHE with 16384 lines requires observation

of at least 33.5 million victim memory accesses as compared

to fewer than 103 on commodity caches. SCATTERCACHE

requires hardware and software changes, yet is minimally in-

vasive on the software level and is fully backward compatible

with legacy software while still improving the security level

over state-of-the-art caches. Finally, our evaluations show that

the runtime performance of software is not curtailed and our

design even outperforms state-of-the-art caches for certain

realistic workloads.

1 Introduction

Caches are core components of today’s computing architec-

tures. They bridge the performance gap between CPU cores

and a computer’s main memory. However, in the past two

decades, caches have turned out to be the origin of a wide

range of security threats [10, 15, 27, 38, 39, 43, 44, 51, 76]. In

particular, the intrinsic timing behavior of caches that speeds

up computing systems allows for cache side-channel attacks

(cache attacks), which are able to recover secret information.

Historically, research on cache attacks focused on cryp-

tographic algorithms [10, 44, 51, 76]. More recently, how-

ever, cache attacks like PRIME+PROBE [44, 48, 51, 54, 62]

and FLUSH+RELOAD [27, 76] have also been used to attack

address-space-layout randomization [23, 25, 36], keystroke

processing and inter-keystroke timing [26, 27, 60], and gen-

eral purpose computations [81]. For shared caches on modern

multi-core processors, PRIME+PROBE and FLUSH+RELOAD

even work across cores executing code from different security

domains, e.g., processes or virtual machines.

The most simple cache attacks, however, are covert chan-

nels [46,48,72]. In contrast to a regular side-channel attack, in

a covert channel, the “victim” is colluding and actively trying

to transmit data to the attacker, e.g., running in a different

security domain. For instance, Meltdown [43], Spectre [38],

and Foreshadow [15] use cache covert channels to transfer

secrets from the transient execution domain to an attacker.

These recent examples highlight the importance of finding

practical approaches to thwart cache attacks.

To cope with cache attacks, there has been much research

on ways to identify information leaks in a software’s memory

access pattern, such as static code [19,20,41,45] and dynamic

program analysis [34, 71, 74, 77]. However, mitigating these

leaks both generically and efficiently is difficult. While there

are techniques to design software without address-based infor-

mation leaks, such as unifying control flow [17] and bitsliced

implementations of cryptography [37, 40, 58], their general

application to arbitrary software remains difficult. Hence,

protecting against cache attacks puts a significant burden on

software developers aiming to protect secrets in the view

of microarchitectural details that vary a lot across different

Instruction-Set Architecture (ISA) implementations.

A different direction to counteract cache attacks is to design
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more resilient cache architectures. Typically, these architec-

tures modify the cache organization in order to minimize

interference between different processes, either by breaking

the trivial link between memory address and cache index [22,

55, 67, 69, 70] or by providing exclusive access to cache parti-

tions for critical code [53, 57, 69]. While cache partitioning

completely prevents cache interference, its rather static alloca-

tion suffers from scalability and performance issues. On the

other hand, randomized cache (re-)placement [69, 70] makes

mappings of memory addresses to cache indices random and

unpredictable. Yet, managing these cache mappings in lookup

tables inheres extensive changes to the cache architecture and

cost. Finally, the introduction of a keyed function [55, 67]

to pseudorandomly map the accessed memory location to

the cache-set index can counteract PRIME+PROBE attacks.

However, these solutions either suffer from a low number of

cache sets, weakly chosen functions, or cache interference for

shared memory and thus require to change the key frequently

at the cost of performance.

Hence, there is a strong need for a practical and effective

solution to thwart both cache attacks and cache covert chan-

nels. In particular, this solution should (1) make cache attacks

sufficiently hard, (2) require as little software support as pos-

sible, (3) embed flexibly into existing cache architectures, (4)

be efficiently implementable in hardware, and (5) retain or

even enhance cache performance.

Contribution. In this paper, we present SCATTERCACHE,

which achieves all these goals. SCATTERCACHE is a novel

and highly flexible cache design that prevents cache attacks

such as EVICT+RELOAD and PRIME+PROBE and severely

limits cache covert channel capacities by increasing the num-

ber of cache sets beyond the number of physically available

addresses with competitive performance and implementation

cost. Hereby, SCATTERCACHE closes the gap between previ-

ous secure cache designs and today’s cache architectures by

introducing a minimal set of cache modifications to provide

strong security guarantees.

Most prominently, SCATTERCACHE eliminates the

fixed cache-set congruences that are the cornerstone of

PRIME+PROBE attacks. For this purpose, SCATTERCACHE

builds upon two ideas. First, SCATTERCACHE uses a

keyed mapping function to translate memory addresses

and the active security domain, e.g., process, to cache set

indices. Second, similar to skewed associative caches [63],

the mapping function in SCATTERCACHE computes a

different index for each cache way. As a result, the number

of different cache sets increases exponentially with the

number of ways. While SCATTERCACHE makes finding fully

identical cache sets statistically impossible on state-of-the-art

architectures, the complexity for exploiting inevitable partial

cache-set collisions also rises heavily. The reason is in

part that the mapping of memory addresses to cache sets

in SCATTERCACHE is different for each security domain.

Hence, and as our security analysis shows, the construction

of a reliable eviction set for PRIME+PROBE in an 8-way

SCATTERCACHE with 16384 lines requires observation of at

least 33.5 million victim memory accesses as compared to

fewer than 103 on commodity caches, rendering these attacks

impractical on real systems with noise.

Additionally, SCATTERCACHE effectively prevents

FLUSH+RELOAD-based cache attacks, e.g., on shared

libraries, as well. The inclusion of security domains in

SCATTERCACHE and its mapping function preserves

shared memory in RAM, but prevents any cache lines to be

shared across security boundaries. Yet, SCATTERCACHE

supports shared memory for inter-process communication

via dedicated separate security domains. To achieve highest

flexibility, managing the security domains of SCATTER-

CACHE is done by software, e.g., the operating system.

However, SCATTERCACHE is fully backwards compatible

and already increases the effort of cache attacks even without

any software support. Nevertheless, the runtime performance

of software on SCATTERCACHE is highly competitive

and, on certain workloads, even outperforms cache designs

implemented in commodity CPUs.

SCATTERCACHE constitutes a comparably simple exten-

sion to cache and processor architectures with minimal hard-

ware cost: SCATTERCACHE essentially only adds additional

index derivation logic, i.e., a lightweight cryptographic primi-

tive, and an index decoder for each scattered cache way. More-

over, to enable efficient lookups and writebacks, SCATTER-

CACHE stores the index bits from the physical address in

addition to the tag bits, which adds < 5% storage overhead

per cache line. Finally, SCATTERCACHE consumes one bit

per page-table entry (≈ 1.5% storage overhead per page-table

entry) for the kernel to communicate with the user space.

Outline. This paper is organized as follows. In Section 2,

we provide background information on caches and cache

attacks. In Section 3, we describe the design and concept

of SCATTERCACHE. In Section 4, we analyze the security

of SCATTERCACHE against cache attacks. In Section 5, we

provide a performance evaluation. We conclude in Section 6.

2 Background

In this section, we provide background on caches, cache side-

channel attacks, and resilient cache architectures.

2.1 Caches

Modern computers have a memory hierarchy consisting of

many layers, each following the principle of locality, storing

data that is expected to be used in the future, e.g., based on

what has been accessed in the past. Modern processors have

a hierarchy of caches that keep instructions and data likely

to be used in the future near the execution core to avoid the

latency of accesses to the slow (DRAM) main memory. This

cache hierarchy typically consists of 2 to 4 layers, where the
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Figure 1: Indexing cache sets in a 4-way set-associative cache.

lowest layer is the smallest and fastest, typically only a few

kilobytes. The last-level cache is the largest cache, typically

in the range of several megabytes. On most processors, the

last-level cache is shared among all cores. The last-level cache

is often inclusive, i.e., any cache line in a lower level cache

must also be present in the last-level cache.

Caches are typically organized into cache sets that are com-

posed of multiple cache lines or cache ways. The cache set is

determined by computing the cache index from address bits.

Figure 1 illustrates the indexing of a 4-way set-associative

cache. As the cache is small and the memory large, many

memory locations map to the same cache set (i.e., the ad-

dresses are congruent). The replacement policy (e.g., pseudo-

LRU, random) decides which way is replaced by a newly

requested cache line. Any process can observe whether data

is cached or not by observing the memory access latency

which is the basis for cache side-channel attacks.

2.2 Cache Side-Channel Attacks

Cache side-channel attacks have been studied for over the

past two decades, initially with a focus on cryptographic algo-

rithms [10, 39, 51, 52, 54, 68]. Today, a set of powerful attack

techniques enable attacks in realistic cross-core scenarios.

Based on the access latency, an attacker can deduce whether

or not a cache line is in the cache, leaking two opposite kinds

of information. (1) By continuously removing (i.e., evicting

or flushing) a cache line from the cache and measuring the ac-

cess latency, an attacker can determine whether this cache line

has been accessed by another process. (2) By continuously

filling a part of the cache with attacker-accessible data, the

attacker can measure the contention of the corresponding part,

by checking whether the attacker-accessible data remained in

the cache. Contention-based attacks work on different layers:

The Entire Cache or Cache Slices. An attacker can mea-

sure contention of the entire cache or a cache slice. Mau-

rice et al. [46] proposed a covert channel where the sender

evicts the entire cache to leak information across cores and

the victim observes the cache contention. A similar attack

could be mounted on a cache slice if the cache slice function

is known [47]. The granularity is extremely coarse, but with

statistical attacks can leak meaningful information [61].

Cache Sets. An attacker can also measure the contention

of a cache set. For this, additional knowledge may be required,

such as the mapping from virtual addresses to physical ad-

dresses, as well as the functions mapping physical addresses

to cache slices and cache sets. The attacker continuously fills

a cache set with a set of congruent memory locations. Filling

a cache set is also called cache-set eviction, as it evicts any

previously contained cache lines. Only if some other process

accessed a congruent memory location, memory locations

are evicted from a cache set. The attacker can measure this

for instance by measuring runtime variations in a so-called

EVICT+TIME attack [51]. The EVICT+TIME technique has

mostly been applied in attacks on cryptographic implemen-

tations [31, 42, 51, 65]. Instead of the runtime, the attacker

can also directly check how many of the memory locations

are still cached. This attack is called PRIME+PROBE [51].

Many PRIME+PROBE attacks on private L1 caches have been

demonstrated [3,14,51,54,80]. More recently, PRIME+PROBE

attacks on last-level caches have also been demonstrated in

various generic use cases [4, 44, 48, 50, 59, 79].

Cache Lines. At a cache line granularity, the attacker

can measure whether a memory location is cached or not.

As already indicated above, here the logic is inverted. Now

the attacker continuously evicts (or flushes) a cache line

from the cache. Later on, the attacker can measure the

latency and deduce whether another process has loaded

the cache line into the cache. This technique is called

FLUSH+RELOAD [28, 76]. FLUSH+RELOAD has been stud-

ied in a long list of different attacks [4–6,27,32,35,42,76,78,

81]. Variations of FLUSH+RELOAD are FLUSH+FLUSH [26]

and EVICT+RELOAD [27, 42].

Cache Covert Channels

Cache covert channels are one of the simplest forms of cache

attacks. Instead of an attacker process attacking a victim pro-

cess, both processes collude to covertly communicate using

the cache as transmission channel. Thus, in this scenario, the

colluding processes are referred to as sender and receiver, as

the communication is mostly unidirectional. A cache covert

channel allows bypassing all architectural restrictions regard-

ing data exchange between processes.

Cache covert channels have been shown using various

cache attacks, such as PRIME+PROBE [44, 48, 73, 75] and

FLUSH+RELOAD [26]. They achieve transmission rates of

up to 496 kB/s [26]. Besides native attacks, covert channels

have also been shown to work within virtualized environ-

ments, across virtual machines [44, 48, 75]. Even in these

restricted environments, cache-based covert channels achieve

transmission rates of up to 45 kB/s [48].

2.3 Resilient Cache Architectures

The threat of cache-based attacks sparked several novel cache

architectures designed to be resilient against these attacks.

While fixed cache partitions [53] lack flexibility, randomized
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cache allocation appears to be more promising. The following

briefly discusses previous designs for a randomized cache.

RPCache [69] and NewCache [70] completely disrupt

the meaningful observability of interference by performing

random (re-)placement of lines in the cache. However, man-

aging the cache mappings efficiently either requires full as-

sociativity or content addressable memory. While optimized

addressing logic can lead to efficient implementations, these

designs differ significantly from conventional architectures.

Time-Secure Caches [67] is based on standard set-

associative caches that are indexed with a keyed function

that takes cache line address and Process ID (PID) as an input.

While this design destroys the obvious cache congruences

between processes to minimize cache interference, a compa-

rably weak indexing function is used. Eventually, re-keying

needs to be done quite frequently, which amounts to flushing

the cache and thus reduces practical performance. SCATTER-

CACHE can be seen as a generalization of this approach with

higher entropy in the indexing of cache lines.

CEASER [55] as well uses standard set-associative caches

with keyed indexing, which, however, does not include the

PID. Hence, inter-process cache interference is predictable

based on in-process cache collisions. As a result, CEASER

strongly relies on continuous re-keying of its index deriva-

tion to limit the time available for conducting an attack. For

efficient implementation, CEASER uses its own lightweight

cryptographic primitive designed for that specific application.

3 ScatterCache

As Section 2 showed, caches are a serious security concern in

contemporary computing systems. In this section, we hence

present SCATTERCACHE—a novel cache architecture that

counteracts cache-based side-channel attacks by skewed pseu-

dorandom cache indexing. After discussing the main idea

behind SCATTERCACHE, we discuss its building blocks and

system integration in more detail. SCATTERCACHE’s security

implications are, subsequently, analyzed in Section 4.

3.1 Targeted Properties

Even though contemporary transparent cache architectures

are certainly flawed from the security point of view, they

still feature desirable properties. In particular, for regular

computations, basically no software support is required for

cache maintenance. Also, even in the case of multitasking

and -processing, no dedicated cache resource allocation and

scheduling is needed. Finally, by selecting the cache size and

the number of associative ways, chip vendors can trade hard-

ware complexity and costs against performance as desired.

SCATTERCACHE’s design strives to preserve these features

while adding the following three security properties:

1. Between software defined security domains (e.g., differ-

ent processes or users on the same machine, different

Set 0 Set 1 Set 2 Set 3

Addr. A

Addr. B

Addr. A

Addr. B

Figure 2: Flattened visualization of mapping addresses to

cache sets in a 4-way set-associative cache with 16 cache lines.

Top: Standard cache where index bits select the cache set.

Middle: Pseudorandom mapping from addresses to cache sets.

The mapping from cache lines to sets is still static. Bottom:

Pseudorandom mapping from addresses to a set of cache lines

that dynamically form the cache set in SCATTERCACHE.

VMs, . . . ), even for exactly the same physical addresses,

cache lines should only be shared if cross-context co-

herency is required (i.e., writable shared memory).

2. Finding and exploiting addresses that are congruent in

the cache should be as hard as possible (i.e., we want

to “break” the direct link between the accessed physical

address and the resulting cache set index for adversaries).

3. Controlling and measuring complete cache sets should

be hard in order to prevent eviction-based attacks.

Finally, to ease the adoption and to utilize the vast knowl-

edge on building efficient caches, the SCATTERCACHE hard-

ware should be as similar to current cache architectures as

possible.

3.2 Idea

Two main ideas influenced the design of SCATTERCACHE to

reach the desired security properties. First, addresses should

be translated to cache sets using a keyed, security-domain

aware mapping. Second, which exact nways cache lines form a

cache set in a nways-way associative cache should not be fixed,

but depend on the currently used key and security domain

too. SCATTERCACHE combines both mappings in a single

operation that associates each address, depending on the key

and security domain, with a set of up to nways cache lines.

In other words, in a generic SCATTERCACHE, any possible

combination of up to nways cache lines can form a cache set.

Figure 2 visualizes the idea and shows how it differs from

related work. Traditional caches as well as alternative designs

which pseudorandomly map addresses to cache sets statically

allocate cache lines to cache sets. Hence, as soon as a cache

set is selected based on (possibly encrypted) index bits, al-

ways the same nways cache lines are used. This means that all

addresses mapping to the same cache set are congruent and

enables PRIME+PROBE-style attacks.

In SCATTERCACHE, on the other hand, the cache set for

a particular access is a pseudorandom selection of arbitrary

nways cache lines from all available lines. As a result, there

is a much higher number of different cache sets and finding

addresses with identical cache sets becomes highly unlikely.
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Figure 3: Idea: For an nways associative cache, nways indices

into the cache memory are derived using a cryptographic IDF.

This IDF effectively randomizes the mapping from addresses

to cache sets as well as the composition of the cache set itself.

Instead, as shown at the bottom of Figure 2, at best, partially

overlapping cache sets can be found (cf. Section 4.3), which

makes exploitation tremendously hard in practice.

A straightforward concept for SCATTERCACHE is shown in

Figure 3. Here, the Index Derivation Function (IDF) combines

the mapping operations in a single cryptographic primitive.

In a set-associative SCATTERCACHE with set size nways, for

each input address, the IDF outputs nways indices to form the

cache set for the respective access. How exactly the mapping

is performed in SCATTERCACHE is solely determined by the

used key, the Security Domain Identifier (SDID), and the IDF.

Note that, as will be discussed in Section 3.3.1, hash-based as

well as permutation-based IDFs can be used in this context.

Theoretically, a key alone is sufficient to implement the

overall idea. However, separating concerns via the SDID

leads to a more robust and harder-to-misuse concept. The

key is managed entirely in hardware, is typically longer, and

gets switched less often than the SDID. On the other hand,

the SDID is managed solely by the software and, depend-

ing on the implemented policy, has to be updated quite fre-

quently. Importantly, as we show in Section 4, SCATTER-

CACHE alone already provides significantly improved se-

curity in PRIME+PROBE-style attack settings even without

software support (i.e., SDID is not used).

3.3 SCATTERCACHE Design

In the actual design we propose for SCATTERCACHE, the

indices (i.e., IDF output) do not address into one huge joint

cache array. Instead, as shown in Figure 4, each index ad-

dresses a separate memory, i.e., an independent cache way.

On the one hand, this change is counter-intuitive as

it decreases the number of possible cache sets from
(

nways·2
bindices+nways−1

nways

)

to 2bindices·nways . However, this reduction

in possibilities is acceptable. For cache configurations with

up to 4 cache ways, the gap between both approaches is only

a few bits. For higher associativity, the exponential growth

ensures that sufficiently many cache sets exist.

On the other hand, the advantages gained from switching

to this design far outweigh the costs. Namely, for the original

idea, no restrictions on the generated indices exist. Therefore,

a massive nways-fold multi-port memory would be required to
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Figure 4: 4-way set-associative SCATTERCACHE where each

index addresses exclusively one cache way.

be able to lookup a nways-way cache-set in parallel. The de-

sign shown in Figure 4 does not suffer from this problem and

permits to instantiate SCATTERCACHE using nways instances

of simpler/smaller memory. Furthermore, this design guar-

antees that even in case the single index outputs of the IDF

collide, the generated cache always consists of exactly nways

many cache lines. This effectively precludes the introduction

of systematic biases for potentially “weak” address-key-SDID

combinations that map to fewer than nways cache lines.

In terms of cache-replacement policy, SCATTERCACHE

uses simple random replacement to ensure that no systematic

bias is introduced when writing to the cache and to simplify

the security analysis. Furthermore, and as we will show in

Section 5, the performance of SCATTERCACHE with random

replacement is competitive to regular set associative caches

with the same replacement policy. Therefore, evaluation of

alternative replacement policies has been postponed. Inde-

pendent of the replacement policy, it has to be noted that, for

some IDFs, additional tag bits have to be stored in SCATTER-

CACHE. In particular, in case of a non invertible IDF, the

original index bits need to be stored to facilitate write back of

dirty cache lines and to ensure correct cache lookups. How-

ever, compared to the amount of data that is already stored for

each cache line, the overhead of adding these few bits should

not be problematic (< 5% overhead).

In summary, the overall hardware design of SCATTER-

CACHE closely resembles a traditional set-associative archi-

tecture. The only differences to contemporary fixed-set de-

signs is the more complex IDF and the amount of required

logic which permits to address each way individually. How-

ever, both changes are well understood. As we detail in the

following section, lightweight (i.e., low area and latency) cryp-

tographic primitives are suitable building blocks for the IDF.

Similarly, duplication of addressing logic is already common

practice in current processors. Modern Intel architectures, for

example, already partition their Last-Level Cache (LLC) into

multiple smaller cache slices with individual addressing logic.

3.3.1 Suitable Index Derivation Functions

Choosing a suitable IDF is essential for both security and

performance. In terms of security, the IDF has to be an un-

predictable (but still deterministic) mapping from physical

addresses to indices. Following Kerckhoffs’s principle, even

USENIX Association 28th USENIX Security Symposium    679



for attackers which know every detail except the key, three

properties are expected from the IDF: (1) Given perfect con-

trol over the public inputs of the function (i.e., the physical

address and SDID) constructing colliding outputs (i.e., the

indices) should be hard. (2) Given colliding outputs, deter-

mining the inputs or constructing further collisions should be

hard. (3) Recovering the key should be infeasible given input

and output for the function.

Existing Building Blocks: Cryptographic primitives like

(tweakable) block ciphers, Message Authentication Codes

(MACs), and hash functions are designed to provide these

kind of security properties (e.g., indistinguishability of en-

cryptions, existential unforgeability, pre-image and collision

resistance). Furthermore, design and implementation of cryp-

tographic primitives with tight performance constraints is

already a well-established field of research which we want

to take advantage of. For example, with PRINCE [13], a

low-latency block cipher, and QARMA [8], a family of low-

latency tweakable block ciphers, exist and can be used as

building blocks for the IDF. Such tweakable block ciphers

are a flexible extension to ordinary block ciphers, which, in

addition to a secret key, also use a public, application-specific

tweak to en-/decrypt messages. Similarly, sponge-based MAC,

hash and cipher designs are a suitable basis for IDFs. These

sponge modes of operation are built entirely upon permuta-

tions, e.g., Keccak-p, which can often be implemented with

low latency [7, 11]. Using such cryptographic primitives, we

define the following two variants of building IDFs:

Hashing Variant (SCv1): The idea of SCv1 is to combine

all IDF inputs using a single cryptographic primitive with

pseudo random output. MACs (e.g., hash-based) are examples

for such functions and permit to determine the output indices

by simply selecting the appropriate number of disjunct bits

from the calculated tag. However, also other cryptographic

primitives can be used for instantiating this IDF variant.

It is, for example possible to slice the indices from the

ciphertext of a regular block cipher encryption which uses

the concatenation of cache line address and the SDID as the

plaintext. Similarly, tweakable block ciphers allow to use the

SDID as a tweak instead of connecting it to the plaintext.

Interestingly, finding cryptographic primitives for SCv1 IDFs

is comparably simple given that the block sizes do not have

to match perfectly and the output can be truncated as needed.

However, there are also disadvantages when selecting the

indices pseudo randomly, like in the case of SCv1. In par-

ticular, when many accesses with high spatial locality are

performed, index collisions get more likely. This is due to

the fact that collisions in SCv1 output have birthday-bound

complexity. Subsequently, performance can degrade when

executing many different accesses with high spatial locality.

Fortunately, this effect weakens with increasing way numbers,

i.e., an increase in associativity decreases the probability that

all index outputs of the IDF collide.

In summary, SCv1 translates the address without distin-

guishing between index and tag bits. Given a fixed key and

SDID, the indices are simply pseudo random numbers that

are derived using a single cryptographic primitive.

Permutation Variant (SCv2): The idea behind the permu-

tation variant of the IDF is to distinguish the index from the

tag bits in the cache line address during calculation of the

indices. Specifically, instead of generating pseudo random in-

dices from the cache line address, tag dependent permutations

of the input index are calculated.

The reason for preferring a permutation over pseudo ran-

dom index generation is to counteract the effect of birthday-

bound index collisions, as present in SCv1. Using a tag de-

pendent permutation of the input index mitigates this problem

by design since permutations are bijections that, for a specific

tag, cannot yield colliding mappings.

Like in the hashing variant, a tweakable block cipher can

be used to compute the permutation. Here, the concatenation

of the tag bits, the SDID and the way index constitutes the

tweak while the address’ index bits are used as the plaintext.

The resulting ciphertext corresponds to the output index for

the respective way. Note that the block size of the cipher has

to be equal to the size of the index. Additionally, in order to

generate all indices in parallel, one instance of the tweakable

block cipher is needed per cache way. However, as the block

size is comparably small, each cipher instance is also smaller

than an implementation of the hashing IDF (SCv1).

Independently of the selected IDF variant, we leave the

decision on the actually used primitive to the discretion of

the hardware designers that implement SCATTERCACHE.

They are the only ones who can make a profound decision

given that they know the exact instantiation parameters (e.g.,

SDID/key/index/tag bit widths, number of cache ways) as

well as the allocatable area, performance, and power bud-

get in their respective product. However, we are certain that,

even with the already existing and well-studied cryptographic

primitives, SCATTERCACHE implementations are feasible

for common computing platforms, ranging from Internet of

Things (IoT) devices to desktop computers and servers.

Note further that we expect that, due to the limited ob-

servability of the IDF output, weakened (i.e., round reduced)

variants of general purpose primitives are sufficient to achieve

the desired security level. This is because adversaries can only

learn very little information about the function output by ob-

serving cache collisions (i.e., no actual values). Subsequently,

many more traces have to be observed for mounting an attack.

Cryptographers can take advantage of this increase in data

complexity to either design fully custom primitives [55] or to

decrease the overhead of existing designs.

3.3.2 Key Management and Re-Keying

The key in our SCATTERCACHE design plays a central role in

the security of the entire approach. Even when the SDIDs are

known, it prevents attackers from systematically constructing
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eviction sets for specific physical addresses and thwarts the

calculation of addresses from collision information. Keeping

the key confidential is therefore of highest importance.

We ensure this confidentiality in our design by mandating

that the key of is fully managed by hardware. There must not

be any way to configure or retrieve this key in software. This

approach prevents various kinds of software-based attacks

and is only possible due to the separation of key and SDID.

The hardware for key management is comparably simple as

well. Each time the system is powered up, a new random key is

generated and used by the IDF. The simplicity of changing the

key during operation strongly depends on the configuration of

the cache. For example, in a write-through cache, changing the

key is possible at any time without causing data inconsistency.

In such a scenario, a timer or performance-counter-based re-

keying scheme is easily implementable. Note, however, that

the interval between key changes should not be too small as

each key change corresponds to a full cache flush.

On the other hand, in a cache with write-back policy, the

key has to be kept constant as long as dirty cache lines reside

in the cache. Therefore, before the key can be changed in this

scenario without data loss, all modified cache lines have to be

written back to memory first. The x86 Instruction-Set Archi-

tecture (ISA), for example, features the WBINVD instruction

that can be used for that purpose.

If desired, also more complex rekeying schemes, like way-

wise or cache-wide dynamic remapping [55], can be im-

plemented. However, it is unclear if adding the additional

hardware complexity is worthwhile. Even without changing

the key, mounting cache attacks against SCATTERCACHE is

much harder than on traditional caches (see Section 4). Sub-

sequently, performing an occasional cache flush to update the

key can be the better choice.

3.3.3 Integration into Existing Cache Architectures

SCATTERCACHE is a generic approach for building processor

caches that are hard to exploit in cache-based side channel

attacks. When hardening a system against cache attacks, inde-

pendent of SCATTERCACHE, we recommend to restrict flush

instructions to privileged software. These instruction are only

rarely used in benign userspace code and restricting them

prevents the applicability of the whole class of flush-based at-

tacks from userspace. Fortunately, recent ARM architectures

already support this restriction.

Next, SCATTERCACHES can be deployed into the system

to protect against eviction based attacks. While not inherently

limited to, SCATTERCACHES are most likely to be deployed

as LLCs in modern processor architectures. Due to their large

size and the fact that they are typically shared across multiple

processor cores, LLCs are simply the most prominent cache

attack target and require the most protection. Compared to

that, lower cache levels that typically are only accessible by a

single processor core, hold far less data and are much harder

to attack on current architectures. Still, usage of (unkeyed)

skewed [63] lower level caches is an interesting option that

has to be considered in this context.

Another promising aspect of employing a SCATTERCACHE

as LLC is that this permits to hide large parts of the IDF

latency. For example, using a fully unrolled and pipelined IDF

implementation, calculation of the required SCATTERCACHE

indices can already be started, or even performed entirely, in

parallel to the lower level cache lookups. While unneeded

results can easily be discarded, this ensures that the required

indices for the LLC lookup are available as soon as possible.

Low latency primitives like QARMA, which is also used

in recent ARM processors for pointer authentication, are

promising building blocks in this regard. The minimal la-

tency Avanzi [8] reported for one of the QARMA-64 variants

is only 2.2 ns. Considering that this number is even lower

than the time it takes to check the L1 and L2 caches on re-

cent processors (e.g., 3 ns on a 4 GHz Intel Kabylake [2], 9 ns

on an ARM Cortex-A57 in an AMD Opteron A1170 [1]),

implementing IDFs without notable latency seems feasible.

3.4 Processor Interaction and Software

Even without dedicated software support, SCATTERCACHE

increases the complexity of cache-based attacks. However, to

make full use of SCATTERCACHE, software assistance and

some processor extensions are required.

Security Domains. The SCATTERCACHE hardware per-

mits to isolate different security domains from each other

via the SDID input to the IDF. Unfortunately, depending

on the use case, the definition on what is a security domain

can largely differ. For example, a security domain can be a

chunk of the address space (e.g., SGX enclaves), a whole

process (e.g., TrustZone application), a group of processes

in a common container (e.g., Docker, LXC), or even a full

virtual machine (e.g., cloud scenario). Considering that it is

next to impossible to define a generic policy in hardware that

can capture all these possibilities, we delegate the distinction

to software that knows about the desired isolation properties,

e.g., the Operating System (OS).

SCATTERCACHE Interface. Depending on the targeted

processor architecture, different design spaces can be explored

before deciding how the current SDID gets defined and what

channels are used to communicate the identifier to the SCAT-

TERCACHE. However, at least for modern Intel and ARM

processors, binding the currently used SDID to the virtual

memory management via user defined bits in each Page Table

Entry (PTE) is a promising approach. In more detail, one or

more bits can be embedded into each PTE that select from a

list, via one level of indirection, which SDID should be used

when accessing the respective page.

Both ARM and Intel processors already support a similar

mechanism to describe memory attributes of a memory map-

ping. The x86 architecture defines so-called Page Attribute Ta-
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bles (PATs) to define how a memory mapping can be cached.

Similarly, the ARM architecture defines Memory Attribute

Indirection Registers (MAIRs) for the same purpose. Both

PAT and MAIR define a list of 8 memory attributes which

are applied by the Memory Management Unit (MMU). The

MMU interprets a combination of 3 bits defined in the PTE as

index into the appropriate list, and applies the corresponding

memory attribute. Adding the SDID to these attribute lists

permits to use up to 8 different security domains within a sin-

gle process. The absolute number of security domains, on the

other hand, is only limited by the used IDF and them number

of bits that represent the SDID.

Such indirection has a huge advantage over encoding data

directly in a PTE. The OS can change a single entry within the

list to affect all memory mappings using the corresponding

entry. Thus, such a mechanism is beneficial for SCATTER-

CACHE, where the OS wants to change the SDID for all

mappings of a specific process.

Backwards Compatibility. Ensuring backwards compat-

ibility is a key factor for gradual deployment of SCATTER-

CACHE. By encoding the SDID via a separate list indexed by

PTE bits, all processes, as well as the OS, use the same SDID,

i.e., the SDID stored as first element of the list (assuming all

corresponding PTE bits are ‘0’ by default). Thus, if the OS is

not aware of the SCATTERCACHE, all processes—including

the OS—use the same SDID. From a software perspective,

functionally, SCATTERCACHE behaves the same as currently

deployed caches. Only if the OS specifies SDIDs in the list,

and sets the corresponding PTE bits to use a certain index,

SCATTERCACHE provides its strong security properties.

Implementation Example. In terms of capabilities, hav-

ing a single bit in each PTE, for example, is already sufficient

to implement security domains with process granularity and to

maintain a dedicated domain for the OS. In this case, SDID0

can always be used for the OS ID while SDID1 has to be

updated as part of the context switch and is always used for

the scheduled user space process. Furthermore, by reusing

the SDID of the OS, also shared memory between user space

processes can easily be implemented without security impact.

Interestingly, SCATTERCACHE fully preserves the capa-

bility of the OS to share read-only pages (i.e., libraries) also

across security domains as no cache lines will be shared. In

contrast, real shared memory has to always be accessed via

the same SDID in all processes to ensure data consistency.

In general, with SCATTERCACHE, as long as the respective

cache lines have not been flushed to RAM, data always needs

to be accessed with the same SDID the data has been written

with to ensure correctness. This is also true for the OS, which

has to ensure that no dirty cache lines reside in the cache, e.g.,

when a page gets assigned to a new security domain.

A case which has to be explicitly considered by the OS is

copying data from user space to kernel space and vice versa.

The OS can access the user space via the direct-physical map

or via the page tables of the process. Thus, the OS has to

select the correct SDID for the PTE used when copying data.

Similarly, if the OS sets up page tables, it has to use the same

SDID as the MMU uses for resolving page tables.

4 Security Evaluation

SCATTERCACHE is a novel cache design to efficiently thwart

cache-based side-channel attacks. In the following, we inves-

tigate the security of SCATTERCACHE in terms of state-of-

the-art side-channel attacks using both theoretical analysis

and simulation-based results. In particular, we elaborate on

the complexity of building the eviction sets and explore the

necessary changes to the standard PRIME+PROBE technique

to make it viable on the SCATTERCACHE architecture.

4.1 Applicability of Cache Attacks

While certain types of cache attacks, such as FLUSH+FLUSH,

FLUSH+RELOAD and EVICT+RELOAD, require a particular

cache line to be shared, attacks such as PRIME+PROBE have

less stringent constraints and only rely on the cache being

a shared resource. As sharing a cache line is the result of

shared memory, we analyze the applicability of cache attacks

on SCATTERCACHE with regard to whether the underlying

memory is shared between attacker and victim or not.

Shared, read-only memory. Read-only memory is fre-

quently shared among different processes, e.g., in case of

shared code libraries. SCATTERCACHE prevents cache at-

tacks involving shared read-only memory by introducing se-

curity domains. In particular, SCATTERCACHE maintains a

separate copy of shared read-only memory in cache for each

security domain, i.e., the cache lines belonging to the same

shared memory region are not being shared in cache across

security domains anymore. As a result, reloading data into or

flushing data out of the cache does not provide any informa-

tion on another security domain’s accesses to the respective

shared memory region. Note, however, that the cache itself is

shared, leaving attacks such as PRIME+PROBE still feasible.

Shared, writable memory. Exchanging data between pro-

cesses requires shared, writable memory. To ensure cache

coherency, writing shared memory regions must always use

the same cache line and hence the same security domain

for that particular memory region—even for different pro-

cesses. While attacks on these shared memory regions in-

volving flush instructions can easily be mitigated by mak-

ing these instructions privileged, EVICT+RELOAD remains

feasible. Still, SCATTERCACHE significantly hampers the

construction of targeted eviction sets by skewing, i.e., individ-

ually addressing, the cache ways. Moreover, its susceptibility

to EVICT+RELOAD attacks is constrained to the processes

sharing the respective memory region. Nevertheless, SCAT-

TERCACHE requires writable shared memory to be used only

as an interface for data transfer rather than sensitive computa-

tions. In addition, PRIME+PROBE attacks are still possible.
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Unshared memory. Unshared memory regions never

share the same cache line, hence making attacks such as

FLUSH+FLUSH, FLUSH+RELOAD and EVICT+RELOAD in-

feasible. However, as the cache component itself is shared,

cache attacks such as PRIME+PROBE remain possible.

As our analysis shows, SCATTERCACHE prevents a wide

range of cache attacks that exploit the sharing of cache lines

across security boundaries. While PRIME+PROBE attacks

cannot be entirely prevented as long as the cache itself is

shared, SCATTERCACHE vastly increases their complexity

in all aspects. The pseudorandom cache-set composition in

SCATTERCACHE prevents attackers from learning concrete

cache sets from memory addresses and vice versa. Even if

attackers are able to profile information about the mapping of

memory addresses to cache-sets in their own security domain,

it does not allow them infer the mapping of cache-sets to mem-

ory addresses in other security domains. To gain information

about memory being accessed in another security domain, an

attacker needs to profile the mapping of the attacker’s address

space to cache lines that are being used by the victim when

accessing the memory locations of interest. The effectiveness

of PRIME+PROBE attacks thus heavily relies on the complex-

ity of such a profiling phase. We elaborate on the complexity

of building eviction sets in Section 4.3.

4.2 Other Microarchitectural Attacks

Many other microarchitectural attacks are not fully miti-

gated but hindered by SCATTERCACHE. For instance, Melt-

down [43] and Spectre [38] attacks cannot use the cache

efficiently anymore but must resort to other covert channels.

Also, DRAM row buffer attacks and Rowhammer attacks are

negatively affected as they require to bypass the cache and

reach DRAM. While these attacks are already becoming more

difficult due to closed row policies in modern processors [24],

we propose to make flush instructions privileged, removing

the most widely used cache bypass. Cache eviction gets much

more difficult with SCATTERCACHE and additionally, spu-

rious cache misses will open DRAM rows during eviction.

These spurious DRAM row accesses make the row hit side

channel impractical and introduce a significant amount of

noise on the row conflict side channel. Hence, while these

attacks are not directly in the scope of this paper, SCATTER-

CACHE arguably has a negative effect on them.

4.3 Complexity of Building Eviction Sets

Cache skewing significantly increases the number of different

cache sets available in cache. However, many of these cache

sets will overlap partially, i.e., in 1 ≤ i < nways ways. The

complexity of building eviction sets for EVICT+RELOAD

and PRIME+PROBE in SCATTERCACHE thus depends on the

overlap of cache sets.

4.3.1 Full Cache-Set Collisions

The pseudorandom assembly of cache sets in SCATTER-

CACHE results in 2bindices·nways different compositions. For

a given target address, this results in a probability of

2−bindices·nways of finding another address that maps exactly to

the same cache lines in its assigned cache set. While dealing

with this complexity alone can be considered impractical in a

real-world scenario, note that it will commonly even exceed

the number of physical addresses available in current systems,

rendering full cache-set collisions completely infeasible. A

4-way cache, for example, with bindices = 12 index bits yields

248 different cache sets, which already exceeds the address

space of state-of-the-art systems.

4.3.2 Partial Cache-Set Collisions

While full cache-set collisions are impractical, partial colli-

sions of cache sets frequently occur in skewed caches such

as SCATTERCACHE. If the cache sets of two addresses over-

lap, two cache sets will most likely have a single cache line

in common. For this reason, we analyze the complexity of

eviction for single-way collisions in more detail.

Randomized Single-Set Eviction. Without knowledge of

the concrete mapping from memory addresses to cache sets,

the trivial approach of eviction is to access arbitrary mem-

ory locations, which will result in accesses to pseudoran-

dom cache sets in SCATTERCACHE. To elaborate on the

performance of this approach, we consider a cache with

nlines = 2bindices cache lines per way and investigate the evic-

tion probability for a single cache way, which contains a

specific cache line to be evicted. Given that SCATTERCACHE

uses a random (re-)placement policy, the probabilities of each

cache way are independent, meaning that each way has the

same probability of being chosen. Subsequently, the attack

complexity on the full SCATTERCACHE increases linearly

with the number of cache ways, i.e., the attack gets harder.

The probability of an arbitrary memory accesses to a certain

cache way hitting a specific cache line is p = n−1
lines. Perform-

ing naccesses independent accesses to this cache way increases

the odds of eviction to a certain confidence level α.

α = 1− (1−n−1
lines)

naccesses

Equivalently, to reach a certain confidence α in evicting the

specific cache line, attackers have to perform

E(naccesses) =
log(1−α)

log(1−n−1
lines)

independent accesses to this cache way, which amounts to

their attack complexity. Hence, to evict a certain cache set

from an 8-way SCATTERCACHE with 211 lines per way with

α = 99% confidence, the estimated attack complexity using

this approach is naccesses ·nways ≈ 216 independent accesses.

Randomized Multi-Set Eviction. Interestingly, eviction

of multiple cache sets using arbitrary memory accesses has
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Figure 5: Eviction probability depending on the size of the

eviction set and the number of ways.

similar complexity. In this regard, the coupon collector’s prob-

lem gives us a tool to estimate the number of accesses an at-

tacker has to perform to a specific cache way to evict a certain

percentage of cache lines in the respective way. In more detail,

the coupon collector’s problem provides the expected number

of accesses naccesses required to a specific cache way such that

nhit out of all nlines cache lines in the respective way are hit.

E(naccesses) = nlines · (Hnlines
−Hnlines−hhit

)

Hereby, Hn denotes the n-th Harmonic number, which can be

approximated using the natural logarithm. This approxima-

tion allows to determine the number of cache lines nhit that

are expected to be hit in a certain cache way when naccesses

random accesses to the specific way are performed.

E(nhit) = nlines · (1− e
−

naccesses
nlines ) (1)

Using nhit , we can estimate the number of independent ac-

cesses to be performed to a specific cache way such that a

portion β of the respective cache way is evicted.

E(naccesses) =−nlines · ln(1−β)

For the same 8-way SCATTERCACHE with 211 lines per way

as before, we therefore require roughly 216 independent ac-

cesses to evict β = 99% of the cache.

Profiled Eviction for PRIME+PROBE. As shown, rely-

ing on random eviction to perform cache-based attacks in-

volves significant effort and yields an overapproximation of

the eviction set. Moreover, while random eviction is suitable

for attacks such as EVICT+RELOAD, in PRIME+PROBE set-

tings random eviction fails to provide information related to

the concrete memory location that is being used by a victim.

To overcome these issues, attackers may profile a system to

construct eviction sets for specific memory addresses of the

victim, i.e., they try to find a set of addresses that map to cache

sets that partially overlap with the cache set corresponding

to the victim address. Eventually, such sets could be used to

speed up eviction and to detect accesses to specific memory

locations. In the following, we analyze the complexity of find-

ing these eviction sets. In more detail, we perform analysis

w.r.t. eviction addresses whose cache sets overlap with the

cache set of a victim address in a single cache way only.

0.25 0.5 0.75 1 1.5 2
106

107

108

109

Cache Size [MB]

V
ic

ti
m

A
cc

es
se

s

4 ways 8 ways 16 ways 20 ways

Figure 6: Number of required accesses to the target address

to construct a set large enough to achieve 99 % eviction

rate when no shared memory is available (cache line size:

32 bytes).

To construct a suitable eviction set for PRIME+PROBE, the

attacker needs to provoke the victim process to perform the

access of interest. In particular, the attacker tests a candidate

address for cache-set collisions by accessing it (prime), wait-

ing for the victim to access the memory location of interest,

and then measuring the time when accessing the candidate

address again (probe). In such a profiling procedure, after the

first attempt, we have to assume that the cache line belonging

to the victim access already resides in the cache. As a result,

attackers need to evict a victim’s cache line in their prime step.

Hereby, hitting the right cache way and index have probability

nways
−1 and 2−bindices , respectively. To be able to detect a col-

lision during the probe step, the victim access must then fall

into the same cache way as the candidate address, which has

a chance of nways
−1. In total, the expected number of memory

accesses required to construct an eviction set of t colliding

addresses hence is

E(naccesses) = nways
2
·2bindices · t.

The number of memory addresses t needs to be chosen accord-

ing to the desired eviction probability for the victim address

with the given set. When the eviction set consists of addresses

that collide in the cache with the victim in exactly one way

each, the probability of evicting the victim with an eviction

set of size t is

p(Eviction) = 1−

(

1−
1

nways

)
t

nways

.

Figure 5 depicts this probability for the size of the eviction set

and different numbers of cache ways. For an 8-way SCATTER-

CACHE with 211 cache lines per way, roughly 275 addresses

with single-way cache collisions are needed to evict the re-

spective cache set with 99% probability. Constructing this

eviction set, in the best case, requires profiling of approx-

imately 82 · 211 · 275 ≈ 225 (33.5 million) victim accesses.

Figure 6 shows the respective number of PRIME+PROBE

experiments needed to generate sets with 99% eviction prob-

ability for different cache configurations. We were able to

empirically confirm these numbers within a noise-free stan-

dalone simulation of SCATTERCACHE.

684    28th USENIX Security Symposium USENIX Association



For comparison, to generate an eviction set on a commodity

cache, e.g., recent Intel processors, for a specific victim mem-

ory access, an attacker needs fewer than 103 observations

of that access in a completely noise-free attacker-controlled

scenario. Hence, our cache increases the complexity for the

attacker by factor 325000. In a real-world scenario the com-

plexity is even higher.

Profiled Eviction for EVICT+RELOAD. For shared mem-

ory, such as in EVICT+RELOAD, the construction of eviction

sets, however, becomes easier, as shared memory allows the

attacker to simply access the victim address. Hence, to build

a suitable eviction set, the attacker first primes the victim ad-

dress, then accesses a candidate address, and finally probes

the victim address. In case a specific candidate address col-

lides with the victim address in the cache way the victim

access falls into , the attacker can observe this collision with

probability p = nways
−1. As a result, the expected number

of memory accesses required to build an eviction set of t

colliding addresses for EVICT+RELOAD is

E(naccesses) = nways ·2
bindices · t.

For an 8-way SCATTERCACHE with 211 lines per way, con-

structing an EVICT+RELOAD eviction set of 275 addresses

(i.e., 99% eviction probability) requires profiling with roughly

8 · 211 · 275 = 222 memory addresses. Note, however, that

EVICT+RELOAD only applies to writable shared memory as

used for Inter Process Communication (IPC), whereas SCAT-

TERCACHE effectively prevents EVICT+RELOAD on shared

read-only memory by using different cache-set compositions

in each security domain. Moreover, eviction sets for both

PRIME+PROBE and EVICT+RELOAD must be freshly cre-

ated whenever the key or the SDID changes.

4.4 Complexity of PRIME+PROBE

As demonstrated, SCATTERCACHE strongly increases the

complexity of building the necessary sets of addresses for

PRIME+PROBE. However, the actual attacks utilizing these

sets are also made more complex by SCATTERCACHE.

In this section, we make the strong assumption that an

attacker has successfully profiled the victim process such that

they have found addresses which collide with the victim’s

target addresses in exactly 1 way each, have no collisions

with each other outside of these and are sorted into subsets

corresponding to the cache line they collide in.

Where in normal PRIME+PROBE an attacker can infer vic-

tim accesses (or a lack thereof) with near certainty after only 1

sequence of priming and probing, SCATTERCACHE degrades

this into a probabilistic process. At best, one PRIME+PROBE

operation on a target address can detect an access with a

probability of nways
−1. This is complicated further by the fact

that any one set of addresses is essentially single-use, as the

addresses will be cached in a non-colliding cache line with

a probability of 1−nways
−1 after only 1 access, where they

cannot be used to detect victim accesses anymore until they

themselves are evicted again.

Given the profiled address sets, we can construct general

probabilistic variants of the PRIME+PROBE attack. While

other methods are possible, we believe the 2 described in the

following represent lower bounds for either victim accesses

or memory requirement.

Variant 1: Single collision with eviction. We partition

our set of addresses, such that one PRIME+PROBE set con-

sists of nways addresses, where each collides with a different

way of the target address. To detect an access to the target,

we prime with one set, cause a target access, measure the

primed set and then evict the target address. We repeat this

process until the desired detection probability is reached. This

probability is given by p(naccesses) = 1− (1−nways
−1)naccesses .

The eviction of the target address can be achieved by either

evicting the entire cache or using preconstructed eviction sets

(see Section 4.3.2). After the use of an eviction set, a differ-

ent priming set is necessary, as the eviction sets only target

the victim address. After a full cache flush, all sets can be

reused. The amount of colliding addresses we need to find

during profiling depends on how often a full cache flush is

performed. This method requires the least amount of accesses

to the target, at the cost of either execution time (full cache

flushes) or memory and profiling time (constructing many

eviction sets).

Variant 2: Single collision without eviction. Using the

same method but without the eviction step, the detection prob-

ability can be recursively calculated as

p(nacc.) = p(nacc.−1)+(1− p(nacc.−1))(
2 ·nways −1

nways
3

)

with p(1) = nways
−1. This variant provides decreasing ben-

efits for additional accesses. The reason for this is that the

probability that the last step evicted the target address influ-

ences the probability to detect an access in the current step.

While this approach requires many more target accesses, it

has the advantage of a shorter profiling phase.

These two methods require different amounts of mem-

ory, profiling time and accesses to the target, but they can

also be combined to tailor the attack to the target. Which is

most useful depends on the attack scenario, but it is clear that

both come with considerable drawbacks when compared to

PRIME+PROBE in current caches. For example, achieving

a 99 % detection probability in a 2 MB Cache with 8 ways

requires 35 target accesses and 9870 profiled addresses in

308 MB of memory for variant 1 if we use an eviction set for

every probe step. Variant 2 would require 152 target accesses

and 1216 addresses in 38 MB of memory. In contrast, regular

PRIME+PROBE requires 1 target access and 8 addresses while

providing 100 % accuracy (in this ideal scenario). Detecting

non-repeating events is made essentially impossible; to mea-

sure any access with confidence requires either the knowledge

that the victim process repeats the same access pattern for

long periods of time or control of the victim in a way that
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allows for repeated measurements. In addition to the large

memory requirements, variant 1 also heavily degrades the

temporal resolution of a classical PRIME+PROBE attack be-

cause of the necessary eviction steps. This makes trace-based

attacks like attacks on square-and-multiply in RSA [76] much

less practical. Variant 2 does not suffer from this drawback,

but requires one PRIME+PROBE set for each time step, for as

many high-resolution samples as one trace needs to contain.

This can quickly lead to an explosion in required memory

when thousands of samples are needed.

4.5 Challenges with Real-World Attacks

We failed at mounting a real-world attack (i.e., with even

the slightest amounts of noise) on SCATTERCACHE. Gener-

ally, for a PRIME+PROBE attack we need to (1) generate an

eviction set (cf. Section 4.3), and (2) use the eviction set to

monitor a victim memory access. If we assume step 1 to be

solved, we can mount a cache attack (i.e., step 2) with a com-

plexity increases by a factor of 152 (cf. Section 4.4). For some

real-world attacks this would not be a problem, in particular

if a small fast algorithm is attacked, e.g., AES with T-tables.

Gülmezoglu et al. [29] recovered the full AES key from an

AES T-tables implementation with only 30 000 encryptions

in a fully synchronized setting (that can be implemented with

PRIME+PROBE as well [26]), taking 15 seconds, i.e., 500 µs

per encryption. The same attack on SCATTERCACHE takes

4.56 · 106 encryptions, i.e., 38 minutes assuming the same

execution times, which is clearly viable.

However, the real challenge is solving step 1, which we did

not manage for any real-world example. In particular, even if

AES would only perform a single attacker-chosen memory

access (instead of 160 to the T-tables alone, plus additional

code and data accesses), which would be ideal for the attacker

in the profiling during step 1, we would need to observe 33.5
million encryptions. In addition to the runtime reported by

Gülmezoglu et al. [29] we also need a full cache flush after

each attack round (i.e., each encryption). For a 2 MB cache,

we need to iterate over a 6 MB array to have a high probability

of covering all cache lines. The time for an L3-cache access is

e.g., for Kaby Lake 9.5 ns [2]. The absolute minimum number

of cache misses here is 65536 (=4 MB), but in practice it will

be much higher. A cache miss takes around 50 ns, hence, the

full cache eviction will take at least 3.6 ms. Consequently,

with 33.5 million tests required to generate the eviction set

and a runtime of 4.1 ms per test, the total runtime to generate

the eviction set is 38 hours.

This number still only considers the theoretical setting of

a completely noise-free and idle system. The process doing

AES computations must not be restarted during these 38 hours.

The operating system must not replace any physical pages and,

most importantly, our hypothetical AES implementation only

performs a single memory access. In any realistic setting with

only the slightest amount of activity (noise) on the system, this

easily explodes to multiple weeks or months. With a second

memory access, these two memory accesses can already not

be distinguished anymore with the generated eviction set,

because the eviction set is generated for an invocation of the

entire victim computation, not for an address.

4.6 Noise Sampling

The previous analysis considered a completely noise-free

scenario, where the attacker performs PRIME+PROBE on a

single memory access executed by the victim. However, in a

real system, an attacker will typically not be able to perform

an attack on single memory accesses, but face different kinds

of noise. Namely, on real systems cache attacks will suffer

from both systematic and random noise, which reduces the

effectiveness of profiling and the actual attack.

Systematic noise is introduced, for example, by the victim

as it executes longer code sequences in between the attacker’s

prime and probe steps. The victim’s code execution intrin-

sically performs additional memory accesses to fetch code

and data that the attacker will observe in the cache deter-

ministically. In SCATTERCACHE, the mappings of memory

addresses to cache lines is unknown. Hence, without addi-

tional knowledge, the attacker is unable to distinguish the

cache collision belonging to the target memory access from

collisions due to systematic noise. Instead, the attacker can

only observe and learn both simultaneously. As a result, larger

eviction sets need to be constructed to yield the same confi-

dence level for eviction. Specifically, the size of an eviction

set must increase proportionally to the number of systematic

noise accesses to achieve the same properties. While this

significantly increases an attackers profiling effort, they may

be able to use clustering techniques to prune the eviction set

prior to performing an actual attack.

Random noise, on the other hand, stems from arbitrary

processes accessing the cache simultaneously or as they are

scheduled in between. Random noise hence causes random

cache collisions to be detected by an attacker during both pro-

filing and an actual attack, i.e., produces false positives. While

attackers cannot distinguish between such random noise and

systematic accesses in a single observation, these random

noise accesses can be filtered out statistically be repeating the

same experiment multiple times. Yet, it increases an attackers

effort significantly. For instance, when building eviction sets

an attacker can try to observe the same cache collision multi-

ple times for a specific candidate address to be certain about

its cache collision with the victim.

Random noise distributes in SCATTERCACHE according

to Equation 1 and hence quickly occupies large parts of the

cache. As a result, there is a high chance of sampling ran-

dom noise when checking a candidate address during the

construction of eviction sets. Also when probing addresses of

an eviction set in an actual attack, random noise is likely to

be sampled as attacks on SCATTERCACHE demand for large
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eviction sets. As our analysis shows, for a single cache way the

distribution of cache line indices corresponding to the mem-

ory accesses of profiled eviction sets (cf. Section 4.3) adheres

to Figure 7. Clearly, due to profiling there is a high chance of

roughly 1/nways to access the index that collides with the vic-

tim address. However, with p = (nways −1)/nways the index

adheres to an uniformly random selection from all possible in-

dices and hence provides a large surface for sampling random

noise. Consequently, for a cache with nlines = 2bindices lines

per way and nnoise lines being occupied by noise in each way,

the probability of sampling random noise when probing an

eviction set address is

p(Noise)≈
nways −1

nways

nnoise

nlines

.

Figure 8 visualizes this effect and in particular the percentage

of noisy samples encountered in an eviction set for different

cache configurations and noise levels. While higher random

noise clearly increases an attackers effort, the actual noise

level strongly depends on the system configuration and load.

4.7 Further Remarks

In the previous analysis, the SDIDs of both attacker and victim

were assumed to be constant throughout all experiments for

statistical analysis to be applicable. Additionally, systematic

and random noise introduced during both profiling and attack

further increase the complexity of actual attacks, rendering

attacks on most real-world systems impractical.

Also note that the security analysis in this section focuses

on SCv1. In a noise-free scenario, SCv2 may allow to con-

struct eviction sets slightly more efficiently since its IDF is

a permutation. This means that, once a collision in a certain

cache way is found, there will not be any other colliding ad-

dress for that cache way in the same index range, i.e., for

the same address tag. Considering the expected time to find

the single collision in a given index range, this could give

an attacker a benefit of up to a factor of two in constructing

eviction sets. However, in practice multiple cache ways are

profiled simultaneously, which results in a high chance of

finding a collision in any of the cache ways independent of

the address index bits, i.e., the nways indices for a certain mem-

ory address will very likely be scattered over the whole index

range. Independent of that, the presence of noise significantly

hampers taking advantage of the permuting property of SCv2.

5 Performance Evaluation

SCATTERCACHE significantly increases the effort of attack-

ers to perform cache-based attacks. However, a countermea-

sure must not degrade performance to be practical as well.

This section hence analyzes the performance of SCATTER-

CACHE using the gem5 full system simulator and GAP [9],

MiBench [30], lmbench [49], and the C version of scimark2 1

as micro benchmarks. Additionally, to closer investigate the

impact of SCATTERCACHE on larger workloads, a custom

cache simulator is used for SPEC CPU 2017 benchmarks.

Our evaluations indicate that, in terms of performance, SCAT-

TERCACHE behaves basically identical to traditional set-

associative caches with the same random replacement policy.

5.1 gem5 Setup

We performed our cache evaluation using the gem5 full sys-

tem simulator [12] in 32-bit ARM mode. In particular, we

used the CPU model TimingSimpleCPU together with a cache

architecture such as commonly used in ARM Cortex-A9

CPUs: the cache line size was chosen to be 32 bytes, the 4-way

L1 data and instruction caches are each sized 32 kB, and the

8-way L2 cache is 512 kB large. We adapted the gem5 simula-

tor such as to support SCATTERCACHE for the L2 cache. This

allows to evaluate the impact of six different cache organiza-

tions. Besides SCATTERCACHE in both variants (1) SCv1 and

(2) SCv2 and standard set-associative caches with (3) LRU,

(4) BIP, and (5) random replacement, we also evaluated (6)

skewed associative caches [63] with random replacement as

we expect them to have similar performance characteristics

as SCv1 and SCv2.

On the software side, we used the Poky Linux distribution

from Yocto 2.5 (Sumo) with kernel version 4.14.67 after ap-

plying patches to run within gem5. We then evaluated the per-

formance of our micro benchmarks running on top of Linux.

In particular, we analyzed the cache statistics provided by

1https://math.nist.gov/scimark2/

USENIX Association 28th USENIX Security Symposium    687

https://math.nist.gov/scimark2/


gem5 after booting Linux and running the respective bench-

mark. Using this approach, we reliably measure the cache

performance and execution time for each single application,

i.e., without concurrent processes. Since only the L2-cache

architecture (i.e., replacement policy, skewed vs. fixed sets)

changed between the individual simulation runs, execution

performance is simply direct proportional to the resulting

cache hit rate. To enable easier comparison between the indi-

vidual benchmarks as well as with related work we therefore

mainly report L2-cache hit results.

SCATTERCACHE IDF Instantiations. Both SCATTER-

CACHE variants have been instantiated using the low-latency

tweakable block cipher QARMA-64 [8]. In particular, in the

SCv1 variant, the index bits for the individual cache ways

have been sliced from the ciphertext of encrypting the cache

line address under the secret key and SDID. On the other hand,

due to the lack of an off-the-shelf tweakable block cipher with

the correct block size, a stream cipher construction was used

in the SCv2 variant. Namely, the index is computed as the

XOR between the original index bits and the ciphertext of

the original tag encrypted using QARMA-64. Note, however,

that, although this construction for SCv2 is a proper permu-

tation and entirely sufficient for evaluating the performance

of SCv2, we do not recommend the construction as pads are

being reused for addresses having the same tag bits.

While the majority of the following results are latency

agnostic LLC hit rates, all following results are reported for

the zero cycle latency case. For QARMA-64 with 5 rounds,

ASIC implementation results with as little as 2.2 ns latency

have been reported [8]. We are therefore confident that, if

desired, hiding the latency of the IDF by computing it in

parallel to the lower level cache lookup is feasible.

However, we still also conducted simulations with la-

tency overheads between 1 and 5 cycles by increasing the

tag_latency of the cache in gem5. The acquired results

show that, even for IDFs which introduce 5 cycles of latency,

less than 2 % performance penalty are encountered on the

GAP benchmark suite. These numbers are also in line with

Qureshi’s results reported for CEASER [55].

5.2 Hardware Overhead Discussion

SCATTERCACHE is designed to be as similar to modern cache

architectures as possible in terms of hardware. Still, area and

power overheads have to be expected due to the introduction

of the IDF and the additional addressing logic. Unfortunately,

while probably easy for large processor and SoC vendors,

determining reliable overhead numbers for these two metrics

is a difficult task for academia that requires an actual ASIC

implementation of the cache. To the best of our knowledge,

even in the quite active RISC-V community, no open and

properly working LLC designs are available that can be used

as foundation. Furthermore, for merely simulating such a de-

sign with a reasonably large cache, commercial EDA tools,

access to state-of-the-art technology libraries, and large mem-

ory macros with power models are required. As the result,

secure cache designs typically fail to deliver hardware imple-

mentation results (see Table 6 in [18]).

Because of these problems, similar to related work, we can

also not provide concrete numbers for the area and power

overhead. However, due to the way we designed SCATTER-

CACHE and the use of lightweight cryptographic primitives,

we can assert that the hardware overhead is reasonable. For ex-

ample, the 8-way SCv1 SCATTERCACHE with 512 kB that is

simulated in the following section, uses two parallel instances

of QARMA-64 with 5 rounds as IDF. One fully unrolled

instance has a size of 22.6 kGE [8] resulting in an IDF size

of less then 50 kGE even in case additional pipeline registers

are added. The added latency of such an IDF is the same as

the latency of the used primitive which has been reported as

2.2 ns. However, this latency can (partially or fully) be hidden

by computing the IDF in parallel to the lower level cache

lookup. Interestingly, with similar size, also a sponge-based

SCv1 IDF (e.g., 12 rounds of Keccak[200] [11]) can be instan-

tiated. Finally, there is always the option to develop custom

IDF primitives [55] that demand even less resources.

For comparison, in the BROOM chip [16], the SRAM

macros in the 1 MB L2 cache already consume roughly 50 %

of the 4.86 mm2 chip area. Assuming an utilization of 75 %

and a raw gate density of merely 3 MGate/mm2 [21] for the

used 28 nm TSMC process, these 2.43 mm2 already corre-

spond to 5.5 MGE. Subsequently, even strong IDFs are orders

of magnitude smaller than the size of a modern LLC.

In terms of overhead for the individual addressing of the

cache ways, information is more sparse. Spjuth et al. [64]

observed a 17 % energy consumption overhead for a 2-way

skewed cache. They also report that skewed caches can be

built with lower associativity and still reach similar perfor-

mance as traditional fixed set-associative caches. Furthermore,

modern Intel architectures already feature multiple addressing

circuits in their LLC as they partition it into multiple smaller

caches (i.e., cache slices).

5.3 gem5 Results and Discussion

Figure 9 visualizes the cache hit rate of our L2 cache when

executing programs from the GAP benchmark suite. To ease

visualization, the results are plotted in percentage points (pp),

i.e., the differences between percentage numbers, using the

fixed set-associative cache with random replacement policy

as baseline. All six algorithms (i.e., bc, bfs, cc, pr, sssp, tc)

have been evaluated. Moreover, as trace sets, both syntheti-

cally generated kron (-g16 -k16) and urand (-u16 -k16)

sets have been used. As can be seen in the graph, the BIP and

LRU replacement policies outperform random replacement

on average by 4.6 pp and 4 pp respectively. Interestingly, how-

ever, all random replacement based schemes, including the

skewed variants, perform basically identical.
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Figure 9: Cache hit rate, simulated with gem5, for the syn-

thetic workloads in the GAP benchmark suite with random

replacement policy as baseline.
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Figure 10: Cache hit rate, simulated with gem5, for scimark2.

The next benchmark, we visualized in Figure 10, is sci-

mark2 (-large 0.5). This benchmark shows an interesting

advantage of the skewed cache architectures over the fixed-

set architectures, independent of the replacement policy, of

approximately 10 pp for the total hit rate. This difference is

mainly caused by the 5x difference in hit rate for data accesses.

Comparing the achieved benchmark scores in Figure 11 fur-

ther reveals that the fft test within scimark2 is the reason for

the observed discrepancy in cache performance.

To investigate this effect in more detail, we measured the

memory read latency using using lat_mem_rd 8M 32 from

lmbench in all cache configurations. The respective results

in Figure 12 feature two general steps in the read latency

at 32 kB (L1-cache size) and at 512 kB (L2-cache size). No-

tably, configurations with random replacement policy feature

a smoother transition at the second step, i.e., when accesses

start to hit main memory instead of the L2 cache.

Even more intersting results, as shown in Figure 13, have

been acquired by increasing the stride size to four times the

cache line size. Skewed caches like SCATTERCACHE break

the strong alignment of addresses and cache set indices. As

a consequence, a sparse, but strongly aligned memory ac-

cess pattern such as in lat_mem_rd, which in a standard

composite fft sor monte carlo sparse
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Figure 11: Scimark2 score simulated with gem5.
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Figure 12: Memory read latency, simulated with gem5, with

32 byte stride (i.e., one access per cache line).

set-associative caches only uses every 4th cache index, gives

high cache hit rates and low read latencies for larger memory

ranges due to less cache conflicts. This effect becomes visible

in Figure 13 as shift of the second step from 512 kB to 2 MB

for the skewed cache variants.

Finally, as last benchmark, MiBench has been evaluated

in small and large configuration. The individual results are

visualized in Figure 14 and Figure 15 respectively. On aver-

age, the achieved performance results in MiBench are very

similar to the results from the GAP benchmark suite. Again,

caches with BIP and LRU replacement policy outperform the

configurations with random replacement policy by a few per-

cent. However, in some individual benchmarks (e.g., qsort in

small, jpeg in large), skewed cache architectures like SCAT-

TERCACHE outmatch the fixed set appraoches.

In summary, our evaluations with gem5 in full system sim-

ulation mode show that the performance of SCATTERCACHE,

in terms of hit rate, is basically identical to contemporary

fixed set-associative caches with random replacement policy.

Considering that we employ the same replacement strategy,

this is an absolutely satifying result by itself. Moreover, no

tests indicated any notable performance degradation and in

some tests SCATTERCACHE even outperformed BIP and LRU

replacement policies.

USENIX Association 28th USENIX Security Symposium    689



0.001 0.01 0.1 1 10

0

50

100

Access Size [MB]

R
ea

d
L

at
en

cy
[n

s]
(l

o
w

er
is

b
et

te
r)

BIP

LRU

Rand

SCv1

SCv2

Skewed

Figure 13: Memory read latency, simulated with gem5, with

128 byte stride (i.e., one access in every fourth cache line).

CRC32
FFT

ad
pc

m

ba
sic

m
at

h

bi
tc

ou
nt

bl
ow

fish

di
jk

str
a
gs

m
jp

eg
la

m
e
m

ad

pa
tri

ci
a
qs

or
t

rij
nd

ae
l

sh
a

str
in

gs
ea

rc
h

su
sa

n

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

ty
pe

se
t

m
ea

n

0

2

4

H
it

R
at

e
∆

[%
]

(h
ig

h
er

is
b

et
te

r)

BIP LRU SCv1 SCv2 Skewed

Figure 14: Cache hit rate, simulated with gem5, for MiBench

in small configuration compared to random replacement.

5.4 Cache Simulation and SPEC Results

Lastly, we evaluated the performance of SCATTERCACHE

using the SPEC CPU 2017 [66] benchmark with both the

“SPECspeed 2017 Integer” and “SPECspeed 2017 Floating

Point” suites. We performed all benchmarks in these suites

with the exception of gcc, wrf and cam4, as these failed to

compile on our system. Because these benchmarks are too

large to be run in full system simulation, we created a software

cache simulator, capable of simulating different cache models

and replacement policies. Even so, the benchmarks proved

to be too large to run in full, so we opted to run segments of

250 million instructions from each, following the methodol-

ogy of Qureshi et al. [56]. We made an effort to select parts

of the benchmarks that are representative of their respective

core workloads. To be able to run the benchmarks with our

simulator, we recorded a trace of all instruction addresses

and memory accesses with the Intel PIN Tool [33]. We then

replayed this access stream for different cache configurations.

The simulator implements the set-associative replacement

policies Pseudo-LRU (Tree-PLRU), LRU (ideal), BIP as de-

scribed in [56], and random replacement, as well as the two
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Figure 15: Cache hit rate, simulated with gem5, for MiBench

in large configuration compared to random replacement.
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Figure 16: Average cache hit rate for SPEC CPU 2017 bench-

marks compared to random replacement over 10 runs.

SCATTERCACHE variants. The number of ways per set, total

cache size, number of slices, and cache line size are fully con-

figurable. Additionally, the simulator supports multiple levels

of inclusive caches, as well as a cache that is split for data

and instructions. All simulations were run on an inclusive two

level cache, where the L1 was separated into instruction and

data caches, both of which use LRU replacement. Figure 16

shows results for the cache configuration, as described in Sec-

tion 5.1, as the difference in percentage points for last-level

hit rates when compared to random replacement. While we

can see large differences in individual tests, the mean shows

that both versions of SCATTERCACHE perform at least as

well as random replacement and very similar to LRU. Us-

ing the same cache configuration but with 64 B cache lines,

we actually observe a mean advantage of 0.23± 0.76 pp of

SCATTERCACHE over random replacement, where LRU sees

a marginally worse result of −0.21± 1.02 pp. On a larger

configuration with 64 B cache lines, 32 kB 8-way L1 and

2 MB 16-way LLC, the results show a slim improvement of

0.035±0.10 pp for SCATTERCACHE and 0.37±1.14 pp for

LRU over random replacement.
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6 Conclusion

In this paper, we presented SCATTERCACHE, a novel cache

design to eliminate cache attacks that eliminates fixed cache-

set congruences and, thus, makes eviction-based cache at-

tacks unpractical. We showed how skewed associative caches

when retrofitted with a keyed mapping function increase the

attack complexity so far that it exceeds practical scenarios

Furthermore, high-frequency attacks become infeasible. Our

evaluations show that the runtime performance of software

is not curtailed and SCATTERCACHE can even outperform

state-of-the-art caches for certain realistic workloads.
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