Scattering, Absorption, and Emission of Light by Small Particles

Michael I. Mishchenko
Larry D. Travis
Andrew A. Lacis
NASA Goddard Institute for Space Studies, New York

Contents

Preface xi
Acknowledgments xv
Part I Basic Theory of Electromagnetic Scattering, Absorption, and Emission 1
Chapter 1 Polarization characteristics of electromagnetic radiation 8
1.1 Maxwell's equations, time-harmonic fields, and the Poynting vector 8
1.2 Plane-wave solution 12
1.3
Coherency matrix and Stokes parameters 15
1.4 Ellipsometric interpretation of Stokes parameters 19
1.5
Rotation transformation rule for Stokes parameters 24
1.6
Quasi-monochromatic light and incoherent addition of Stokes parameters 26
Further reading 30
Chapter 2 Scattering, absorption, and emission of electromagnetic radiation by anarbitrary finite particle 31
2.1
Volume integral equation 312.2
Scattering in the far-field zone 35
2.3
Reciprocity 382.4
Reference frames and particle orientation 42
2.5
Poynting vector of the total field 46
2.6
Phase matrix 4 49
2.8 Extinction, scattering, and absorption cross sections 56
2.9 Radiation pressure and radiation torque 60
2.10 Thermal emission 63
2.11 Translations of the origin 66

Further reading 67

Chapter 3 Scattering, absorption, and emission by collections of independent particles 68

3.1 Single scattering, absorption, and emission by a small volume element comprising randomly and sparsely distributed particles 68
3.2 Ensemble averaging 72
3.3 Condition of independent scattering 74
3.4 Radiative transfer equation and coherent backscattering 74

Chapter 4 Scattering matrix and macroscopically isotropic and mirror-symmetric scattering media 83
4.1 Symmetries of the Stokes scattering matrix 84
4.2 Macroscopically isotropic and mirror-symmetric scattering medium 87
$4.3 \quad$ Phase matrix 88
4.4 Forward-scattering direction and extinction matrix 91
4.5 Backward scattering 94
4.6 Scattering cross section, asymmetry parameter, and radiation pressure 95
4.7 Thermal emission 97
$4.8 \quad$ Spherically symmetric particles 98
4.9 Effects of nonsphericity and orientation 99
4.10 Normalized scattering and phase matrices 100
4.11 Expansion in generalized spherical functions 103
4.12 Circular-polarization representation 105
4.13 Radiative transfer equation 108

Part II CaIculation and Measurement of Scattering and Absorption Characteristics of Small Particles 111

Chapter 5 T-matrix method and Lorenz-Mie theory 115
5.1 T-matrix ansatz 116
5.2 General properties of the T-matrix 119
5.2.1 Rotation transformation rule 119
5.2.2 Symmetry relations 121
5.2.3 Unitarity 122

5.2.4 Translation transformation rule 125

5.3 Extinction matrix for axially oriented particles 127
5.4 Extinction cross section for randomly oriented particles 132
5.5 Scattering matrix for randomly oriented particles 133
5.6 Scattering cross section for randomly oriented particles 138
$5.7 \quad$ Spherically symmetric scatterers (Lorenz-Mie theory) 139
5.8 Extended boundary condition method 142
5.8.1 General formulation 142
5.8.2 Scale invariance rule 147
5.8.3 Rotationally symmetric particles 148
5.8.4 Convergence 150
5.8.5 Lorenz-Mie coefficients 153
5.9 Aggregated and composite particles 154
5.10 Lorenz-Mie code for homogeneous polydisperse spheres 158
5.10.1 Practical considerations 158
5.10.2 Input parameters of the Lorenz-Mie code 162
5.10.3 Output information 163
5.10.4 Additional comments and illustrative example ’164
5.11 $\quad T$-matrix code for polydisperse, randomly oriented, homogeneous, rotationally symmetric particles 165
5.11.1 Computation of the T-matrix for an individual particle 167
5.11.2 Particle shapes and sizes 171
5.11.3 Orientation and size averaging 172
5.11.4 Input parameters of the code 173
5.11.5 Output information 175
5.11.6 Additional comments and recipes 176
5.11.7 Illustrative examples 178
5.12 $\quad T$-matrix code for a homogeneous, rotationally symmetric particle in an arbitrary orientation 180
$5.13 \quad$ Superposition T-matrix code for randomly oriented two-sphere clusters 186 Further reading 189

Chapter 6 Miscellaneous exact techniques 191

6.1 Separation of variables method for spheroids 192
6.2 Finite-element method 193

Finite-difference time-domain method 195
6.4 Point-matching method 196
6.5 Integral equation methods 197
6.6 Superposition method for compounded spheres and spheroids 201
6.7 Comparison of methods, benchmark results, and computer codes 202
Further reading 205
Chapter 7 Approximations 206
7.1
Rayleigh approximation 206
7.2 Rayleigh-Gans approximation 209
7.3 Anomalous diffraction approximation 210
7.4 Geometrical optics approximation 210
7.5
Perturbation theories 221
7.6
Other approximations 222
Further reading 223
Chapter 8 Measurement techniques 224
8.1 Measurements in the visible and infrared 224
8.2 Microwave measurements 230
Part III Scattering and Absorption Properties of Small Particles and Illustrative Applications 235
Chapter 9 Scattering and absorption properties of spherical particles 238
9.1 Monodisperse spheres 238
9.2 Effects of averaging over sizes 250
9.3 Optical cross sections, single-scattering albedo, and asymmetry parameter 252
9.4 Phase function $a_{1}(\Theta) 258$
Backscattering 267
Other elements of the scattering matrix 271 9.6Optical characterization of spherical particles273Further reading 278
Chapter 10 Scattering and absorption properties of nonspherical particles 27910.1 Interference and resonance structure of scattering patterns for nonsphericalparticles in a fixed orientation; the effects of orientation and sizeaveraging 279
10.2 Randomly oriented, polydisperse spheroids with moderate aspect ratios 282
10.3
Randomly oriented, polydisperse circular cylinders with moderate aspectratios 299
10.4 Randomly oriented spheroids and circular cylinders with extreme aspectratios 307
10.5 Chebyshev particles 319

Contents

10.6 Regular polyhedral particles 320
10.7 Irregular particles 322
10.8 Statistical approach 334
10.9 Clusters of spheres 337
10.10 Particles with multiple inclusions 347
10.11 Optical characterization of nonspherical particles 350
Further reading 359
Appendix A Spherical wave expansion of a plane wave in the far-field zone 360
Appendix B Wigner functions, Jacobi polynomials, and generalized spherical functions 362
Appendix C Scalar and vector spherical wave functions 370
Appendix D Clebsch-Gordan coefficients and Wigner $3 j$ symbols 380
Appendix E Système International units 384
Abbreviations and symbols 385
References 395
Index 439
Color plate section facing page 272

