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Abstract: We establish a direct connection between scattering amplitudes in pla-

nar four-dimensional theories and a remarkable mathematical structure known as the

positive Grassmannian. The central physical idea is to focus on on-shell diagrams

as objects of fundamental importance to scattering amplitudes. We show that the

all-loop integrand in N =4 super Yang-Mills (SYM) is naturally represented in this

way. On-shell diagrams in this theory are intimately tied to a variety of mathematical

objects, ranging from a new graphical representation of permutations to a beautiful

stratification of the Grassmannian G(k, n) which generalizes the notion of a simplex

in projective space. All physically important operations involving on-shell diagrams

map to canonical operations on permutations—in particular, BCFW deformations

correspond to simple adjacent transpositions. Each cell of the positive Grassmannian

is naturally endowed with “positive” coordinates αi and an invariant measure of the

form
∏

i dlogαi which determines the on-shell function associated with the diagram.

This understanding allows us to classify and compute all on-shell diagrams, and give

a geometric understanding for all the non-trivial relations among them. The Yangian

invariance of scattering amplitudes is transparently represented by diffeomorphisms

of G(k, n) which preserve the positive structure. Scattering amplitudes in (1+1)-

dimensional integrable systems and the ABJM theory in (2+1) dimensions can both

be understood as special cases of these ideas. On-shell diagrams in theories with less

(or no) supersymmetry are associated with exactly the same structures in the Grass-

mannian, but with a measure deformed by a factor encoding ultraviolet singularities.

The Grassmannian representation of on-shell processes also gives a new understand-

ing of the all-loop integrand for scattering amplitudes—presenting all integrands in

a novel “dlog” form which is a direct reflection of the underlying positive structure.
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1. Introduction

The traditional formulation of quantum field theory—encoded in its very name—

is built on the two pillars of locality and unitarity [1]. The standard apparatus of

Lagrangians and path integrals allows us to make these two fundamental principles

manifest. This approach, however, requires the introduction of a large amount of

unphysical redundancy in our description of physical processes. Even for the sim-

plest case of scalar field theories, there is the freedom to perform field-redefinitions.

Starting with massless particles of spin-one or higher, we are forced to introduce even

larger, gauge redundancies, [1].

Over the past few decades, there has been a growing realization that these re-

dundancies hide amazing physical and mathematical structures lurking within the

heart of quantum field theory. This has been seen dramatically at strong coupling

in gauge/gauge (see, e.g., [2–4]) and gauge/gravity dualities, [5]. The past decade

has uncovered further remarkable new structures in field theory even at weak cou-

pling, seen in the properties of scattering amplitudes in gauge theories and gravity

(for reviews, see [6–11]). The study of scattering amplitudes is fundamental to our

understanding of field theory, and fueled its early development in the hands of Feyn-

man, Dyson and Schwinger among others. It is therefore surprising to see that even

here, by committing so strongly to particular, gauge-redundant descriptions of the

physics, the usual formalism is completely blind to astonishingly simple and beautiful

properties of the gauge-invariant physical observables of the theory.

Many of the recent developments have been driven by an intensive exploration

of N =4 supersymmetric Yang-Mills (SYM) in the planar limit, [11,12]. The all-loop

integrand for scattering amplitudes in this theory can be determined by a general-

ization of the BCFW recursion relations, [13], in a way that is closely tied to remark-

able new structures in algebraic geometry, associated with contour integrals over the

Grassmannian G(k, n), [14–17]. This makes both the conformal and long-hidden dual

conformal invariance of the theory (which together close into the infinite-dimensional

Yangian symmetry) completely manifest, [18]. It is remarkable that a single func-

tion of external kinematical variables can be interpreted as a scattering amplitude

in one space-time, and as a Wilson-loop in another (for a review, see [11]). Each of

these descriptions makes a commitment to locality in its own space-time, making it

impossible to see the dual picture. By contrast, the Grassmannian picture makes

no mention of locality or unitarity, and does not commit to any gauge-redundant

description of the physics, allowing it to manifest all the symmetries of the theory.

There has also been extraordinary progress in determining the amplitude itself

beyond the integrand, using the technology of symbols of transcendental functions

to powerfully constrain and control the polylogarithms occurring in the final results,

[19, 20]. While a global picture is still missing, a huge amount of data has been

generated. The symbol for all 2-loop MHV amplitudes has been determined, [21] (see
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also [22]), and a handful of 2-loop NMHV and 3-loop MHV symbols have been found,

[23–25]. Remarkable strategies have also been presented to bootstrap amplitudes to

very high loop-orders, [26–30]. Many of these ideas have a strong resonance with

the explosion of progress in the last decade using integrability to find exact results

in planar N =4 SYM, starting with the spectacular solution of the spectral problem

for anomalous dimensions, [12, 31].

All of these developments have made it completely clear that there are powerful

new mathematical structures underlying the extraordinary properties of scattering

amplitudes in gauge theories. If history is any guide, formulating and understanding

the physics in a way that makes the symmetries manifest should play a central role in

the story. The Grassmannian picture does this, but up to this point there has been

little understanding for why this formulation exists, exactly how it works, or where it

comes from physically. Our primary goal in this note is to resolve this unsatisfactory

state of affairs.

We will derive the connection between scattering amplitudes and the Grassman-

nian, starting physically from first principles. This will lead us into direct contact

with several beautiful and active areas of current research in mathematics [32–41].

The past few decades have seen vigorous interactions between physics and mathe-

matics in a wide variety of areas, but what is going on here involves new areas of

mathematics that have only very recently played any role in physics, involving simple

but deep ideas ranging from combinatorics to algebraic geometry. It is both startling

and exciting that such elementary mathematical notions are found at the heart of

the physics of scattering amplitudes.

This new way of thinking about scattering amplitudes involves many novel phys-

ical and mathematical ideas. Our presentation will be systematic, and we have en-

deavored to make it self contained and completely accessible to physicists. While

we will discuss a number of mathematical results—some of them new—we will usu-

ally be content with the physicist’s level of rigor. While the essential ideas here

are all very simple, they are tightly interlocking, and range over a wide variety of

areas—most of which are unfamiliar to most physicists. Thus, before jumping into

the detailed exposition, as a guide to the reader we end this introductory section by

giving a roadmap of the logical structure and content of the paper.

In section 2, we introduce the central physical idea motivating our work, which

is to focus on on-shell diagrams, obtained by gluing together fundamental 3-particle

amplitudes and integrating over the on-shell phase space of internal particles. These

objects are of central importance to the understanding scattering amplitudes. We

will see that scattering amplitudes in planar N =4 SYM—to all loop orders—can be

represented directly in terms of on-shell processes. In this picture, “virtual particles”

make no appearance at all. We should emphasize that we are not merely using

on-shell information to determine scattering amplitudes, but rather seeing that the

amplitudes can be directly computed in terms of fully on-shell processes. The off-
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shell, virtual particles familiar from Feynman diagrams are replaced by internal,

on-shell particles (with generally complex momenta).

In our study of on-shell diagrams, we will see that different diagrams related

by certain elementary moves can be physically equivalent, leading to the natural

question of how to invariantly characterize their physical content. Remarkably, the

invariant content of on-shell diagrams turns out to be characterized by combinatorial

data. We discuss this in detail in section 3 where we show how a long-known and

beautiful connection between permutations and scattering amplitudes in integrable

(1+1)-dimensional theories generalizes to more realistic theories in (3+1) dimensions.

In section 4 we turn to actually calculating on-shell diagrams and find that the

most natural way of carrying out the computations is to associate each diagram

with a certain differential form on an auxiliary Grassmannian. In sections 5 and 6

we show how the invariant, combinatorial content of an on-shell diagram is reflected

in the Grassmannian directly. This is described in terms of a surprisingly simple

stratification of the configurations of k-dimensional vectors endowed with a cyclic

ordering, classified by the linear dependencies among consecutive chains of vectors.

For the real Grassmannian, this stratification can be equivalently described in an

amazingly simple and beautiful way as nested ‘boundaries’ of the positive part of the

Grassmannian, [32], which is motivated by the theory of totally positive matrices, [33,

42,43]. Each on-shell diagram can then be associated with a particular configuration

or “stratum” among the boundaries of the positive Grassmannian.

In section 7 we make contact with the Grassmannian contour integral of reference

[14], which is now seen as a compact way of representing the natural, invariant

top-form on the positive Grassmannian. This form of the measure allows us to

easily identify the conformal and dual conformal symmetries of the theory which are

related by a simple mapping of permutations described in section 8. In section 9,

we show that the invariance of scattering amplitudes under the action of the level-

one generators of the Yangian has a transparent interpretation: these generators

correspond to the leading, non-trivial diffeomorphisms that preserve all the cells of

the positive Grassmannian.

In section 10 we begin a systematic classification of Yangian invariants and their

relations by first describing a combinatorial test to determine whether an on-shell di-

agram has non-vanishing kinematical support (and if so, how many points of support

exist). In section 11 a geometric basis is given for all the myriad, highly non-trivial

identities satisfied among Yangian-invariants. This completes the classification of all

Yangian Invariants together with all their relations. In section 12, we give a tour of

this classification as it emerges through N4MHV.
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In section 13 we show that the story for scattering amplitudes in integrable

(1+1)-dimensional theories—in particular, the Yang-Baxter relation—can be under-

stood as a special case of our general results regarding on-shell diagrams. We further

show that scattering amplitudes for the ABJM theory in (2+1) dimensions, [44], can

also be computed in terms of a natural specialization of on-shell diagrams: those

associated with the null orthogonal Grassmannian. And we initiate the study of

on-shell diagrams in theories with less (or no) supersymmetry in section 14.

The positive Grassmannian is naturally endowed with a rich mathematical struc-

ture known as a cluster algebra—the original theory of which was developed in [34]

and has since been generalized to the theory of cluster varieties in [36,37]. Incredibly,

this structure has made striking appearances in widely disparate parts of physics in

the last decade—from conformal blocks for higher Toda theories [35, 45], to wall-

crossing phenomena [46, 47], to quiver gauge theories with N = 1 super-conformal

symmetry [48–53], to soliton solutions to the KP equation [54–56]. We briefly review

this story in section 15, as well as summarize its various physical manifestations in

hopes of stimulating a deeper understanding for these extremely surprising connec-

tions between physics and mathematics.

In section 16 we move beyond the discussion of individual on-shell diagrams

and describe the particular combinations which represent scattering amplitudes. We

present a self-contained direct proof—using on-shell diagrams alone—that the BCFW

construction of the all-loop integrand generates an object with precisely those sin-

gularities dictated by quantum field theory. We then show that the Grassmannian

representation of loop-integrands are always given in a remarkable, “dlog” form,

which we illustrate using examples of simple, one- and two-loop amplitudes. We

discuss the implications of this representation for the transcendental functions that

arise after the loop integrands are integrated.

We conclude our story in section 17 with a discussion of a number of the out-

standing, open directions for further research.
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2. On-Shell Diagrams

Theoretical explorations in field theory have been greatly advanced by focusing on

interesting classes of observables—from local correlation functions and scattering

amplitudes, to Wilson and ’t Hooft loops, surface operators and line defects, to

partition functions on various manifolds (see e.g. [57, 58]). The central physical

idea of our work is to study on-shell scattering processes as a new set of objects of

fundamental interest.

2.1 Encoding External Kinematical Data

We are interested in the scattering amplitude for n massless particles with momenta

pa and helicities ha, for a = 1, . . . , n. Since the momenta are null, the (2×2)-matrix,

pαα̇a ≡ pµaσ
αα̇
µ =

(
p0a + p3a p1a − ip2a
p1a + ip2a p0a − p3a

)
, (2.1)

has vanishing determinant; and so pαα̇ has (at most) rank 1. We can therefore write

pαα̇a = λα
a λ̃

α̇
a , (2.2)

where λ, λ̃ are referred to as spinor-helicity variables [59–63]. If the momentum is

real, we have λ̃a = ±λ∗
a; but in general, we will allow the momenta to be complex

and consider λ, λ̃ as independent, complex variables.

The rescaling λa 7→ taλa, λ̃a 7→ t−1
a λ̃a leaves the momentum pa invariant and

represents the action of the little group (for more details see e.g. [1, 64]). All the

information about the helicities ha of particles involved in a scattering amplitude An

is encoded by its weights under such rescaling:

An(taλa, t
−1
a λ̃a;ha) = t−2ha

a An(λa, λ̃a;ha). (2.3)

Theories with maximal supersymmetry have the wonderful feature that particles

of all helicities can be unified into a single super-multiplet, [64–68]. For N =4 SYM,

we can group all the helicity states into a single Grassmann coherent state labeled

by Grassmann (anti-commuting) parameters η̃I for I = 1, . . . , 4:

|η̃〉 ≡ |+1〉+η̃I
∣∣+1

2

〉
I
+

1

2!
η̃I η̃J |0〉IJ+

1

3!
ǫIJKLη̃

I η̃J η̃K
∣∣−1

2

〉L
+

1

4!
ǫIJKLη̃

I η̃J η̃K η̃L |−1〉 .

The complete amplitude, denoted An(λa, λ̃a, η̃a), is then a polynomial in the η̃’s. It

is convenient to expand this according to,

An(λa, λ̃a, η̃a) =
∑

k

A(k)
n (λa, λ̃a, η̃a) , (2.4)

whereA(k)
n is a polynomial of degree 4k in the η̃’s. Under the little group, η̃ transforms

like λ̃, so η̃a 7→ t−1
a η̃a; with this, the “super-amplitude” A(k)

n transforms uniformly

according to:

A(k)
n (taλa, t

−1
a λ̃a, t

−1
a η̃a) = t−2

a A
(k)
n (λa, λ̃a, η̃a). (2.5)
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The A(k)
n super-amplitude contains among its components those amplitudes which

involve k ‘negative helicity’ (ha= 1) and (n k) ‘positive-helicity’ (ha=+1) gluons—

particles for which ha=±1. A
(k)
n is often referred to as an “N(k−2)MHV amplitude”,

where ‘MHV’ stands for ‘maximal helicity violating’ and ‘N’ denotes ‘next-to’—

A(k=2)
n are considered ‘MHV’ because A(k<2)

n have vanishing kinematical support.

2.2 On-Shell Building Blocks: the Three-Particle Amplitudes

The fundamental building blocks for all on-shell scattering processes are the three-

particle amplitudes, which are completely determined (up to an overall coupling

constant) by Poincaré invariance and little group rescaling. This is a consequence of

the unique simplicity of three-particle kinematics. It is very easy to show that mo-

mentum conservation can only be satisfied if either: (A) all the λ’s are proportional

to each other, or (B) all the λ̃’s are proportional:

λ1λ̃1 + λ2λ̃2 + λ3λ̃3 = 0 ⇔
{
(A) : λ1 ∝ λ2 ∝ λ3

(B) : λ̃1 ∝ λ̃2 ∝ λ̃3

}
. (2.6)

Because of this, in the kinematic configuration where all the λ’s are proportional, the

amplitude can only depend non-trivially on the λ̃’s, and vice-versa. The dependence

on λ (λ̃) is fully determined by the weights according to equation (2.3), together with

the requirement that the amplitude is non-singular in the limit where the momenta

are taken real (see equation (2.10)).

We will denote the three-particle amplitude associated with the configuration

where all the λ’s (λ̃’s) are parallel with a white (black) three-point vertex. In a

non-supersymmetric theory, i.e. with only gluons, these are associated with helicity

configurations involving one (two) negative-helicity gluons:

and (2.7)

The corresponding helicity amplitudes are given by,

A
(1)
3 (−,+,+) =

[2 3]3

[1 2][3 1]
δ2×2

(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
;

A
(2)
3 (+,−,−) =

〈2 3〉3

〈1 2〉〈3 1〉
δ2×2

(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
.

(2.8)

Here, we have made use of the Lorentz-invariants constructed out of the spinors,

〈a b〉 ≡ det{λa, λb} and [a b] ≡ det{λ̃a, λ̃b}. (2.9)

These amplitudes are of course what we get from the two-derivative Yang-Mills

Lagrangian. Amplitudes involving all-plus or all-minus helicities are also fixed by
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Poincaré invariance in the same way, but arise only in theories with higher-dimension

operators like F 3 or R3. In general, Poincaré invariance fixes the kinematical de-

pendence of the three-particle amplitude involving massless particles with arbitrary

helicities to be, [69]:

A3(h1, h2, h3) ∝

{
[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2

∑
ha > 0;

〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1
∑

ha < 0.
(2.10)

As mentioned above, in maximally supersymmetric theories all helicity states

are unified in a single super-multiplet, and so there is no need to distinguish among

the particular helicities of particles involved; and so, we may consider the simpler,

cyclically-invariant amplitudes:

and (2.11)

The first includes among its components the (−,+,+) amplitude of (2.7), while the

latter includes the (+,−,−) amplitude. These super-amplitudes are given by,

A(1)
3 =

δ1×4
(
[2 3]η̃1 + [3 1]η̃2 + [1 2]η̃3

)

[1 2][2 3][3 1]
δ2×2

(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
;

A(2)
3 =

δ2×4
(
λ1η̃1 + λ2η̃2 + λ3η̃3

)

〈1 2〉〈2 3〉〈3 1〉
δ2×2

(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
.

(2.12)

(Although not essential for our present considerations, it may be of some inter-

est that these objects can be made fully permutation invariant by including also a

prefactor f c1,c2,c3 depending on the ‘colors’ ca of the particles involved (where ‘color’

is simply a label denoting the possible distinguishable states in the theory). General

considerations of quantum mechanics and locality (see e.g. [69]) require that any such

prefactor must be fully antisymmetric and satisfy a Jacobi identity—implying that

color labels combine to form the adjoint representation of a Lie algebra. The most

physically interesting case is when this is the algebra of U(N); in this case, N can be

viewed as a parameter of the theory, and scattering amplitudes can be expanded in

powers of 1/N to all orders of perturbation theory, [70]. In this paper, we will mostly

concern ourselves with the leading-terms in 1/N—the planar sector of the theory.)
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2.3 Gluing Three-Particle Amplitudes Into On-Shell Diagrams

It is remarkable that three-particle amplitudes are totally fixed by Poincaré symme-

try; they carry all the essential information about the particle content and obvious

symmetries of the physical theory. It is natural to “glue” these elementary building

blocks together to generate more complicated objects we will call on-shell diagrams.

Such objects will be our primary interest in this paper; examples of these include:

and (2.13)

We draw both planar and non-planar examples here to stress that on-shell diagrams

have nothing to do with planarity. In this paper, however, we will focus on the case

of planar N =4; we leave a systematic exploration of non-planar on-shell diagrams

to future work.

Note that on-shell diagrams such as those of (2.13) are not Feynman diagrams!

There are no “virtual” or “off-shell” internal particles involved: all the lines in these

pictures are on-shell (meaning that their momenta are null). Each internal line

represents a sum over all possible particles which can be exchanged in the theory, with

(often complex) momenta constrained by momentum conservation at each vertex—

integrating over the on-shell phase space of each. If I denotes an internal particle

with momentum pI = λI λ̃I and helicity hI , then pI flows into one vertex with helicity

hI , and ( pI) flows into the other with helicity ( hI). In pure (non-supersymmetric)

Yang-Mills we would have, [65],

∑

hI=±

∫
d2λId

2λ̃I

vol(GL(1))
, (2.14)

for each internal line; in a theory with maximal supersymmetry we would have,∫
d4η̃

∫
d2λId

2λ̃I

vol(GL(1))
. (2.15)

Here, the on-shell phase-space integral is clearly over λ, λ̃, modulo theGL(1)-redundancy

of the little group—rescaling λI 7→ tIλI and λ̃I 7→ t−1
I λ̃I .

In general, we have some number of integration variables corresponding to the

(on-shell) internal momenta, and δ-functions enforcing momentum-conservation at

each vertex. We may have just enough δ-functions to fully localize all the internal
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momenta; in this case the on-shell diagram becomes an ordinary function of the

external data, which has historically been called a “leading singularity” in the litera-

ture [11,71]. If there are more δ-functions than necessary to fix the internal momenta,

the left-over constraints will impose conditions on the external momenta; such an

object is said to be a singularity or to have “singular support”. If there are fewer

δ-functions than necessary to fix the internal momenta, there will be some degrees

of freedom left over; the on-shell diagram then leaves us with some differential form

on these extra degrees of freedom which we are free to integrate over any contour we

please. But there is no fundamental distinction between these cases; and so we will

generally think of an on-shell diagram as providing us with an “on-shell form”—a

differential form defined on the space of external and internal on-shell momenta. If

we define the (super) phase space factor of the on-shell particle denoted a by,

Ωa =
d2λad

2λ̃a

vol(GL(1))
d4η̃a , (2.16)

then we can think of the 3-particle amplitude involving particles a, b, c also as a form:

A3 Ωa Ωb Ωc . (2.17)

Putting all the 3-particle amplitudes in an on-shell diagram together gives rise to

a (typically high-dimensional) differential form on the space of external and internal

momenta. The on-shell form associated with a diagram is then obtained by taking

residues of this high-dimensional form on the support of all the δ-function constraints

(thought of holomorphically—as representing poles which enforce their arguments

to vanish); this produces a lower-dimensional form defined on the support of any

remaining δ-functions.

Individual Feynman diagrams are not gauge invariant and thus don’t have any

physical meaning. By contrast, each on-shell diagram is physically meaningful and

corresponds to some particular on-shell scattering process. Note that although on-

shell diagrams almost always involve ‘loops’ of internal particles, these internal par-

ticles often have momenta fixed by the constraints (or are otherwise free). On-shell

forms are simply the products of on-shell 3-particle amplitudes; as such, they are al-

ways well-defined, finite objects—free from either infrared or ultraviolet divergences.

This makes them ideal for exposing symmetries of a theory which are often obscured

by such divergences.
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2.4 The “BCFW-Bridge”

One particularly simple way of building-up more complicated on-shell diagrams from

simpler ones will play an important role in our story. Starting from any on-shell

diagram, we can pick two external lines, and attach a “BCFW-bridge” to make a

new diagram as follows:

Note that the momentum λI λ̃I flowing through the “bridge”, as indicated by the

arrow, is very special: the white vertex on the left forces λI ∝ λa, and the black

vertex on the right forces λ̃I ∝ λ̃b; thus, λI λ̃I = αλaλ̃b for some α. The momenta

entering the rest of the graph through legs (a b) are deformed according to:
{
λa 7→λâ = λa

λ̃a 7→ λ̃â = λ̃a αλ̃b

}
and

{
λb 7→λb̂ = λb+αλa

λ̃b 7→ λ̃b̂ = λ̃b

}
. (2.18)

For theories with supersymmetry, there is also a deformation of η̃a according to

η̃a 7→ η̃a − α η̃b. (It is useful to remember that η̃ always transforms as λ̃ does.)

Thus, attaching a BCFW-bridge adds one new variable, α, to an on-shell form

f0, and gives rise to a new on-shell form f given by,

f(. . . ;λa, λ̃a, η̃a;λb, λ̃b, η̃b; . . .) =
dα

α
f0(. . . ;λâ, λ̃â, η̃â;λb̂, λ̃b̂, η̃b̂; . . .);

=
dα

α
f0(. . . ;λa, λ̃a α λ̃b, η̃a α η̃b;λb+αλa, λ̃b, η̃b; . . .).

(2.19)

Notice that very complex on-shell diagrams (both planar and non-planar alike) can

be generated by successively attaching BCFW-bridges to a small set of ‘simple’

diagrams. As we will soon understand, it turns out that all (physically-relevant)

on-shell diagrams can be constructed in this way.

2.5 On-Shell Recursion for All-Loop Amplitudes

While on-shell diagrams are interesting in their own right, for planar N =4 SYM,

we will see that they are of much more than purely formal interest. Scattering

amplitudes to all loop orders can be directly represented and computed as on-shell

scattering processes. This is quite remarkable, considering the ubiquity of “off-shell”

data in the more familiar Feynman expansion.

Of course by now we have become accustomed to the idea that amplitudes can be

‘determined’ using on-shell data—as evidenced, for instance, by the BCFW recursion

relations at tree-, [72,73], and loop-levels, [13] (see also [74–77]). But our statement

goes beyond this: the claim is not just that an off-shell object such as “the loop
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integral” can be determined using only on-shell information, but rather that loop

integrands can be directly represented by fully on-shell objects.

Before discussing loops, let us look at some examples of “tree-level” amplitudes.

Recall from [78] that the four-particle tree-amplitude A(2)
4 can be represented by a

single on-shell diagram—its “BCFW representation”:

(2.20)

This is very far from what would be obtained using Feynman diagrams which would

have represented (2.20) as the sum of three terms,

(2.21)

the first two of which involve off-shell gluon exchange. (The terms “tree-amplitude”

and “loop-amplitude” are artifacts of such Feynman-diagrammatic expansions.) An-

other striking difference is that, despite the fact that we’re discussing a tree-amplitude,

the on-shell diagram (2.20) looks like a loop! To emphasize this distinction, consider

a (possibly more familiar) “tree-like” on-shell diagram such as:

(2.22)

Since the internal line must be on-shell, the diagram imposes a δ-function constraint,

δ((p1 +p2)
2), on the external momenta; and so, (2.22) corresponds to a singularity—

a factorization channel. The extra leg in (2.20) that makes the “loop” allows for a

non-vanishing result for generic (on-shell, momentum-conserving) external momenta.

It is interesting to note that we can interpret (2.20) as having been obtained by

attaching a “BCFW-bridge” to any of the factorization channels of the four-particle

amplitude—such as that of (2.22). This makes it possible for the single diagram

(2.20) to simultaneously exhibit all the physical factorization channels.

This simple example illustrates the fundamental physical idea behind the BCFW

description of an amplitude—not just at tree-level, but at all loop orders: any am-

plitude can be fully reconstructed from the knowledge of its singularities; and the
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singularities of an amplitude are determined by entirely by on-shell data. At tree-

level, the singularities are simply the familiar factorization channels,

(2.23)

where the left- and right-hand sides are both fully on-shell scattering amplitudes. At

loop-level, all the singularities of the integrand can be understood as factorizations

like that of (2.23), or those for which an internal particle is put on-shell; at least

for N = 4 SYM in the planar limit, these singularities are given by the “forward-

limit” [79] of an on-shell amplitude with one fewer loop and two extra particles,

where any two adjacent particles have equal and opposite momenta, denoted:

(2.24)

Combining these two terms, the singularities of the full amplitude are, [13]:

(2.25)

Here we have suggestively used the symbol “∂” to signify “singularity of”. Of course,

the symbol ∂ is often used to denote “boundary” or “derivative”; we will soon see

that all of these senses are appropriate.

Equation (2.25) can be understood as defining a “differential equation” for scat-

tering amplitudes; and it turns out to be possible to ‘integrate’ it directly. This is

precisely what is accomplished by the BCFW recursion relations. For planar N =4

SYM, the all-loop BCFW recursion relations, when represented in terms of on-shell

diagrams are simply:

(2.26)
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The structure of this solution will be discussed in much greater detail in section 16.

For instance, notice that this presentation only makes some of the factorization

channels and forward-limits manifest, and seems to break the cyclic symmetry of

the amplitude by singling-out legs (1n). In other words, working intrinsically with

on-shell diagrams, it is not obvious that the sum (2.26) includes all the required

singularities of an amplitude. Of course Feynman diagrams do make it manifest

that such an object exists; but it would be nice to understand this more directly,

without recourse to the usual formalism of field theory. We will show how this works

in section 16.1, demonstrating that (2.26) has all the necessary singularities purely

from within the framework of on-shell diagrams.

The seed of loop integrands in the recursion relation are the “forward-limit”

terms as the three-point amplitudes are fixed by Poincaré invariance to all loop-

orders. Each loop is accompanied by four integration variables: three of these are

given by the phase space of the forward-limit momentum λABλ̃AB (from merging

legs ‘A’ and ‘B’), and the BCFW deformation parameter α is the fourth. Of course,

all the objects appearing in these expressions are completely on-shell, and so do

not seem to contain anything that looks like the conventional“
∫
d4ℓ” with which we

are accustomed (where ℓ is the momentum of a generally off-shell, virtual particle).

However, it is easy to convert the parameters of the on-shell forward-limit to the

more familiar one via the identification:

ℓ ≡ λABλ̃AB + αλ1λ̃n with d4ℓ =
d2λABd

2λ̃AB

vol(GL(1))
dα 〈1λAB〉[n λ̃AB] . (2.27)

At L loops, the all-loop recursion relation produces a 4L-form on internal phase-

space, and we can identify the 4L integration variables with loop momenta at each

order via (2.27). Integrating these on-shell forms over a contour which restricts each

loop-momentum to be real (i.e. in R3,1) generates the final, physical amplitude.

Thus, as advertised, on-shell diagrams are of much more than mere academic

interest: they fully determine the amplitude in planar N =4 SYM to all loop-orders.

2.6 Physical Equivalences Among On-Shell Diagrams

We have seen that on-shell diagrams are objects of fundamental importance to the

physics of scattering amplitudes. It is therefore natural to try and compute the

forms associated with on-shell diagrams more explicitly, and better understand their

structure. At first sight, the class of on-shell diagrams may look as complicated as

Feynman diagrams. For instance, even for a fixed number of external particles, there

are obviously an infinite number of such diagrams (by continuously adding BCFW

bridges, for example). As we will see however, at least for N =4 SYM in the planar

limit, this complexity is entirely illusory. The reason is that apparently very different

graphs actually give rise to exactly the same differential form—differing only by a

change of variables.
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The first instance of this phenomenon is extremely simple and trivial. Consider

an analog of the “factorization channel” diagram (2.22), but connecting two black

vertices. Because these vertices require that all the λ̃’s be parallel, it makes no

physical difference how they are connected. And so, on-shell diagrams related by,

(2.28)

represent the same on-shell form. Thus, we can collapse and re-expand any chain

of connected black vertices in anyway we like; the same is obviously true for white

vertices. Because of this, for some purposes it may be useful to define composite black

and white vertices with any number of legs. By grouping black and white vertices

together in this way, on-shell diagrams can always be made bipartite—with (internal)

edges only connecting white with black vertices. We will, however, preferentially

draw trivalent diagrams because of the fundamental role played by the three-particle

amplitudes.

There is also a more interesting equivalence between on-shell diagrams that will

play an important role in our story. We can see this already in the BCFW represen-

tation of the four-particle amplitude given above, (2.20). The picture is obviously not

cyclically invariant—as a rotation would exchange its black and white vertices. But

the four-particle amplitude of course is cyclically invariant; and so there is another

generator of equivalences among on-shell diagrams, the “square move”, [80]:

(2.29)

The merger and square moves can be used to show the physical equivalence of

many seemingly different on-shell diagrams. For instance, the following two diagrams

generate physically equivalent on-shell forms:

(2.30)
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We can see this by explicitly constructing the chain of moves which brings one graph

into the other:

Here, each step down involves one or more square-moves, and each step up involves

one or more mergers.

To give another example, the on-shell diagram representing the one-loop four-

particle amplitude—as obtained directly from BCFW recursion—is given by:

(2.31)

Using a series of mergers and square moves, it can be brought to the beautifully

symmetric, bipartite form:

(2.32)

These forms are completely equivalent, but suggest very different physical inter-

pretations. The first, (2.31), clearly exposes its origin as a forward-limit—arising

through the gluing of two of the external particles of the six-particle tree-amplitude.

The second form, (2.32), does not look like this at all; instead, it appears ast four

BCFW-bridges attached to an internal square—which is of course the four-particle

tree-amplitude. Thus, in this picture, we can think of the one-loop amplitude as an

integral over a four-parameter deformation of the tree-amplitude!
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This is more than mere amusement. It immediately tells us that with an appro-

priate choice of variables representing the BCFW-shifts, the one-loop amplitude can

be represented in a remarkably simple form:

Aℓ=1
4 ∝ Aℓ=0

4 ×

∫
dα1

α1

dα2

α2

dα3

α3

dα4

α4

. (2.33)

Of course, this does not look anything like the more familiar expression, [81],

Aℓ=1
4 ∝ Aℓ=0

4 × = Aℓ=0
4 ×

∫
d4ℓ (p1 + p2)

2(p1 + p3)
2

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2(ℓ− p4)2
. (2.34)

In this form, it is not at all obvious that there is any change of variables that reduces

the integrand to the “dlog”-form of (2.33). However, following the rule for identifying

off-shell loop momenta in terms of on-shell data, (2.27), we may easily identify the

map which takes us from the ℓ of (2.34) to the αi of (2.33):

d4ℓ (p1 + p2)
2(p1 + p3)

2

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2(ℓ− p4)2
(2.35)

=dlog

(
ℓ2

(ℓ− ℓ∗)2

)
dlog

(
(ℓ+ p1)

2

(ℓ− ℓ∗)2

)
dlog

(
(ℓ+ p1 + p2)

2

(ℓ− ℓ∗)2

)
dlog

(
(ℓ− p4)

2

(ℓ− ℓ∗)2

)
,

where ℓ∗ is either of the two points null separated from all four external momenta.

This expression will be derived in detail in section 16.3.

As we will see, the existence of this “dlog” representation for loop integrands is a

completely general feature of all amplitudes at all loop-orders. But the possibility of

such a form even existing was never anticipated from the more traditional formula-

tions of field theory. Indeed, even for the simple example of the four-particle one-loop

amplitude, the existence of a change of variables converting d4ℓ to four dlog’s went

unnoticed for decades. We will see that these “dlog”-forms follow directly from the

on-shell diagram description of scattering amplitudes generated by the BCFW recur-

sion relations, (2.26). Beyond their elegance, these dlog-forms suggest a completely

new way of carrying out loop integrations, and more directly expose an underlying,

“motivic” structure of the final results which will be a theme pursued in a later, more

extensive work.

The equivalence of on-shell diagrams related by mergers and square-moves clearly

represents a major simplification in the structure on-shell diagrams; but these alone

cannot reduce the seemingly infinite complexities of graphs with arbitrary numbers

of ‘loops’ (faces) as neither of these operations affect the number of faces of a graph.

However, using mergers and square-moves, it may be possible to represent an on-shell

diagram in a way that exposes a “bubble” on an internal line. As one might expect,

there is a sense in which such diagrams can be reduced by eliminating bubbles:
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(2.36)

Of course this can’t literally be true: there is one more integration variable in the

diagram with the bubble than the one without. What “reduction” actually means

is that there is a concrete and simple change of variables for which this extra degree

of freedom, say α, factors-out of the on-shell form cleanly as dlogα—which, upon

taking the residue on a contour around α = 0, yields the reduced diagram and the

associated on-shell form.

Before completing our discussion, it is worth mentioning that there are other—

somewhat trivial—operations on diagrams which leave the corresponding on-shell

form invariant; these include, adding or deleting a bivalent vertex (of either color)

along a line, or exchanging the colors involved in a bubble such as that in (2.36).

It turns out that using mergers, square-moves and bubble-deletion, all planar

on-shell diagrams involving n external particles can be reduced to a finite number of

diagrams. This shows that the essential content of on-shell diagrams are encapsulated

by the finite list of reduced objects. And as we will see, the extra, “irrelevant”

variables associated with bubble-deletion also have a purpose in life: they represent

the loop integration variables.

Reduced diagrams are still not unique of course: they can still be transmuted

into each other using mergers and square-moves. Given that the same on-shell form

can be represented by many different on-shell diagrams, it is natural to ask for some

invariant way to characterize them. For instance, if we are given two complicated

on-shell diagrams such as those of (2.30), how can we decide whether they can

be morphed into each other using the merge and square-moves? The answer to

this question ends up being simple and striking: the invariant data associated with

reduced on-shell diagram is encoded by a permutation of the particle labels! We will

describe this connection in detail in the next section.

It is amazing that a connection between scattering amplitudes in (3+1) dimen-

sions and combinatorics exists at all, let alone that it will play a central role in

the story. This is the tip of an iceberg of remarkable connections between on-shell

diagrams and rich mathematical structures only recently explored in the literature.

We will spend much of the rest of this paper outlining these connections in greater

detail. But we will start by recalling that this is not the first time scattering theory

has been related to permutations in an important way: a classic example of such

a connection is for integrable theories in (1+1) dimensions. In addition to provid-

ing us with some historical context, revisiting this story will give us an interesting

perspective on recent developments.
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3. Permutations and Scattering Amplitudes

3.1 Combinatorial Descriptions of Scattering Processes

To a physicist, scattering is perhaps the most fundamental physical process; but

scattering amplitudes are rather sophisticated functions of the helicities and momenta

of the external particles. If we strip-away all of this data, all that would be left would

be the arbitrary labels identifying the particles involved, which we will denote simply

by (1, . . . , n). The simplest kind of “interaction” that could be associated with just

this data would be a permutation; because of the central role played by permutations

in combinatorics, we might fancifully say that a permutation is the combinatorial

analog of the physicists’ S-matrix.

At first sight, it certainly seems as if a “combinatorial S-matrix” would be far

too simple an object to capture anything remotely resembling the richness of physical

scattering amplitudes. However, we will see that this is not the case: in a specific

sense, our study of on-shell diagrams will be fully determined by a novel way of

thinking about permutations.

Indeed something very much like this happens for integrable theories in (1+1)

dimensions, [82, 83]. Consider for instance the permutation given by

(
1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
5 3 2 6 1 4

)
. (3.1)

Its relationship to physics can be seen by representing it graphically as:

(3.2)

This can be thought of as a space-time picture for a scattering process in (1+1)

dimensions, where time flows upwards. First, particles 4 and 5 scatter, then 1 and

2, then 2 and 3, and so on. The time-ordering of these scatterings corresponds to

one way of representing the permutation as a product of adjacent transpositions. Of

course, this decomposition is not unique: there are many ways of drawing the same

picture with different time-orderings for the various 2→ 2 processes. In a general

theory with only 4-point interactions, the amplitude for different orderings would

be different, and therefore the amplitude for the scattering process would not be

completely determined by the permutation alone. For the amplitude to depend only

on the permutation and nothing else, the 2→ 2 amplitudes must satisfy the famous

Yang-Baxter relation, [82, 83]:
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(3.3)

It is natural to ask whether such a picture can be generalized to more realistic

theories in higher dimensions. This seems impossible at first sight, since the pictures

drawn above only make physical sense in (1+1) dimensions (not only because they

are drawn on a plane). The fact that particles can only move in one spatial dimen-

sion is what makes it possible to describe all interactions as a sequence of local 2→2

scattering processes. Also important is the absence of any particle creation or de-

struction, allowing us to label the final-states by the same labels as the initial-states.

Neither of these features hold for the higher-dimensional theories in which we are

primarily interested: for planar N =4 SYM, particle creation and destruction plays

a fundamental role; and the most primitive processes are not 2→2 amplitudes, but

rather the 3-particle amplitudes discussed above, (2.11).

An important starting-point for describing higher-dimensional scattering pro-

cesses is to forgo the traditional meaning of the “S-matrix”—an operator which

maps initial states to final states. Rather, we find it much more convenient to treat

all the external particles on equal footing, using crossing symmetry to formulate the

S-matrix as a process for which all the external particles are taken to be incoming.

One lesson we can take from (1+1) dimensions is that any connection between

scattering and permutations must involve on-shell processes. In (3+1) dimensions,

this leads us to trivalent, on-shell diagrams with black and white vertices discussed

in the previous section. And so we are led to try and associate a permutation with

these diagrams. As it turns out, just such a connection exists between two-colored,

planar graphs and permutations, and has recently been studied in the mathematical

literature, [38] (see also [41]).

Let’s jump-in and describe how it works. The way to read-off a permutation from

an on-shell graph is as follows. For each external leg a (with clockwise ordering),

follow the graph inward from a, turning left at each white vertex, and turning right at

each black vertex; this “left-right path” will terminate at some external leg, denoted

σ(a). For example, the three-particle building blocks of N =4, (2.11), are associated

with permutations in the following way:

⇔
(
1 2 3
↓ ↓ ↓
2 3 1

)
and ⇔

(
1 2 3
↓ ↓ ↓
3 1 2

)
(3.4)
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Of course, this works equally-well for more complex on-shell graphs; for example,

the graph which gives the four-particle tree-amplitude, (2.20), is associated with the

following permutation:

{3, 4, 1, 2}

⇔
(
1 2 3 4
↓ ↓ ↓ ↓
3 4 1 2

)
(3.5)

It is very easy to see that such “left-right paths” allow us to define a permutation

for any planar graph constructed with black and white vertices (not only those which

are trivalent). Starting from any external leg of such a graph, this path will always

lead back out to the boundary; and because any path can be trivially reversed

(by exchanging the roles of black and white), it is clear that every external leg

is the terminus of some such path. And so, the left-right paths do indeed define a

permutation of the external legs.

Actually, left-right paths associate each graph with a slight generalization of

an ordinary permutation known as a decorated permutation—a generalization which

allows for two types of fixed-points. By convention, we always consider a left-right

path to permute each label ‘to its right’—in other words, we think of the paths as

being associated with a map σ :{1, . . . , n} 7→{1, . . . , 2n} such that a ≤ σ(a) ≤ a+n

and taking σ(a) modn would be an ordinary permutation. The two types of fixed

points correspond to the cases of σ(a) = a or σ(a) = a+n. For the sake of simplicity,

for the rest of this paper we will refer to these decorated permutations simply as

‘permutations’ and denote them by “{σ(1), . . . , σ(n)}”.

This allows us to differentiate between 2n possible ‘decorations’ of the trivial

permutation. Such ‘decorations’ arise for graphs such as,

(3.6)

which would be labeled by a ‘permutation’ {1, 7, 3, 9, 5}. Although such empty graphs

are themselves of little direct relevance to physics, they will play an important role

in the general toolbox—as we will see in the following subsection.

Associated with any permutation is a number, k, which is the number of a ∈

{1, . . . , n} which are mapped ‘beyond n’ by σ—that is, for which σ(a) > n. This

number is also given by the mean value of σ(a) − a: k ≡ 1
n

∑
a(σ(a) − a). To see
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this, notice that while the mean of any ordinary permutation always vanishes, our

requirement that a ≤ σ(a) ≤ a + n means that σ must be shifted by n relative to

an ordinary permutation for some k elements. For example, both the 4-point graph,

(3.5), and the 5-particle graph, (3.6), have k = 2.

The reason why the permutations associated with on-shell graphs are so impor-

tant is that in many cases they invariantly encode the physical information about

the graph and the on-shell form associated with it. Recall that graphs related by

mergers, (4.62), or square-moves, (2.29), represent the same physical form. These

operations also leave permutations invariant:

(3.7)

Bubble-deletion, however, does change the permutation associated with an on-shell

diagram; it also changes the number of faces. But by deleting bubbles, any graph

can be ‘reduced’—and any two reduced graphs labeled by the same permutation

always represent the same physical form. More explicitly, all physical information

in reduced graphs is captured by the corresponding permutation. To see a simple

example of this, recall the pair of inequivalent graphs given in (2.30) which were

related by a rather long sequence of mergers and square-moves; it is much easier to

test the equivalence of the permutations which label them:

{5, 4, 6, 7, 8, 9}

(3.8)

We should note in passing that there is something very special about N =4 SYM

and integrability which allows us to fully characterize on-shell diagrams in this way.

Just as the Yang-Baxter relation (3.3) was the prerequisite for (1+1)-dimensional

theories to be ‘combinatorial’ in nature, it is the square-move (2.29) which does

this for N = 4: recall that in a non-supersymmetric theory, all 3-particle vertices
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would need to be dressed by the helicities of the particles involved—such as in (2.7);

this dressing represents extra data which must be supplied in order to specify the

physical process, and this data is not left invariant under square-moves. That being

said, however, the purely combinatorial story of N =4 will play a central role even for

non-supersymmetric theories. This will be described more completely in section 14.

3.2 The BCFW-Bridge Construction of Representative Graphs

We have seen that every on-shell graph is associated with a permutation; quite

beautifully, the converse is also true: all permutations can be represented by an

on-shell graph. A constructive procedure for building a representative graph for any

permutation was described in [38] (and in somewhat different terms by D. Thurston

in [41]). Here, we will describe a different method—motivated by simple physical

and combinatorial considerations and by analogy with physics in (1+1) dimensions—

where graphs are constructed out of simple, adjacent transpositions. Of course, in

(3+1) dimensions, there is no space-time evolution analogue of successive 2 → 2

scattering; and so we must find some way to ‘build-up’ on-shell objects directly from

the “vacuum” (a trivial permutation).

The key is understanding what an adjacent transposition means in terms of on-

shell graphs. The answer is extremely simple: an adjacent transposition is nothing

but the addition of the BCFW-bridge:

(3.9)

Notice that any number of ‘hanging legs’—those which map to themselves under

σ—can be inserted between a and “a+1” without consequence; and so, we will

consider any transposition (a c) to be “adjacent” so long as for all b between a

and c, σ(b) = b modn. (Although the bridge drawn in (3.9) will be sufficient for

most applications, the oppositely-colored bridge—where black and white vertices are

exchanged—could also be used; the principle difference being that such a bridge

would transpose the pre-images of a and a+1 under σ instead of the images).

Because adjacent transpositions simply correspond to adding BCFW-bridges,

any decomposition of a permutation σ into a sequence of such transpositions acting

on a trivial permutation can be read as instructions for building-up a representative

on-shell graph for σ by successively adding BCFW-bridges to an empty graph like

that of (3.6).

Of course, adding a BCFW bridge may potentially give us a reducible on-shell

diagram. However, it turns out that when adding a bridge to a reduced graph, so
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long as σ(a+1) < σ(a)—that is, the are paths arranged as drawn in (3.9)—then the

resulting graph is guaranteed to be reduced. We will not prove this statement now,

but its proof will become trivial after the discussions in section 5.

And so, when breaking-down a permutation into adjacent transpositions, we

want to find pairs (a c) with a < c (separated only by external legs b self-identified

under σ) such that σ(a) < σ(c); then when we decompose σ as (a c) ◦ σ′ with

{σ(a), σ(c)} = {σ′(c), σ′(a)}, adding a BCFW-bridge to a reduced on-shell diagram

labeled by σ′ will result in a reduced on-shell diagram labeled by σ. Of course, there

are many ways of decomposing a permutation σ into such a chain of adjacent trans-

positions, and any such decomposition will result in a representative, reduced graph

whose left-right permutation is σ. But for the sake of concreteness, let us describe

one very specific, canonical procedure to decompose any permutation—one which

will turn out to have rather special properties discussed in section 6.4.

BCFW-Bridge Decomposition: Starting with any permutation σ, if σ is not a

decoration of the identity, then decompose σ as (a c) ◦ σ′ where 1 ≤ a < c ≤ n is the

lexicographically-first pair separated only by legs b which are self-identified under σ

and for which σ(a) < σ(c); repeat until σ is the identity.

To illustrate this procedure, let’s see how it generates a representative, reduced

on-shell diagram which is labeled by the permutation {4, 6, 5, 7, 8, 9}:

1 2 3 4 5 6
τ ↓ ↓ ↓ ↓ ↓ ↓

(1 2)
4 6 5 7 8 9

(2 3)
6 4 5 7 8 9

(3 4)
6 5 4 7 8 9

(2 3)
6 5 7 4 8 9

(1 2)
6 7 5 4 8 9

(3 5)
7 6 5 4 8 9

(2 3)
7 6 8 4 5 9

(3 6)
7 8 6 4 5 9

7 8 9 4 5 6

⇔ ≈

(12) α8

{6,7, 5, 4, 8, 9}

(23)
←−→
α5

{6,5,7, 4, 8, 9}

(34)
←−→
α6

{6, 5,4,7, 8, 9}

(23)
←−→
α7

{6,4,5, 7, 8, 9}

(12)lα4

{7, 6,5, 4,8, 9}

(35)
←−→
α3

{7,6,8, 4, 5, 9}

(23)
←−→
α2

{7, 8,6, 4, 5,9}

(36)
←−→
α1

{7, 8, 9, 4, 5, 6}
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In the sequence of figures drawn above, we often made use of the fact that any

bivalent or (non-boundary) monovalent vertex can be deleted without changing the

permutation. So, for example, adding the BCFW bridge ‘(23)’ to the second graph

(from the bottom-right) results in the succeeding graph drawn via the sequence of

(essentially trivial) moves:

{7, 8, 6, 4, 5, 9}

(23)
←→

{7,6,8, 4, 5, 9}

This procedure provides us with a combinatorial test of a graph’s reducibility:

because the BCFW-bridge construction always produces a reduced representative

graph for any permutation, and each step in the construction adds one face to the

graph as it is built, a graph is reduced if and only if the number of its faces minus

one is equal to the number of steps in the BCFW-bridge decomposition of the per-

mutation which labels it. If not, then the graph is reducible, and has some number

of faces which can be deleted by bubble reduction:

(3.10)

A more intrinsic way to identify a reducible graph is if any pair of left-right paths

a→σ(a) and b→σ(b) cross each other along more than one edge in the graph in the

manner known as a “bad double crossing”, or if there is any purely-internal path.

or (3.11)

A bad double-crossing is distinguished from those double-crossings of the form:

(3.12)

Double-crossings such as that above do not indicate that a graph is reducible.

– 26 –



We thus have a complete dictionary between (reduced) on-shell graphs and per-

mutations. As we will discuss in section 13, this new picture actually contains the

(1+1)-dimensional story as a special case. Another closely related special case is rel-

evant for describing on-shell diagrams (and all-loop amplitudes) of the ABJM theory

in (2+1) dimensions!

But let us now move beyond the purely combinatorial aspects of the story, and

turn towards actually computing on-shell diagrams. This will lead us to uncover

beautiful structures in algebraic geometry also described by decorated permutations,

ultimately connecting on-shell graphs to the “positive” Grassmannian of our title.
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4. From On-Shell Diagrams to the Grassmannian

In this section we will show that the computation of on-shell diagrams is most effi-

ciently and transparently carried out by associating each diagram with an auxiliary

structure: a matrix C representing an element of the Grassmannian G(k, n). But let

us begin by reviewing some elementary properties about Grassmannian manifolds in

general, and describe the first appearance of these spaces in the story of scattering

amplitudes, as they arise in the description of external kinematical data.

4.1 The Grassmannian of k-Planes in n Dimensions, G(k, n)

The Grassmannian G(k, n) is the space of k-dimensional planes passing through the

origin in an n-dimensional space (see e.g. [84]). We can specify a k-plane in n dimen-

sions by giving k vectors Cα ∈Cn, whose span defines the plane. We can assemble

these vectors into a (k×n)-matrix C, whose components are cαa for α=1, . . . , k and

a = 1, . . . , n.

Under GL(k)-transformations, C 7→ Λ ·C—with Λ ∈ GL(k)—the row vectors

will change, but the plane spanned by them is obviously unchanged. Thus, the

Grassmannian G(k, n) can be thought of as the space of (k×n)-matrices modulo

this GL(k) “gauge” redundancy. From this, we see that the dimension of G(k, n)

is k×n k2 = k(n k). In practice, we can “gauge-fix” the GL(k) redundancy by

choosing any k of the columns of the matrix to form the (k×k) identity matrix.

For instance, we can represent a generic point in G(2, 5) in the following gauge-fixed

form:
C =

(
1 0 c1 3 c1 4 c1 5
0 1 c2 3 c2 4 c2 5

)
. (4.1)

This coordinate chart does not cover the entire Grassmannian—though of course the

collection of all
(
n
k

)
such charts would obviously suffice.

The GL(k)-invariant information associated with C is easily specified. First,

notice that the only SL(k)-invariants of C∈G(k, n) are the minors constructed out

of the columns of C,
(a1 · · · ak) ≡ det{ca1 , . . . , cak} . (4.2)

GL(k)-invariants are then simply ratios of these:

(a1 · · · ak)

(b1 · · · bk)
. (4.3)

While the (ratios of) minors are GL(k)-invariant, the number of these,
(
n
k

)
, is much

greater than the dimensionality of the Grassmannian, dim(G(k, n)) = k(n k), and

so the minors represent a highly-redundant set of data to describe C. The identities

among minors arise from the simple fact that any k-vector can be expanded in a

basis of any k linearly-independent k-vectors—a statement that is equivalent to the

identity known as Cramer’s rule:

ca1(a2 · · · ak+1)− ca2(a1 a3 · · · ak+1) + · · ·+ (−1)kcak+1
(a1 · · · ak) = 0, (4.4)

– 28 –



for any ca∈Ck. Contracting each of the vectors in (4.4) with another set of vectors

cb1 , . . . , cbk−1
generates the identities known as the Plücker relations,

(b1 · · · bk−1 a1)(a2 · · · ak+1) + · · ·+ (−1)k−1(b1 · · · bk−1 ak+1)(a1 · · · ak) = 0. (4.5)

Associated with any k-plane C is a natural (n k)-plane denoted C⊥, the “or-

thogonal complement” of C, which is defined by,

C⊥· C = 0. (4.6)

Therefore, there is a natural isomorphism between G(k, n) and G(n k, n), which is

reflected in the invariance of dim(G(k, n)) = k(n k) under the exchange k ↔ (n k).

The minors of C⊥ are fully determined by the minors of C in the obvious way: for

any complementary sets {a1, . . . , ak} and {b1, . . . , bn−k} (whose union is {1, . . . , n}),

we have
(a1 · · · ak)|C = ±(b1 · · · bn−k)|C⊥ . (4.7)

To be completely explicit, suppose we represent C in a gauge where columns cA
with A ≡ {a1, . . . , ak} are taken as the identity; then the n k columns of C in the

complementary set B ≡ Ac, cb for b∈B—whose components we write as ca b—encode

the k(n k) degrees of freedom of C; then the matrix C⊥ has components,

c⊥a b = −cb a. (4.8)

For example, the plane C⊥∈G(3, 5) orthogonal to C∈G(2, 5) given in (4.1) is:

C⊥ =




c1 3 c2 3 1 0 0

c1 4 c2 4 0 1 0

c1 5 c2 5 0 0 1


 (4.9)

Finally, we will eventually be talking about a certain top-dimensional differential

form on the Grassmannian, so it is useful to discuss what general forms on the

Grassmannian look like in the coordinates ca b. Consider first the familiar example

of a form on the projective space G(1, 2). We can think of this as a (1×2) matrix

C = (c1 c2), modulo the GL(1)-action of C→ tC. Any top-form can be written as

Ω =
d2C

vol(GL(1))

1

f(C)
, (4.10)

where f(C) must have homogeneity (+2) under rescaling C; that is, f(tC) = t2f(C).

In practice, modding-out by the GL(1)-action is trivial: one can simply gauge-fix the

GL(1) so that, say, C 7→C∗ = (1 c2); and then Ω = dc2/f(C
∗). We can also say this

more invariantly, by writing,
Ω = 〈CdC〉

1

f(C)
. (4.11)

The generalization of this simple case to an arbitrary Grassmannian is straightfor-

ward. We can write,

Ω =
dk×nC

vol(GL(k))

1

f(C)
, (4.12)

where GL(k)-invariance implies, in particular, that f(C) must be a function of the

minors of C with homogeneity under rescaling
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f(tC) = tk×nf(C). (4.13)

In the coordinate chart where we gauge-fix k of the columns to the identity as above,

then Ω = dk×(n−k)ca,b/f(C). Said more invariantly, we have

Ω = 〈C1 · · ·Ck(dC1)
(n−k)〉 · · · 〈C1 · · ·Ck(dCk)

(n−k)〉
1

f(C)
, (4.14)

where Cα is a row-vector of C and, e.g.,

〈C1 · · ·Ck(dC1)
(n−k)〉 ≡ ǫa1a2...anc1,a1 · · · ck,akdc1,ak+1

∧ · · · ∧ dc1,an . (4.15)

4.2 Grassmannian Description of Kinematical Data: the 2-Planes λ and λ̃

In a moment, we will establish a very direct connection between on-shell diagrams

and the Grassmannian; but let us first pause to point out an even more basic way in

which the Grassmannian makes an appearance in scattering amplitudes: in the very

way we encode external kinematical data. We normally think of this data as simply

being specified by n 2-component spinors λα
a and λ̃α̇

a ; but of course we may also think

of this data as given by a pair of (2×n)-matrices—which we denote collectively by λ

and λ̃. For example, the λ’s are naturally associated with the (2×n)-matrix,

λ ≡

(
λ1
1 λ1

2 · · · λ
1
n

λ2
1 λ2

2 · · · λ
2
n

)
⇔

(
λ1 λ2 · · · λn

)
. (4.16)

Instead of focusing on the columns of the matrix λ, let us think about it as two

row-vectors. Each of these is a vector in an n-dimensional space. Under Lorentz

transformations, these two vectors change, but since Lorentz transformations act on

the λ’s by SL(2)-transformations on their α indices, the two new vectors will simply

be a linear combination of the original ones. Therefore, while the vectors themselves

change, the plane that is spanned by them is invariant under Lorentz transformations.

Quite beautifully then, the Lorentz-invariant information encoded by the λ’s is really

just this 2-plane in n dimensions—an element of G(2, n) as realized in [14]. The same

is obviously true for the λ̃’s. Of course, the Lorentz group is only the SL(2) part of

GL(2) and on-shell forms do transform under “global” little group transformations

which correspond to the GL(1) subgroup of GL(2).

In terms of spinor helicity variables, momentum conservation is simply,
∑

a

λα
a λ̃

α̇
a = 0, (4.17)

which has the geometric interpretation that the plane λ is orthogonal to the plane

λ̃, [14]:

(4.18)
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This geometric understanding of momentum-conservation also nicely explains the

unique nature of its application to the case of three-particles: two 2-planes in 3

dimensions cannot be orthogonal in general. The only solution, therefore, is for one

of the planes to actually be a 1-plane in disguise. For example, suppose that we

have three generic λ̃’s. Momentum conservation requires that λ ⊂ λ̃⊥, but λ̃⊥ is a

1-plane! A GL(1)-representative of λ̃⊥ is given by

λ̃⊥ ≡
(
[2 3] [3 1] [1 2]

)
, (4.19)

for which λ̃⊥·λ̃ = 0 follows as a trivial instance of Cramer’s rule, (4.4):

λ̃⊥·λ̃ = [2 3]λ̃1 + [3 1]λ̃2 + [1 2]λ̃3 = 0. (4.20)

Because this is the unique plane orthogonal to λ̃, momentum conservation requires

that the λ-plane be spanned by it. In particular, this means that all the λ’s must be

proportional: in a Lorentz frame where λ1 =
(
[2 3]

0

)
, we have

λ ≡
(
λ1 λ2 λ3

)
=

(
[2 3] [3 1] [1 2]

0 0 0

)
. (4.21)

4.3 Grassmannian Representation of On-Shell Diagrams

Let us begin to more explicitly calculate the differential form associated with a given

on-shell diagram. We use the momentum-conserving δ-functions at the vertices to

localize as many of the internal momenta as we can. This looks highly non-trivial

because momentum conservation is a quadratic constraint on the λ, λ̃ in general. But

a moment’s reflection suggests that the situation may be easier to understand. We

know that for 3-particle amplitudes, momentum conservation implies a very simple

geometric situation—where either the λ’s or the λ̃’s are forced to be parallel to

each other. However, our representation of the three-particle amplitude, simple and

elegant though it is, does not make this simple fact manifest. This motivates us to

try to express the 3-particle amplitude in a slightly different form—one which makes

the geometry of the λ’s and λ̃’s in each case as transparent as possible.

Let’s start with the A(1)
3 vertex:

⇔ A(1)
3 =

δ1×4([2 3]η̃1 + [3 1]η̃2 + [1 2]η̃3)

[1 2][2 3][3 1]
δ2×2

(
λ·λ̃
)
. (4.22)

Notice that the coefficients of the η̃’s are the same as the factors that appear in the

denominator of A(1)
3 , and coincide with the 1-plane λ̃⊥ orthogonal to λ̃. We can make

this geometry manifest by introducing an auxiliary 1-plane W ∈G(1, 3), and demand

that it be orthogonal to λ̃ and that it contains the plane λ. This latter constraint is
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equivalent to the somewhat less concise condition that the orthogonal complement

of W⊥ is orthogonal to λ. Thus, we can represent,

A(1)
3 =

∫
d1×3W

vol(GL(1))

δ1×4
(
W ·η̃

)

(1)(2)(3)
δ1×2

(
W ·λ̃

)
δ2×2

(
λ·W⊥

)
, (4.23)

where W ∈G(1, 3) is given by the (1×3)-matrix

W ≡
(
w1 w2 w3

)
, (4.24)

(a) ≡ det{wa} is a (1×1)-‘minor’ of the matrix W and η̃ ≡ (η̃1 η̃2 η̃3). The δ-function

δ1×2
(
W ·λ̃

)
fixes W 7→ W ∗ = λ̃⊥ (written above, in (4.19)). On the support of the

point W ∗∈G(1, 3), the remaining δ-functions in (4.23),

δ1×4
(
W ∗·η̃

)
δ2×2

(
λ·(W ∗)⊥

)
, (4.25)

simply become ordinary super-momentum conservation.

A comment is in order here. To make the invariance of the integrand under

GL(1) manifest one has to find a GL(1) invariant way of writing δ2×2
(
λ ·W⊥

)
. As

usual, this is achieved by introducing auxiliary variables as explained in detail (and

more generality) in section 8.2.

We can of course make the same generalization for the A(2)
3 vertex:

⇔ A(2)
3 =

δ2×4(λ1η̃1 + λ2η̃2 + λ3η̃3)

〈1 2〉〈2 3〉〈3 1〉
δ2×2

(
λ·λ̃
)
. (4.26)

We can think of this as an integral over an auxiliary 2-plane B∈G(2, 3) according

to:
A(2)

3 =

∫
d2×3B

vol(GL(2))

δ2×4
(
B ·η̃

)

(12)(23)(31)
δ2×2

(
B ·λ̃

)
δ2×1

(
λ·B⊥

)
. (4.27)

In this case, we can use the constraint δ2×1
(
λ ·B⊥

)
to localize the integral over B,

(somewhat trivially) fixing B 7→ B∗ = λ, and the minors in the measure trivially be-

come (1 2)(2 3)(3 1) 7→〈1 2〉〈2 3〉〈3 1〉. As before, the remaining δ-functions in (4.27),

δ2×4
(
B∗·η̃

)
δ2×2

(
B∗·λ̃

)
, (4.28)

encode super-momentum conservation.

The crucial feature of these Grassmannian representations of the three-particle

amplitudes is that the constraints on the kinematical data λ and λ̃ are now decoupled,

and occur linearly in the δ-function constraints. This makes it essentially trivial

to perform the phase space integral over the internal lines, making any on-shell

graph simply a collection of auxiliary 1-planes W ∈G(1, 3) and 2-planes B∈G(2, 3)

associated with the white and black vertices—each carrying with it all the constraints

to impose momentum-conservation.
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To summarize, for each white vertex involving the (possibly internal) legs (a, b, c)

we introduce a 1-plane W ∈G(1, 3),

⇔ W ≡
(
wa wb wc

)
, (4.29)

carrying with it an integration measure,

dΩw ≡
d1×3W

vol(GL(1))

1

(a)(b)(c)
, (4.30)

and corresponding constraints; similarly, for each black vertex involving legs (a, b, c)

we have a plane B∈G(2, 3),

⇔ B ≡
(
ba bb bc

)
, (4.31)

together with its associated integration measure,

dΩb ≡
d2×3B

vol(GL(2))

1

(a b)(b c)(c a)
, (4.32)

and corresponding constraints. Each white vertex imposes one relation among λ̃’s:

W ·λ̃ = waλ̃a + wbλ̃b + wcλ̃c = 0; (4.33)

and each black vertex imposes two relations (as the columns ba of B are two-vectors):

B ·λ̃ = baλ̃a + bbλ̃b + bcλ̃c = 0. (4.34)

Thus, for a graph with nb black vertices, nw white vertices, and nI internal edges,

we have a total of 2nb + nw constraints; from these, one constraint is needed to fix

(and eliminate) each internal λ̃I—leaving us with a total of:

k ≡ 2nb + nw − nI (4.35)

linear constraints relating the external λ̃’s for any given graph. We may write this

collection of constraints as C ·λ̃ = 0 for some (k×n)-matrix C, where

n = 3nV − 2nI , (4.36)

with nV = nb + nw. Because these are linear constraints among the λ̃’s, the matrix

C is of course only well-defined up to an arbitrary re-shuffling of its k equations (a

GL(k)-transformation of C); and so, C actually represents a point in G(k, n)! Of

course, integrating-out the internal η̃’s follows identically to the λ̃, giving us the same

final constraints among the external η̃’s as for the λ̃’s.

Thus, eliminating the internal λ̃I and η̃I combines all the “little Grassmannians”

W ∈G(1, 3) andB∈G(2, 3) associated with the vertices, and gives us finally a point in
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the Grassmannian G(k, n) represented by some matrix C which encodes the relations

satisfied among the λ̃’s and η̃’s via the δ-functions,

δk×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
. (4.37)

Following the same logic, but exchanging each plane B and W for their orthogonal

complements, gives us the complementary set of relations involving the λ’s. Not

surprisingly, these are simply given by the δ-functions,

δ2×(n−k)
(
λ·C⊥

)
. (4.38)

Geometrically, the ordinary δ-functions constrain the matrix C to be orthogonal to

λ̃ and to contain λ:

(4.39)

Putting everything together, each on-shell diagram is associated with a differential-

form obtained by integration over,
∏

internal
edges e

( 1

vol(GL(1)e)

)∏

w

dΩw

∏

b

dΩb δk×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
δ2×(n−k)

(
λ·C⊥

)
. (4.40)

Notice that while freely using the δ-functions to fix each internal λI and λ̃I , we

have not modded-out by the GL(1)-redundancies acting on these momenta (which

explains the appearance of the 1/vol(GL(1)) factors in (4.40)). It is natural to refer

to the net number of auxiliary variables—after modding-out by all these GL(1)-

redundancies—as the dimension of the space of configurations C∈G(k, n). As each

vertex carries two auxiliary degrees of freedom, and each GL(1) from the internal

lines can be used to remove one of them, the ‘dimension’ associated with an on-shell

graph is simply:
dim(C) = 2nV − nI . (4.41)

We should mention that this can be counted in a more direct way from the graph

as follows. Because each on-shell graph is trivalent, we have 3nV = 2nI+n so that

dim(C) = 2nV nI = nI nV +n; and restricting our attention to planar graphs, Eu-

ler’s formula tells us that (nF n) nI+nV = 1 (where nF is the number of faces of

the graph including the n faces of the boundary). Putting these two facts together

shows that:
dim(C) = nF − 1. (4.42)

We will soon see that this is not an accident: there is a natural way in which the

degrees of freedom associated with a graph are encoded by its faces.

So far, we’ve described in general terms how to compute the differential-form

associated with a given on-shell graph. In the next subsection, we will describe how

this can be done systematically using only two very simple, elementary operations;

and in section 4.5, we’ll show how these two operations can be efficiently automated

to construct an explicit representative of the plane C expressed in terms of variables

associated with either a graph’s edges or faces.
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4.4 Amalgamation of On-Shell Diagrams

General on-shell diagrams can be built-up in steps from more elementary ones using

two simple operations: direct-products and projections. Collectively, we refer to this

step-wise construction of more complicated diagrams from simpler ones as amalga-

mation (see [37] for a mathematical construction and [15, 85] for some early steps

in the physical setup). In this subsection, we describe both operations in turn, and

show how they completely determine the k-plane C associated with any on-shell

graph. Since all the GL(k)-invariant information about C is given by the ratios of

its minors, (a1 · · · ak)/(b1 · · · bk), it suffices for us to simply describe how these two

primitive operations act on the minors of C.

The first operation is rather trivial: starting with any two diagrams, we can take

their direct-product:

(4.43)

If the left-graph is associated with the plane CL ∈ G(kL, nL), and the right-graph

is associated with the plane CR ∈ G(kR, nR), the direct-product produces a plane

CL ⊗ CR 7→ C∈G(kL+kR, nL+nR) according to:





⊗





⇒




0

0




(4.44)

The non-vanishing minors of C are easily expressed in terms of those of CL and CR:

(a1 · · · akL b1 · · · bkR)|C = (a1 · · · akL)|CL
× (b1 · · · bkR)|CR

. (4.45)

The second operation, projection, is more interesting. It corresponds to the

identification of two (external) legs—say A and B—of a graph:

(4.46)

We call this operation “projection” because it takes a plane C ∈G(k+1, n+2), and

produces a plane Ĉ ∈G(k, n), which is the projection of C onto the quotient of the
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column space of C modulo (cA cB). This follows directly from how the plane C

associated with an on-shell graph is interpreted geometrically as constraints imposed

on the external momenta.

For convenience, let us suppose that the n+2 particles of the configuration before

projection are ordered (A,B, 1, . . . , n). Then the minors of the projection’s image

Ĉ∈G(k, n) will be given in terms of the minors of C∈G(k+1, n+2) according to:

(a1 · · · ak)|Ĉ = (Aa1 · · · ak)|C +(B a1 · · · ak)|C . (4.47)

Let us consider a simple case where these two operations are used to construct

an on-shell graph. For example, consider the sequence,

which builds-up the 4-particle factorization graph by first taking the direct-product

ofW ∈G(1, 3) and B∈G(2, 3) to produce a graph associated with a plane Ĉ∈G(3, 6),

then merge legsA andB to produce the final graph associated with a plane C∈G(2, 4).

As we have described, minors of the final plane C∈G(2, 4) are fully specified by those

of its constituents; e.g.,

(13)|C = (A13)|Ĉ +(B13)|Ĉ = 0 +(B1)|B× (3)|W ;

and (24)|C = (A24)|Ĉ +(B24)|Ĉ = 0 +(B2)|B× (4)|W .
(4.48)

Let us look at one more interesting example: the amalgamation of diagrams

generating the 4-particle tree-amplitude:

(4.49)

Following the amalgamation rules described above, we find, for example that

(24)

(13)
=

(
(F4)(H)

(GF )(1)

)(
(B2)(D)

(CB)(3)

)
+

(
(C2)(A)

(BC)(1)

)(
(G4)(E)

(GF )(3)

)
. (4.50)

Notice that the amalgamation picture makes it clear that C will only depend

on special combinations of the minors of the matrices associated with its constituent

vertices. This ultimately stems from the fact that the only GL(k)-invariant data

associated with the vertices themselves are the ratios of minors. These appear, for

example, as the face variables of the three-particle diagrams:
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and (4.51)

Here, we have used arrows to show how the ratios transform under the little group.

Now, a very simple but important observation is that the final point in G(k, n)

obtained from amalgamation must obviously be completely invariant under the little

group rescaling of any internal line. This means that only combinations of minors

that are invariant under these scaling are ultimately relevant to our description of C.

Graphically, it is clear that these are given by products of such ratios, as following

along the boundary of a face we form a closed path. A face variable, then, can be

built as the product of these variables along its boundary. To illustrate the point,

consider the following graph—associated with a generic plane in G(2, 5):

(4.52)

Thus, while the variables describing the matrix C can be constructed from the

variables of the planes B andW attached to each vertex, we may alternatively view C

as being described by variables fi associated with its faces. Note that the product of

the face variables for each G(1, 3) G(2, 3) vertex is manifestly equal to 1 (see (4.51));

and so, it is easy to see that there are only two independent degrees of freedom

per vertex—matching our calculation that dim(C) = nF 1. This clearly persists to

larger diagrams, ensuring that
∏

i fi = 1, which always accounts for the “minus 1”

in the formula for the dimension of C. And so, the degrees of freedom are all but

one of the face variables, say f∗. Rescaling fi 7→ f̂i ≡ fi/f∗, the integration measure

(4.40) for the auxiliary parameters in C becomes simply,

∏

internal
edges e

( 1

vol(GL(1)e)

)∏

w

dΩw

∏

b

dΩb =
∏

rescaled
faces f̂i

df̂i

f̂i
. (4.53)
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4.5 “Boundary Measurements” and Canonical Coordinates

Let us now turn to the problem of explicitly determining a matrix representative

C associated with a given on-shell graph. We will first do this in a very efficient—

but somewhat overly redundant—way by attaching variables αe to all the edges

of a graph; and then, we will see how this procedure can be translated (with less

redundancy) in terms of variables attached to a graph’s faces.

One strategy for explicitly constructing the k-plane C encoding the system of

constraints (4.39) associated with an on-shell graph is to put the degrees of freedom

associated with each vertex in a way which allows us to eliminate all internal momenta

as efficiently as possible. Of course, each vertex carries with it only two degrees of

freedom. But it turns out to be useful to introduce an additional GL(1)-redundancy

at each vertex, so that every leg attached to a given vertex carries its own degree

of freedom (making it easier to pair-up the degrees of freedom attached to internal

lines between vertices). To further simplify the elimination of internal momenta from

the ultimate system of equations relating the λ̃, it will be helpful also to provide an

orientation to each edge, so that each white (black) has one (two) edges directed

inward. With these decorations, each white vertex corresponds to:

⇔ W ≡
( a b c
α−1
a αb αc

)
⇒ λ̃a=αa(αbλ̃b+αcλ̃c); (4.54)

and each black-vertex corresponds to:

⇔ B ≡

( a b c
α−1
a 0 αc

0 α−1
b αc

)
⇒

{
λ̃a=αaαcλ̃c

λ̃b=αbαcλ̃c

}
. (4.55)

Decorating a graph in this way is called giving it a perfect orientation; and it is

a general fact that all two-colored, trivalent graphs relevant to physics can be given

a perfect orientation.

(The only graphs which cannot be given a perfect orientation are those which

contain a sub-graph with k ≤ 0 or k ≥ ν (where ν denotes the number of legs of the

sub-graph). This obstruction is closely tied to an inability to eliminate some internal

line’s λI or λ̃I from the complete system of equations. But this subtlety plays no role

in our story, as the differential-form associated with such a graph always vanishes

due to the η̃I integration. And so, these ‘pathological’ diagrams never contribute to

physically-relevant processes.)
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Once we have given a perfect orientation, the system of equations C ·λ̃ becomes

trivial to construct: each vertex can be viewed as giving an equation which expands

the λ̃’s of the vertex’s sources in terms of those of its sinks. Combining all such

equations then gives us an expansion of the external sources’ λ̃’s in terms of those of

the external sinks. Notice that when identifying two legs, (Iin, Iout) during amalga-

mation the degree of freedom lost in the process is accounted for via the replacement

of the pair (αIin , αIout) with the single variable αI ≡ αIinαIout .

If we denote the external sources of a graph by {a1, . . . , ak} ≡ A, then the final

linear relations imposed on the λ̃’s can easily be seen to be given by,

λ̃A + cAaλ̃a = 0, (4.56)

with
cAa = −

∑

Γ∈{A a}

∏

e∈Γ

αe , (4.57)

and where Γ ∈ {A a} is any (directed) path from A to a in the graph. (If there is

a closed, directed loop, then the geometric series should be summed—we will see an

example of this in (4.64).) The entries of the matrix cAa are called the “boundary

measurements” of the on-shell graph. The on-shell form on C(α)∈G(k, n) can then

be written in terms of the variables cAa according to:( ∏

vertices v

1

vol(GL(1)v)

)( ∏

edges e

dαe

αe

)
δk×4(C ·η̃)δk×2(C ·λ̃)δ2×(n−k)(λ·C⊥) . (4.58)

Let us consider a simple example to see how this works. Consider the following

perfectly oriented graph:

(4.59)

Using the equations for each directed 3-particle vertex, we can easily expand the λ̃

of each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,

λ̃2 = α2α6(α3λ̃3 + α7(α4λ̃4)). (4.60)

Such expansions obviously result in (4.57): the coefficient cAa of λ̃a in the expan-

sion of λ̃A is simply (minus) the product of all edge-variables αe along any path

Γ ∈ {A a}. Doing this for all the cAa of our example above, we find,

c1 3 = α1 α5 α6 α3 c1 4 = α1 α5 α6 α7 α4
+ α1 α8 α4

c2 3 = α2 α6 α3 c2 4 = α2 α6 α7 α4
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Thus, the final relations involving the λ̃’s is encoded by the matrix C ≡

(
1 0 c1 3 c1 4
0 1 c2 3 c2 4

)
.

Notice that only certain combinations of edge-weights appear in the equations.

This happens for a very simple—and by now familiar—reason. Think of the GL(1)-

redundancy of each vertex as a gauge-group, with the variable of a directed edge

charged as a “bi-fundamental” of the GL(1)×GL(1) of the vertices it connects.

Since the configuration C must be invariant under these “gauge groups”, only gauge-

invariant combinations of the edge variables can appear. And just as we saw in the

previous subsection, these combinations are those familiar from lattice gauge theory

and can be viewed as encoding the flux though each closed loop in the graph—that

is, each of its faces. Fixing the orientation of each face to be clockwise, the flux

through it is given by the product of αe (α−1
e ) for each aligned (anti-aligned) edge

along its boundary. For future convenience, we define the face variables fi to be

minus this product.

Applying this to the example above, we find:

⇔ with

f1=

α−1
1 α−1

5 α2

f4=

α4 α8 α1

f0=

α5 α6 α7 α
−1
8

f2=

α−1
2 α−1

6 α−1
3

f3=

α3 α
−1
7 α−1

4

The boundary-measurements cAa can then be expressed in terms of the faces by

cAa = −
∑

Γ∈{A a}

∏

f∈Γ̂

(−f) , (4.61)

where Γ̂ is the ‘clockwise’ closure of Γ. (If there are any closed, directed loops, the

geometric series of faces enclosed should be summed.) The faces of course over-count

the degrees of freedom by one, and this is reflected by the fact that
∏

i(−fi) = 1.

c1 3 = f0 f3 f4 c1 4 = f0 f4
− f4

c2 3 = f0 f1 f3 f4 c2 4 = f0 f1 f4
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4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of diagrams via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C ∈ G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables fi and f ′
i of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables fi and f ′
i . Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would suffice for our

purposes; but for the sake of concreteness, let us consider the following:

(
1 α1 0 α4

0 α2 1 α3

) (
1 β2β3β4∆ 0 β4∆

0 β2∆ 1 β1β2β4∆

)

(4.64)
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Here, we have written the matrices C(α) and C(β) obtained as boundary-measurements

as discussed in section 4.5. The factor ∆ in C(β) is given by,

∆ ≡
1

1− β1β2β3β4

, (4.65)

and arises from summing the infinite geometric series of paths which circle-around

the internal loop of the perfectly-oriented graph. The edge-variables in (4.64) used

as coordinates in G(2, 4) are closely-related to the face-variables in (4.63).

It is not hard to express the face variables in terms of the edge variables for the

two orientations in (4.63). It is easy to see that,

f0 = α1 α
−1
2 α3 α

−1
4 , f1 = α−1

1 , f2 = α2, f3 = α−1
3 , f4 = α−1

4 ;

f ′
0 = (β1β2β3β4)

−1, f ′
1 = β1 , f ′

2 = β2 , f ′
3 = β3 , f ′

4 = β4 .
(4.66)

Because the boundary-measurements must represent the same point in the Grass-

mannian regardless of whether we use α or β coordinates, we see that:





α1 = β2β3β4∆

α2 = β2∆

α3 = β1β2β4∆

α4 = β4∆




⇒





β1 = f ′
1 = α−1

2 α3 α
−1
4 ∆ = f1f0∆

β2 = f ′
2 = α2∆

−1 = f2∆
−1

β3 = f ′
3 = α1 α

−1
2 α−1

4 ∆ = f3f0∆

β4 = f ′
4 = α4∆

−1 = f4∆
−1

∴ f ′
0 = α−1

1 α2 α
−1
3 α4 = f−1

0





. (4.67)

Observing that ∆ = (1 + f ′−1
0 )−1 = (1 + f0)

−1, we therefore conclude that a square-

move alters face-variables according to:

(4.68)

This transformation of the face variables is an example of a more general operation

related to cluster transformations as described in section 15.2. Note that, crucially,

our form is invariant under this transformation:
∏

f

df

f
= −

∏

f ′

df ′

f ′
(4.69)

The invariance of the measure (modulo an overall sign) guarantees that the on-shell

forms associated with diagrams related by square moves are the same—differing only

by a change of coordinates used.

Let us now turn to bubble-deletion. It is easy to see that the following oriented

subdiagrams always lead to exactly the same boundary-measurements:
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(4.70)

Following the same logic used to analyze the square-move, we find that the face-

variables of these two diagrams are related by:

(4.71)

Note again the crucial fact that the measure is invariant under this transformation:

df0
f0
∧
df1
f1
∧
df2
f2

= −
df ′

0

f ′
0

∧
df ′

1

f ′
1

∧
df ′

2

f ′
2

, (4.72)

where f ′
0 = f−1

0 . The change of variables from f→f ′ eliminates all dependence on f0
associated with the bubble from the final point in the Grassmannian. Of course, the

variable f0 remains in the measure, but it cleanly factors out as an overall prefactor of

dlog(f0). As we will see later on, MHV amplitude integrands—to all loop-orders—

are always the tree-amplitude, dressed with many additional dlog-factors arising

from bubble-deletion. These “irrelevant” factors in the measure encode the internal

degrees of freedom of the loop-momenta.

If instead of the integrand for scattering amplitudes, we were interested in the

residues of the on-shell differential form—to compute, e.g. “leading singularities”—

then these “irrelevant” dlog-factors really are irrelevant: any residue involving them

will give either one or zero.

Due to reduction, then, the number of interesting residues of general (non-

reduced) on-shell diagrams turns is in fact finite despite the seemingly-infinite number

of possible diagrams. Notice that in our way of thinking about ‘leading singularities’

and on-shell diagrams, we’ve made no distinction whatsoever between what have

historically been called “ordinary” versus “composite” objects, [86,87]. Historically,

reducible on-shell diagrams were those with “irrelevant” additional degrees of freedom

which could be systematically trivialized-away.
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One example of such an on-shell form is the ‘double-box’ involving four-particles;

this on-shell diagram has been known to include one unfixed degree-of-freedom which

factorizes-out of diagram trivially upon bubble-deletion:

⇒ ⇒ ⇒ ⇒

As discussed in generality above, the variable “lost” during bubble-deletion is in

reality just a bare dlog(α) in the measure.

4.7 Relation to Composite Leading Singularities

When all the auxiliary degrees of freedom of an on-shell form can be localized by

kinematical constraints, we can think of it as having been obtained by starting with

the (nF n)-loop integrand for the scattering amplitude, and successively putting (off-

shell) Feynman propagators on-shell (‘cutting them’) until the on-shell diagram is

obtained. Such on-shell diagrams are referred to as “leading singularities”. Thought

of in this way, they are secondary—derived—quantities obtained from the ‘primary’

object, the loop integrand. An important physical point of our present work (dis-

cussed more thoroughly in section 16) is that it is much more fruitful to take the

opposite viewpoint: that ‘loop-integrands’ are in fact ‘derived’ from on-shell dia-

grams. However, since the concept of a “leading singularity” will likely be more

familiar to most readers, in this subsection we will briefly review how leading sin-

gularities have been used to inform us about scattering amplitudes, and discuss in

particular the subtle issue of composite leading singularities—which is closely related

to reducibility. (This discussion is meant only to make contact with this point in

previous literature, and isn’t especially germane to the rest of our paper.)

The reduction procedure is related to what was called the “computation of com-

posite leading singularities” in the physics literature, [86–89] (see [90–92] for recent

developments). In order to make the connection between the modern and the old

procedures transparent let us explain what a composite leading singularity means for

the four-point example already examined above. Starting with the diagram with two

faces one realizes that any of the two squares actually represents a full four-particle

amplitude. Choose the left one for example and draw the equivalent figure,

(4.73)
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At this point the attentive reader can recognize this as a BCFW bridge on a physical

scattering amplitude and it is given by the differential form

=
dα

α
A(2)

4 (α), (4.74)

where the α-dependence of A(2)
4 results from that of the shifted momenta 2̂ and 3̂.

This on-shell form has only two poles in α: a trivial pole at α = 0, and another

where the A(2)
4 factorizes. Of course, as there are only two poles in the α-plane,

their residues sum to zero, and hence differ only by a sign; as the α = 0 residue is

manifestly the undeformed tree-amplitude A(2)
4 (α = 0), so is the other (up to a sign).

The composite leading singularity technique was based on the observation that

the pole at (p1 + p2̂)
2 = 0 is guaranteed to be there simply as a pole of the physical

A(2)
4 (α) tree amplitude. Therefore the pole at (p1 + p2̂)

2 = 0 , in combination with

the other three on-shell conditions on the loop momenta already in the figure, can

be used to determine a residue. This gives rise to,

(4.75)

which is nothing but the on-shell diagram for a four-point amplitude A(2)
4 .

We note in passing that this gives yet another ideal use of bubbles. Suppose

that one is given an on-shell diagram corresponding to a leading singularity, i.e.,

an on-shell diagram which evaluates to an algebraic function of external momenta

(conditions for this to happen are discussed in section 11). Next, apply a BCFW

bridge to the diagram and ask what its possible poles and corresponding residues are

as a function of the BCFW variable α. Let again return to discussing to the same

four-particle example. We can ask how could we have known that there was a pole

in the ‘s12(α)→ 0 channel’ and not it any other channel, by only manipulating the

graph. The answer is already in figure at the end of the previous subsection: find a

bubble and the channel of the bubble becomes the pole required by unitarity!

Composite leading singularities were first developed in order to compute two-loop

amplitudes following a technique that was very successful at one loop [93]. While

Feynman diagrams are even hard to write down explicitly for loop amplitudes, it is

known that loop integrals can be reduced to a linear combination of basic standard
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integrals [94]. The idea is then to start with the most general linear combination of

such basic integrals and find ways of computing the coefficients. This is known as the

“unitarity-based method”, [95–99] (for recent applications of these techniques, see

e.g. [92, 100]). In more modern language, the key idea is to use contour integrals to

compute the coefficients. At one loop, N =4 super Yang-Mills only requires integrals

with four propagators. Thus, the four dimensional contour for computing a given

coefficient is then obviously defined by the four propagators of the given integral.

At two loops and four particles the basis of integrals must include one such as,

. (4.76)

Now there are eight integration variables but only seven propagators. Naively it

seems that this integral does not have any non-vanishing residues. The key observa-

tion is that the propagators are non-linear functions of the integration variables and

therefore computing the ℓ1 integral using the T 4 contour defined by the left box gives

rise to 1/
(
s12(ℓ2)s41

)
, which is ℓ2-dependent. This can then be used together with

the three-propagators already present on the right to define a second T 4 contour and

hence a non-vanishing residue. The ℓ2-dependent pole, 1/
(
s12(ℓ2)

)
, generated in this

form is precisely what is needed for the new computation to be that of a single scalar

box on-shell diagram.

In this way of thinking about things, the existence of composite residues is un-

expected, and are made possible from “hidden” poles that are produced by Jacobian

factors which appear as residues are taken. In our new picture, all the singularities

are manifestly exposed in our “dlog” measure for edge or face variables. There is

no distinction between “composite” and “ordinary” singularities, and they are all

treated together in a systematic and unified way.
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5. Configurations of Vectors and the Positive Grassmannian

We have seen that every on-shell graph is associated with a (k×n)-matrix C, where

a reduced graph with nF faces gives us an (nF 1)-dimensional sub-manifold of the

Grassmannian G(k, n). We have also seen that the invariant content of an on-shell

diagram is given by the permutation which labels it. We will now link these two

observations by showing that the sub-manifold in the Grassmannian associated with

an on-shell graph is also characterized—for geometric reasons—by the same permu-

tation which labels the graph.

Our discussion will be most transparent if we think of the Grassmannian in a

complementary way to our presentation so far: instead of viewing the k×n matrix C

horizontally, as a k-plane spanned by its rows, we want to now view C vertically—as

a collection of n, k-dimensional columns. The GL(k)-invariant data to describe any

configuration are ratios of minors:

(a1 · · · ak)

(b1 · · · bk)
, (5.1)

Intuitively, a generic plane C would be one for which none of its minors vanish. Such

a configuration would have k(n k) degrees of freedom. The vanishing of any minor of

C implies some linear-dependence among its columns. Allowing for all possible linear-

dependencies among the columns of C leads to the “matroid stratification” [101]

of configurations, which is known to be arbitrarily complicated. Indeed, it was

proven in [102] that all algebraic varieties are part of this matroid stratification, so

understanding this amounts to completely taming the entire category of algebraic

varieties! However, if we impose one small restriction on the set of admissible linear-

dependencies, we will find that a rich, simple, and very beautiful structure emerges.

5.1 The Geometry and Combinatorics of the Positroid Stratification

Notice that any configuration C associated with an on-shell, planar graph is endowed

with a cyclic-ordering for the columns {c1, . . . , cn}. It is therefore natural to consider

a stratification of G(k, n) that involves only linear-dependencies among (cyclically)

consecutive chains of columns. This is known as the positroid stratification, [38, 39]

(see also [33,103]), and will turn out to be precisely what is relevant to the physics of

on-shell diagrams. In order to understand the connection most clearly, we will first

discuss the stratification in some detail on its own, and show how these configurations

are characterized by permutations. We will then see how the geometrically-defined

permutation which characterizes C is precisely the one which would label the graph.

Before describing the stratification generally, it may help to consider some sim-

ple examples. Since the kinematical data describing the external particles enjoys a

rescaling symmetry, we often find it useful to transfer this symmetry to the columns

of C, identifying ca ∼ taca, so that (non-vanishing) columns ca can be thought of

as elements in P(k−1) (vanishing columns simply being absent from the space). This
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makes it a little easier to visualize configurations—at least for small k. Consider

a generic configuration C ∈G(3, 6), whose 6 columns—viewed as points in P2—are

arranged according to:

(5.2)

As no three of the columns are linearly-dependent, this indeed represents a generic

configuration in G(3, 6), and has 3(6 3) = 9 degrees of freedom.

The simplest consecutive constraint we could impose on (5.2) would be to force

any 3 consecutive columns to become linearly-dependent—projectively, collinear. For

example, we could require that the minor (123) vanish:

(5.3)

From this configuration, seven possible further restrictions are possible, including:

For k ≤ 3, it is easy to describe such configurations geometrically—being eas-

ily visualizable. But such geometric descriptions rapidly become cumbersome as k

increases: even for k = 4—which is still possible to visualize in three-dimensional

space—configurations obtainable using only consecutive constraints can become im-

pressively complex. Consider for example the following configuration in G(4, 8):

consec. chains of columns span

(1) (2) (3) (4) (5) (6) (7) (8) P0

(123) (34) (45) (56) (678) (81) P1

(56781) (81234) (3456) P2

(5.4)

A more systematic way to describe any configuration in this stratification would be

to list the ranks of spaces spanned by all consecutive chains of columns. Labeling

columns mod n, let us define,

– 48 –



r[a; b] ≡ rank{ca, ca+1, . . . , cb}; (5.5)

then knowing r[a; b] for all n2 pairs of columns a ≤ b would suffice to reconstruct

any particular configuration. This data is obviously highly redundant: for example,

r[a; a+n 1] = k for all a. We can discover how this data can be encoded more effi-

ciently if by first organizing it in a clever way (we thank Pierre Deligne for suggesting

this to us):

r[ ;n 2n 1] . .
.

2n 1

r[ ;n 1 2n 2]
... . .

.
2n 2

. .
. ...

... . .
. ...

r[ ;2 n+1] · · · r[ ;n 1 n+1] r[ ;n n+1] . .
.

n+1

r[ ;1 n ]
... · · · r[ ;n 1 n ] r[ ;n n ] n

...
... · · · r[ ;n 1 n 1] n 1

r[ ;1 3 ] r[ ;2 3 ] . .
. ...

r[ ;1 2 ] r[ ;2 2 ] 2

r[ ;1 1 ] 1

1 2 · · · n 1 n · · ·

(5.6)

The advantages of arranging the ranks in this way will become clear momentarily.

Notice that for each pair of adjacent columns (a a+1) there is some b sufficiently

large such that r[a; b] = r[a+1; b], as r[a; b] is bounded above by k and strictly

increases with b (moving vertically in (5.6)). Moreover, it is easy to see that if

r[a; b] = r[a+1; b] for some b, then r[a; c] = r[a+1; c] for all c ≥ b, as we would have

ca ∈ span{ca+1, . . . , cb}, and so span{ca, . . . , cb} ⊂ span{ca, . . . , cc} for all c ≥ b. The

same argument shows that, moving from right to left along each pair of consecutive

rows in (5.6), for any c there exists a b such that r[b; c] = r[b; c+1], and that for all

a < b, r[a; c] = r[a; c+1].

Because r[a; b] ≥ r[a+1; b] in general, for each a there must be a nearest column,

which we will denote (suggestively) as ‘σ(a)’≥ a such that r[a; σ(a)] = r[a+1; σ(a)].

Notice that this implies that r[a; σ(a)] = r[a; σ(a) 1] > r[a+1; σ(a) 1], as otherwise

σ(a) would not be the nearest. Similarly, we see that a must be the maximal column

a ≤ σ(a) such that r[a; σ(a)] = r[a; σ(a) 1]. Thus, there is a unique point vertically

along each pair of consecutive columns and a unique point horizontally along each

pair of consecutive rows where the table locally looks like:

r[ ;a σ(a) ] r[ ;a+1 σ(a) ]

r[ ;a σ(a) 1] r[ ;a+1 σ(a) 1]
⇔

r r

r r − 1
. (5.7)

These “hooks” show that σ is in fact a permutation among the labels {1, . . . , n}

of the column-vectors. Actually, because this definition of σ differentiates between
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σ(a) = a (which occurs whenever r[a; a] = 0) and σ(a) = a+n, σ is automatically a

decorated permutation as defined in section 3.1.

We can see how the permutation encoded by these hooks can be read-off from

the table of ranks, (5.6), by considering the example configuration given above, (5.4):

⇒

(This picture of the permutation σ is similar to the “juggling patterns” illustrated

in [39].) And so this configuration is associated with the permutation,

σ ≡

(
1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 7 6 10 9 8 13 12

)
. (5.8)

The definition of σ can be restated in an equivalent, but more transparently

geometric form:

Definition: For each a ∈ {1, . . . , n}, the permutation σ(a)≥a labels the first column

cσ(a) such that ca ∈ span
{
ca+1, . . . , cσ(a)

}
.

(Notice that if ca = ~0, then σ(a) = a, as~0 is spanned by the empty chain ‘{ca+1, . . . , ca}’.)

This definition is useful in practice. For example, it makes it easy to understand

how the dimensionality of a configuration is encoded by its permutation. Notice that

because ca ∈ span{ca+1, . . . , cσ(a)}, we may expand ca into the r[a; σ(a)]-dimensional

space spanned by {ca+1, . . . , cσ(a)}; therefore, specifying ca requires r[a; σ(a)] degrees

of freedom. And so, remembering to subtract the k2 degrees of freedom absorbed by

the overall GL(k)-redundancy, we find that:

dim(Cσ) =

(
n∑

a=1

r[a; σ(a)]

)
− k2 . (5.9)

Notice that r[a; σ(a)] is nothing but the number of other hooks which intersect the

vertical (or horizontal) part of any particular hook a 7→ σ(a). Thus, for our ex-

ample in G(4, 8) given above, the ranks r[a, σ(a)] can be read-off as the number of

intersections (marked in green) along each vertical (or horizontal) line:
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(5.10)

which shows that this configuration has 25− 42 = 9 degrees of freedom.

It is not hard to see how the permutation encodes all the ranks r[a; b], thereby

demonstrating that σ fully characterizes any configuration in the positroid strati-

fication. If we let q[a; b] denote the number of c ∈ {b n, . . . , a} such that σ(c) ∈

{b, . . . , a+n}, then r[a; b] = k q[a; b]. Graphically, q[a; b] is the number of hooks

whose corners are above and to the left of r[a; b] in the table (5.6).

The permutation is the most compact, most invariant way of describing the

consecutive linear dependencies of a configuration of vectors. A more redundant,

but sometimes useful alternative characterization of a configuration is known as the

Grassmannian necklace, [38]: a list of n, k-tuples A(a) ≡ (A
(a)
1 , . . . , A

(a)
k ) denot-

ing the lexicographically-minimal non-vanishing minors starting from each of the n

columns. Geometrically, A(a) encodes the labels of the first k column-vectors beyond

(or possibly including) ca, for which rank{c
A

(a)
1
, . . . , c

A
(a)
k

} = k. In terms of the hooks

described above, A(a) simply lists the k horizontal lines which pass above the ath

column (which often do not cross the hook going from a 7→ σ(a)). In the G(4, 8)

example above, (5.4), the Grassmannian necklace can be read-off as follows:

A(8) = (8 9 10 13)

A(7) = (7 8 9 10)

A(6) = (6 7 9 10)

A(5) = (5 6 7 10)

A(4) = (4 5 6 7)

A(3) = (3 4 5 7)

A(2) = (2 3 4 5)

A(1) = (1 2 4 5)

(5.11)
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5.2 Canonical Coordinates and the Equivalence of Permutation Labels

In section 4, we saw that every on-shell graph is associated with both a permuta-

tion (via left-right paths) and also a k-plane in n dimensions C ∈G(k, n) encoding

the linear-relations involving the external data. And we have just seen that any

such plane C, viewed as a configuration of column-vectors, can also be labeled by

a permutation. We will now demonstrate that these permutation labels match—

that the configuration C ∈G(k, n) associated with an on-shell graph labeled by the

left-right-path permutation σ, is labeled geometrically by the same permutation σ.

The proof of the equivalence of these permutation labels is both simple and con-

structive. Recall from section 3.2 that a representative, reduced on-shell graph can

be constructed for any permutation σ by decomposing it into a sequence of ‘adjacent’

transpositions acting on a trivial permutation, where each successive transposition

in the decomposition adds a BCFW-bridge to the graph according to:

(5.12)

(As before, recall that two columns are to be considered ‘adjacent’ if separated

only by columns which are self-identified under σ.) Now, just as we can build-up a

representative on-shell graph in this way for any permutation, we can also build-up

a representative matrix Cσ ∈G(k, n), which we will find to be labeled geometrically

by the same permutation. As a bonus, this construction will provide us with explicit

coordinates for any cell of the positroid, and these coordinates will have many nice

properties.

What action on the columns of C corresponds to adding a BCFW bridge, (5.12)?

In terms of the matrices associated with on-shell diagrams, adding a bridge shifts,

ca+1 7→ câ+1 ≡ ca+1 + α ca; (5.13)

recall also this shift changes the measure on the Grassmannian by adding a factor of

dlog(α).

Notice that if we take a residue about α = 0, we restore the original configuration;

thus, α 7→0 can viewed as deleting the new edge from the graph in (5.12). Of course,

in terms of the left-right path permutations, the BCFW bridge transposes the images

of a and a+1 under σ. What we need to show, therefore, is that the shift (5.13) has

this same effect on the geometric permutation defined by the columns of C:

– 52 –



(5.14)

Let us now show that this is indeed the change induced by (5.13). Clearly, the

transformation (5.13) can at most affect the ranks of chains which include ca+1 and

not ca. After the shift, câ+1 is no longer spanned by {ca+2 . . . , cσ(a+1)}, because

ca is not; but câ+1 is spanned by {ca+2, . . . , cσ(a)}; and so, σ(a+1) 7→ σ′(a+1) =

σ(a). Similarly, after the shift ca is trivially in the span of {câ+1, . . . , cσ(a+1)} as

span{câ+1, . . . , cσ(a+1)} = span{ca, ca+1, . . . , cσ(a+1)}; and so, σ(a) 7→ σ′(a) = σ(a+1).

And we are done.

Therefore, just as successive BCFW-bridges, (5.12), can be used to construct

a representative, reduced on-shell graph for any permutation, they also provide us

with a representative matrix for the configuration—and the BCFW-shift parameters,

denoted αi, provide us with coordinates.

We can see how this works explicitly by revisiting the example given in section 3.2

where we used successive BCFW-bridges to construct a representative on-shell graph

for the permutation {4, 6, 5, 7, 8, 9}. Repeating the same construction as before, but

now decorating each BCFW-bridge with its corresponding shift-parameter αi gives

rise to the following:

1 2 3 4 5 6
τ ↓ ↓ ↓ ↓ ↓ ↓ BCFW shift

(1 2)
4 6 5 7 8 9

c2 7→ c2 + α8c1
(2 3)

6 4 5 7 8 9
c3 7→ c3 + α7c2

(3 4)
6 5 4 7 8 9

c4 7→ c4 + α6c3
(2 3)

6 5 7 4 8 9
c3 7→ c3 + α5c2

(1 2)
6 7 5 4 8 9

c2 7→ c2 + α4c1
(3 5)

7 6 5 4 8 9
c5 7→ c5 + α3c3

(2 3)
7 6 8 4 5 9

c3 7→ c3 + α2c2
(3 6)

7 8 6 4 5 9
c6 7→ c6 + α1c3

7 8 9 4 5 6

Starting with the zero-dimensional configuration labeled by {7, 8, 9, 4, 5, 6} and per-

forming each successive BCFW-shift generates the following representation of C:

C(~α) ≡



1 (α4+α8) α4 (α5+α7) α4α5α6 0 0

0 1 (α2+α5+α7) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1


 . (5.15)
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For the sake of illustration and completeness, below we give the complete sequence of
coordinatized cells generated along the chain of BCFW-shifts which build-up C(α):



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




{7, 8,9, 4, 5,6}

(36)
−−−→
α1



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 α1




{7,8,6, 4, 5, 9}

(23)
−−−→
α2



1 0 0 0 0 0

0 1 α2 0 0 0

0 0 1 0 0 α1




{7, 6,8, 4,5, 9}

(35)
−−−→
α3



1 0 0 0 0 0

0 1 α2 0 α2α3 0

0 0 1 0 α3 α1




{7,6, 5, 4, 8, 9}

(12)

←
−
−−α4



1 α4 α4 α5 α4α5α6 0 0

0 1 (α2+α5) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1




{6,5,4, 7, 8, 9}

(34)
←−−−
α6



1 α4 α4 α5 0 0 0

0 1 (α2+α5) 0 α2α3 0

0 0 1 0 α3 α1




{6, 5,7,4, 8, 9}

(23)
←−−−
α5



1 α4 0 0 0 0

0 1 α2 0 α2α3 0

0 0 1 0 α3 α1




{6,7,5, 4, 8, 9}

(23)

←
−
−−α7



1 α4 α4 (α5+α7) α4α5α6 0 0

0 1 (α2+α5+α7) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1




{6,4, 5, 7, 8, 9}

(12)
−−−→
α8



1 (α4+α8) α4 (α5+α7) α4α5α6 0 0

0 1 (α2+α5+α7) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1




{4, 6, 5, 7, 8, 9}

Coordinates generated in this way enjoy many nice properties. For example, the

physically-relevant measure on the Grassmannian (integration over which generates

the on-shell differential forms of interest) is maximally simple in these coordinates:

because each BCFW-shift simply adds a factor of dlog(α) to the measure, the final

measure is simply,

dα1

α1

∧ · · · ∧
dαd

αd

= dlog(α1) ∧ · · · ∧ dlog(αd) . (5.16)

Another important property—to be described more fully in section 6.4—is that these

coordinates make it possible to access each of the lower-dimensional boundaries of

C as the zero-loci of some of the αi (using an atlas of at most n coordinate charts).

5.3 Positroid Cells and the Positive Part of the Grassmannian

So far in of our discussion of configurations of vectors we have only discussed basic,

linear dependencies. Let us now consider the case where these vectors are real. This

will expose a natural and beautiful object, known as the positive Grassmannian,

denoted G+(k, n). As in the previous subsection, let us first jump ahead and de-

scribe this object intrinsically, and then return to on-shell diagrams and show how

the amalgamation picture described in section 4.4 makes it obvious that on-shell

diagrams—whether reduced or not—are always associated with points in G+(k, n),
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and demonstrate how this works explicitly for the reduced graphs obtained via the

BCFW-bridge decomposition described in the previous section.

Perhaps the best way to motivate the positive Grassmannian is by starting with

the simplest case, GR(1, n) ≃ RPn−1. Here, the column ‘vectors’ ca of a 1-plane

C ≡ (c1, . . . , cn) are simply homogeneous coordinates on RPn−1, and the ‘positive

part’ of RPn−1 is simply the part of projective space where all the homogeneous

coordinates are positive, which is nothing but a simplex. Consider for example RP2

corresponding to the 1-plane C = (c1, c2, c3):

(5.17)

The ‘positive part’ of RP2 is defined by the region where all the homogeneous coor-

dinates ca are positive—corresponding to the (open) region labeled “I” above. Of

course, because we often allow ourselves to rescale each ca ∼ taca, any relative signs

among the homogeneous coordinates will describe an open-region of RP2 essentially

equivalent to region I, dividing RP2 into four “positive parts” as indicated in (5.17).

Continuing this logic to higher n, it is clear that the “positive part” of RPn−1 should

be defined as the (open) simplex for which all homogeneous coordinates are positive.

For higher k, the“positive part” of G(k, n) is a natural generalization of the

notion of a simplex in G(1, n). Thinking of the homogeneous coordinates ca as

(1×1)-‘minors’ of C∈G(1, n), it is natural to define the positive part of G(k, n) to be

the region for which all ordered minors (a1 · · · ak), with a1 < · · · < ak, are positive.

(Notice that without a fixed ordering of the columns, it would be meaningless to

discuss the positivity of minors as they are antisymmetric with respect to ordering.)

Although this definition of the positive part of G(k, n) requires an ordering of

the columns, no reference was made to any cyclic structure. But cyclicity emerges

automatically. Näıvely, it would seem that there could be a distinct positive part

for each of the n! orderings of the columns, but some of these are actually the same.

Suppose that C ∈G+(k, n) for columns ordered according to {c1, . . . , cn}. Then the

change

c1→c2, c2→c3, · · · , cn→(−1)k+1c1, (5.18)

gives a positive configuration in the rotated ordering. This is referred to as a

“twisted” cyclic symmetry.

Notice that the definition of G+(k, n) has so far made no reference to consecu-

tivity of the constraints involved in its boundary configurations (where some minors
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are allowed to vanish). The reason why consecutivity plays a role is that not all

minors are independent—recall from section 4.1 that they satisfy Plücker relations

following from Cramer’s rule, (4.4). The relevance of this will become clear in a

simple example. Consider the case of G(2, 4), where we have

(1 3)(2 4) = (1 2)(3 4) + (1 4)(2 3). (5.19)

Notice the presence of the plus sign on the right-hand side. It implies that if we start

with a configuration in G+(2, 4), the minor (1 3) can only vanish if at least two other

ordered minors also vanish.

We can see how consecutivity matters more generally for G(2, n) by thinking of

the column-vectors projectively as points in RP1. If we rescale the columns to be of

the form ca ∼
(
βa
1

)
, then (a b) = (βa βb), and so a positive configuration is simply

one for which βa > βb for all a < b. That is, the positive part of G(2, n) is nothing

but configurations of ordered points on a circle:

(5.20)

As such, it is clear that co-dimension one boundaries should correspond to the van-

ishing of only consecutive minors—the collision of adjacent points in RP1. In G(2, 4),

for example, the following sequence of boundaries connect a generic configuration to

one without any degrees of freedom:

{3, 4, 5, 6}

⇒

{2, 4, 5,7}

⇒

{2,5,4, 7}

⇒

{2, 5,3,8}

⇒

{1,6, 3, 8}

(5.21)

In order to see that this phenomenon is not peculiar to G(2, n), and to get a

better picture for what is going on, let us look again at G(3, n). We may use the

rescaling symmetry to write each column as ca ∼
(
ĉa
1

)
, where each ĉa is in R2. It is

then easy to check that the requirement of positivity for all ordered minors translates

into the geometric statement that the points ĉa form the vertices of a convex polygon

in the plane.

Because of convexity, it is easy to see that going to boundaries can only in-

volve linear relations between consecutive chains of columns. For instance, below we

draw a projective representation of a generic configuration G(3, 6), and some of the

boundaries obtainable while preserving convexity:
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{4, 5, 6, 7, 8, 9}

⇒

{3, 5, 6, 7, 8,10}

⇒

{3,6,5, 7, 8, 10}

(5.22)

From the generic configuration, it is possible to make any consecutive minor vanish

such as (1 2 3) shown above. Projectively, a minor will vanish whenever three points

become collinear. However, note that for instance the non-consecutive minor (1 3 5)

cannot be made to vanish without either: 1. destroying convexity, or 2. forcing

additional minors to vanish along the way. And so, we find the same stratification

of successive boundaries as those obtained by consecutive constraints.

These examples suffice to motivate a remarkable connection, which we will

shortly understand in a simple and general way. In the first part of this section,

we discussed a stratification of the complex Grassmannian, in terms of specified lin-

ear dependencies between consecutive column vectors. We now see that this struc-

ture is beautifully characterized by the structure of the real Grassmannian: the cell

decomposition of the positive Grassmannian is precisely specified by giving linear

dependencies between consecutive vectors.

But first, let us step back and understand the simple and direct connection be-

tween on-shell diagrams and the positive Grassmannian. Recall that we can construct

the configuration C∈G(k, n) for any on-shell diagram by simply “amalgamating” the

1- and 2-planes associated with the white, and black vertices, respectively. We saw in

section 4.4 that only two operations were needed to construct the plane C∈G(k, n)

for any on-shell graph: combining graphs via direct-products, and gluing legs together

by projecting-out on-shell pairs of particles. Let us briefly recall how these two op-

erations act on the minors of the planes involved, and verify the wonderful fact that

amalgamation preserves positivity.

The proof is simple. First, observe that we can always use rescaling symmetry

to make any configuration in G(1, 3) or G(2, 3) positive (see, e.g. (5.17)). Therefore,

an on-shell graph can always be constructed by attaching these positive cells to

each vertex, and then proceeding with amalgamation as described in section 4.4.

Recall that the simplest of the two operations, taking direct-products, acts trivially

on minors: suppose that the columns of CL ∈ G(kL, nL) are ordered {c1, . . . , cnL
},

and that those of CR∈G(kR, nR) are ordered {cnL+1, . . . , cnL+nR
}, then all the non-

vanishing minors CL

⊗
CR 7→ C∈G(kL+kR, nL+nR) will be given by,

(a1 · · · akL b1 · · · bkR)|C = (a1 · · · akL)|CL
× (b1 · · · bkR)|CR

; (5.23)

and so, if CL and CR are both positive, then C will be as well.
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The second fundamental operation, projection, takes a configuration C∈G(k+1, n+2)

and produces a configuration Ĉ∈G(k, n), obtained by projecting C into the orthogonal-

complement of (cA − cB), for two adjacent legs (AB). In terms of minors, this

operation acts according to:

(a1 · · · ak)|Ĉ = (Aa1 · · · ak)|C +(B a1 · · · ak)|C . (5.24)

If (AB) are the first two labels for the columns of C∈G+(k+1, n+2), then both terms

on the right hand side are trivially positive; if (AB) are not the first two columns,

then they can always be brought to this position at the trivial cost of rescaling some

columns by (−1) as described during our discussion of the twisted cyclic structure

of G+(k, n) in section 5.3.

5.4 Canonically Positive Coordinates for Positroids

We have seen many ways to describe the configuration C ∈G(k, n) associated with

an on-shell diagram, including procedures which explicitly generate a matrix rep-

resentative of C parameterized by variables attached to the faces or the edges of a

graph (see section 4.5). And in section 5.2, we saw that “canonical” coordinates for

any cell C ∈G(k, n) in the positroid stratification can be systematically generated

(along with a representative, reduced graph) by applying successive BCFW-shifts.

In this subsection, we demonstrate that a slight-modification of these BCFW-bridge

coordinates (see equation (5.30)) have the remarkable property that when the coor-

dinates αi are themselves positive, then C(αi)∈G+(k, n)! We will refer to any such

coordinates which have this property as “positive”.

Before we describe how the BCFW-bridge coordinates make positivity manifest

in this way, let us first describe a more intuitive way to parameterize generic config-

urations in G(k, n) with coordinates which share this property. It will turn out that

this geometrically-motivated parameterization of G(k, n) will be essentially identi-

cal to that which is generated by the BCFW-bridge construction, and so this slight

detour will prove itself quite useful later (see section 7).

Observe that any homogeneous coordinates for G(1, n) ≃ Pn−1 are trivially pos-

itive:
C(1,n) ≡

(
β1,1 β1,2 · · · β1,n−1 β1,n

)
, (5.25)

because C(1,n)(β)∈G+(1, n) whenever all the variables β1,a > 0.

The first non-trivial case is for G(2, n). Recall from our discussion above that if

we rescale all the column vectors of C ∈G(2, n) to be of the form ca ∼
(
ĉa
1

)
, then

(a b) = ĉa − ĉb; and so any set of ordered numbers ĉ1 > · · · > ĉn will parameter-

ize a point in G+(2, n). One natural way to create such an ordered list of positive

numbers would be to have ĉa = ĉa+1+β1,a+1 for arbitrary, positive β1,a+1—where we

have intentionally named these ‘arbitrary’ positive parameters according to our pa-

rameterization of G+(1, n) in (5.25). Restoring the degrees of freedom which rescale

each column vector, we obtain the following:
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C(2,n) ≡

(
β2,1(β1,2 + · · ·+ β1,n) β2,2(β1,3 + · · ·+ β1,n) · · · β2,n−1(β1,n) 0

β2,1 β2,2 · · · β2,n−1 β2,n

)
.(5.26)

It is easy to verify that if βα,a > 0, then C(2,n)(β)∈G+(2, n).

This construction naturally continues recursively, generating positive coordinates

for any (generic) configuration in G(k, n) as follows:

C(k,n) ≡

(
βk,1ĉ

(k,n)
1 · · · βk,n−1ĉ

(k,n)
n−1 0

βk,1 · · · βk,n−1 βk,n

)
with ĉ (k,n)a ≡

n∑

j=(a+1)

c
(k−1,n)
j . (5.27)

Surprisingly, after using GL(k)-redundancy to remove the excess degrees of free-

dom in the parameterization of C(k,n)(β), it turns out that these are (essentially)

identical to the coordinates produced by the BCFW-bridge construction described in

section 5.2. Indeed, the only distinction is a relabeling of bridge-variables α1, . . . , αd

(where d≡dim(G(k, n))=k(n k)) according to:

β1,k+1 β1,k+2 · · · β1,n−1 β1,n

β2,k+1 β2,k+2 · · · β2,n−1 β2,n
...

...
. . .

...
...

βk,k+1 βk,k+2 · · · βk,n−1 βk,n

⇔
αd αd−2 · · · · · · · · · · · · αℓ · · · · · · αk(k−1)/2+1

αd−1 . .
.

. .
.

. .
.

. .
. αℓ+1 . .

.
. .
.
. .
. ...... . .

.
. .
.

. .
.

. .
.

. .
.

. .
.
. .
.
. .
.
α2

αd−k(k−1)/2 · · · · · · αℓ+k−1 · · · · · · · · · · · · α3 α1

Let us now show that positivity is a manifest property of the BCFW-bridge

coordinates for all positroid cells. This will also complete the connection between

on-shell graphs, the stratification of configurations of vectors given by prescribing

linear dependencies between consecutive vectors, and the cell decomposition of the

positive Grassmannian.

We begin by observing that the minors of C transform nicely under BCFW-shifts:

(· · · a+1 · · · ) 7→ (· · · â+1 · · · ) = (· · · a+1 · · · ) + α (· · · a · · · ). (5.28)

And so, if we start with a configuration C in the positive Grassmannian, and if a and

a+1 are strictly adjacent—with no columns between them self-identified under σ—

then the BCFW-shift preserves positivity, because whenever (· · · a+1 · · · ) is ordered,

so is (· · · a · · · ).

However, we must remember that the decomposition of a permutation into ‘ad-

jacent’ transpositions allows for a and “a+1” to be separated by any number of

columns which map to themselves (modn) under σ. Because σ(b) = b (as opposed

to σ(b) = b+n) implies that cb = 0, all minors involving b vanish; and so, skipping-

over these columns will not affect any non-vanishing minors. However, σ(b) = b+n

if and only if cb /∈ span{cb+1, . . . , cb+n−1}, implying that cb is not spanned by the rest

of the columns of C; as such, σ(b) = b+n implies that b must be involved in any

non-vanishing (k×k)-minor of C. And so, when this happens, the shift in (5.28) may

not preserve ordering for both of the terms.

To illustrate this minor subtlety, consider the very simplest case in which it

arises: the one-dimensional configuration C ∈ G(2, 3) labeled by the permutation

σ ≡ {3, 5, 4}. The decomposition of σ into ‘adjacent’ transpositions involves only
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one step: (1 3) —an ‘adjacent’ transposition which skips-over column c2 because

σ(2) = 2+3. Explicitly, the BCFW-coordinates of Cσ would be generated as follows:

1 2 3
τ ↓ ↓ ↓ BCFW shift

(1 3)
3 5 4

c3 7→ c3 + α1c1
4 5 3

(
1 0 0

0 1 0

)

{4, 5,3}

(13)
−−−→
α1

(
1 0 α1

0 1 0

)

{3, 5, 4}

(5.29)

Notice that the minor (23), which vanishes before the shift, becomes (23) 7→ (23̂) =

(23)+α1(21) = α1(12) after the shift. And so, if we wish to make the final config-

uration C positive, we must take α1 to be negative; alternatively, we could redefine

the rule for BCFW-shifts so that the transposition (13) actually corresponds to a

shift c3 7→c3 α1c1. Of the two alternatives, we prefer the latter as then positivity of

the BCFW-shift coordinates would directly imply that a configuration were positive.

It is easy to see how this simple example generalizes: in order to preserve the

positivity of minors and the coordinates, we should redefine the BCFW-shift so that

the transposition of a and “a+1” changes the columns of C according to

ca+1 7→ ca+1 + (−1)qα ca, (5.30)

where q is the number of columns b between a and “a+1” such that σ(b) = b+n.

In this modified form, the BCFW-shift is guaranteed to preserve positivity. And so,

restricting all the coordinates αi to be positive will always result in a configuration

C(~α) in the positive Grassmannian G+(k, n).

To see how these signed BCFW-shifts make positivity manifest—and as one fur-

ther example of the BCFW-bridge construction described in section 5.2—consider

the following coordinates constructed for the configuration in G(4, 8) given in (5.4):

1 2 3 4 5 6 7 8
τ q ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ BCFW shift

(1 2) 0
3 7 6 10 9 8 13 12

c2 7→ c2 + α9c1
(2 3) 0

7 3 6 10 9 8 13 12
c3 7→ c3 + α8c2

(2 4) 0
7 6 3 10 9 8 13 12

c4 7→ c4 + α7c2
(4 5) 0

7 10 3 6 9 8 13 12
c5 7→ c5 + α6c4

(1 4) 1
7 10 3 9 6 8 13 12

c4 7→ c4−α5c1
(5 6) 0

9 10 3 7 6 8 13 12
c6 7→ c6 + α4c5

(4 5) 0
9 10 3 7 8 6 13 12

c5 7→ c5 + α3c4
(5 7) 0

9 10 3 8 7 6 13 12
c7 7→ c7 + α2c5

(4 8) 1
9 10 3 8 13 6 7 12

c8 7→ c8−α1c4
9 10 3 12 13 6 7 8




1 α9 0 α5 α5α6 0 0 0
0 1 α8 α7 0 0 0 0
0 0 0 1 α3+α6 α3α4 0 α1

0 0 0 0 1 α4 α2 0




It is easy to verify that all the non-vanishing minors of C(α)∈G(4, 8) are positive

when αi ∈ R+. For example, consider the minor,

(2 4 5 7) = α2 α3 α5 + α2 α3 α7 α9 + α2 α6 α7 α9, (5.31)

the positivity of which requires, for example, the signed BCFW-shift c4 7→ c4 α5c1.
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6. Boundary Configurations, Graphs, and Permutations

6.1 Physical Singularities and Positroid Boundaries

Recall that an on-shell diagram labeled by the permutation σ corresponds to a differ-

ential form fσ obtained via integration over the configuration Cσ(α)∈G(k, n) subject

to the constraints that Cσ be orthogonal to λ̃ and contain λ:

fσ =

∫

Cσ

dα1

α1

∧ · · · ∧
dαd

αd

δk×4
(
Cσ ·η̃

)
δk×2

(
Cσ ·λ̃

)
δ2×(n−k)

(
λ·C⊥

σ

)
, (6.1)

where αi are canonical (e.g. BCFW-bridge) coordinates for the configuration Cσ.

Because the δ-functions encode (2n 4) constraints in general (together with the 4

constraints of momentum-conservation), cells with (2n 4) degrees of freedom can be

fully-localized, while those of lower dimension leave-behind further δ-functions which

impose constraints on the external kinematical data.

On-shell differential forms which impose constraints on the external data (beyond

momentum conservation) represent physical singularities: places in the space of kine-

matical data where higher-degree forms develop poles. As we saw in section 2.5, such

singularities are of primary physical interest: for example, knowing the singularity-

structure of scattering amplitudes suffices to fix them completely to all loop-orders

via the BCFW recursion relations, (2.26).

The physical singularities of on-shell differential forms, therefore, correspond to

the boundaries of the corresponding configurations in the Grassmannian. Suppose

we consider a reduced graph with nF faces; then, because such a graph is associated

with an (nF 1)-dimensional configuration C, it is easy to see that its boundaries

are those graphs obtained by deleting edges (reducing the number of faces by one).

However, sometimes a graph obtained in this way is no longer reduced, and actu-

ally corresponds to a configuration in the Grassmannian whose dimension has been

lowered by more than one. This raises the question: which edges in a graph can

be removed while keeping a graph reduced? Such edges will be called removable.

It turns out that this question is easiest to answer not in terms of on-shell graphs

directly, but in terms of the geometry of their corresponding configurations in the

Grassmannian and the combinatorics of their permutations.

6.2 Boundary Configuration Combinatorics in the Positroid Stratification

The boundaries of a configuration C, denoted ∂(C), in the positroid stratification are
those configurations obtained by imposing any one additional constraint involving
consecutive chains of columns. Before describing the combinatorial rule for finding
boundary configurations, let us first build some intuition through simple examples.
Recall from section 5.1 the configuration in G+(3, 6) whose boundaries included:

∂

{3, 5, 6, 7, 8, 10}

=





{3,4, 6, 7, 8,11}

,

{5,3, 6, 7, 8, 10}

,

{3,6,5, 7, 8, 10}

,

{3, 5,7,6, 8, 10}

,. . .




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where we have highlighted how the permutation changes for each boundary-element.

And so—if it weren’t sufficiently obvious already—this example makes it clear

that boundary elements of a configuration labeled by σ are those labeled by σ′ which

are related to σ by a transposition of its images. However, not all transpositions lower

the dimension of the configuration, and some transpositions lower the dimensionality

by more than one. The way to identify the transpositions which lower the dimension

by precisely one is easily understood from the way dimensionality is encoded by

a configuration’s permutation: if we view the permutation as given by the ‘hooks’

described in section 5.1, then the dimension of a configuration is counted by the

number of intersections of its hooks (minus k2). Therefore, boundaries are those

transpositions which eliminate any one such intersection:

(6.2)

Here, it is important that a < b ≤ σ(a) < σ(b) ≤ (a+n), and that there are no

hooks from c ∈ I to σ(c) ∈ II as otherwise the dimensionality would be lowered by

more than one:

(6.3)

Restated in terms of on-shell graphs decorated by left-right paths, this rule iden-

tifies removable edges as those along which two paths cross, a→ σ(a) and b→ σ(b)

with a < b ≤ σ(b) < σ(a) ≤ (a+n), provided that there is no path c→ σ(c) with

c∈I and σ(c)∈II:

(6.4)

These two definitions of the boundary elements of a configuration are of course equiv-

alent; but without the combinatorial rule for counting dimensions, it would have been

considerably more difficult to see that these—and only these—edges are removable.
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6.3 (Combinatorial) Polytopes in the Grassmannian

The boundary operator ∂ given above defines the positroid stratification of G(k, n);

and this stratification is a very special one, with many nice features. For one thing,

it allows us to view every positroid configuration in G+(k, n) is something like a

‘polytope’ in G(k, n). By this we mean that the inclusions induced by ∂ (viewed as

a strong Bruhat covering relation) define an Eulerian poset—the key combinatorial

property of the poset of faces of an ordinary polytope.

We will not prove that ∂ defines an Eulerian poset (this was proven in [104]), but

let us at least demonstrate that ∂2 = 0 (mod 2)—which is of course a prerequisite

for ∂ to actually have the meaning of a homological ‘boundary’ operator. It turns

out that every configuration in ∂2(C) is found as the boundary of precisely two con-

figurations in ∂(C) (a fact which follows trivially from the more complete statement

that ∂ defines an Eulerian poset). This is not hard to prove, and it trivially implies

that ∂2 = 0 (mod 2). To see this, notice that each configuration in ∂[Cσ] is labeled

by σ′ related to σ by a transposition. It is easy to see that the pair of transpositions

must involve at least three distinct labels. If the pair involved four labels, say (a b)

and (c d), then obviously the two transpositions can be taken in either order. When

the pair involves three labels, say {a b c}, then there are only four possible scenarios

to check:
(a b)◦(a c) ≃ (b c)◦(a b) (a b)◦(b c) ≃ (b c)◦(a c)

(a b)◦(b c) ≃ (a c)◦(a b) (a c)◦(b c) ≃ (b c)◦(a b)
; (6.5)

the first of these, for example, can be understood graphically in terms of hooks as,

A more immediate, but somewhat indirect proof of this fact follows from the

association of each permutation σ with a reduced, on-shell graph. Recall that the

graphs in the boundary of an on-shell graph labeled by σ are those for which one

edge has been removed. Because each pair of left-right paths a→σ(a) and b→σ(b)

cross on at most one edge of any reduced graph (if the edge is removable), it is clear

that graphs in ∂2 are those obtained by removing a pair of edges. As such, the pair

of edges can be removed in any order, proving that there are two paths from any

graph to each graph in ∂2.
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(We should mention briefly that it remains an open and important problem to

refine the definition of ∂ so that elements in ∂(C) are decorated with signs ±1 such

that ∂2 = 0 directly—not merely modulo 2.)

As mentioned above, an amazing feature of the positroid stratification is that

the combinatorial structure of the inclusions induced by ∂ have the property that

every positroid configuration defines an Eulerian poset—a combinatorial polytope.

Because of this, we can loosely view each positroid configuration as a region of

G(k, n) with essentially the topology of an open ball—even though such a picture is

only strictly known to be valid for relatively simple cases such as G(2, n).

In the case of the positroid G+(2, 4), the polytope is relatively easy to visualize.

The four-dimensional top-cell has four, three-dimensional boundary configurations;

and the boundaries of these cells collectively involve ten two-dimensional configura-

tions, etc. Starting with the generic configuration in G+(2, 4), we find the boundaries

defined by ∂ given as follows [105]:

Although it is hard to draw the complete four-dimensional polytope, its four

three-dimensional faces each define square-pyramidal regions ofG(2, 4). For example,

the polytope corresponding to the configuration (1)(2 3)(4)
• • • of G(2, 4) labeled by the

permutation {4, 3, 5, 6} is arranged as follows:
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6.4 Approaching Boundaries in Canonical Coordinates

Recall that the singularities of an on-shell differential form associated with an on-

shell diagram are simply the residues of its poles. When written in terms of canon-

ical coordinates on the Grassmannian as described above (see equation (6.1)), it

is tempting to identify the manifestly-logarithmic singularities in the measure with

configurations in the ‘boundary’. But there are two important points which make

such a correspondence a bit more delicate than it may appear at first-glance:

1. the coordinate chart ~α used to cover Cσ may degenerate when some αi→0

—such a degeneration would be signaled by the appearance of additional sin-

gularities in the Jacobian arising from the δ-functions in (6.1);

2. no single coordinate chart ~α covers all of the boundaries of Cσ.

We can illustrate both points by considering a simple example. Recall from equation

(5.15) the BCFW-bridge coordinates generated for the graph labeled by {4, 6, 5, 7, 8, 9}:

(6.6)

Because the BCFW coordinates ~α correspond to edge-variables, sending any αi→0

will have the effect of deleting the corresponding edge from the graph. The first

subtlety mentioned above is reflected in the fact that some edge-variables—here,

{α1, α2, α3, α6}—are attached to irremovable edges; the second subtlety is reflected

in the fact that three of the seven removable edges—colored orange in the figure—

are not dressed with edge-variables. Of course, if we introduce additional GL(1)-

redundancies at each vertex as we did in section 4.5, every removable edge could

be dressed by a variable whose vanishing would give the corresponding boundary;

this would make all the boundaries accessible, but at the cost of introducing vast

redundancy.

A surprising fact—not very difficult to prove—is that all the boundaries of any

cell C∈G+(k, n) can be found at the zero-locus of single-coordinates in at least one

chart from an atlas composed only of those charts generated by the BCFW-bridge

construction (see section 3.2) in all its n cyclic manifestations (taking each of the n

labels as the cyclic ‘starting-point’ for the decomposition). To be clear, this claim

only applies for the specific scheme described in section 3.2 used to decompose a

permutation into adjacent transpositions—no other scheme is known to have this

remarkable property.
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7. The Invariant Top-Form and the Positroid Stratification

We have seen that, associated with any d-dimensional cell of the positive Grassman-

nian, there is a natural associated form. In any of our natural coordinate charts, this

d-form is just the “dlog” measure,

dα1

α1

∧ · · · ∧
dαd

αd

, (7.1)

which is a special case of a more general cluster volume discussed in section 15. This

form makes it obvious that boundary configurations are associated with residues for

some αi = 0. It is also clear that we can view all cells C ∈ G+(k, n) as iterated

residues of the top-form Ωtop on a generic configuration C∈G+(k, n).

A natural question is whether this top-form Ωtop can be written directly in terms

of the ‘matrix-coordinates’ cαa of C. In terms of matrix-coordinates C ≡ cαa, the

desired measure G(k, n) would have the form,

Ω =
dk×nC

vol(GL(k))

1

f(C)
, (7.2)

where f(C) must be a function of the minors of C, and must scale uniformly as

f(tC) = tk×nf(C). Moreover, because the top-cell G+(k, n) always has precisely n

co-dimension one boundaries—corresponding to any k consecutive columns becoming

linearly-dependent—it is clear that f(C) must have at least the n cyclic-minors as

factors:
f(C) = (1 · · · k) · · · (n · · · k 1)f ′(C). (7.3)

Because the product of the cyclic minors scale as f(C) must, f ′(C) must be scale-

invariant: f ′(tC) = f ′(C). And so, f ′(C) can at most involve ratios of minors.

However, any non-consecutive minors appearing as factors in f ′(C) would generate

new, unwanted singularities for the top-cell–poles corresponding to co-dimension one

boundaries not in the positroid stratification—and any consecutive minors in f ′(C)

would make a double-pole, spoiling the logarithmic singularities corresponding to

one of the necessary boundary configurations. Therefore, we are forced to conclude

that the only choice is to take f ′(C)→1. This means that the only viable ansatz for

a measure on G(k, n) with the desired properties is:

Ω =
dk×nC

vol(GL(k))

1

(1 · · · k) · · · (n · · · k 1)
. (7.4)

This strikingly-simple form was first encountered in connection with “leading

singularities” in reference [14].

It is not hard to see the plausibility of a guess that Ω = Ωtop. We have just es-

tablished that the poles of Ω and Ωtop are the same, and furthermore Ω does not have

any zeroes on the Grassmannian. Thus Ωtop/Ω is a function of the Grassmannian

with no poles, and any such function must be a constant. So, we have

dk×nC

vol(GL(k))

1

(1 · · · k) · · · (n · · · k 1)
=

dα1

α1

∧ · · · ∧
dαk(n−k)

αk(n−k)

. (7.5)
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This representation of the top form will be crucial for most transparently seeing the

dual conformal symmetry and Yangian invariance of the theory.

We will momentarily prove that Ω = Ωtop by direct computation as well, but let

us first step-back and observe some remarkable properties of Ω. It is rather surprising

that a form as simple as (7.4)—which has only n poles!—should be able to capture all

of the intricate and beautiful structure of the positive Grassmannian in its iterated

singularities. The reason why this isn’t obviously impossible is that each of these n

factors are generally kth-degree polynomials in the variables cαa, and whenever one

such minor vanishes, other minors typically factorize, exposing further singularities

and more structure below.

Let us consider an example which illustrates how the iterated factorizations of

the consecutive minors exposes all the cells in the positroid stratification. Consider

the top-cell of G(3, 6),

⇔ d3×6C

vol(GL(3))

1

(123)(234)(345)(456)(561)(612)
. (7.6)

Upon restricting this form to the residue where (234)→0, the configuration becomes:

(7.7)

Now, as described in section 5, this configuration contains 7 boundary configurations.

How are we to see seven logarithmic singularities arising from the five remaining cyclic

minors of (7.6)? The answer is simple: let us parameterize the pole (234)→ 0 by

sending c3→β3 2c2 + β3 4c4, under which the minors (123) and (345) each factorize:
1

(123)(234)(345)(456)(561)(612)

(234)→0
−−−−−−−−−→via
c3=β3 2c2+β3 4c4

1

β3 4(124)︸ ︷︷ ︸
(123)

β3 2(245)︸ ︷︷ ︸
(345)

(456)(561)(612)
,

exposing all seven of the boundary configurations! To further illustrate this point,

let us now take a residue of this measure about the configuration setting (561)→0,

by setting c6 7→β6 5c5+β6 1c1; as before, this leads to the factorization of minors (456)

and (612), leaving us with,
1

β3 4(124)β3 2(245)(456)(561)(612)

(561)→0
−−−−−−−−−→via
c6=β6 5c5+β6 1c1

1

β3 4(124)β3 2(245) β6 1(461)︸ ︷︷ ︸
(456)

β6 5(512)︸ ︷︷ ︸
(612)

,

which shows that this configuration has eight further boundary configurations. Pro-

ceeding in this way we can reconstruct all the cells of G+(3, 6).
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7.1 Proving Equivalence with the Canonical Positroid Measure

In section 5.4 we showed that we can construct canonical coordinates for the top-cell

of G+(k, n) recursively by first introducing coordinates

C(1,n) ≡
(
β1,1 β1,2 · · · β1,n−1 β1,n

)
, (7.8)

for G(1, n), and then building-up coordinates for any G(k, n) recursively via:

C(k,n) ≡

(
βk,1ĉ

(k,n)
1 · · · βk,n−1ĉ

(k,n)
n−1 0

βk,1 · · · βk,n−1 βk,n

)
with ĉ (k,n)a ≡

n∑

j=(a+1)

c
(k−1,n)
j . (7.9)

Recall that these coordinates match those obtained by the BCFW bridge construction

upon the trivial relabeling:

αd αd−2 · · · · · · · · · · · · αℓ · · · · · · αk(k−1)/2+1

αd−1 . .
.

. .
.

. .
.

. .
. αℓ+1 . .

.
. .
.
. .
. ...... . .

.
. .
.

. .
.

. .
.

. .
.

. .
.
. .
.
. .
.
α2

αd−k(k−1)/2 · · · · · · αℓ+k−1 · · · · · · · · · · · · α3 α1

⇔
β1,k+1 β1,k+2 · · · β1,n−1 β1,n

β2,k+1 β2,k+2 · · · β2,n−1 β2,n
...

...
. . .

...
...

βk,k+1 βk,k+2 · · · βk,n−1 βk,n

and the gauge-choice of setting the first k column-vectors to the identity matrix. The

motivation for relabeling the coordinates in this way is that the BCFW-coordinates

give rise a gauge-fixed parameterization of C(βα,a) of the form,

1

2
...
k




1 2 · · · k k+1 · · · · · · n

1 0 · · · 0 (β1,k+1· · · βk,k+1)+· · · (β1,k+2· · · βk,k+2)+· · · · · · (β1,n· · · βk,n)+· · ·
0 1

. . .
... (β2,k+1· · · βk,k+1)+· · · (β2,k+2· · · βk,k+2)+· · · · · · (β2,n· · · βk,n)+· · ·...

. . .
. . . 0

...
...

. . .
...

0 · · · 0 1 βk,k+1 βk,k+2 · · · βk,n



(7.10)

Here, we have used color to highlight the fact that cα,a ∝ βα,a(βα+1,a · · · βk,a)+ . . .,

and that only this factor contributes to the Jacobian in going from coordinates cα,a
to coordinates βα,a. In particular, it is easy to see that the entire Jacobian from this

change of variables is simply,

J ≡

∣∣∣∣
dcα,a
dβα,a

∣∣∣∣ =
∏

α,a

(
βα,a

)α−1
. (7.11)

Somewhat less obviously, the cyclic minors are all simply expressed in these coordi-

nates: each is the product of all the highlighted βα,a in the lower-right triangle of the

corresponding sub-matrix of (7.10):

(ℓ · · · ℓ+k 1) =
k∏

α=1

(
α∏

a=1

βα,(k+ℓ−a)

)

⇔

∣∣∣∣∣∣∣∣∣

β1,ℓ · · · · · · β1,ℓ+k−1
... . .

.
β2,ℓ+k−2 β2,ℓ+k−1

... . .
. ...

...
βk,ℓ · · · βk,ℓ+k−2 βk,ℓ+k−1

∣∣∣∣∣∣∣∣∣
, (7.12)

where the product of β’s only ranges over relevant columns: k+1 ≤ (k+ ℓ a) ≤ n.

And so, the product of all the consecutive minors is simply,
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(1 · · · k)(2 · · · k+1) · · · (n · · · k 1) =
∏

α,a

(
βα,a

)α
. (7.13)

Therefore, combining the product of all the cyclic minors with the necessary

Jacobian given in (7.11) we have:

dk×ncα,a
vol(GL(k))

1

(1 · · · k) · · · (n · · · k 1)
=

(∏

α,a

dβα,a

)
J∏

α,a

(
βα,a

)α =
∏

α,a

dβα,a

βα,a

(7.14)

as desired.

Let us briefly consider one concrete example of this equivalence. Consider the
top-cell ofG(3, 6), where the BCFW-bridge construction gives the matrix-representative,

C(α) =



1 0 0 α9α8α6 α7α5α3+α3α9(α5+α8) α4α2α1+α1 (α7(α2+α5)+α9(α2+α5+α8))

0 1 0 α8α6 α5α3 α3α8 α2α1 α1 (α5 + α8)

0 0 1 α6 α3 α1


 ,

which, upon relabeling the variables according to,

α9 α7 α4

α8 α5 α2

α6 α3 α1

⇒
β1,4 β1,5 β1,6

β2,4 β2,5 β2,6

β3,4 β3,5 β3,6

, (7.15)

becomes,

C(β) =



1 0 0 β1,4β2,4β3,4 β1,5β2,5β3,5+ . . . β1,6β2,6β3,6+ . . .

0 1 0 β2,4β3,4 β2,5β3,5 . . . β2,6β3,6 . . .

0 0 1 β3,4 β3,5 β3,6


 . (7.16)

It is easy to see that the cyclic minors are given by,

(1 2 3)= 1 (4 5 6)=β1,6 β2,5 β2,6 β3,4 β3,5 β3,6

(2 3 4)= β1,4 β2,4 β3,4 (5 6 1)= β2,6 β3,5 β3,6

(3 4 5)=β1,5 β2,4 β2,5 β3,4 β3,5 (6 1 2)= β3,6

(7.17)

so that their product gives,

(1 2 3) · · · (6 1 2) =
(
β1,4 β1,5 β1,6

)1 (
β2,4 β2,5 β2,6

)2 (
β3,4 β3,5 β3,6

)3
; (7.18)

and the Jacobian of going from cα,a to βα,a is easily seen to be,

J ≡

∣∣∣∣
dcα,a
dβα,a

∣∣∣∣ =
(
β1,4 β1,5 β1,6

)0 (
β2,4 β2,5 β2,6

)1 (
β3,4 β3,5 β3,6

)2
, (7.19)

so that

d3×6C

vol(GL(3))

1

(1 2 3)(2 3 4)(3 4 5)(4 5 6)(5 6 1)(6 1 2)
=
∏

α,a

dβα,a

βα,a

. (7.20)
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8. (Super) Conformal and Dual Conformal Invariance

In this section, we will describe how the Grassmannian formulation of on-shell dia-

grams makes all the symmetries of the theory—both the super-conformal and dual

super-conformal symmetries—completely manifest. Along the way, we will find it

useful to recast the on-shell differential form’s dependence on external kinemati-

cal data in a way which more transparently reflects the geometry of momentum-

conservation; doing so, we will discover a correspondence between (some) cells C ∈

G(k, n) with cells Ĉ∈G(k 2, n).

8.1 The Grassmannian Geometry of Momentum Conservation

Consider an arbitrary on-shell graph associated with the cell Γσ∈G(k, n) labeled by

the permutation σ associated with an on-shell differential form f
(k)
σ (1, . . . , n). Using

any of the canonical coordinates for the cell C(α1, . . . , αd) ⊂ Γσ∈G(k, n), this form

is given by:

f (k)
σ =

∫
dα1

α1

∧ · · · ∧
dαd

αd

δk×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
δ2×(n−k)

(
λ·C⊥

)
. (8.1)

As we saw in section 7, this can also be written as a residue of the top-form,

f (k)
σ =

∮

C⊂Γσ

dk×nC

vol(GL(k))

δk×4
(
C ·η̃

)

(1 · · · k) · · · (n · · · k 1)
δk×2

(
C ·λ̃

)
δ2×(n−k)

(
λ·C⊥

)
. (8.2)

Recall from section 4, the (ordinary) δ-functions in (8.2) have the geometric

interpretation of constraining the k-plane C to be orthogonal to the 2-plane λ̃ and

to contain the 2-plane λ, [14]:

(8.3)

Because λ̃ ⊂ λ⊥, 4 of the 2n(= 2(n k)+2k) constraints always represent momentum-

conservation, leaving (2n 4) constraints imposed on C in general. Therefore, cells

of G(k, n) with precisely (2n 4) degrees of freedom can be fully-localized by these

constraints, and become ordinary super-functions of the external momenta; cells

of lower dimension become functions with δ-function support, and cells of higher

dimension represent integration measures on auxiliary, internal degrees of freedom

(which may represent, for example, the degrees of freedom of internal loop-momenta).

The simplest example illustrating this localization is for k = 2. Here the 2-plane

C is just identified with the λ-plane, and equation (8.2) directly becomes the familiar

Parke-Taylor formula for tree-level MHV super-amplitudes, [65, 106]:
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A(2)
n =

∫
d2×nC

vol(GL(2))

δ2×4
(
C ·η̃

)

(12)(23) · · · (n1)
δ2×2

(
C ·λ̃

)
δ2×(n−2)

(
λ·C⊥

)
,

=
δ2×4

(
λ·η̃
)

〈1 2〉〈2 3〉 · · · 〈n 1〉
δ2×2

(
λ·λ̃
)
.

(8.4)

Let us look at a less trivial example of how this localization works for k > 2.

One of the on-shell diagrams contributing to the 6-particle k = 3 tree-amplitude is

(see section 16),

, (8.5)

which is labeled by the permutation {3, 5, 6, 7, 8, 10}. It is easy to see that (a GL(3)-

representative of) the point C∗ in this positroid cell which satisfies the kinematical

constraints is:

C∗ =




λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [5 6] [6 4] [4 5]


 , (8.6)

where [a b] ≡ det{λ̃a, λ̃b} is a minor of the matrix λ̃. (Notice that C∗·λ̃ = 0 because

λ·λ̃ = 0, and the third-row dotted-into λ̃ gives an instance of (4.4).) Supported at

this point, (8.2) generates the on-shell super-function,

f
(3)
{3,5,6,7,8,10}=

δ3×4(C∗· η̃) δ2×2
(
λ·λ̃
)

〈2 3〉[5 6]︸ ︷︷ ︸
(234)|C∗

(〈3 4〉[6 4]+〈5 3〉[5 6])︸ ︷︷ ︸
(345)|C∗

s4 5 6︸ ︷︷ ︸
(456)|C∗

(〈6 1〉[6 4]+〈1 5〉[4 5])︸ ︷︷ ︸
(561)|C∗

〈1 2〉[4 5]︸ ︷︷ ︸
(612)|C∗

,(8.7)

where

s456 ≡ (p4 + p5 + p6)
2 = 〈4 5〉[4 5] + 〈4 6〉[4 6] + 〈5 6〉[5 6].

The particular GL(3)-representative of C∗ given in (8.6) was chosen so that the Jaco-

bian from all the δ-functions is 1, making the residue of (8.2) about the pole (123) = 0

easy to read-off from C∗. Let us briefly mention that (8.7) makes super momentum-

conservation manifest: in addition to the obvious δ2×2
(
λ·λ̃
)
in (8.7), the (fermionic)

δ-functions δ3×4
(
C∗· η̃

)
includes the factor δ2×4

(
λ · η̃

)
—the supersymmetric-extension

of ordinary momentum conservation.

8.2 Twistor Space and the Super-Conformal Invariance of On-Shell Forms

In order to see the conformal symmetry of any theory, it is often wise to use twistor

variables, [107–111]. Not surprisingly then, it is twistor space—not momentum-

space—which gives us the simplest basis in which to describe scattering amplitudes

conformally. Formally, we go to twistor space by assuming that λ, λ̃ are independent,
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real variables, and then Fourier-transform with respect to either the λ or λ̃ variables,

[66]. It is not hard to see how this Fourier transform makes the action of conformal

transformations particularly transparent. Working with spinor-helicity variables, the

generators of translations, Pαβ̇, Lorentz transformations, Jαβ and J α̇β̇, dilatations D,

and special conformal transformations, Kαβ̇, all look very different:

Pαβ̇ = λαλ̃β̇, Jαβ =
i

2

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
, and Kαβ̇ =

∂2

∂λα∂λ̃β̇
. (8.8)

(J is defined analogously to J .) However, if we Fourier-transforms with respect

to each of the λ’s, say, using
∫
d2×nλ eiλ·µ̃, denoting the (2×n)-matrix of conjugate

variables by µ̃, the generators (8.8) become, (see [66] for a detailed discussion):

Pα̇β̇ = iλ̃α̇
∂

∂µ̃β̇
, Jα̇β̇ =

i

2

(
µ̃α̇

∂

∂µ̃β̇
+ µ̃β̇

∂

∂µ̃α̇

)
, and Kα̇β̇ = iµ̃α̇

∂

∂λ̃β̇
. (8.9)

These are easy to recognize as the generators of SL(4)-transformations on twistor

variables, denoted wa, which combine λ̃ and µ̃ according to:

wa ≡

(
µ̃a

λ̃a

)
. (8.10)

Very nicely, under the action of the little group, the µ̃’s transform oppositely to

the λ’s so that the twistors transform uniformly like the λ̃’s: wa ∼ t−1
a wa. Thus, we

should view each wa projectively as a point in P3. Furthermore, we can combine these

ordinary variables wa with the anti-commuting η̃’s to form super-twistors Wa, [112],

Wa ≡

(
wa

η̃a

)
, (8.11)

for which the generators of the super-conformal group are simply those of SL(4|4)

—acting in the obvious way as super-linear transformations on the W ’s.

Now, given any of our on-shell forms, the Fourier-transform with respect to the λ

variables is straightforward as the only dependence on λ is in the term δ2×(n−k)
(
λ·C⊥

)
.

It will be useful to re-write this to more directly reflect its geometric origin: the

requirement that the plane C contains λ. This means that there should exist a

linear combination of the k row-vectors of C which exactly match λ. In other words,

if we parameterize such a linear combination by a (2×k)-matrix ρ, we should be able

to find a ρ for which ρ · C = λ. Re-written in terms of this auxiliary matrix ρ, the

constraint that C contains λ becomes,

δ2×(n−k)
(
λ·C⊥

)
=

∫
d2×kρ δ2×n

(
ρ·C − λ

)
, (8.12)

which makes it trivial to Fourier-transform to twistor space:∫
d2×nλ eiλ·µ̃

∫
d2×kρ δ2×n

(
ρ·C − λ

)
=

∫
d2×kρ ei(ρ·C)·µ̃ = δk×2

(
C ·µ̃

)
. (8.13)

Therefore, in twistor space the constraints δk×2
(
C · λ̃) and δ2×(n−k)

(
λ ·C⊥

)
together

with the fermionic δk×4
(
C · η̃

)
combine into the extremely elegant,
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δk×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
δk×2

(
C ·µ̃

)
⇒ δ4k|4k

(
C ·W

)
, (8.14)

which makes the SL(4|4)-invariance of on-shell forms completely manifest. And so,

in twistor space, the general on-shell form, (8.2), is simply,

f (k)
σ =

∮

C⊂Γσ

dk×nC

vol(GL(k))

δ4k|4k
(
C ·W

)

(1 · · · k) · · · (n · · · k 1)
. (8.15)

Note that our brief passage to twistor space was done mostly for formal reasons:

in order to make the super-conformal symmetry of on-shell forms manifest. One

disadvantage of this formalism, however, is that—at first glance—it appears that the

integral over C ∈ Γσ could be localized by all 4k (ordinary) δ-function constraints,

while we know that on-shell forms associated with non-vanishing functions for generic

(momentum-conserving) kinematical data correspond to (2n 4)-dimensional cells

Γσ ∈G(k, n). The mismatch is due to the fact that Fourier-transforming to twistor

space does not produce functions which are non-vanishing for a generic set of twistors.

Instead, we get distributions on twistor space, imposing constraints on the twistor

variables. Indeed, only (2n 4) of the 4k δ-functions in (8.15) can be used to localize

the Grassmannian integral while the remaining impose constraints on the configura-

tion of external twistors.

8.3 Momentum-Twistors and Dual Super-Conformal Invariance

In this subsection, we will review the arguments presented in [16] in order to dis-

cover that on-shell forms are quite surprisingly also invariant under an additional

super-conformal symmetry. This new symmetry, called dual super-conformal invari-

ance, combines with ordinary super-conformal symmetry to generate an infinite-

dimensional symmetry algebra of on-shell forms known as the Yangian, [113–116].

(Dual super-conformal invariance was first noticed in multi-loop perturbative calcu-

lations, [117], and then at strong coupling, [118]; this led to a remarkable connection

between null-polygonal Wilson loops and scattering amplitudes—see e.g. [118–126].)

Let us start by reconsidering the condition that the plane C contains the plane

λ. Because this constraint is ubiquitous for on-shell forms, it is natural to sharpen

our focus to the (k 2) ≡ k̂-plane—denoted Ĉ—which is the projection of C onto the

orthogonal-complement of λ. To be a bit more precise, suppose we have an operator

Q :Cn→Cn with ker(Q) = λ so that,

Q·λ = 0. (8.16)

With such an operator, we may define Ĉ ≡ C ·Q so that Ĉ ·λ = 0 trivially.

Now, super momentum-conservation is of course the statement that the planes

λ̃ and η̃ are both in λ⊥—which is the image of Q. And so we may use Q to express

λ̃ and η̃ in terms of some new, generic variables µ and η according to:

λ̃ ≡ µ·Q and η̃ ≡ η ·Q . (8.17)
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Defined in this way, any unconstrained planes µ and η will automatically define super

momentum-conserving planes λ̃ and η̃.

Let us now consider the constraint that C be orthogonal to the plane λ̃. If Q

were symmetric, then C·λ̃ = Ĉ·µ; and similarly, C·η̃ = Ĉ·η. Putting all this together,

the constraints imposed on the image k̂-plane Ĉ would become simply,

δk̂×2
(
Ĉ ·λ

)
δk̂×2

(
Ĉ ·µ

)
δk̂×4

(
Ĉ ·η

)
⇒ δ4k̂|4k̂

(
Ĉ ·Z

)
, (8.18)

where we have introduced the super momentum-twistors Z, [127], according to:

Za ≡

(
za
ηa

)
with za ≡

(
λa

µa

)
. (8.19)

Geometrically, the δ-functions δk×4
(
Ĉ·Z

)
enforce that the plane Ĉ be orthogonal

to the 4-plane Z:

(8.20)

Notice that these δ-functions are invariant under a new SL(4|4) symmetry, and thus

it appears that we have uncovered a new super-conformal symmetry—one acting on

the super-twistor variables Za. However there is one small catch: the measure of

integration over the k-plane C does not necessarily descend to anything simple over

the k̂-plane Ĉ. Indeed, depending on the choice of the projection operator Q, this

resulting measure may have a complicated λ-dependence arising from the Jacobian

of the change of variables from (λ̃, η̃) to (µ, η), and this dependence on λ may break

the SL(4) conformal symmetry.

But it turns out that for what is perhaps the most natural choice of a projection

operator Q, everything works like magic. To better understand the scope of choices

we could make in specifying Q, observe that such a projector can always be con-

structed via the Cramer’s rule identities—the unique (up to rescaling) (k+1)-term

identity satisfied by generic k-vectors. For a 2-plane λ, Cramer’s rule encodes the

identities:
λa〈b c〉+ λb〈c a〉+ λc〈a b〉 = 0, (8.21)

or equivalently, (if we prefer the identity to transform under the little group like λ̃b),

λa
1

〈a b〉
+ λb

〈c a〉

〈a b〉〈b c〉
+ λc

1

〈b c〉
= 0. (8.22)

If we combine any such n cyclically-related identities, we will obtain a rank-(n 2)-

matrix Q which projects onto λ⊥. In order for Q to be symmetric as a matrix (which

was necessary for C ·λ̃ to be identified with Ĉ ·µ), we must have λa and λc equally-

spaced about λb in (8.22). Of course, the most obvious and natural choice (and the

only one which generates the magic we seek) would be to use the consecutive 3-term

identities:
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Qab ≡
δa−1 b〈a a+1〉+ δa b〈a+1 a 1〉+ δa+1 b〈a 1 a〉

〈a 1 a〉〈a a+1〉
. (8.23)

For this choice of Q, it turns out that for any plane C containing λ, the plane

Ĉ ≡ C·Q will have the property that for any consecutive chain of columns {ca, . . . , cb},

span{ĉa, . . . , ĉb} ⊂ (span{ca−1, . . . , cb+1}). That is, Q maps consecutive chains of

columns onto consecutive chains of columns! An immediate consequence of this fact

is that consecutive minors of C and Ĉ are proportional to one another:

(1 2 · · · k 1 k)|C = 〈1 2〉〈2 3〉 · · · 〈k 1 k〉 (2 3 · · · k 2 k 1)|Ĉ . (8.24)

Thus, for this choice of Q—up to an overall λ-dependent factor (which combines with

the Jacobian arising from changing variables (λ̃, η̃) to (µ, η))—the top-form measure

on C ∈ G(k, n) given as the product of its consecutive minors, is mapped to the

top-form on Ĉ ∈G(k̂, n) of precisely the same form. And so, Q maps positroid cells

in G(k, n) (which contain a generic 2-plane λ) to positroid cells in G(k̂, n)!

Conveniently, it turns out that the image of any cell C∈G(k, n) in G(k̂, n) is very

easy to identify by its permutation label. Because span{ĉa, . . . , ĉb} ⊂ (span{ca−1, . . . , cb+1}),

we have that r̂[a; b] = r[a 1; b+1] 2; and so, the entire table of ranks, (5.6), is pre-

served in going from C to Ĉ—merely shifted downward and to the right:

r[ ;a σ(a) ] r[ ;a+1 σ(a) ]

r[ ;a σ(a) 1] r[ ;a+1 σ(a) 1]
 

r̂[ ;a+1 σ(a) 1] 2 r̂[ ;a+2 σ(a) 1] 2

r̂[ ;a+1 σ(a) 2] 2 r̂[ ;a+2 σ(a) 2] 2

And so, a configuration Cσ ∈G(k, n) labeled by the permutation σ will be mapped

to a configuration Ĉσ̂∈G(k̂, n) labeled by the permutation,

σ̂(a) ≡ σ(a− 1)− 1. (8.25)

One last remarkable aspect of this change of variables is that the combination

of all the λ-dependent factors arising from (8.24) when mapping the cyclic minors of

G(k, n) to cyclic minors of G(k̂, n) with the Jacobian of the change of variables from

(λ̃, η̃) to (µ, η) turns out to be nothing but the Parke-Taylor (MHV) tree-amplitude,

(8.4)! And so,

f (k)
σ (λ, λ̃, η̃) =

δ2×4
(
λ·η̃
)
δ2×2

(
λ·λ̃
)

〈1 2〉〈2 3〉 · · · 〈n 1〉
× f

(k̂)
σ̂ (Z) , (8.26)

where,

f
(k̂)
σ̂ (Z) =

∮

Ĉ⊂Γσ̂

dk̂×nĈ

vol(GL(k̂))

δ4k̂|4k̂
(
Ĉ ·Z

)

(1 · · · k̂) · · · (n · · · k̂ 1)
. (8.27)

This should not be too surprising, as the Parke-Taylor amplitude can be thought of

as the most concise differential form consistent with super momentum conservation—

and we know that any generic set of super-momentum-twistors Z give rise to data

(λ̃, η̃) which manifestly conserve super-momentum (This Grassmannian formula in

terms of momentum twistor was introduced in [15]).
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Let us briefly see how the dimensionality of cells Cσ ∈G(k, n) and their images

Ĉσ̂ ∈G(k̂, n) are related. Because the rank of each chain r̂[a+1; σ̂(a+1)] is lowered

by 2 relative to r[a; σ(a)], recalling the way dimensionality is encoded by the permu-

tation, (5.9) we see that:

dim(Ĉσ̂) = dim(Cσ)− 2n+ k2 − (k − 2)2,

= dim(Cσ)− (2n− 4) + 4k̂;

∴ dim(Ĉσ̂)− 4k̂ = dim(Cσ)− (2n− 4).

(8.28)

This is precisely as it should be: generic super momentum-twistors Z give rise to

generic super-momentum conserving spinor-helicity data λ, λ̃, η̃. Thus, the degree of

the form fσ̂ should be dim(Ĉσ̂) minus the 4k̂ ordinary δ-functions which enforce that

Ĉ be orthogonal to the generic 4-plane Z.

We should make one small point regarding the (existence of the) map between

G(k, n) → G(k̂, n): it is only well-defined for cells Cσ which contain a generic 2-

plane λ (a point which is completely obvious from the geometry involved in the

map’s construction). In terms of the permutation σ which labels C ∈G(k, n), the

criterion that C can contain a generic 2-plane λ translates into the statement that

σ(a) a ≥ 2 for all a. This guarantees that the permutation σ̂ is well-defined as an

affine permutation, that is, that σ̂(a) ≥ a. Suppose that instead we had σ(a) = a+1,

then ca ∈ span{ca+1}, and so λ⊂C would require that 〈a a+1〉 = 0. This all makes

perfect sense, of course, because 〈a a+1〉→0 precisely corresponds to a singularity of

the Parke-Taylor amplitude; and the Parke-Taylor amplitude being the Jacobian of

the transformation to momentum-twistor space, any such singularity indicates that

the change of variables is singular.

Let us conclude our discussion by illustrating the map to the ‘momentum-twistor

Grassmannian’ for the example discussed above, (8.7), of the on-shell form associated

with the cell in G(3, 6) labeled by the permutation {3, 5, 6, 7, 8, 10}, (8.5). The

image of this cell in the momentum-twistor Grassmannian G(1, 6) is labeled by σ̂ =

{3, 2, 4, 5, 6, 7}. Since σ̂(2) = 2, we have that ĉ2 = 0. A GL(1)-representative of the

point Ĉ∗ which is orthogonal to the Z-plane in this cell is,

Ĉ∗ ≡
(
〈3 4 5 6〉 0 〈4 5 6 1〉 〈5 6 1 3〉 〈6 1 3 4〉 〈1 3 4 5〉

)
, (8.29)

where 〈a b c d〉 ≡ det{za, zb, zc, zd} is a minor of the matrix Z, and Ĉ∗·Z = 0 because

of the 4-vector manifestation of Cramer’s rule, (4.4). Supported on this point, (8.27)

generates the momentum-twistor super-function,

f
(1)
{3,2,4,5,6,7} =

δ1×4
(
Ĉ∗·η

)

〈3 4 5 6〉︸ ︷︷ ︸
(1)|

Ĉ∗

〈4 5 6 1〉︸ ︷︷ ︸
(3)|

Ĉ∗

〈5 6 1 3〉︸ ︷︷ ︸
(4)|

Ĉ∗

〈6 1 3 4〉︸ ︷︷ ︸
(5)|

Ĉ∗

〈1 3 4 5〉︸ ︷︷ ︸
(6)|

Ĉ∗

. (8.30)

And so, including the Parke-Taylor Jacobian, (8.26), we have:

f
(3)
{3,5,6,7,8,10}=

δ2×4
(
λ·η̃
)
δ2×2

(
λ·λ̃
)

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉

δ1×4
(
Ĉ∗·η

)

〈3 4 5 6〉〈4 5 6 1〉〈5 6 1 3〉〈6 1 3 4〉〈1 3 4 5〉
. (8.31)
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9. Positive Diffeomorphisms and Yangian Invariance

We have seen that the map from twistor space to momentum-twistor space has a

natural origin, providing an obvious geometric basis for dual conformal invariance.

Let us now consider another obvious symmetry of the positive Grassmannian—

namely, diffeomorphisms of Grassmannian coordinates which preserve the structure

of the positroid stratification (equivalently, diffeomorphisms which leave measure on

G+(k, n) invariant). Preserving the positive structure of the Grassmannian, we call

this subset of diffeomorphisms positive diffeomorphisms. In this section, we illustrate

the remarkable fact that the leading generators of infinitesimal positive diffeomor-

phisms directly match the level-one generators of the Yangian as described in [114]

(see also [113,115,116,128]).

Let us begin by broadly characterizing the infinitesimal diffeomorphisms in which

we are interested. Consider any infinitesimal variation δC of C∈G+(k, n) which we

may expand qualitatively as a power-series,

δC ∼ C + CC + CCC + · · · . (9.1)

We view a general infinitesimal diffeomorphism of C in terms of the variations δcαa

for each matrix component of C. Because positive diffeomorphisms must preserve all

positroid configurations, δcαa must vanish whenever ca does; this restricts the class

of diffeomorphisms to those of the form,

δcαa =
(
Ωa[C]

)β
α
cβ a (no summation on a), (9.2)

where each Ωa[C] is itself expanded as a power-series in the components of C. Con-

sidering Ωa[C] as a (k×k)-matrix, we may simplify our notation by writing:

δca =
(
Ωa[C]

)
·ca. (9.3)

Note that any variation where Ω is proportional to the identity matrix is just

an un-interesting (C-dependent) little group transformation. Note also that this

variation takes the form of a different GL(k) transformation on each column. We

can always use the global GL(k)-symmetry to bring the variation of any one column,

say c1, to zero:
δc1 = 0. (9.4)

(And without loss of generality, we can always take c1 to be a non-vanishing column.)

Let us now determine what conditions must be imposed on Ωa[C] in order to

ensure that the variations δca preserve all positroid configurations. We will now

demonstrate that there are no non-trivial variations to leading order in C, and that

the first non-trivial positive diffeomorphisms—those quadratic in C—precisely cor-

respond to the level-one generators of the Yangian as described in reference [114].

To leading order, each Ωa is a C-independent (k× k)-matrix. Consider any

configuration for which c1∝c2, and let us use theGL(k)-symmetry to fix the variation

of c1 to zero. It is not hard to see that the only variation of c2 which preserves the
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configuration in question would be the rescaling δc2 = t c2. This variation can be

fully compensated by a little group rescaling, allowing us to conclude that no non-

trivial variation of c2 is positive. Repeating this argument by starting with c2 instead

of c1, and so on, we therefore see that the only positive leading-order diffeomorphisms

are overall GL(k)-transformations and little group rescalings.

Non-trivial positive diffeomorphisms first arise at quadratic-order—when Ωa[C]

is linear in the components of C. Let us again consider any configuration for which

c1∝c2, and use the GL(k)-symmetry to fix the variation of c1 to zero. Because pos-

itive diffeomorphisms must preserve r[a; b] ≡ rank{ca, . . . , cb} generally—and r[1; 2]

in particular—it is clear that the only allowed variations would be of the form,

δc2 = (c1ω
β
1 )cβ 2 ≡ c1(ω1 ·c2). (9.5)

We ignore any variation quadratic in c2 as it represents a little group rescaling. Here,

ωβ
1 is an arbitrary k-vector parameterizing the variation. Notice that (9.5) is just a

simple GL(k)-transformation of column c2 by the matrix Mβ
α ≡ (cα 1ω

β
1 ). Applying

the inverse of this transformation to all columns would of course trivialize δc2 → 0,

allowing us to repeat the same logic to fix the most general form of δc3, and so

on. Continuing in this manner and then undoing each step’s GL(k)-transformation

so that we restore δc1 = 0, the most general quadratic, positive diffeomorphism

consistent with positivity would be of the form:

δc1 = 0;

δc2 = c1(ω1 ·c2);

δc3 = c1(ω1 ·c3) + c2(ω2 ·c3);
...

δcn = c1(ω1 · cn) + · · ·+ cn−1(ωn−1 ·cn);

(9.6)

which we may summarize:

δca =
∑

b<a

cb(ω
β
b cβ a). (9.7)

We fixed the form of this transformation by demanding that the cells where c1 ∝ c2
are left invariant, but quite nicely, we can see that this transformation leaves all

cells invariant! Note that r[1; a] ≡ rank{c1, . . . , ca} is unchanged for all a, as the

variations in (9.6) transform each ca by factors proportional to columns which are

always (trivially) spanned by the un-deformed chains. And so, (9.7) preserves all

r[1; b]—the entire first column of the table (5.6).

In order for the diffeomorphisms (9.7) to be positive, however, they must preserve

the ranks r[a; b] for all chains of columns; and so, we must find the subset which are

independent of our choice to single-out δc1. These can be found by continuing the

sequence of successive variations in (9.6) back to δc1, and requiring that this be

consistent with our choice to fix δc1 = 0:

δc1 = c1(ω1 · c1) + · · ·+ cn(ωn ·c1) =
( n∑

b=1

cbω
β
b

)
cβ 1 = 0. (9.8)
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Because this must be satisfied for all configurations in G+(k, n), this must be in-

dependent of cβ 1. And so, the condition that ensures that (9.7) is positive is that,

n∑

b=1

cbω
β
b = 0. (9.9)

This is simply the geometric statement that ωβ
a ⊂C⊥ (for each index β separately).

We have therefore constructed the most general set of infinitesimal, quadratic diffeo-

morphisms which preserve all cells in the positroid stratification of G(k, n).

Recall that kinematical data—specified, say, in terms of super-twistor variables

W—is communicated to the Grassmannian via the constraint δ4k|4k
(
C ·W

)
. This

means that any symmetry-transformation acting on the W ’s can be recast as a

transformation on the configuration C. In reference [114], it was shown that the level-

one generators of the Yangian can be translated in this way to become symmetry

generators acting on the matrix C by the operator:

Q ≡
n∑

a=1

Qa with Qa ≡
(∑

b<a

cα bW
I
b (ξ

β
I cβ a)

) ∂

∂cαa

, (9.10)

which is easily seen to generate diffeomorphisms of the form,

δca =
∑

b<a

cbw
I
b (ξ

β
I cβ a), (9.11)

which we immediately recognize as nothing but the leading positive diffeomorphisms

(9.7), where wβ
b has been re-written as

wβ
b ≡ wI

bξ
β
I , (9.12)

for some (arbitrary) (4×k)-matrix ξβI . Moreover, the condition on admissible vari-

ations, (9.9), is immediately seen to be precisely what is enforced by the constraint

δ4k|4k
(
C ·W

)
—which is imposed for all on-shell differential forms.
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10. Combinatorics of Kinematical Support for On-Shell Forms

On-shell graphs with the right number of degrees of freedom to be completely lo-

calized for generic, (super-)momentum conserving kinematical data are obviously

of particular interest. In momentum space, this requires that a configuration C

associated with an on-shell graph admits solutions to both the constraint that it

contains a generic 2-plane λ∈G(2, n), and is contained within the geometric-dual

of another 2-plane λ̃∈G(2, n) satisfying λ · λ̃ = 0. In terms of the permutation σ

associated with an on-shell graph, these constraints minimally require that for any

a, (a+2) ≤ σ(a) ≤ (a+n 2). (Recall that the condition that σ(a) ≥ (a+2) is nec-

essary for a configuration in G(k+2, n) to even have a momentum-twistor dual in

G(k, n).) However, not all configurations which meet these conditions admit solu-

tions to the combined constraints.

In this section, we will describe a purely-combinatorial solution to the question

of whether or not an on-shell graph vanishes for generic kinematical data; and if so,

how many solutions to the kinematical constraints exist. This turns out to be much

simpler to do for the momentum-twistor Grassmannian rather than for configurations

directly associated with on-shell graphs. This is partly because the kinematical

constraints are much simpler for momentum-twistors than for the λ’s and λ̃’s.

Recall that when kinematical data is specified by momentum-twistors, Z∈G(4, n),

the configuration Cσ∈G(k+2, n) directly associated with an NkMHV on-shell graph

is mapped to its momentum-twistor image Cσ 7→ Cσ ∈G(k, n), and the kinematical

constraints become the simpler condition that C·Z = 0. This imposes 4k constraints

in general, and so we are most interested in 4k-dimensional cells of G(k, n), as these

can be completely isolated by generic kinematical data. In terms of the orthogonal

complement Z⊥ of the twistors Z, the number of solutions to C·Z = 0 is counted by

the number of isolated points in C
⋂
Z⊥.

As with any intersection-number problem in algebraic geometry, the solution

can be found by decomposing both C and Z⊥ into a homological basis for which the

intersection numbers are known, such as Schubert cycles whose intersection numbers

are given by the Littlewood-Richardson rule (see [84]). The decomposition of (the

closure of) an arbitrary positroid cell into Schubert cycles was recently presented in

ref. [39], and this provides us with a purely-combinatorial answer to the ‘number

of intersections’ question in which we are interested. And it turns out that for the

special case of generic kinematical data, the machinery of [39] simplifies considerably.

(We are thankful to Thomas Lam and David Speyer for helpful discussions regarding

this specialization of the general case.)

A complete discussion of this story would require more space than warranted

here; but let us briefly describe the ultimate, combinatorial solution to the question

of kinematical support. The first step is to generalize our discussion slightly, and

consider kinematical data specified for any number of dimensions:
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Definition: For any (m×k)-dimensional cell C ∈G+(k, n), let Γm(C ) denote the

number of isolated points in C
⋂
Z⊥ for a generic m-plane Z∈G(m,n).

The basic strategy is to define a distinguished subset [∂k](C) of kth-degree bound-

ary elements of C which contain non-overlapping subsets of the intersection points as

projected to these boundaries, such that each element C ′ ∈ [∂k](C) contains precisely

Γm−1(C ′) points. If this can be done, then Γm(C) will be determined recursively by,

Γm(C) =
∑

C′∈[∂k](C )

Γm−1(C ′) with Γ0(C) ≡ 1. (10.1)

The magic, then, is entirely in the definition of the distinguished boundary elements

[∂k](C). Before we describe these in general, however, it may be helpful to build

some intuition with two (very) simple cases for which (10.1) is easy to understand.

10.1 Kinematical Support of NMHV Yangian-Invariants

Although perhaps a bit trivial, it is worth noting that Γm(C) = 1 for all m-

dimensional configurations in G(1, n)—those relevant to NMHV amplitudes: given

any generic m-plane Z, there is a unique configuration C∗ ∈ C
⋂
Z⊥ supplied by

Cramer’s rule, (4.4)—the unique (m+1)-term identity satisfied by generic m-vectors.

This is of course obvious; but let us see what it suggests about how we may define

the distinguished boundary elements [∂1](C) which we seek to understand.

Just as Γm(C) = 1 for any m-dimensional configuration in G(1, n), Γm−1(C) = 1

for any (m 1)-dimensional configuration. Therefore, in order for the recursive for-

mula (10.1) to give us the right answer, we need only define [∂1](C) to systemati-

cally choose any one element of the boundary of C. One natural choice would be

the configuration in ∂C which deletes the first non-vanishing column of C—that is,

the boundary for which the maximum image of the configuration’s permutation is

‘raised.’

10.2 Kinematical Support for One-Dimensional Kinematics

Let us now consider the slightly less trivial case of one-dimensional kinematics, where

Z ∈G(1, n) and we are interested in finding Γ1(C) for k-dimensional configurations

in G(k, n). Unlike the situation for k = 1, it is no longer the case that every k-

dimensional configuration admits solutions to C ·Z = 0. The simplest example of

a configuration for which Γ1(C) = 0 occurs for the 2-dimensional configuration in

G(2, 4) labeled by the permutation {2, 3, 5, 8}:

C(α) =

(
1 α1 α2 0

0 0 0 1

)
. (10.2)

Notice that C·Z = 0 implies that z4 = 0, which is obviously not satisfied by a generic

set of (1-dimensional) momentum-twistors. In contrast, consider the configuration

labeled by the permutation {2, 5, 4, 7} represented by,
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C(α) =

(
1 α1 0 0

0 0 1 α2

)
, for which C∗ ≡

(
z2 z1 0 0

0 0 z4 z3

)
(10.3)

is the unique solution to C ·Z = 0.

We can understand that a solution exists in the second case because each row

of the matrix-representative of C has one degree of freedom—reducing each row to

the simple case of k = 1 described above. In the first example, however, no solution

exists because its second row has no degrees of freedom—which can itself be viewed

as a zero-dimensional configuration in G(1, n). Heuristically, then, in order for any

solutions to C ·Z = 0 to exist, there must exist at least one degree of freedom in

every row of any matrix-representative of C.

In terms of the permutation, the existence of a row without any degrees of free-

dom is indicated by any column a such that σ(a) = a+n. And so, a k-dimensional

cell C ∈G(k, n) admits solutions to C ·Z = 0 for a generic 1-plane Z if and only if

σ(a) 6= a+n for all a.

10.3 General Combinatorial Test of Kinematical Support

Combining the lessons learned from the two simple cases above, it is clear that

solutions to C ·Z = 0 exist only if there are in some sensem degrees of freedom in each

row of any matrix-representative of C. A systematic way to test this combinatorially

would be to find boundary elements of C which successively remove one degree of

freedom from each row of C. Let us now describe how such boundary configurations

can be found.

Recall that the lexicographically-first non-vanishing minor A(σ) ≡ (a1, . . . , ak)

of any configuration Cσ is given simply by the images of σ which extend beyond n

(see section 5.1). Because of this, we can always give a matrix-representative of C

in the following, gauge-fixed form:

1

2
...
k




· · · · · · a1 · · · · · · a2 · · · · · · ak · · · · · ·

0 · · · 0 1 ∗ · · · ∗ · · · · · · · · · · · · · · · ∗

0 · · · · · · · · · · · · 0 1 ∗ · · · · · · · · · · · · ∗
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · · · · · · · · · · · · · · · · · · · 0 1 ∗ · · · ∗


 . (10.4)

A boundary-element which removes one degree of freedom from the kth-row of C, for

example, would be any which ‘raises’ ak—that is, if σ(ck) = ak, then a boundary for

which σ′(ck) = a′k > ak. After this, a degree of freedom can be removed from the

(k 1)th row, and so on. Notice, however, that at each stage, A(σ) must be raised: if

A(σ) remained unchanged, then it would not indicate that a degree of freedom from

any particular row had been removed, as we desire.

With this picture serving as motivation, we define the distinguished, kth-degree

boundary-elements of C, [∂k](C), as follows. Let σ be the permutation labeling the

configuration C, and let us define A(σ) ≡ (a1, . . . , ak)—with a1 < a2 < · · · < ak—to

be the images of σ which extend beyond n (the necklace A(1)(σ)). Then [∂k](C) is
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the set of all kth-degree boundaries of C obtained by a sequence of boundaries labeled

by permutations σ
∂
−→ σ(1) ∂

−→ σ(2) ∂
−→ · · ·

∂
−→ σ(k) such that, lexicographically,

A(σ) < A(σ(1)) < A(σ(2)) < · · · < A(σ(k)). (10.5)

That is, if the configuration labeled by σ(ℓ−1) with A(σ(ℓ−1)) = (a1, . . . , ak−ℓ, . . . , ak)

is found at the ℓth successive boundary, we take all σ(ℓ) in its boundary for which

A(σ(ℓ)) = (a1, . . . , a
′
k−ℓ, . . . , ak) with ak−ℓ < a′k−ℓ.

In general, there can be many such elements of [∂k](C), and each can contribute

to Γm(C). Putting all these contributions together, we find the recursive formula

given above:

Γm(C) =
∑

C′∈[∂k](C )

Γm−1(C ′) with Γ0(C) ≡ 1. (10.6)

The utility of this combinatorial test is hard to overstate, as the number of 4k-

dimensional cells in G(k, n) with non-vanishing support become increasingly rare

with large k and n. Cells with Γ4(C) = 0—for which C
⋂
Z⊥ = {}—represent

generally-vanishing functions which do not contribute to identities, for example.

Many of these fail the simple test of (a+2) ≤ σ(a) ≤ (n+a+2), but with increas-

ing frequency, configurations fail to have kinematical support for much more subtle

reasons—demonstrating the value of having a more robust yet simple combinatorial

test available. For example, neither of the following on-shell graphs—in G(4, 8) and

G(5, 10), respectively—have kinematical support:

Γ4(C) = 0

{6,4,9,7,8,10,11,13}

and

Γ4(C) = 0

{8,9,6,7,11,10,14,15,12,13}

Configurations for which Γ4(C) = 1 correspond to manifestly rational functions

of the kinematical data. More generally, however, when Γ4(C) > 1 the isolation of

internal degrees of freedom via δk×4
(
C ·Z

)
results in a (generally) algebraic function

of the external twistors for each isolated solution C∗ ∈ C
⋂
Z⊥—each point giving

us a Yangian-invariant which is individually of some physical interest. However, a

highly non-trivial but general result is that the function obtained by summing-over all

isolated solutions to C ·Z = 0 is always rational. Throughout the rest of this paper,

whenever we speak of ‘the’ function associated with a graph for which Γ4 > 1—for

example, when appearing in a identity (see section 11)—we always implicitly mean

the rational function obtained by summing-over all particular solutions to C ·Z = 0.
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On-shell graphs which admit multiple solutions to the kinematical constraints

are comparatively rare. The first on-shell graph for which more than one solution

exists occurs for G(4, 8) and is well-known to physicists as the ‘four-mass-box’:

(10.7)

The image of this configuration in the momentum-twistor Grassmannian is labeled

by {2, 5, 4, 7, 6, 9, 8, 11}, for which we calculate Γ4(C) = 2 recursively as follows:

Γ4(C) = 2(
1 ∗ ∗ ∗ ∗ ∗ 0 0

0 0 1 ∗ ∗ ∗ ∗ ∗

)

{2,5,4,7,6,9,8,11}

[∂2]
✲





Γ3(C) = 1(
0 1 0 ∗ ∗ ∗ 0 0

0 0 0 1 ∗ ∗ ∗ ∗

)

{1,5,3,7,6,10,8,12}

Γ3(C) = 1(
0 1 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗

)

{1,3,4,7,6,10,8,13}

[∂2]
✲

[∂2]❆
❆
❆
❆❆❯





Γ2(C) = 1(
0 0 0 1 ∗ ∗ 0 0

0 0 0 0 1 ∗ ∗ ∗

)

{1,2,3,7,6,12,8,13}

Γ2(C) = 1(
0 0 1 ∗ 0 ∗ 0 0

0 0 0 0 0 1 ∗ ∗

)

{1,2,4,7,5,11,8,14}

Γ2(C) = 0(
0 0 1 ∗ ∗ ∗ 0 0

0 0 0 0 0 0 1 ∗

)

{1,2,4,5,6,11,8,15}

[∂2]
✲

[∂2]
✲

[∂2]
✲

Γ1(C) = 1(
0 0 0 0 1 ∗ 0 0

0 0 0 0 0 0 1 ∗

)

{1,2,3,4,6,13,8,15}

Γ1(C) = 1(
0 0 0 1 0 ∗ 0 0

0 0 0 0 0 0 1 ∗

)

{1,2,3,6,5,12,8,15}

Γ1(C) = 0(
0 0 0 1 ∗ ∗ 0 0

0 0 0 0 0 0 0 1

)

{1,2,3,5,6,12,7,16}

[∂2]
❅

❅❅❘

[∂2]�
��✒

[∂2]
✲ {}

Γ0(C) = 1(
0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

)

{1,2,3,4,5,14,7,16}

Configurations admitting more than two solutions to C ·Z = 0 are even rarer—

and their rarity increases dramatically with increasing Γ4. Indeed, almost no ex-

amples of Yangian-invariant functions for which Γ4(C) > 2 were even known before

the advent of the tools described in this section. But having the combinatorial test

available allows us to systematically find and classify them. Three striking examples

of on-shell graphs which admit many solutions to the kinematical constraints—for

G(6, 12), G(8, 16), and G(10, 20), respectively—are:

Γ4(C) = 4

{10,8,12,7,11,9,16,14,18,13,17,15}

Γ4(C) = 4

{11, 5 ,16,10,15, 9 ,20,14,

19,13,24,18,23,17,28,22}

Γ4(C) = 34

{15,14, 8 , 7 ,21,20,19,13,12,26,

25,24,18,17,31,30,29,23,22,36}
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11. The Geometric Origin of Identities Among Yangian-Invariants

In this section, we will focus primarily on on-shell differential forms for which the

integral over auxiliary Grassmannian degrees of freedom is fully localized by the

δ-function constraints, without imposing any conditions on the external kinematical

data other than momentum conservation. These are on-shell diagrams with (2n 4)

degrees of freedom or their momentum-twistor images with 4k degrees of freedom,

and for which Γ4(C) > 0; we will refer to such on-shell forms as Yangian-invariants,

and frequently refer to them (improperly) as ‘functions’ of the kinematical variables.

One of the most remarkable and important properties about Yangian-invariants

is that they satisfy many, intricate functional identities. Examples of such identities

have long been known, and are crucial for our understanding of many important

physical properties of scattering amplitudes. Perhaps the simplest and most familiar

examples of such identities come from equating the various implementations of the

BCFW recursion relations, (2.26); for example, for the 6-particle NMHV tree-level

scattering amplitude, the BCFW recursion can alternatively lead to two distinct

formulae depending on which pair of adjacent legs are singled-out by the recursion:

=

{4, 5, 6, 8, 7, 9}

+

{3, 5, 6, 7, 8, 10}

+

{4, 6, 5, 7, 8, 9}

=

{4, 5, 7, 6, 8, 9}

+

{4, 5, 6, 7, 9, 8}

+

{5, 4, 6, 7, 8, 9}

This identity is not easy to prove directly if each term is viewed as a multivariate,

rational ‘function’ of the kinematical data. However, its veracity is crucial to our un-

derstanding of many important properties of the complete amplitude. For example,

although the BCFW-recursion breaks cyclicity by the choice of legs to deform, the

entire amplitude—being cyclically-invariant—must be independent of this choice.

A wide variety of such identities can be generated simply by equating all the myr-

iad BCFW ‘formulae’ obtained by recursing the left- and right-amplitudes appearing

across the BCFW-bridge in all possible ways (at each stage of the recursion). For ex-

ample, for the 8-particle N2MHV tree amplitude, there are many hundreds of ways to

follow the recursion all the way down to a sum of 20 trivalent, on-shell diagrams; this
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multitude of BCFW ‘formulae’ involves a total of 176 distinct Yangian-invariants in

G(4, 8), and equating every pair leads to 74 linearly-independent, 40-term identities

satisfied among them.

Other than the equality of different BCFW formulae, however, few identities

among Yangian-invariants were known until the Grassmannian formulation—the con-

tour integral “Ln,k” was discovered, [14]. But a complete understanding of the range

of possible Yangian-invariants, and a systematic understanding of the relations they

satisfy remained to be understood. In the remainder of this section, we will de-

scribe how all such identities arise homologically in the Grassmannian, and can be

understood in purely geometric (even combinatorial) terms. In section 12, we will

illustrate the power of the combinatorial tools at our disposal, by giving an explicit

classification of all Yangian-invariants and their relations through N4MHV.

11.1 Homological Identities in the Grassmannian

The six-term identity described above which equates the two possible representations

of the 6-particle N(k=1)MHV tree-amplitude turns out to generate all the identities

among NMHV Yangian-invariants. In order to see how this can be, let us first

descend to the somewhat simpler situation which arises in the momentum-twistor

Grassmannian, where NMHV Yangian-invariants correspond to 4-dimensional cells

of G(1, n).

All NMHV Yangian-invariants are essentially equivalent, as any 4-dimensional

configuration in C ∈ G(1, n) involves precisely 5 non-vanishing ‘columns’; and so,

such configurations differ only in which of the 5 columns are involved. In terms of

canonical coordinates, such a configuration would be represented by,

C(α) ≡
( a b c d e

· · · 0 1 0 · · · 0 α1 0 · · · 0 α2 0 · · · 0 α3 0 · · · 0 α4 0 · · ·
)
,

and would be labeled by a permutation,

σ ≡

(
a b c d e
↓ ↓ ↓ ↓ ↓
b c d e a

)
, (11.1)

with σ(j) = j for all other columns. Instead of labeling the configuration by its

permutation, it is tempting to label it instead by its 5 non-vanishing columns—as a

5-bracket, ‘[a b c d e]’. Given any generic momentum-twistors Z ∈G(4, n), there is a

unique point C∗∈C
⋂
Z⊥, which can be represented by the matrix,

C∗ ≡
( a b c d e

· · · 0 〈b c d e〉 0 · · · 0 〈c d e a〉 0 · · · 0 〈d e a b〉 0 · · · 0 〈e a b c〉 0 · · · 0 〈a b c d〉 0 · · ·
)
,

for which it is easy to see that C∗·Z = 0 as an instance of Cramer’s rule, (4.4). This

leads to the general form of the essentially-unique NMHV Yangian-invariant,

[a b c d e]

{b,c,d,e,a}⇔
δ1×4

(
ηa〈b c d e〉+ ηb〈c d e a〉+ ηc〈d e a b〉+ ηd〈e a b c〉+ ηe〈a b c d〉

)

〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉〈a b c d〉
.(11.2)

– 86 –



(Notice that the 5-bracket [a b c d e] as we have defined it is antisymmetric with re-

spect to its arguments. This reflects the fact that the measure dlog(α1) ∧ · · · ∧ dlog(α4)

is oriented. This 5-bracket is the simplest dual super-conformal invariant and was

first found in the literature in [129] in momentum space).

If we considered instead a 5-dimensional configuration in G(1, n), then the con-

straint δ1×4
(
C ·Z

)
would fix only four of the internal degrees of freedom, leaving us

with a 1-dimensional integral over G(1, n). In this case, Cauchy’s theorem informs

us that the sum of all the residues of this one-form will vanish. As each of these

residues is itself a 4-dimensional configuration of the form above (11.2), this gives

rise to an identity among 5-brackets. Motivated by the notation used above, let us

denote a generic 5-dimensional configuration in G(1, n) by the 6-bracket [a b c d e f ];

then we find,

∂[a b c d e f ]

{b,c,d,e,f,a}

= [a b c d e]

{b,c,d,e,a ,f }

− [a b c d f ]

{b,c,d,f ,e ,a}

+ [a b c e f ]

{b,c,e ,d ,f,a}

− [a b d e f ]

{b,d ,c,e,f,a}

+ [a c d e f ]

{c,b,d,e,f,a}

− [b c d e f ]

{a ,c,d,e,f,b}

= 0.

(Here, the signs are important: they reflect the fact that our formula for the 5-bracket

(11.2) corresponds to a particular orientation of the 4-dimensional cells; and so, when

taking the boundary of [a b c d e f ] we must re-order the coordinates for each bound-

ary cell accordingly—at the cost of introducing signs. Notice that the alternating

signs here precisely capture the equality between two three-term, all-plus formulae

as generated by equating BCFW formulae as described above.)

Notice that this 6-term identity precisely reproduces the identity among 6-

particle NMHV Yangian invariants generated by equating BCFW recursion schemes.

More importantly, however, because we understand that all NMHVYangian-invariants

are of the same basic form, the identity given above captures all the identities satisfied

among NMHV Yangian-invariants.

The essential point in the example above is that if we consider a configuration

C ∈G(k, n) whose boundary includes those associated with Yangian-invariant ‘func-

tions’, then the δ-function constraints will localize the Grassmannian integral to a

1-dimensional integral, allowing us to use Cauchy’s theorem to conclude that the

sum of all the residues in the boundary will vanish; equivalently, that the combina-

tion of Yangian-invariants along any boundary ∂(C) add to zero. This turns out to

generate all the functional identities satisfied by Yangian-invariants, including many

of impressive complexity.

Recall that the boundary of an on-shell diagram is the collection of diagrams ob-

tained by deleting its removable edges. And so we can find identities among NkMHV

on-shell differential forms by taking the boundary of any (2n 3)-dimensional cell in

G(k+2, n) for ordinary kinematical data, or any (4k+1)-dimensional cell of G(k, n)

for momentum-twistor kinematical data. One example of an identity found in this

way generates an identity among 8-particle N2MHV Yangian-invariants which is in-

dependent of all those identities found by equating various BCFW formulae, and
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can be understood as a way to represent the ‘four-mass box’ (which generally in-

volves quadratic roots, as Γ4(C) = 2) as a sum of purely-rational Yangian-invariants:

∂

{4,7,6,9,8,10,11,13}

=




{4,7,6,9,8,11,10,13}

−

{4,7,6,9,10,8,11,13}

+

{4,8,6,9,7,10,11,13}

−

{7,4,6,9,8,10,11,13}

+

{3,7,6,9,8,10,12,13}

−

{4,7,6,9,8,10,13,11}

+

{4,7,6,10,8,9,11,13}

−

{4,7,5,9,8,10,11,14}

+

{4,7,9,6,8,10,11,13}




=0.

It is worth noting that we have only included the non-vanishing contributions to this

identity—those graphs for which Γ4 > 0; in addition to the nine graphs above, the

boundary of {4,7,6,9,8,10,11,13} also includes the graphs,

{4,7,8,9,6,10,11,13}

,

{4,5,6,9,8,10,11,15}

,

{4,9,6,7,8,10,11,13}

,

{6,7,4,9,8,10,11,13}

,

which all have Γ4 = 0, and so lead to generally-vanishing functions of the external,

kinematical data and therefore do not contribute to the identity.

Another particularly impressive example of an identity generated in this way is

a 24-term identity among 15-particle N4MHV Yangian-invariants, generated by the

boundary of the 27-dimensional cell,

{9,7,6,15,8,14,12,11,20,13,19,17,16,25,18}

– 88 –



which includes 8 cyclic classes of Yangian-invariants—three of which are quintic

(Γ4(C) = 5), two quartic, two quadratic, and one of which is rational:

where ‘· · · ’ indicates a sum over all cyclic classes.
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12. Classification of Yangian-Invariants and Their Relations

As we have seen, NkMHVYangian-invariant functions—expressed in terms of momentum-

twistors—are determined by 4k-dimensional configurations C ∈ G(k, n) with non-

vanishing kinematical support. As such, they are trivially classified by the permuta-

tions which label such cells. Importantly, because the dimensionality of these cells

is independent of n, it turns out that for any fixed k, there only are only a finite

number of NkMHV Yangian-invariant functions with non-trivial dependence on the

external momentum-twistors.

This is easy to see: consider any cell C ∈G(k, n) involving ν(C) non-vanishing

columns; because (ν(C) k) of the columns must each represent at least one degree

of freedom, dim(C) ≥ ν(C) k; and so, for 4k-dimensional cells, ν(C) ≤ 5k. Because

any vanishing column ca of C implies that C
⋂
Z⊥ is geometrically-independent of

the column za of Z, the Yangian-invariant associated with C will be functionally-

independent of the momentum-twistor za. And so, we immediately see that for any

fixed k, the number of configurations C ∈G(k, n) with only non-trivial dependence

on external momentum-twistors is strictly finite.

In addition to the finiteness of Yangian-invariant functions for fixed k, because

all relations among them are generated as boundaries of (4k+1)-dimensional cells,

their relations are also finite in number and can be similarly classified (for early work

on classification of Yangian invariants, see [14,130–133]). Given the tools described in

section 10 to distinguish the permutations corresponding to cells with non-vanishing

support, such a classification can be carried-out relatively efficiently.

As described in section 11.1, N(k=1)MHV Yangian-invariant functions correspond

to cells C ∈G(1, n) with precisely 5 non-vanishing ‘columns’; because of this, there

is only one NMHV Yangian-invariant function—up to trivial dependence on further

twistors which is commonly denoted by the 5-bracket symbol [1 2 3 4 5]:

[1 2 3 4 5]

{2,3,4,5,6}
⇔

δ1×4
(
η1〈2 3 4 5〉+η2〈3 4 5 2〉+η3〈4 5 1 2〉+η4〈5 1 2 3〉+η5〈1 2 3 4〉

)

〈2 3 4 5〉〈3 4 5 1〉〈4 5 1 2〉〈5 1 2 3〉〈1 2 3 4〉
. (12.1)

All other NMHV Yangian-invariants are equivalent to this object, but with the 5

non-vanishing columns arbitrary, ‘[a b c d e]’, (11.2). (A form very similar to this one

was first introduced in [127] and used to develop a polytope description of NMHV

tree-level amplitudes.)

Similarly, there is a unique 5-dimensional cell in G(1, 6) involving 6 columns,

which we may denote [1 2 3 4 5 6]. Its boundary generates the unique identity satisfied

by 5-brackets:

∂[1 2 3 4 5 6]

{2,3,4,5,6,7}

= [1 2 3 4 5]

{2,3,4,5,7,6}

− [1 2 3 4 6]

{2,3,4,6,5,7}

+ [1 2 3 5 6]

{2,3,5,4,6,7}

− [1 2 4 5 6]

{2,4,3,5,6,7}

+ [1 3 4 5 6]

{3,2,4,5,6,7}

− [2 3 4 5 6]

{1,3,4,5,6,8}

= 0.

For N2MHV, it is not hard to find that there are precisely 14 cyclically-distinct

Yangian-invariant functions (again, ignoring trivial dependence on further twistors).
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Table 1: The complete classification of N2MHV Yangian-invariant functions

Configuration Canonical coordinates for C∈G+(2, n) Written in terms of 5-brackets

(1)(2)(3)(4)(5)(6)
• • • • • •
{3,4,5,6,7,8}

(
1 (α1+α2+α3+α4) (α2+α3+α4)α5 (α3+α4)α6 α4 α7 0

0 1 α5 α6 α7 α8

) [
1, 2, (23)

⋂
(456), (234)

⋂
(56), 6

]

× [2, 3, 4, 5, 6]

(1 2)(3 4)(5)(6)(7)
• • • • •
{2,5,4,6,7,8,10}

(
1 α1 (α2+α3+α4) (α2+α3+α4)α5 (α3+α4)α6 α4 α7 0

0 0 1 α5 α6 α7 α8

) [
1, 2, (34)

⋂
(567), (345)

⋂
(67), 7

]

× [3, 4, 5, 6, 7]

(1 2)(3)(4 5)(6)(7)
• • • • •
{2,4,6,5,7,8,10}

(
1 α1 (α2+α3+α4) (α3+α4)α5 (α3+α4)α6 α4 α7 0

0 0 1 α5 α6 α7 α8

) [
1, 2, 3, (345)

⋂
(67), 7

]

× [3, 4, 5, 6, 7]

(1 2 3)(4 5 6)(7)(8)
• • • •
{2,3,7,5,6,8,9,12}

(
1 α1 α2 (α3+α4) (α3+α4)α5 (α3+α4)α6 α4 α7 0

0 0 0 1 α5 α6 α7 α8

) [
1, 2, 3, (456)

⋂
(78), 8

]

× [4, 5, 6, 7, 8]

(1 2 3)(4)(5 6 7)(8)
• • • •
{2,3,5,8,6,7,9,12}

(
1 α1 α2 (α3+α4) α4 α5 α4 α6 α4 α7 0

0 0 0 1 α5 α6 α7 α8

)
[1, 2, 3, 4, 8]

× [4, 5, 6, 7, 8]

(1 2 3)(4 5)(6 7)(8)
• • • •
{2,3,6,5,8,7,9,12}

(
1 α1 α2 (α3+α4) (α3+α4)α5 α4 α6 α4 α7 0

0 0 0 1 α5 α6 α7 α8

) [
1, 2, 3, (45)

⋂
(678), 8

]

× [4, 5, 6, 7, 8]

(1 2 3)(4 5)(6)(7 8)
• • • •
{2,3,6,5,7,9,8,12}

(
1 α1 α2 (α3+α4) (α3+α4)α5 α4 α6 0 0

0 0 0 1 α5 α6 α7 α8

) [
1, 2, 3, (45)

⋂
(678), (456)

⋂
(78)

]

× [4, 5, 6, 7, 8]

(1 2 3)(4)(5 6)(7 8)
• • • •
{2,3,5,7,6,9,8,12}

(
1 α1 α2 (α3+α4) α4 α5 α4 α6 0 0

0 0 0 1 α5 α6 α7 α8

) [
1, 2, 3, 4, (456)

⋂
(78)

]

× [4, 5, 6, 7, 8]

∗
(1 2)(3 4)(5 6)(7 8)
• • • •
{2,5,4,7,6,9,8,11}

(
1 α1 (α2+α3) (α2+α3)α4 α3 α5 α3 α6 0 0

0 0 1 α4 α5 α6 α7 α8

)
ψ [A, 1, 2, 3, 4]

× [B, 5, 6, 7, 8]

(1 2 3 4)(5 6 7 8)(9)
• • •

{2,3,4,9,6,7,8,10,14}

(
1 α1 α2 α3 α4 α4 α5 α4 α6 α4 α7 0

0 0 0 0 1 α5 α6 α7 α8

)
[1, 2, 3, 4, 9]

× [5, 6, 7, 8, 9]

(1 2 3 4)(5 6 7)(8 9)
• • •

{2,3,4,8,6,7,10,9,14}

(
1 α1 α2 α3 α4 α4 α5 α4 α6 0 0

0 0 0 0 1 α5 α6 α7 α8

) [
1, 2, 3, 4, (567)

⋂
(89)

]

× [5, 6, 7, 8, 9]

(1 2 3 4)(5 6)(7 8 9)
• • •

{2,3,4,7,6,10,8,9,14}

(
1 α1 α2 α3 α4 α4 α5 0 0 0

0 0 0 0 1 α5 α6 α7 α8

) [
1, 2, 3, 4, (56)

⋂
(789)

]

× [5, 6, 7, 8, 9]

(1 2 3)(4 5 6)(7 8 9)
• • •

{2,3,7,5,6,10,8,9,13}

(
1 α1 α2 α3 α3 α4 α3 α5 0 0 0

0 0 0 1 α4 α5 α6 α7 α8

)
ϕ
[
1, 2, 3, (45)

⋂
(789), (46)

⋂
(789)

]

×
[
(45)

⋂
(123), (46)

⋂
(123), 7, 8, 9

]

(1 2 3 4 5) (6 7 8 9 10)
• •

{2,3,4,5,11,7,8,9,10,16}

(
1 α1 α2 α3 α4 0 0 0 0 0

0 0 0 0 0 1 α5 α6 α7 α8

)
[1, 2, 3, 4, 5]

× [6, 7, 8, 9, 10]

with ϕ ≡
〈4 5 (123)

⋂
(789)〉〈4 6 (123)

⋂
(789)〉

〈1 2 3 4〉〈4 7 8 9〉〈5 6 (123)
⋂

(789)〉
, and ψ ≡

(
1−
〈A 4 5 6〉〈B 8 1 2〉

〈A 4 1 2〉〈B 8 5 6〉

)
−1

where

{
A ≡ (7 8)

⋂
(5 6B)

B ≡ (3 4)
⋂

(1 2A)

}
.

These are listed in Table 1, where we have also given canonical coordinates for

each, and also expressed each as a product of 5-brackets—a notation somewhat

more familiar to physicists, but which is generally cumbersome, as they frequently

depend on geometrically-defined momentum-twistors such as “(12)
⋂
(345)” which

means “the momentum-twistor supported at the intersection of span{z1, z2} with

span{z3, z4, z5}”, found as a trivial application of Cramer’s rule, (4.4):

(12)
⋂
(345) ≡ z1〈2 3 4 5〉+ z2〈3 4 5 1〉;

∝ z3〈4 5 1 2〉+ z4〈5 1 2 3〉+ z5〈1 2 3 4〉.
(12.2)
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The configuration in Table 1 marked with a ‘∗’, when lifted to an on-shell graph

in G(4, 8), corresponds to the four-mass box, (10.7). It is the unique N2MHV func-

tion which admits more than one solution to the kinematical constraints. The two

solutions to C(~α)·Z = 0 in this case are implicitly given in the 5-bracket form given,

due to the quadratic-relation which defines the auxiliary twistors “A” and “B”; to

be explicit, these auxiliary twistors are found as the solutions to:
{
A = z7 + αz8
B = z3 + βz4

}
, with α =

〈5 6 3 7〉+ β〈5 6 4 7〉

〈8 5 6 3〉+ β〈8 5 6 4〉
and β =

〈1 2 7 3〉+ α〈1 2 8 3〉

〈4 1 2 7〉+ α〈4 1 2 8〉
. (12.3)

Similarly, we may easily classify all the identities satisfied by N2MHV Yangian-

invariant functions, by classifying the 9-dimensional configurations of G(2, n) whose

boundaries generate such relations. It turns out that there are 24 cyclic-classes of

generators of identities—those listed in Table 2. One interesting example of these is:

∂

[
(1 2)(3 4)(5 6)(7)(8)
• • • • •

]

{2,5,4,7,6,8,9,11}

=




(1 2)(3 4)(5 6)(7 8)
• • • •
{2,5,4,7,6,9,8,11}

−
(1 2)(3 4)(5)(7)(8)
• • • • •
{2,5,4,7,8,6,9,11}

+
(1 2)(3 4)(6)(7)(8)
• • • • •
{2,6,4,7,5,8,9,11}

−
(1)(3 4)(5 6)(7)(8)
• • • • •
{5,2,4,7,6,8,9,11}

+
(2)(3 4)(5 6)(7)(8)
• • • • •
{1,5,4,7,6,8,10,11}

−
(8 1 2)(3 4)(5 6)(7)
• • • •
{2,5,4,7,6,8,11,9}

+
(1 2)(3 4)(5 6 7)(8)
• • • •
{2,5,4,8,6,7,9,11}

−
(1 2)(4)(5 6)(7)(8)
• • • • •
{2,5,3,7,6,8,9,12}

+
(1 2)(3)(5 6)(7)(8)
• • • • •
{2,5,7,4,6,8,9,11}




=0.

Here, we have only listed those boundary-configurations which have non-vanishing

kinematical support. This identity lifts to the identity among on-shell graphs given in

section 11 which can be understood as expressing the (sum-over particular solutions

to C ·Z = 0 for the) four-mass box function as a sum of 8 purely-rational, N2MHV

Yangian-invariants.

(1 2)(3)(4)(5)(6)(7)
• • • • • •
{2,4,5,6,7,8,10}

(1 2 3)(4 5)(6)(7)(8)
• • • • •
{2,3,6,5,7,8,9,12}

(1 2 3)(4)(5 6)(7)(8)
• • • • •
{2,3,5,7,6,8,9,12}

(1 2 3)(4)(5)(6 7)(8)
• • • • •
{2,3,5,6,8,7,9,12}

(1 2 3)(4)(5)(6)(7 8)
• • • • •
{2,3,5,6,7,9,8,12}

(1 2)(3 4)(5 6)(7)(8)
• • • • •
{2,5,4,7,6,8,9,11}

(1 2)(3 4)(5)(6 7)(8)
• • • • •
{2,5,4,6,8,7,9,11}

(1 2 3 4)(5 6 7)(8)(9)
• • • •

{2,3,4,8,6,7,9,10,14}

(1 2 3 4)(5)(6 7 8)(9)
• • • •

{2,3,4,6,9,7,8,10,14}

(1 2 3 4)(5)(6)(7 8 9)
• • • •

{2,3,4,6,7,10,8,9,14}

(1 2 3 4)(5 6)(7 8)(9)
• • • •

{2,3,4,7,6,9,8,10,14}

(1 2 3 4)(5 6)(7)(8 9)
• • • •

{2,3,4,7,6,8,10,9,14}

(1 2 3 4)(5)(6 7)(8 9)
• • • •

{2,3,4,6,8,7,10,9,14}

(1 2 3)(4 5 6)(7 8)(9)
• • • •

{2,3,7,5,6,9,8,10,13}

(1 2 3)(4 5 6)(7)(8 9)
• • • •

{2,3,7,5,6,8,10,9,13}

(1 2 3)(4 5)(6 7 8)(9)
• • • •

{2,3,6,5,9,7,8,10,13}

(1 2 3)(4 5)(6 7)(8 9)
• • • •

{2,3,6,5,8,7,10,9,13}

(1 2 3 4 5)(6 7 8 9)(10)
• • •

{2,3,4,5,10,7,8,9,11,16}

(1 2 3 4 5)(6)(7 8 9 10)
• • •

{2,3,4,5,7,11,8,9,10,16}

(1 2 3 4 5)(6 7 8)(9 10)
• • •

{2,3,4,5,9,7,8,11,10,16}

(1 2 3 4 5)(6 7)(8 9 10)
• • •

{2,3,4,5,8,7,11,9,10,16}

(1 2 3 4)(5 6 7 8)(9 10)
• • •

{2,3,4,9,6,7,8,11,10,15}

(1 2 3 4)(5 6 7)(8 9 10)
• • •

{2,3,4,8,6,7,11,9,10,15}

(1 2 3 4 5 6) (7 8 9 10 11)
• •

{2,3,4,5,6,12,8,9,10,11,18}

Table 2: Representatives of all generators of identities among N2MHV Yangian-invariants
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Table 3: Numbers of cyclic-classes of NkMHV Yangian-invariant functions nontrivially

involving n particles, and the number of cyclic-classes of identities among them.
n

k 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total IDs

1 total: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

2
Γ = 2: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Γ = 1: 0 1 2 5 4 1 0 0 0 0 0 0 0 0 0 0

total: 0 1 2 6 4 1 0 0 0 0 0 0 0 0 0 0 14 24

3

Γ = 3: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Γ = 2: 0 0 0 0 2 15 27 19 2 0 0 0 0 0 0 0
Γ = 1: 0 0 1 6 54 177 298 274 134 30 1 0 0 0 0 0

total: 0 0 1 6 56 192 326 293 136 30 1 0 0 0 0 0 1041 3669

4

Γ = 5: 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0
Γ = 4: 0 0 0 0 0 0 0 6 40 60 30 3 0 0 0 0
Γ = 3: 0 0 0 0 0 0 1 47 179 232 125 12 0 0 0 0
Γ = 2: 0 0 0 0 0 10 177 1008 2630 3829 3158 1413 272 18 0 0
Γ = 1: 0 0 0 1 13 263 1988 7862 18532 28204 28377 18925 8034 2047 270 1

total: 0 0 0 1 13 273 2166 8923 21381 32334 31690 20353 8306 2065 270 1 127776 603121

Although it is not difficult to continue such a classification to higher and higher

k, the space required to tabulate all objects soon grows overwhelming. Being of

some interest, however, we summarize the statistical structure of the classification of

Yangian-invariants and their identities through N4MHV in Table 3.

This classification makes some interesting structures visible. For example, notice

the extreme rarity of configurations with large Γ4. Curiously we see that configura-

tions with highest Γ4 appear to be found when for n = 3k+2 (this trend is known

to continue well-beyond k=4).

To illustrate the Yangian-invariants with exceptionally-large Γ4, below we give

the on-shell graph which represents the unique ‘cubic’ N3MHV Yangian-invariant,

and one of those which represents a ‘quintic’ N4MHV Yangian-invariant:

Γ4(C) = 3

{4,9,6,11,8,14,10,13,12,18,16}

Γ4(C) = 5

{6,5,13,12,11,9,10,18,17,15,14,22,16,21}
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13. The Yang-Baxter Relation and ABJM Theories

We began our discussion linking permutations and scattering amplitudes in section 3

by recalling the story of scattering in (1+1)-dimensional integrable theories (for a

review see [134]). In this section, we will see that this familiar story is actually

contained as a special case of our new picture linking permutations to on-shell di-

agrams. And there is another special case which will turn out to give a theory of

on-shell graphs for the ABJM theory [44] (see also [135–138]) defined in (2+1) di-

mensions! Although both these stories are physically very rich on their own, we

will content ourselves here by briefly sketching-out the main points involved, leaving

more detailed exposition and exploration to future work.

13.1 The On-Shell Avatar of the Yang-Baxter Relation

Recall the basic structure of the (1+1)-dimensional amplitudes from our discussion

in section 3, for which the fundamental interactions involved are 4-particle vertices.

In order to relate these to our story, we must find a way to recast each 4-particle

interaction (each carrying only one degree of freedom) in terms of an on-shell diagram

with only trivalent vertices. The simplest way of doing this is to ‘blow-up’ each 4-

point vertex according to:

(13.1)

where only edges from blown-up vertices have weight different from unity.

Notice that the left-right path permutation moving from the bottom to the top of

the graph agrees with the ‘(1+1)-permutation’, while the left-right path permutations

from top to bottom are trivial:

(13.2)

Consider for example the 4-point vertex by itself,

⇔ C =

(
1 0 α 1

0 1 1 0

)
≡ (12×2|R12) , (13.3)
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where we have given the point in the Grassmannian C obtained using edge variables

and the perfect-orientation indicated in the figure (see section 4.5), from which we

can read-off the 2→ 2 “scattering-matrix” which we have denoted R12. In general,

blowing-up each 4-particle vertex allows us to translate any (1+1)-scattering diagram

into a trivalent, on-shell diagram from which we can identify an (n×n) scattering-

matrix in the same way—identifying the point C in the Grassmannian in the gauge-

fixed form,
Cn×2n = (1n×n|Rn×n) (13.4)

As an example, let us look at the familiar configuration,

where on the right, we have recast the edge-variables into corresponding face-variables.

Notice that because we are only putting non-trivial edge-weights on the “bridges” in

the diagram, there are relations between the face variables.

Now, quite beautifully, we can see that the Yang-Baxter relation follows as a

consequence of the more elementary actions of the merge- and square-moves! We

can see this explicitly through the following sequence of moves, observing the effects

induced on the face variables (see section 4.6):
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From this, we may conclude that,

This equivalence can be interpreted as a generalized Yang-Baxter relation for the

R-matrices:

R12(β)R13(γ)R23(α) = R23

(
αγ

α + β

)
R13(α + β)R12

(
βγ

α + β

)
. (13.5)

In particular, if we set α + β = γ, we recover the familiar Yang-Baxter equation:

R12(β)R13(α + β)R23(α) = R23(α)R13(α + β)R12(β). (13.6)

13.2 ABJM Theories

There is yet another natural way to associate a permutation with a scattering process.

Suppose we have an even number, 2k, of particle labels. We can divide them into

two sets, A and B, of k elements each and draw arrows between them. Such a

permutation takes some a→ b and back via b→ a. We can then represent such a

permutation graphically, with all labels on the boundary, as in the following:

A B

1←→ 6

2←→ 5

3←→ 7

4←→ 8

(13.7)

We can then interpret this as an on-shell scattering process in a theory where

each interaction is fundamentally a 4-particle vertex; and we can “blow-up” each

four-particle vertex into an element of G(2, 4), preserving the symmetrical nature of

the permutation according to:

(13.8)
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This structure was also recently considered in [40]. As in the (1+1)-dimensional

example, it is natural to try and associated each vertex with a single degree of

freedom. Unlike the (1+1)-dimensional example, however, this restriction should

keep us within the top cell of G(2, 4). A very simple way of doing this would be to

impose the restriction that the 2-plane is null; that is,

C ·C = 0. (13.9)

Notice that because the constraint C ·C = 0 is symmetric, it represents k(k+1)/2

constraints in general; for C∈G(2, 4), this imposes only three constraints, leaving us

with a single degree of freedom. In a canonical-gauge, we can write:

C =

(
1 0 is ic

0 1 ic is

)
, (13.10)

where c ≡ cos(θ) and s ≡ sin(θ) for some angle θ.

Exactly this Grassmannian structure has been found to represent scattering am-

plitudes for the (2+1)-dimensional ABJM theory, [139–142]. As in (3+1) dimensions,

we can motivate the appearance of the Grassmannian by first looking at the geometry

of external data. In (2+1) dimensions, the momenta are grouped into a symmetric

(2×2)-matrix according to,

pαβ =

(
p0+p2 p1

p1 p0 p2

)
, (13.11)

so that null momenta are given by,

pαβa = λα
aλ

β
a , (13.12)

without any need for conjugate λ̃’s. The Lorentz group acts as a single copy of SL(2),

so the λa are still represented by a 2-plane in n dimensions. However, momentum-

conservation, ∑
λα
aλ

β
a = 0, (13.13)

is now the statement that the λ plane is orthogonal to itself. Thus, the external data

is given not by a general point in G(2, n), but by a point in the null Grassmannian of

2-planes in n dimensions. It is therefore not surprising to find the null Grassmannian

playing a role in ABJM theory.

ABJM theories have N = 6 supersymmetries; if we diagonalize half of the su-

percharges, then the corresponding Grassmann coherent states are labeled by ηI for

I = 1, . . . , 3. Thus, the on-shell data can be collected into,

Λa =

(
λa

ηa

)
. (13.14)

The ABJM amplitudes are not cyclically-invariant, but are invariant under a cyclic

shift by two. Notice that since we only have λ’s, there is not the same little group

rescaling symmetry as we had in three dimensions; rather, we have only the symmetry

of sending λa→ λa, under which on-shell differential forms transform according to

f( Λa) = ( 1)af(Λa).
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Let us now return to the basic 4-point vertex, and determine the natural measure

on the space of null 2-planes in 4 dimensions. This space is easily seen to be equivalent

to G(1, 2) ≃ P1: the two rows of a (2×4)-matrix can be viewed as four-vectors p1, p2
which are null and mutually orthogonal; we can therefore write,

p1 = λ λ̃1, p2 = λ λ̃2, (13.15)

and use the GL(2)-freedom to write λ̃1 ≡ (1 0), λ̃2 ≡ (0 1), and λ ≡ (1 z). This

demonstrates the equivalence of the null Grassmannian C ⊂ G(2, 4) with P1, and

also provides us with a natural measure: dlog(z). Using this identification, we can

write the null-plane C⊂G(2, 4) in terms of z according to:
(

i iz z 1

z 1 i iz

)
. (13.16)

Performing a GL(2)-transformation to recast this matrix-representative of C in a

canonical-gauge brings it to the form given above in (13.10), with the identification:

s =
2z

z2 + 1
, and c =

z2 − 1

z2 + 1
. (13.17)

In terms of the natural measure dlog(z) on the null subspace, the fundamental

4-point interaction in the ABJM theory can then be represented by,

A4 =

∫
dz

z
δ4|6(C(z)·Λ); (13.18)

equivalently, we may view this as having been obtained from a measure defined on

all of G(2, 4), but restricted to the null subspace by the constraint δ3(C ·C):

A4 =

∫
d2×4C

vol(GL(2))

1

(12)(23)
δ3(C ·C)δ4|6(C ·Λ). (13.19)

With this, we can define on-shell diagrams for the ABJM theory just as for N =4

by gluing together these basic 4-point vertices. Note that unlike for N =4, n and k

are not independent for ABJM: we always have n=2k.

It is easy to see that the on-shell representation of a BCFW shift is simply,

(13.20)

The action on the column-vectors is simply a rotation between ca and ca+1:

ca 7→ c ca − s ca+1, ca+1 7→ s ca + c ca+1 . (13.21)

And the all-loop integrand can be given in terms of on-shell diagrams just as before:
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(13.22)

(For recent computations at one and two loops see [143–146].)

The rules for amalgamation are essentially identical to the N = 4 case—the

only difference being some factors of i that must be included. In (2+1) dimensions,

because we write momenta as pa = λaλa, switching pa 7→ pa corresponds to taking

λa 7→ iλ. And so, when identifying two legs for the “projection” operation, instead

of projecting relative to (cA cB), we must project relative to (cA icB). The result

is that minors of C∈G(k, n) are related to those of the pre-image Ĉ∈G(k+1, n+2)

via: (a1 · · · ak)|C = (Aa1 · · · ak)|Ĉ +i (Ba1 · · · ak)|Ĉ . (13.23)
It is very easy to see that, starting with elementary 4-point vertices in the null

Grassmannian, amalgamation preserves this property; translated in terms of minors,

this is the statement that for all a,
(c1 · · · ck−1a)(d1 · · · dk−1a) = 0. (13.24)

This is trivial for the direct product. For projection, we easily verify that

(c1· · ·ck−1a)(d1· · ·dk−1a) = [(Ac1· · ·ck−1a)+i(Bc1· · ·ck−1a)][(Ad1 · · · dk−1a)+i(Bd1· · ·dk−1a)]

= (Ac1· · ·ck−1B)(Ad1· · ·dk−1B)−(Bc1· · ·ck−1A)(Ad1· · ·dk−1B)

= 0.
Thus, amalgamation of many little null G(2, 4)’s produces a point in the null Grass-

mannian G(k, 2k), together with the measure,∏

vertices v

dlog(zv). (13.25)

Notice that an important difference between this and the case of N =4 is that the

fundamental variables are associated with the vertices of an on-shell graph, rather

than its faces.

The measure on the top-cell can be given in terms of the C matrix via [140]

dk×2kC

vol(GL(k))

δk(k+1)/2
(
C ·C

)

(1 2 · · · k) · · · (k k+1 · · · 2k 1)
. (13.26)

It is also straightforward to find the analog of boundary measurements by sum-

ming over all the paths joining sources to sinks in a perfectly oriented graphs. We can

orient each vertex with two incoming and two outgoing lines. Traversing any internal

line contributes a factor of i, and at each vertex we get a is, ic or −ic according to:

(13.27)
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As an example, consider the following on-shell diagram involving 6 particles,

(13.28)

We find that this diagram is associated with a configuration C in the Grassmannian

represented by,

C = −i



i 0 0 sαsβ sαcβcγ+cαsγ cαcγ sαcβsγ
0 i 0 cαsβ sαsγ cαcβcγ sαcγ+cαcβsγ
0 0 i cβ sβcγ sβsγ


 . (13.29)

In general, we can write the (k×2k)-matrix representative C ∈G(k, 2k) associated

with any such graph in the form,

C = −i (i1k×k|Rk×k) , (13.30)

where R is an SO(k)-rotation matrix. This gives us a pretty interpretation for

amalgamation. The basic 4-point vertex is just a rotation in two dimensions. Amal-

gamation provides a way of building general rotations in higher dimensions by a

composing many rotations in two-dimensional subspaces. The example above for 6

particles corresponds to a canonical way of representing three-dimensional rotations

using Euler angles. The analog of the square move in ABJM looks much like the

Yang-Baxter move, and represents the equality of two different Euler-angle represen-

tations of the same three-dimensional rotation.

Just as with N =4 SYM, the invariant content of any reduced on-shell diagram is

read-off from its associated permutation. We also have an analog of reduction, look-

ing at the 4-point bubble diagram connecting two 4-particle vertices with parameters

α and β:

(13.31)

Finally, we can take a boundary, lowering the dimension by one, by deleting a vertex,

and re-connecting the lines according to:

(13.32)
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14. On-Shell Diagrams with N < 4 Supersymmetries

On-shell diagrams can be defined for any theory with fundamental trivalent vertices,

and in particular for gauge theories with any number, N , of supersymmetries. There

is obviously a rich structure to be unearthed here; in this short section we will

content ourselves with setting-up some of the basic formalism and highlighting the

central new mathematical object that makes an appearance—reflecting the physics

of ultraviolet singularities which are present in theories with less supersymmetry.

Let us begin our discussion by focusing on non-supersymmetric theories, those

of “N = 0”. It is useful to represent the helicities involved in each basic 3-particle

vertex by giving each of the edges an orientation:

and (14.1)

We can then glue these vertices together to build-up more complex on-shell diagrams

as before—leading to, for example:

(14.2)

In such decorated on-shell diagrams, the arrows are useful because they automatically

encode the helicities of the internal particles involved. In general, we consider the

particles as Grassmann coherent states labeled by η̃I for I = 1, . . . ,N . In theories

with N < 4 supersymmetry, we have “+” and “−” multiplets, which include gluons

of helicity ±1 as their top components, respectively; thus, on-shell diagrams must be

labeled in exactly the same way for any N < 4.

The Grassmannian formalism is just as powerful in integrating over the phase

space of the internal particles regardless of the amount of supersymmetry. However,

when N < 4, the diagrams really are fundamentally oriented, whereas for N = 4

such an orientation merely encodes a convenient translation of the on-shell diagram

into a particular gauge-fixed matrix-representative C ∈ G(k, n). If the k incoming

“source” indices are from a set A and the (n k) outgoing “sink” indices are from a,

we find exactly the same linear relation between the external kinematical data:∏

A

δ2
(
λ̃A − cAaλ̃a

)∏

A

δN
(
η̃A − cAaη̃a

)∏

a

δ2
(
λa + cAaλA

)
, (14.3)
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where the cAa are exactly as in equation (4.57), which we reproduce below:

cAa = −
∑

Γ∈{A a}

∏

e∈Γ

αe. (14.4)

The only difference between general N and N =4 is the measure on the Grassman-

nian which ultimately encodes the on-shell differential form in terms of the auxiliary,

Grassmannian degrees of freedom. For N =4, we didn’t have to include any Jacobian

resulting from the elimination of internal variables, because the fermionic δ-functions

always canceled the contributions between the internal bosons and internal fermions.

However, when N < 4, these two factors do not cancel, and leave a net Jacobian

contribution to the measure which we may write as:
( ∏

vertices v

1

vol(GL(1)v)

)( ∏

edges e

dαe

αe

)
× J N−4. (14.5)

If the vertices of the graph are labeled i, j, then we define the adjacency matrix Aij

of the graph by,

Aij = the weight of the directed edge i→j (if any); (14.6)

then the Jacobian J is given by

J = det(1− A). (14.7)

We know that the edge variables can only occur in the GL(1) gauge-invariant

“flux” combinations associated with faces, and we can give a simple formula for J in

terms of these face variables. In general, if we have a collection of closed, orientated

orbits bounding faces fi, with disjoint pairs (fi, fj), disjoint triples (fi, fj, fk), and

so on, then J is given by:

J = 1 +
∑

faces

fi +
∑

disjoint
pairs i,j

fifj +
∑

disjoint
triples i,j,k

fifjfk + · · · . (14.8)

(Here, each ‘face’ is really a clockwise-oriented product of edge-variables around an

orbit—and so may be the inverse of a face variable, or the product of face-variables

which are bounded by a single orbit.)

For any oriented graph without any closed, oriented orbits, the spectrum is triv-

ial, and J =1; for any such oriented on-shell diagram, the maximally-supersymmetric

and non-supersymmetric on-shell forms are identical. This is easy to understand be-

cause when an on-shell diagram is free of such oriented orbits, only gluons propagate

internally. In contrast, when there are oriented orbits, the rest of the super-multiplet

can propagate internally, differentiating theories with different amounts of supersym-

metry.

When an oriented on-shell diagram has closed, oriented orbits, the Jacobian is

nontrivial. The simplest example occurs for four particles, where we can have,
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(14.9)

for which the corresponding Jacobian is,

JA = 1 + f and JB = 1 + f−1. (14.10)

In order to compute the full on-shell process for fixed external sources and sinks, we

have to sum-over all the possible orientations of the internal graph. And so, in this

case we would be obliged to sum-over both diagrams, giving us a final contribution

to the measure of:

J N−4
A + J N−4

B = (1 + f)N−4 + (1 + f−1)N−4. (14.11)

Notice that when N =3, the complete contribution is simply:

J −1
A + J −1

B = (1 + f)−1 + (1 + f−1)−1 = 1. (14.12)

This is good, because the “+” and “−” super-multiplets of N = 3 combine to give

us a complete N =4 super-multiplet. Of course, when N < 3, the sum is not unity,

and the result differs from what we would have found for N =4.

Let us consider a somewhat more interesting example:

(14.13)

Here we have four closed orbits, and one disjoint pair of orbits: three of the orbits

bound single faces, contributing f1, f
−1
2 , and f3, and one orbit involving both f2 and

f4—contributing f−1
2 f−1

4 ; the disjoint pair are f1, f3. Putting everything together,

we find that the complete Jacobian is:

J = 1 + (f1 + f−1
2 + f3 + f−1

2 f−1
4 ) + f1f3. (14.14)

We stress again that the point in the Grassmannian obtained from amalgamation

is the same as it is for the maximally supersymmetric theory; the only difference
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between the theories is the presence of the Jacobian factor J in the measure. The

merge/un-merge moves still leaves the point in the Grassmannian and the rest of the

form invariant; but now, the square-move and bubble-reduction—while leaving the

point in the Grassmannian fixed—can change the measure.

If we consider a reduced graph with the dimension required to completely localize

all the auxiliary variables associated with the matrix C ∈ G(k, n), then the net

effect is not particularly interesting—as theories with N < 4 differ from those with

maximal supersymmetry only by the prefactor of J in the measure, evaluated at this

particular point in G(k, n). However, the situation is considerably more interesting

when we consider on-shell graphs for which some auxiliary variables are not fixed

by the δ-function constraints, leaving us with an integration measure over these

internal degrees of freedom. Such graphs occur, for instance, in the forward-limits

that generate loop integrands in the all-loop, on-shell BCFW recursion (2.26). In

such cases, the factor of J can lead to a qualitatively-new set of singularities where

poles are generated by J .

As a simple example of such a situation, consider a “wrong” BCFW-bridge acting

on the four-particle tree amplitude’s on-shell graph:

(14.15)

The shift is “wrong” in the familiar sense of BCFW deforming the “wrong” helicities,

for which the deformed amplitudes don’t vanish at infinity. This is reflected in the

on-shell graph by the presence of a closed oriented loop (making the resulting on-shell

differential form differ for theories with different amounts of supersymmetry). Be-

cause this graph’s measure includes the a non-trivial Jacobian J , the corresponding

function does not vanish in the deep ultraviolet—taking the shift-parameter α→∞.

This “pole at infinity” is characterized by the residue about J 7→ 0. Notice that

this allows us to fully characterize the non-trivial, ultraviolet singularities present in

theories with less than maximal supersymmetry. The presence of such poles indicate

“lower-transcendentality” contributions to scattering amplitudes. For instance, the

object above, (14.15) can be interpreted as the triple-cut of the one-loop four-particle

amplitude, and the residue about J = 0 computes the coefficient of the “triangle

integral” for the amplitude. The coefficients of “bubbles” can be exposed in similar

ways.

One of the most fundamental consequences of space-time locality is that the

ultraviolet and infrared singularities are completely independent. It is fascinating

to see that this physical fact is sharply captured by the Grassmannian formalism,
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where IR and UV singularities are associated with disparate contributions to the

integration measure of the auxiliary Grassmannian: the positroid’s “dlog” measure

captures all the long-distance singularities—where internal particles go on-shell—and

the prefactor J captures ultraviolet singularities. This ultraviolet/infrared decou-

pling has an even more striking incarnation in the planar sector of the theory: it can

be shown that J is completely regular everywhere in the positive-part of G(k, n)—

literally separating the ultraviolet singularities of J from infrared singularities of the

positroid, their boundaries being completely disjoint!
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15. Dual Graphs and Cluster Algebras

So far in this paper, we have extensively studied planar on-shell diagrams. In

section 4.4, we introduced two natural classes of operations: amalgamation, the oper-

ation which allows us to build-up very complex diagrams from very simple ones; and

mergers and square moves, which allow us to connect very distinct on-shell diagrams

which nevertheless encode the same physical information.

In this section we turn to the very obvious question that arises when dealing

with planar diagrams of any sort: what are the corresponding dual graphs? what do

they mean? and how are the operations we have found realized in terms of them? Of

course, being two-colored, on-shell diagrams carry more information than ordinary

graphs, and whatever definition of a dual graph we introduce must encode this addi-

tional information. Luckily, the theory of dual graphs for bipartite planar graphs is

both known and simple; in fact, the dual of a bipartite graph is a familiar object in

the physics of N = 1 supersymmetric gauge theories: it is a quiver diagram! Indeed,

the connection between bipartite graphs and quiver gauge theories is already an ac-

tive research area in the physics community and has led to beautiful constructions

such as those described in [48–53]. Bipartite graphs are also intimately related to

dimer models, with the recent mathematical work [40] particularly closely related to

our discussion.

15.1 The ‘Dual’ of an On-Shell Diagram

Recall that the dual of an ordinary planar graph (one without colored vertices) is

obtained by drawing a vertex for each face, and connected adjacent faces with edges.

In our case, we have graphs on a disc, and so the faces of an on-shell diagram can

be divided into two distinct classes: those in the interior of the graph, and those on

the exterior (those adjacent to the boundary of the disc).

As mentioned above, the dual of a bipartite graph turns out to be nothing but

an oriented quiver diagram. Let us now describe how this dual “quiver” of a general

bipartite graph on a disc is defined. Let Γ denote a bipartite graph on a disc;

we define a flag F of Γ to be the combination of one vertex of Γ with one edge

connected to it. (Here, the word “flag” can just be taken as merely a name used this

construction; but—not surprisingly—this terminology stems from its more familiar

use in algebraic geometry.) Each flag inherits a coloring according to the color of its

vertex. We orient each black flag of Γ to be ‘out of the vertex’ and each white flag

to be ‘toward the vertex’ . (Notice that every external edge is a member of a single

flag, while each internal edge is part of two flags—one black, and one white.)

Let us suppose that Γ is oriented according to its internal flags—that is, we take

each internal edge to be directed ‘black-to-white’. Choosing a clockwise-orientation

for the boundary of each face f of Γ, we define the adjacency matrix of for the dual

graph Γ̃ as follows: for each flag F , we define
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δFf1,f2 ≡





0 F /∈
(
∂f1

⋂
∂f2
)
;

+1
2

F ∈
(
∂f1

⋂
∂f2
)
and F is oriented according to ∂f1;

−1
2

F ∈
(
∂f1

⋂
∂f2
)
and F is oriented according to ∂f2.

The dual graph’s adjacency matrix εf1,f2 is then obtained by summing over all flags:

εf1,f2 ≡
∑

F

δFf1,f2 . (15.1)

(The factors of “1/2” in the definition of δFf1,f2 is important for both mathematical

and physical reasons, but will only show up in the final quiver for edges connecting

external faces; to see this, recall that each internal edge is a member of two flags.

They are important for the consistency of the general procedure of “amalgamation”

[37], to be described more fully below.)

In order to illustrate the preceding discussion, let us consider—as usual—the

on-shell diagram which generates the four-particle tree-amplitude,

(15.2)

Labeling the faces of the graph as indicated above, we find the dual quiver to be,

(15.3)

defined by the adjacency matrix εi,j:

ε =




0 1
2

0 1
2

1
1
2

0 1
2

0 1

0 1
2

0 1
2

1
1
2

0 −1
2

0 1

1 1 1 1 0




. (15.4)

Notice that in drawing (15.3), we have denoted each internal face by a circle and

each external face by a square.

This quiver can be given a gauge theory interpretation. Let all the vertices rep-

resent U(N) groups, with external ones being flavor groups and internal ones dynam-

ical, gauge groups. The adjacency matrix εi,j denotes the number of bi-fundamental

fields charged under the groups (i, j). Anomaly cancellation is the statement that
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all the rows of ε add up to zero. Of course, having a 1/2 bi-fundamental field is

clearly not possible in a physical theory; but a physical realization can be always be

obtained by including also super-potential terms (see e.g. [52,53]) which we will not

need for our purposes of formal analogy.

Let’s see how a square-move affects the resulting dual-quiver; starting from,

(15.5)

it is easy to find the corresponding quiver:

(15.6)

Very nicely, this new quiver corresponds to nothing but the Seiberg-dual of quiver

(15.3) with respect to the internal node (5), [3]. In other words, the arrows connected

to node (5) are reversed and new bi-fundamentals are created between two flavor

nodes every time the bi-fundamentals connecting them to (5) can pair-up. This

happens when the arrows are in opposite directions. Whenever possible, the new

bi-fundamentals pair-up with existing ones to get a mass and disappear from the

theory in the infrared. (Here, we again must stretch the analogy a bit, declaring

that, e.g. the new bi-fundamental going from (1) to (2) pairs up with the existing

‘half bi-fundamental’ from (2) to (1) to leave behind a new ‘half bi-fundamental’

from (1) to (2).)

The factors of 1/2 appearing in this discussion might seem like an unnecessary

annoyance. In order to see the importance of these factors in the definition of δFf1,f2 ,

let us consider the 5-particle on-shell diagram (in bipartite form):

(15.7)

whose quiver is found to be given by:
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(15.8)

After performing a Seiberg duality on node (6), we find the quiver:

(15.9)

This can be seen to agree with the one obtained by expanding the 4-valent white

vertex in the original on-shell diagram, applying a square-move and merging the two

new adjacent white vertices to make a new bipartite graph. This case shows that the

factors of 1/2 are needed in order to make the square-move correspond to Seiberg

duality when not all the four surrounding faces are external. As mentioned above, a

fully physical alternative requires adding the natural super-potential terms associated

with each closed loop in the quiver consistent with orientations (see e.g. [52, 53]).

These examples make it clear that Seiberg duality on an internal nodes with

exactly four edges corresponds to a square-move in the on-shell diagram. Of course,

once we have the dual-quiver of a given on-shell diagram is determined, it is tempting

to perform Seiberg duality on any internal node—not only those of valency four. The

question is then: what happens when a Seiberg duality is taken for nodes of arbitrary

valency?

Let us start by considering the case of valency two. A valency-two node arises

in the dual quiver only for on-shell diagrams with ‘bubbles’. Recall that all nodes

correspond to gauge groups U(N); therefore, upon taking the Seiberg dual of a

bivalent vertex, one finds that the rank goes from N 7→N ′=N N=0—that is, it

‘disappears’ from the theory, leaving only the bi-fundamental created by the duality:

The resulting quiver is precisely that which would have been obtained for the on-shell

diagram after bubble-deletion.
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Let us now see the effect of applying Seiberg duality to a vertex whose valency

is greater than four. Consider for example the dual-quiver of the following diagram

for the top-cell of G(3, 6):

(15.10)

Applying Seiberg duality to any of the nodes (7), (8), or (9), would correspond to

a square-move as expected. However, when we perform a Seiberg duality on the

6-valent vertex (10), we find the following:

(15.11)

This new quiver is non-planar and therefore does not correspond to the dual of an

on-shell diagram on the disc!

The presence of these new objects suggests that on-shell diagrams and operations

like the square-move are part of a much larger mathematical structure. As it turns

out, the general story of such transformations is a very active area of research in

mathematics: the theory of cluster algebras.

Let us now turn to a (basic) summary of this rich, more general story. The

reason for doing so, is that cluster algebras have recently made an appearance in the

descriptions of seemingly unrelated developments in gauge theory—and we anticipate

that a deeper understanding will lead to important connections between these areas

of physics and the physics of scattering amplitudes.
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15.2 Cluster Algebras: Seeds, Mutations, and Cluster Coordinates

The definition of a cluster algebra [34] begins with the notion of a seed and the

various mutations that can take convert one seed into another. We will start with

a general mathematical description of seeds and mutations, and try to relate these

objects to on-shell diagrams as we proceed.

Seeds. A seed is a set of combinatorial data s= {S, S0, ε}, where S is a set, S0 a

distinguished subset of S called the frozen subset, and εi,j is a skew-symmetric matrix

with (i, j)∈S for which εi,j∈Z unless both of (i, j)∈S0, in which case εi,j ∈
1
2
Z.

Notice that for the discussion about, the dual-quiver of an on-shell diagram is an

example of a seed where S is the set of faces, S0 the subset of faces on the boundary

of the disc, and ε precisely as defined above. Notice that the distinction between S

and S0 nicely matches the physical distinction between flavor and dynamical groups

of the quiver theory.

Mutations. Given a seed s={S, S0, ε} and any non-frozen element k∈ (S\S0), the

mutation of s “in the direction k” is µk(s)≡{S, S0, ε
′} where the mutated matrix ε′

is given by the Fomin-Zelevinsky formula, [34]:

ε′i,j ≡





εi,j k ∈ {i, j};

εi,j k /∈ {i, j} and εi,kεk,j ≤ 0;

εi,j + |εi,k|·εk,j k /∈ {i, j} and εi,kεk,j > 0.

(15.12)

Notice that this procedure is involute: the mutation of ε′ in the direction k is

the original matrix ε. Moreover, the rule for mutations exactly corresponds to the

transformation of bi-fundamental matter fields occurring under a Seiberg duality of

a dynamical gauge-group node (corresponding to an element of (S\S0)).

Cluster Coordinates. Recall the description the face variables {fi} associated

with any on-shell diagrams given in section 4.5; one of the most important features

of the face variables is that if they are chosen to be positive (see section 5.4) then

they remain positive after a square-move. Also important is that face variables

are canonical coordinates on the Grassmannian configuration C associated with an

on-shell diagram: that is, the positroid volume-form on the Grassmannian—when

expressed in these coordinates—is simply,

dlog(f̂1) ∧ dlog(f̂2) ∧ · · · ∧ dlog(f̂d), (15.13)

where we have defined the rescaled coordinates f̂i≡fi/f0. Importantly, this measure

is invariant (up to a sign) under square-moves.

Now that we allow mutations that are not square moves and obtain quivers which

are not related to planar on-shell diagrams, one could ask if there is any analog of ‘face

variables’ or the volume form on the Grassmannian. It turns out that in fact there

are two sets of coordinates that can be defined in general, and one of them coincides
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with the face variables described in section 4.5 when restricted to on-shell diagrams.

These are known as the cluster A-coordinates and the cluster X -coordinates.

Given a seed s the two sets of coordinates are each parameterized by the set

S—the set of ‘faces’ in the case of planar on-shell diagrams. Let us denote the

X -coordinates by {Xi} and the A-coordinates by {Ai}. (This is a slight abuse of

notation because we have suppressed their dependence on the seed s.) A priori,

one makes a proposal for what the coordinates are in terms of the data defining the

problem at hand, and then the kind of variables will be determined by their behavior

under mutations.

Given a mutation of seeds µk : s 7→ s′, the cluster coordinates assigned to these

seeds are related as follows. If we denote the cluster coordinates related to the seed

s by Xi and Ai, and the ones assigned to the seed s′ by X ′
i and A′

i, then we have

mutation formulae for A-coordinates

AkA
′
k ≡

∏

j|εkj>0

A
εkj
j +

∏

j|εkj<0

A
−εkj
j , and A′

i = Ai for i 6= k; (15.14)

and for X -coordinates we have,

X ′
i ≡

{
X−1

k i = k;

Xi

(
1 +X

−sgn(εik)
k

)−εik
i 6= k.

(15.15)

(In (15.14), if any of the sets {j|εkj > 0} or {j|εkj < 0} is empty, the corresponding

monomial is 1.)

The set of transformations among cluster coordinates obtained by composing

mutations are known as cluster transformations.

Cluster A-coordinates and mutation formulae are the main ingredients of the

definition of cluster algebras of Fomin and Zelevinsky, [34]. So far in this paper these

coordinates have not made an appearance but they can be nicely defined for on-shell

diagrams using left-right paths as follows. For each left-right path take the end point

label and write it on all faces to the left of the path. If the on-shell diagram is reduced

and represents a cell of G(k, n), this procedure provides each face with k-labels. The

Plücker coordinates given by the sets of labels in each face provides a set of cluster

A-coordinates. These coordinates are generically non-vanishing and, under a square

move, indeed transform as A-coordinates.

Cluster X -coordinates and mutation formulae (15.15) describe a dual object,

introduced in [36] under the name cluster X -variety or cluster Poisson variety. The

transformation (15.15) is precisely the way face variables were found to transform in

section 4.6. So, our face variables are an example of cluster X -coordinates.

One of the key features of cluster X -varieties is that they are endowed with a

natural Poisson structure. We can define

{Xi, Xj} ≡ εijXiXj. (15.16)

Of course, the crucial fact is that the cluster transformations (15.15) preserve the

Poisson bracket. This fascinating structure has made an appearance in a number of
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physical settings, but has not yet played a role in our understanding of scattering

amplitudes.

Since the cluster transformations are given by subtraction free formulas, they

identify the sets of points with the real positive cluster coordinates assigned to dif-

ferent seeds. Gluing these sets according to the cluster transformations, we arrive

at the spaces A+ and respectively X+ on which all cluster coordinates are perfectly

well defined and take positive real values.

The Grassmannian is an example of a cluster X -variety, and the corresponding

space of positive points X+ is nothing else but the Positive Grassmannian.

It turns out that just as for face variables in on-shell diagrams, one can define

canonical volume forms for both kind of coordinates [45]. Given a seed s, consider

the volume forms

volsA ≡ dlogA1 ∧ · · · ∧ dlogAn, volsX ≡ dlogX1 ∧ · · · ∧ dlogXn. (15.17)

It is an easy but fundamental fact that the cluster transformations preserve the

corresponding volume form up to a sign. Precisely, given a seed mutation s 7→s′, we

have
vols

′

A = −volsA, vols
′

X = −volsX . (15.18)
To check the first identity, let us do a mutation at k. Then only the coordinate Ak

changes, and due to the exchange relation (15.14), one has

dlogA′
k + dlogAk = 0 mod dAj, where j 6= k. (15.19)

To check the second, notice that under a mutation at k, one has dlogX ′
k = dlogXk,

while dlogX ′
j = dlogXj modulo dXk. These forms are known as theA- and X -cluster

volume forms. Of course, our top-form on the positive Grassmannian precisely coin-

cides with the X volume form.

Singularities of the cluster volume-form and frozen variables.

Take a variety equipped with a cluster A-coordinate system {Ai}. Let us assume

that k∈(S\S0) is non-frozen, and εkj 6= 0 for some j. Then the residue of the cluster

volume form volA at the locus Ak = 0 is zero:

ResAk=0(volA) = 0. (15.20)

Indeed, the residue is given by ResAk=0(volA) = ±
∧

i 6=k dlogAi. Since k is non-

frozen, there is an exchange relation (15.14). It implies a monomial relation on the

locus Ak = 0: ∏

j

A
εkj
j = −1. (15.21)

Since εkj is not identically zero, the monomial in (15.21) is nontrivial. This implies

that the form
∧

i 6=k dlogAi vanishes at the Ak = 0 locus.

This explains the role of frozen variables in a cluster coordinate system {Ai}

on a space M . Indeed, a coordinate Ak, with εkj 6= 0 for some j, can be declared

non-frozen only if ResAk=0(dlogA1 ∧ · · · ∧ dlogAn) = 0. This condition just means

that the functions A1, . . . , Âk, . . . , An become dependent on every component of the

Ak = 0 locus.
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15.3 Cluster Amalgamation

The “atomic” principle in which complicated objects and their properties can all be

simply derived from constituent building blocks has played a fundamental role in

understanding on-shell diagrams, and is more generally making an appearance more

and more often in both physics and mathematics. Given the potential importance of

this phenomenon, let us now describe the more general procedure of amalgamation

of cluster structures, of which our sense of amalgamation is a special case. We find

it convenient to use a different but equivalent description of seeds which is known

as the geometric description. A definition of amalgamation via the combinatorial

description of seeds is given in [37].

The following geometric definition is taken from [36]:

Definition: A seed is a set of combinatorial data s=
{
Λ,Λ0, {ei}, ε

}
, where Λ is a

free abelian group, Λ0 a distinguished subgroup of Λ, {ei} is a basis of Λ such that Λ0

is generated by a subset of frozen basis vectors, and εi,j≡ε(ei, ej) is a skew-symmetric

bilinear form on Λ such that εi,j∈Z unless both of (ei, ej)∈Λ0, in which case εi,j ∈
1
2
Z.

To see that this definition of a seed is equivalent to the previous one, note that

given a combinatorial data {S, S0, ε}, the abelian group Λ is the free abelian group

generated by the set S, where the generator ei is the one assigned to an element

i ∈ S. The subgroup Λ0 is then generated by the subset S0, and the bilinear form

ε(·, ·) is defined as above. Vice versa, given a {Λ,Λ0, {ei}, ε} data, the set S is the

set parameterizing the basis vectors, etc.

Given this geometric definition, this is a good point to mention that mutations

can be interpreted as half-reflections. This bring us again closer to the known descrip-

tion of Seiberg duality in quiver gauge theories as Weyl reflections where coupling

constants in the form 1/g2i transform as root vectors ei. In full generality we have

that the seed s′ obtained from s by the mutation in the direction k is defined by

changing the basis {ei} (the rest of the data stays the same). The new basis {e′i} is

defined as a half-reflection of the one {ei} along the hyperplane ε(ek, ·) = 0:

e′i ≡

{
ei + [εik]+ek if i 6= k

−ek if i = k.
(15.22)

Here we set [α]+ ≡ α if α ≥ 0 and [α]+ ≡ 0 otherwise. One can check that for-

mula (15.22) amounts to formula (15.12), telling how the ε-matrix changes under

mutations.

By definition, the frozen/non-frozen basis vectors of the mutated seed are the

images of the frozen/non-frozen basis vectors of the original seed. The composition

of two mutations in the same direction k is no longer the identity, but rather an

isomorphism of seeds.

We are now ready to turn to the amalgamation procedure. Take a pair of seeds,

where we emphasize the set of frozen basis vectors {fi}:
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s′ =
{
Λ′, ε′, {e′i}, {f

′
j}
}
, s′′ =

{
Λ′′, ε′′, {e′′i }, {f

′′
j }
}
. (15.23)

First, we define their direct product according to:

s′⊗s′′ ≡
{
Λ, ε, {ei}, {fj}

}
, (15.24)

where Λ≡Λ′⊕Λ′′, and the form ε is defined to be the direct product of the forms ε′

and ε′′. The basis vectors and the frozen ones, are inherited in an obvious way.

Next, given a seed s =
{
Λ, ε, {ei}, {fj}

}
, and a pair of frozen basis vectors fa

and fb, we define the reduced seed

sa∗b =
{
Λa∗b, εa∗b, {es}, {ft}

}
. (15.25)

Here Λa∗b is a co-rank one subgroup of Λ whose basis vectors are (fa+fb) and those

of Λ different from fa and fb, and the vectors (fa+fb) and fj /∈ {fa, fb} are the frozen

ones; the form εa∗b is the restriction to Λa∗b of the form ε on Λ.

Given a pair of seeds (15.23), a pair of subsets {f ′
a}, a ∈ A and {f ′′

b }, b ∈ B of

the frozen basis vectors in s′ and s′′, and an isomorphism of sets ϕ : A→B, we define

the amalgamation s′ ∗ϕ s′′ of the seeds s′ and s′′ along ϕ. This is done in a few steps:

1. take the direct product s′⊗s′′;

2. perform the reduction along a pair of frozen vectors f ′
a and f ′′

ϕ(a), for each a ∈ A;

3. if the restriction of the form ε of the seed s′ ∗ϕ s′′ to the basis vectors f ′
a+f ′′

ϕ(a)

with a ∈ A takes values in Z, then defrost these basis vectors by declaring them

to be unfrozen (meaning that we now allow mutations at these vectors).

The first two steps amounts to taking the subgroup of Λ′ ⊕ Λ′′ generated by the

vectors f ′
a + f ′′

ϕ(a), a ∈ A, and the rest of the basis vectors, and inducing on it a seed

structure. The amalgamation of seeds evidently commutes with the seed mutations.

The cluster coordinates Xi on the set S are related to the ones X ′
i and X ′′

i by:

Xi ≡





X ′
i i∈(S ′\A);

X ′′
i i∈(S ′′\ϕ(A));

X ′
aX

′′
ϕ(a) i = a∈A.

(15.26)

It is easy to check that the amalgamation respects the Poisson structure. For the

cluster A-coordinates, we have

Ai ≡





A′
i i∈(S ′\A);

A′′
i i∈(S ′′\ϕ(A));

A′
a

(
= A′′

ϕ(a)

)
i = a∈A.

(15.27)

The algebra generated by the cluster X -coordinates of the amalgamated seed

embeds to the product of similar algebras assigned to the original seeds via formulae

(15.26).

Contrary to this, the algebra generated by the cluster A-coordinates of the amal-

gamated seed is the quotient of the product of the similar algebras assigned to the

original seeds: we impose the relations A′
a = A′′

ϕ(a).

– 115 –



15.4 Brief Overview of the Appearance of Cluster Structures in Physics

The theory of cluster algebras had it origins in a very unexpected area: the study

of totally positive square matrices. This investigation began in the 1930’s with

Gantmacher and Krein, [42], and Schoenberg, [43], and had immediate applications

to the theory of oscillators in classical mechanics.

The notion of total positivity was vastly generalized by Lusztig, [33], to the

case of arbitrary split real reductive groups G. Lusztig defined the positive part of

group G>0 by using the Chevalley generators. The study of total positivity, related

parameterizations and canonical bases in simple Lie groups theory led to discovery

of cluster algebras, [34].

A crucial feature of cluster Poisson varieties in connection with physics is that

they provide a very general example of non-perturbative quantization, [45].

Recall that to quantize a Poisson space (X, {, }) means to deform its algebra of

functions to a non-commutative algebra Og(X), depending on a “coupling” constant

g > 0 (normally referred to in the literature as “~”) so that âb̂ b̂â = g{a, b}+ . . .,

and represent the algebra Og(X) by operators in a Hilbert space. The Heisenberg

quantization does this for a flat space with canonical coordinates (pi, qi). Kontsevich,

[147], proved that a perturbative version of the algebra Og(X), where the dependence

on the coupling g is via formal power series always exists.

Any cluster Poisson variety X admits a non-perturbative quantization, which

is manifestly invariant under the “S-duality” g→ g−1. It comes with a series of ∗-

representations in Hilbert spaces, modeled on in a single Hilbert space L2(A+,ΩA),

defined using the space A+ of positive real points of the dual cluster variety A, and

the canonical cluster volume form ΩA providing the Lebesgue measure there.

Many (if not most) interesting examples of cluster structures appear when one

couples a reductive Lie group G to a topological surface S, studying moduli spaces

of flat G-bundles on a topological surface S and related moduli spaces introduced

and studies in [35]. The corresponding spaces of positive real points are the Higher

Teichmüller spaces related to the pair (G,S).

Let us give a broad-view description of how the non-perturbative cluster quan-

tization, and in particular the canonical cluster volume form play a crucial role in

defining a Hilbert space that has made an appearance now several times in quantum

field theory.

The staring point is a decorated surface S. Let S be a surface with or with-

out boundary, and a finite collection of points on the boundary, considered modulo

isotopy. For example, a disc with n points on the boundary is the topological back-

ground for the n-particle scattering amplitudes.

Given S and a split reductive Lie group G, there are two moduli spaces defined

in [35] closely related to the moduli space of G-bundles with flat connections on S:

XG,S and AG,S. (15.28)
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The first is equipped with an X -cluster atlas, and the second with an A-cluster atlas.

This immediately implies that the sets X+
G,S and A+

G,S of real positive points of

these spaces are defined. This is the dual pair of higher Teichmüller spaces assigned

to (G,S).

As described in [36], the existence of the cluster atlas on the space XG,S implies

that the algebra O(XG,S) of regular functions on this space admits a canonical non-

commutative q-deformation to a ∗-algebra Oq(XG,S), where q=exp(πig) (for g > 0).

It is invariant under the action of the mapping class group of S.

The modular double of the algebra Oq(XG,S) is the tensor product of the original

∗-algebra with the coupling g, and the ∗-algebra related to the Langlands dual group

GL at the “inverse” 1/(dGg) of the coupling (dG = 1 for simply-laced group G):

Oq(XG,S)
⊗
Oq∨(XGL,S), (15.29)

where q = exp(πig) and q∨ = exp(πi/dGg).

It follows from the general result on quantization of cluster varieties proved in [45]

that the modular double admits a series of ∗-representations in Hilbert spaces Hχ,

depending on a parameter χ ∈ Rm. Here m is the dimension of the center of the

Poisson bracket on the space XG,S, and χ is a unitary character of the center of the

algebra Oq(XG,S). The Hilbert spaces Hχ are expected to be the spaces of conformal

blocks for higher Toda theories.

On the other hand, since the space AG,S has a cluster A-atlas, it carries the

canonical volume form ΩA. The latter restricts to a canonical volume form on the

positive real space A+
G,S. Therefore we arrive at a canonical Hilbert space assigned

to the pair (G,S):
L2(A+

G,S,ΩA). (15.30)

The mapping class group of S acts by its unitary symmetries. It was proved in [45]

that this Hilbert space is the integral of the spaces of operators acting in the Hilbert

spaces Hχ:
L2(A+

G,S,ΩA) =

∫
H∗

χ ⊗Hχdχ. (15.31)

We conclude that the positive structure and the canonical cluster volume form

on the space AG,S provide us with the Hilbert space L2(A+
G,S,ΩA) describing the

conformal blocks.

As we have seen in this paper, it is quite amazing that exactly the same data—

the positive structure and the canonical cluster volume form—for the Grassmannian

G(k, n) provides us the measure for the integrand of the scattering amplitudes in

N = 4 SYM. It is even more striking that there are structures crucial for each

of these stories which have not made an appearance in the other: we need the

quantized dual X -moduli space in one, and the rich external kinematic data in the

other. This strongly suggests that a deeper study is bound to reveal the roles the

“missing structures” in each of the stories and lead to a beautiful unified picture.
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16. On-Shell Representations of Scattering Amplitudes

Although we have focused on understanding individual on-shell diagrams for most

of the paper, let us return to a study of how these can combine to entire scattering

amplitudes. As discussed in section 2, the defining property of the full amplitude is

that it satisfies the “differential equation”,

(16.1)

which specifies the two kinds of singularities it can have—corresponding to “factor-

ization channels” (red) and “forward limits” (blue), respectively. All known repre-

sentations of scattering amplitudes can be thought of as particular ways of building

objects with these—and only these—(co-dimension one) singularities.

The usual Feynman-diagrammatic expansion for scattering amplitudes makes

these singularities (together with conformal invariance) manifest, but at the cost of

introducing unphysical, off-shell variables and gauge-redundancies which obscure the

underlying Yangian-invariance of the theory. (The same can be said for the equivalent

Wilson-loop representation—except that it is the dual conformal symmetry which is

made manifest.) By contrast, the BCFW recursion relations,

(16.2)

can be understood of as a direct integration of the defining equation (16.1), and

provides us with a representation of scattering amplitudes for which every term enjoys

the full Yangian-invariance of the theory. However, the recursion requires that two

legs be singled-out to play a special role—in (16.2), these are the legs (n 1). Although

this choice is arbitrary, it breaks the cyclic-symmetry of the complete amplitude, and

makes manifest only a rather small subset of the singularities required by (16.1).

Of course, the BCFW recursion relations can be derived from field theory, start-

ing either with the “scattering amplitude” [13] or “Wilson loop” [148–150] pictures

(for the relation to light-like correlation functions, see [151–155]). We will however

begin by showing how they can also be proven directly by induction. That is, we

will show that the boundary of (16.2) includes precisely the singularities required by

(16.1); this proof will be entirely diagrammatic. In section 16.2 we will review some
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important features encountered in the tree-level (ℓ = 0) version of the recursion rela-

tions, and in section 16.3 we will see how the structure of tree amplitudes is reflected

at loop-level, giving rise to a canonical—purely ‘dlog’—form for all loop-integrands.

16.1 (Diagrammatic) Proof of the BCFW Recursion Relations

Let us take the BCFW recursion relations, (16.2) as an ansatz, and demonstrate

inductively that its boundary includes all the correct factorization channels and

forward limits, and no other singularities (for earlier work along these lines see [156,

157]). Recall that the four-point, tree-amplitude, A(2),ℓ=0
4 , manifestly has all the

correct factorization channels in its boundary,

{3, 4, 5, 6} {3,5,4, 6} {4,3, 5, 6} {2, 4, 5,7} {3, 4,6,5}

We may therefore suppose that the ansatz is correct for all amplitudes A(k̂),ℓ̂
n̂

with n̂ < n, k̂ ≤ k, and ℓ̂ ≤ ℓ; we must show that this suffices to prove that it also

holds for A(k),ℓ
n . We may divide the argument into two parts: first, demonstrating

that the boundary includes all the correct factorization channels; and then showing

that it includes all the correct forward-limits.

Among the factorization channels, those for which particles 1 and n are on

opposite sides are trivially present:

What we first need to check is that the BCFW recursion formula also generates all

those factorizations for which 1 and n are on the same side. Factorization channels

for which legs 1 and n are not alone on one side arise from the factorizations of the

bridged amplitudes. For example, the boundaries of the left-amplitudes include:

where we have used our induction hypothesis to identify the terms appearing on the

right-side of the factorization as a lower-point amplitude denoted R’. We also have

the analogous diagrams arising from the right-amplitudes.
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The case of a two-particle factorization involving just 1 and n together, how-

ever, arises somewhat differently. The factorization for which particles 1 and n are

connected via a A(1)
3 -vertex arises from the boundary,

Similarly, the case where particles 1 and n are connected via a A(2)
3 -vertex arises

from,

We have therefore shown that all factorization channels are present in the bound-

ary of the BCFW ansatz. However, we must also show that these are the only such

boundaries. Our induction hypothesis would suggest that such ‘spurious’ poles could

arise from factorizations of separating (1̂ I) on the left, or (I n̂) on the right:

Conveniently, such boundaries are always generated symmetrically from the left- and

right-amplitudes, and cancel in the sum.

Let us now demonstrate that the BCFW recursion ansatz generates all the correct

forward-limits as co-dimension one boundaries—and only these. As with the factor-

ization channels, the BCFW recursion ansatz always makes one of the forward-limits

manifest—those where the forward limit is taken between 1 and n:

When the identified legs are not between (n 1), but say (a a+1), something more

interesting happens. Some of these arise trivially from the boundary of ‘bridged’

terms in the recursion,
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and

but these terms alone do not represent the complete BCFW-representation of the

lower-loop, higher-point amplitude including the identified legs: the problem is that

we are missing both the terms where the identified legs (before the forward-limit) are

separated across the BCFW-bridge, and also the terms for which they are identified

in the ‘forward-limit’ term. By our induction hypothesis, both of these terms arise

from the boundary of the forward-limit term: as factorization and forward-limit

boundaries of the forward-limit term, respectively:

The first of these is needed by ‘forward-limit’ term in the BCFW recursion ansatz,

and the second term is needed to complete the ‘bridge’ term of the recursion ansatz; to

see this more clearly, notice that the second term can be redrawn more suggestively:

And so, we have shown that the induction hypothesis ensures that all the nec-

essary forward-limit terms are generated in the boundary of the BCFW recursion

formula. But as with the factorization-channels studied earlier, we must show that

no ‘spurious’ forward-limit terms are generated. Such spurious forward-limit terms

can be generated by the ‘bridge’ term in the recursion—when the identified legs

appear either between (1̂ I) on the left, or between (I n̂) on the right—or from the

factorization-channels of the ‘forward-limit’ term; these are always generated in pairs,

and cancel accordingly; for example,
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16.2 The Structure of (Tree-)Amplitudes in the Grassmannian

The BCFW recursion relations provide us with a powerful description of scattering

amplitudes to all-loop orders. Although the tree-level recursion relations have been

largely understood for nearly a decade (see e.g. [10, 72, 73, 156, 158]), its extension

to all-loop integrands remains relatively novel—and until now, has only been un-

derstood in terms of momentum-twistor variables (as described in [13]). Because of

this novelty, it is worthwhile to explore some of the features of the recursion and

the structures that emerge. In this subsection, we will mostly review aspects of

tree-amplitudes that are well known to most practitioners; this will provide us with

the background necessary to discuss some of the novelties that arise loop-level in

section 16.3.

When restricted to tree-level, the recursion relations (16.2) become,

Here, we have separated the terms in the recursion which involve a 3-particle am-

plitude on either side of the bridge; this is because one of the 3-particle amplitudes

when bridged on either side will lead to an on-shell form with vanishing-support for

generic kinematical data—for example, bridging A(1)
3 on the left would give,

which is only non-vanishing if λ1 ∝ λ2. (Moreover, it turns out that these graphs are

always reducible, and so have less than the necessary (2n 4) independent degrees

of freedom required to solve the kinematical constraints.)

Let us begin to build intuition about the structure that arises from the recursion

by considering the simplest examples. Recall that the 4-particle amplitude is entirely

given by the single on-shell graph, (2.20)—the familiar ‘box’,

A(2)
4 = A(2)

3 ⊗A
(1)
3 =
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This of course follows trivially from the recursion relations. But it is not the only

amplitude which is so simple: for example, the two 5-particle amplitudes are simply,

A(2)
5 = A(2)

4 ⊗A
(1)
3 = and A(3)

5 = A(2)
3 ⊗A

(2)
4 =

This trend continues for all MHV and MHV amplitudes, A(2)
n andA(n−2)

n , respectively.

For 6-particles, these amplitudes are:

A(2)
6 = A(2)

5 ⊗A
(1)
3 = and A(4)

6 = A(2)
3 ⊗A

(3)
5 =

Thus, the BCFW-recursion directly represents all MHV (and MHV) amplitudes as

single terms—directly giving the famous formula guessed by Parke and Taylor, (8.4).

Although fairly trivial, notice that in obtaining these formulae, it is natural

to view the act of attaching a 3-particle amplitude across the BCFW bridge as an

operation which ‘adds a particle’. This operation is of course well-defined not just for

the amplitude, but for any on-shell graph; thus, we have a way to add a particle in a

way which ‘preserves k’, (•⊗A(1)
3 ) : G(k, n) 7→G(k, n+1), and in way which ‘increases

k’, (A(2)
3 ⊗ •) : G(k, n) 7→G(k+1, n+1). These are called ‘inverse-soft factors’. As a

reference, these operations correspond to:





k-preserving or holomorphic inverse-soft factor

momentum-space momentum-twistors

λn̂ = λn

λ̃n̂ = λ̃n− α(nn+1)λ̃n+1

zn̂ = zn

λ1̂ = λ1

λ̃1̂ = λ̃1− α(1n+1)λ̃n+1

z1̂ = z1

f(· · ·, n, n+1, 1, · · · )

⇒f(· · ·, n̂, 1̂, · · · )×

δ2
(
λn+1 α(nn+1)λn α(1n+1)λ1

)
f(· · ·, n, n+1, 1, · · · )

⇒f(· · ·, n, 1, · · · )





k-increasing or anti-holomorphic inverse-soft factor

momentum-space momentum-twistors

λn̂ = λn + α(n+1n)λn+1

λ̃n̂ = λ̃n

zn̂ = zn+α(n+1n)zn−1

λ1̂ = λ1 + α(n+1 1)λn+1

λ̃1̂ = λ̃1

z1̂ = z1+α(n+1 1)z2

f(· · ·, n, n+1, 1, · · · )

⇒f(· · ·, n̂, 1̂, · · · )×
δ2
(
λ̃n+1+α(nn+1)λ̃n+α(1n+1)λ̃1

)
f(· · ·, n, n+1, 1, · · · )

⇒f(· · ·, n̂, 1̂, · · · )

×[n 1nn+1 1 2]
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(Here, the η̃’s transform identically to the λ̃’s.) Each of these can be seen to follow

from the action of two successive BCFW-bridges:





BCFW-bridge ‘(n 1)’

momentum-space momentum-twistors

λn̂ = λn

λ̃n̂ = λ̃n− α(n1)λ̃1

zn̂ = zn

λ1̂ = λ1 + α(n1)λn

λ̃1̂ = λ̃1

z1̂ = z1 + α(n1)z2





BCFW-bridge ‘(1n)’

momentum-space momentum-twistors

λn̂ = λn + α(1n)λ1

λ̃n̂ = λ̃n

zn̂ = zn + α(1n)zn−1

λ1̂ = λ1

λ̃1̂ = λ̃1− α(1n)λ̃n

z1̂ = z1

Notice that whenever an on-shell graph has a leg a such that σ(a 1) = a+1 or

σ(a+1)=a 1 we can view it as having been obtained by adding particle a to a lower-

point graph using a k-preserving or k-increasing inverse soft-factor, respectively. In

such cases, a is said to be an ‘inverse-soft factor’; and any on-shell graph which

can be constructed by successively adding particles to a 3-particle amplitude using

inverse-soft factors is said to be ‘inverse-soft constructible’.

The notion of ‘inverse-soft constructibility’ proves useful because the auxiliary

variables associated with any inverse-soft factor can be completely fixed by the as-

sociated δ-function constraint, making it very easy to recursively eliminate all the

auxiliary, Grassmannian degrees of freedom. It turns out that for 13 or fewer legs,

all on-shell forms generated by the tree-level recursion relations—regardless of how

lower-point amplitudes are themselves recursed—are inverse-soft constructible. How-

ever, for 14 or more particles, some objects can be generated by the recursion relations

which are not inverse-soft constructible, such as the following possible contribution to

the 14-particle N5MHV tree-amplitude (labeled by {4,7,6,10,16,17,14,15,12,13,19,23,22,25}):

((
A(2)

3 ⊗
(
A(2)

4 ⊗A
(2)
4

))
⊗A(1)

3

)
⊗
(
A(2)

3 ⊗
((
A(2)

4 ⊗A
(2)
4

)
⊗A(1)

3

))

(16.3)

Notice that this graph was generated by always using internal edges to recurse the

objects appearing across the BCFW-bridge—(1̂ I) on the left and (I n̂) on the right.
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(We should mention in passing that if one always recurses the lower-point amplitudes

according to the marked legs as follows,

(16.4)

then all tree-amplitudes will be given in terms of only inverse-soft constructible

graphs. This corresponds to the recursion ‘scheme’ { 2, 2, 0} of reference [159].)

As described in section 11, the first amplitude which is given as the combination

of several on-shell graphs is A(3)
6 , the 6-particle NMHV tree-amplitude. This is given

by three terms, A(3)
5 ⊗A

(1)
3 , A(2)

4 ⊗A
(2)
4 , and A(2)

3 ⊗A
(2)
5 :

A(3)
6 =

{4, 5, 6, 8, 7, 9}

+

{3, 5, 6, 7, 8, 10}

+

{4, 6, 5, 7, 8, 9}

(16.5)

Although the on-shell graphs of each contribution appear quite different, it is easy

to see from the permutations that they are all cyclically-related to one another:

{3, 5, 6, 7, 8, 10}

=

{3, 5, 6, 7, 8, 10}

=

{3, 5, 6, 7, 8, 10}

(16.6)

The on-shell differential form drawn above—labeled by the permutation {3, 5, 6, 7, 8, 10}

—was given directly in terms of the kinematical variables λ, λ̃ in equation (8.7). Be-

cause each term is cyclically-related, if we use ‘r’ to denote the operation that ‘rotates’

all particle labels forward by 1, we can write the entire tree-amplitude as:

A(3)
6 =(1+r2+r4)

δ3×4(C∗· η̃) δ2×2
(
λ·λ̃
)

〈23〉[56](〈34〉[64]+〈53〉[56])s456(〈61〉[64]+〈15〉[45])〈12〉[45]
, (16.7)

where the matrix C∗ was given in (8.6).

Although the precise set of on-shell graphs obtained using the BCFW recursion

relations can vary considerably depending on which legs of the lower-point amplitudes

are used for their recursion, the number of terms is of course scheme-independent.

It is a relatively simple exercise to show that,

# BCFW terms in the tree-amplitude A(k)
n :

1

n− 3

(
n 3

k 1

)(
n 3

k 2

)
. (16.8)
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16.3 Canonical Coordinates for Loop Integrands

The all-loop generalization of the BCFW recursion relations was first described in [13]

where it was formulated in terms of explicit operations acting directly on the ‘func-

tions’ of momentum-twistor variables obtained after eliminating the auxiliary Grass-

mannian degrees of freedom. This led to formulae for the ‘loop integrands’ in the

form of a ‘standard’ loop-integration measure d4ℓ weighted by some rational func-

tion of the loop-momentum ℓ, or equivalently a function one the space of lines AB in

momentum-twistor space with measure d4zAd
4zB/GL(2). When viewed as rational

functions in this way, much of the underlying structure is hidden. However, by view-

ing each loop-momentum’s degrees of freedom as arising from canonical coordinates

in the auxiliary Grassmannian, the integration measure is automatically generated

in a much more illuminating, ‘canonical’ form: as a wedge-product of “dlog” factors.

The fact that loop amplitude integrands can be written in such a form—a fact which

is essentially obvious using canonical coordinates on the Grassmannian—is far from

obvious from any other method to compute scattering amplitudes.

We will postpone a systematic discussion of the loop amplitude integrands gen-

erated by the recursion relations (16.2) until a future work. Here, we merely want to

demonstrate its most important physical implications through the context of simple

examples. We first describe how one-loop integrands are generated by the recursion,

using the case of MHV for illustration. At the end of this subsection, we will briefly

describe the features observed for higher-loop amplitudes.

Let us begin with the simplest of all one-loop amplitudes, the 4-particle MHV

amplitude. As there are no 3-particle one-loop integrands to appear in the ‘bridge’

term of the recursion, the 4-particle one-loop integrand is entirely generated as the

forward-limit of the 6-particle NMHV tree-amplitude, A(3)
6 . Let us denote the two

particles identified in the forward-limit by (AB), and use these two legs as the pair

singled-out in the recursion of the 6-particle tree. Of the 3 terms appearing in the

tree-amplitude A(3)
6 , (16.5), only one is non-vanishing in the forward-limit (a fact

that we will demonstrate momentarily); the forward-limit of the A(2)
4 ⊗A

(2)
4 -term is,

A
(2)
4 ⊗A

(2)
4

(The last move in this sequence was made only to make subsequent transformations

more transparent.) It is easy to see that this diagram has four faces beyond that of

the simple box, and thus four extra integration variables. Using reduction, we can

of course reduce this diagram to the box, giving us the integrand. We can relate

this new form of the integrand to a more familiar form, by identifying the usual loop
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momentum “ℓ” as,
ℓ = αλ1λ̃4 + λABλ̃AB, (16.9)

where λABλ̃AB is the momentum of the highlighted line in figure above. We can of

course determine λAB, λ̃AB in terms of the variables associated with the graph, and

in this way trade the four ‘extra’ variables for those which parameterize ℓ.

While this is a straightforward exercise, it is more illuminating to carry out the

reduction in a different way. We can use moves to give the on-shell diagram a different

representation—as a sequence of BCFW bridges on a core 4-particle amplitude:

(In the last transformation, several mergers were made.) This allows us to think of

the object as the usual box, but with ‘BCFW-shifted kinematical data’, given by,

bridge BCFW shift

(1 4)
λ4 7→λ4 +α1λ1

λ̃1 7→ λ̃1−α1λ̃4

(1 2)
λ2 7→λ2 +α2λ1

λ̃1 7→ λ̃1−α2λ̃2

(3 2)
λ2 7→λ2 +α3λ3

λ̃3 7→ λ̃3−α3λ̃2

(3 4)
λ4 7→λ4 +α4λ3

λ̃3 7→ λ̃3−α4λ̃4

⇒





1̂

{
λ1̂ = λ1

λ̃1̂ = λ̃1 − α1λ̃4 − α2λ̃2

2̂

{
λ2̂ = λ2 + α2λ1 + α3λ3

λ̃2̂ = λ̃2

3̂

{
λ3̂ = λ3

λ̃3̂ = λ̃3 − α3λ̃2 − α4λ̃4

4̂

{
λ4̂ = λ4 + α1λ1 + α4λ3

λ̃4̂ = λ̃4

Thus, the integrand is nothing but dlog(α1) ∧ · · · ∧ dlog(α4) times the shifted

four-particle amplitude,
dα1

α1

dα2

α2

dα3

α3

dα4

α4

δ2×4
(
λ·η̃

)

〈1̂ 2̂〉〈2̂ 3̂〉〈3̂ 4̂〉〈4̂ 1̂〉
. (16.10)

If we strip-off the (unshifted) Parke-Tyalor prefactor, the integrand for the one-loop

ratio function—the loop amplitude divided by the tree-amplitude—is simply [160],

A(2),1
4

A(2),0
4

=
dα1

α1

dα2

α2

dα3

α3

dα4

α4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉

〈1̂ 2̂〉〈2̂ 3̂〉〈3̂ 4̂〉〈4̂ 1̂〉
,

=
dα1

α1

dα2

α2

dα3

α3

dα4

α4

〈12〉

〈12〉+ α3〈13〉

〈23〉

〈23〉+ α2〈13〉

〈34〉

〈34〉+ α1〈31〉

〈41〉

〈41〉+ α4〈31〉
,

= dlog

(
α1〈34〉

〈34〉+α1〈31〉

)
dlog

(
α2〈23〉

〈23〉+α2〈13〉

)
dlog

(
α3〈12〉

〈12〉+α3〈13〉

)
dlog

(
α4〈41〉

〈41〉+α4〈31〉

)

which is manifestly in a ‘dlog’-form.

Now, we can determine λAB and λ̃AB very simply in terms of the bridge variables.

For a general box, the internal momentum on the bridge can be given in terms of

the external data according to:
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(16.11)

which allows us to identify,

λABλ̃AB =
〈1̂2̂〉

〈4̂2̂〉
λ4̂λ̃1̂. (16.12)

And so in summary, the relation between the BCFW-bridge variables αi and the

usual loop momentum variables is given by,

ℓ =
〈1̂2̂〉

〈4̂2̂〉
λ4̂λ̃1̂ + α1λ1λ̃4. (16.13)

Using this change of variables, it is straightforward to re-cast the integrand

(16.11) in the form which we gave earlier in section 2:

dlog

(
ℓ2

(ℓ− ℓ∗)2

)
dlog

(
(ℓ+ p1)

2

(ℓ− ℓ∗)2

)
dlog

(
(ℓ+ p1 + p2)

2

(ℓ− ℓ∗)2

)
dlog

(
(ℓ− p4)

2

(ℓ− ℓ∗)2

)
, (16.14)

where ℓ∗ = 〈12〉
〈42〉

λ4λ̃1.

We can also interpret exactly the same pictures in momentum-twistor space.

Recall that a BCFW bridge ‘(a 1 a)’—a white-to-black vertex from a 1 to a—has

the effect of shifting the momentum twistor za 7→ za + αza+1 where α is the bridge

variable. Generally speaking, lines in momentum-twistor space are associated with

the faces of the momentum-space on-shell graph; we will not review these ideas here,

but let us briefly summarize that the regions of a four-point box are associated with

the lines in momentum-twistor space as indicated below:

or (16.15)

Now, this means that if we identify the four unfixed degrees of freedom with the line

(AB) in momentum-twistor space, we see that it corresponds to the line (2̂ 4̂) in

(16.16)
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Performing the same sequence of shifts as before, but now using momentum-

twistor variables, we find:

bridge BCFW shift
(1 4) z4 7→z4+β1z3
(1 2) z2 7→z2+β2z3
(3 2) z2 7→z2+β3z1
(3 4) z4 7→z4+β4z1

⇒





z1̂=z1
z2̂=z2+β2z3+β3z1
z3̂=z3
z4̂=z4+β1z3+β4z1





This uniquely fixes the auxiliary, Grassmannian parameters βi in terms of the momentum-

twistor line (AB) according to:

β1 =
〈AB 4 1〉

〈AB 1 3〉
, β2 =

〈AB 1 2〉

〈AB 3 1〉
, β3 =

〈AB 2 3〉

〈AB 3 1〉
, and β4 =

〈AB 3 4〉

〈AB 1 3〉
. (16.17)

With this identification, we can re-write the integrand in terms of the four auxiliary

variables in momentum-twistor space as,

dlog(β1) · · · dlog(β4) = dlog

(
〈AB 41〉

〈AB 13〉

)
dlog

(
〈AB 12〉

〈AB 31〉

)
dlog

(
〈AB 23〉

〈AB 31〉

)
dlog

(
〈AB 34〉

〈AB 13〉

)
.

If we recast this expression as an integration measure on the space of lines (AB)

in momentum-twistor space, we find that

dlog

(
〈AB 41〉

〈AB 13〉

)
dlog

(
〈AB 12〉

〈AB 31〉

)
dlog

(
〈AB 23〉

〈AB 31〉

)
dlog

(
〈AB 34〉

〈AB 13〉

)
=
〈d2zAAB〉〈d2zBAB〉〈1234〉〈2341〉

〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉
,

which is precisely the familiar form of the integrand given in reference [13].

Before moving on to the case of the n-particle MHV one-loop integrand, let us

go back and understand why only one of the three terms in the 6-particle NMHV

tree amplitude survived the forward-limit, as the reason will prove quite instructive.

Let us choose to always represent the (n+2)-point tree-amplitude appearing in the

forward limit using the BCFW recursion which deforms legs (AB). Recall that the

tree-amplitude recursion can be broken into three parts as in (16.3):

1. a k-preserving inverse-soft factor: A(k)
n−1⊗A

(1)
3 ;

2. a k-increasing inverse-soft factor: A(2)
3 ⊗A

(k−1)
n−1 ;

and 3. terms for which nL, nR ≥ 4.

(16.18)

Of these, it is not hard to see that if (AB) are the distinguished legs of the bridge,

the first two contributions listed above always vanish. More precisely, any on-shell

form for which A or B is an inverse-soft factor will vanish in the forward-limit. (We

should notice that ‘A or B being an inverse-soft factor’ is a sufficient condition for

an on-shell form to vanish in the forward limit, but not a necessary one.)

Let us now see why any contributions to the lower-loop amplitude where A or B

is an inverse-soft factor will vanish. Consider the forward-limit of a term for which

A is a k-preserving inverse-soft factor (the argument is the same in all other cases):
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(16.19)

Notice that the kinematical constraints associated with the middle—black—vertex

requires that λA be expandable in terms of λB and λn; but in the forward-limit,

we identify λA with λB, which implies that λAB ∝ λn. As such, the kinematical

constraints do not allow for there to be any unfixed degrees of freedom associated

with λAB (which should represent loop-integration degrees of freedom).

We are now prepared to determine the n-point MHV one-loop integrand in gen-

eral. The bridge-term always contributes a term A(2),1
n−1⊗A

(1)
3 , which is simply a k-

preserving inverse-soft factor adding n to the (n 1)-point one-loop amplitude; more

interesting are the forward-limit terms. These come from the forward-limit of A(3),0
n+2 ;

among the terms that contribute to the higher-point NMHV tree-amplitude, we have

seen that only those obtained from bridging A(2)
nL⊗A

(2)
nR with nL, nR ≥ 4 contribute.

Because k-preserving inverse soft factors act trivially in momentum-twistors, and

the left- and right-amplitudes appearing in the NMHV tree-amplitudes are trivially

chains of inverse-soft factors, it will be useful to define the notion of an “MHV region”

obtained by any number of successive k-preserving inverse-soft factors:

with

Allowing for such MHV regions in our diagrammatic expansion, we see that the

one-loop MHV integrand is given by,

We can rearrange the NMHV forward-limit contributions as we did above in

order to make manifest the sequence of BCFW-bridges which parameterize the extra

degrees of freedom:
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Proceeding as before, we can identify the shifted momentum-twistors appearing in

the box as,

(AB) = (â n̂) with

{
zâ = za+β1za+1+β2z1
zn̂ = zn+β3z1+β4zn−1

}
, (16.20)

which allows us to re-cast the BCFW-bridge variables βi in terms of the line (AB):

β1 =
〈AB 1 a〉

〈AB a+1 1〉
, β2 =

〈AB aa+1〉

〈AB a+1 1〉
, β3 =

〈AB n 1n〉

〈AB 1n 1〉
, and β4 =

〈AB n 1〉

〈AB 1n 1〉
.

Therefore, we see that the forward-limit terms are given by:

= dlog(β1)dlog(β2)dlog(β3)dlog(β4)

= dlog

(
〈AB 1a〉

〈AB 1a+1〉

)
dlog

(
〈AB aa+1〉

〈AB 1a+1〉

)
dlog

(
〈AB n 1n〉

〈AB 1n 1〉

)
dlog

(
〈AB n1〉

〈AB 1n 1〉

)
.

Quite amazingly, if we re-cast this integration measure directly in terms of the line

(AB), we see that this is equivalent to,

=
〈d2zA AB〉〈d2zB AB〉〈AB (1 a a+1)

⋂
(1n 1n)〉2

〈AB 1 a〉〈AB aa+1〉〈AB a+1 1〉〈AB 1n 1〉〈AB n 1n〉〈AB n 1〉

≡ K[a;n 1].

We have obtained this result entirely by manipulating pictures of on-shell diagrams;

of course the result precisely matches the form obtained by direct computation, using

the methods of [13], where all MHV one-loop integrands were given in the form,

A(2),1
n =

∑

1<a<b<n

K[a; b]. (16.21)

Before moving on to multi-loop integrands, it is worth mentioning that for one-

loop integrands, so long as the forward-limits are taken of tree-amplitudes obtained
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by BCFW deforming the identified legs (AB), it turns out that the obvious k-

preserving and k-increasing inverse-soft factors are the only terms which vanish in

the forward limit; this allows us to conclude that,

# BCFW terms in the one-loop amplitude A(k),1
n :

(
n 2

k

)(
n 2

k 2

)
. (16.22)

(It turns out that this counting holds regardless of how the forward-limit terms are

recursed—even though it is generally difficult to identify beforehand which terms

will vanish if (AB) are not singled-out for the recursion. Beyond one-loop, however,

the number of non-vanishing contributions is not invariant, and depends sensitively

on how the lower-loop amplitudes are recursed.)

When expressing tree-amplitudes and their forward-limits in terms of canon-

ical coordinates on the auxiliary Grassmannian, it is obvious that all loop inte-

grands can be—and are most naturally—expressed in such a ‘dlog’-representation.

Although in principle we have all the tools necessary to construct such formulae for

all amplitudes—and although the BCFW recursion relations (16.2) is dramatically

more efficient that any representation obtained using ‘traditional’ methods (such as

Feynman diagrams)—even the simplest 2-loop integrands would require more space

to write completely than would be warranted for the purpose of illustration.

Let us therefore content ourselves to consider one simple example of a contribu-

tion to the 4-particle 2-loop integrand which arises as the double forward-limit of a of

the contributions to the 8-particle N2MHV tree-amplitude, that of
(
A(2)

4 ⊗A
(2)
4

)
⊗A(2)

4 :

In the last step, we have made liberal use of square-moves and merge/un-merge

operations to bring it in the form which exposes a sequence of recognizable BCFW-

bridges which themselves encode the additional degrees of freedom.

Using the tools described in [13] to compute this contribution directly as a ‘func-

tion’ of lines (AB) and (CD) in momentum-twistor space, the following rational

integrand is found:

〈d2zAAB〉〈d2zB AB〉〈d2zC CD〉〈d2zD CD〉〈1234〉3〈AB(CD)
⋂
(341)1〉2

〈AB14〉〈AB1(123)
⋂
(CD)〉〈AB1(234)

⋂
(CD)〉〈AB(((CD(341)

⋂
(AB))

⋂
(12))34)

⋂
(CD)1〉〈ABCD〉〈CD34〉

.

While the expression above is of course obtained in a straight-forward way, it is

obviously rather complicated and not particularly illuminating. Moreover, as written

in the form given above—as a rational integrand—it is not at all obvious that there
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exists any change of variables for which it becomes simply the wedge-product of

8 logarithmic factors. But from our present perspective, the existence of such a

change of coordinates is an obvious consequence of the Grassmannian formulation

of the initial tree-amplitude; and it will be instructive to see how this remarkable

connection is realized.

To be extremely concrete, we want to identify the lines (AB) and (CD) as

parameterizing the region-momenta according to,

with
(AB) = (2̂ 3̂)

(CD) = (4̂ 1̂)
(16.23)

We can find the shifted momentum-twistors zâ by performing the successive BCFW-

shifts obvious from the way the double forward-limit graph is drawn:

bridge BCFW shift
(1 4) z4 7→z4+β1z3

(1 2) z2 7→z2+β2z3

(3 2) z2 7→z2+β3z1

(4 3) z3 7→z3+β4z2

(2 3) z3 7→z3+β5z4

(2 1) z1 7→z1+β6z4

(1 4) z4 7→z4+β7z3

(3 2) z2 7→z2+β8z1

⇒





z1̂=z1+β5(z4+β1z3);

z2̂=z2+β2z3+β3z1
+β8(z1+β5(z4+β1z3));

z3̂=z3+β4(z2+β2z3+β3z1)

+β6(z4+β1z3);

z4̂=z4+β1z3+β7β6(z4+β1z3)

+β7(z3+β4(z2+β2z3+β3z1));





One can readily verify that quite remarkably, with this change of variables, the

complicated expression given above becomes simply,

dlog(β1) ∧ · · · ∧ dlog(β8). (16.24)

16.4 The Transcendentality of Loop Amplitudes

The integrand obtained from the BCFW recursion relations allows us to draw some

important general conclusions about the structure of the final, integrated expressions

for the amplitude. Let us start with MHV amplitudes. As we have seen, all the

BCFW terms at L loops can be written in the form,

A(2)
n,L = A(2)

n,0 ×
4L∏

i=1

dlog(βi). (16.25)

The first and most obvious point to observe is that the integrand has only logarithmic

singularities! There are no “sub-leading” pieces of the integrand with less than the

maximal number of logarithmic singularities. At one-loop, this (together with dual
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conformal invariance) tells us the famous fact that the loop amplitude only depends

on “box” integrals, and doesn’t involve any triangles, bubbles, or rational pieces

[161,162].

As we have stressed a number of times, the fact that the integrand has only

logarithmic singularities is not at all obvious from inspection of the actual rational

functions involved in sufficiently high loop-amplitude integrands, where there don’t

seem to be enough “obvious” singularities in cutting propagators, and so singularities

must emerge as “composites”. By contrast, the positive Grassmannian story makes

this fact completely obvious. Intuitively, this guarantees that after integration, the

L-loop MHV amplitudes can always be expressed as a sum of polylogarithms of

transcendentality 2L. The reason is roughly that discontinuities of the amplitude are

related to unitarity cuts that put pairs of particles on-shell; thereby computing partial

residues of the integrand. Taking 2L discontinuities gives the leading singularity “1”,

which has no further discontinuities. These amplitudes are thus “pure”—not polluted

by lower-transcendentality terms, which would arise from pieces of the integrand

without purely logarithmic singularities. This has long been conjectured to be true

for MHV amplitudes in connection to the maximal transcendentality principle of

[163]. We see that the property needed of the integrand to guarantee this is a trivial

consequence of the dlog form.

Beyond MHV amplitudes, we know that the integrated amplitudes can involve

more complicated functions than polylogarithms. For instance, as pointed out in

ref. [91], the two-loop, 10-point N3MHV amplitude includes a contribution from a

function whose seven-fold discontinuity is proportional to the following on-shell form:

{7, 6, 10, 9, 8, 12, 11, 15, 14, 13}

(16.26)

This on-shell graph corresponds to a 17-dimensional cell in G(5, 10); the kinematical

constraints will fix this to an integral over one degree of freedom (interpreted as the

‘hepta-cut’ of the two-loop integrand). The component amplitude proportional to,
(
η̃ 1
1 η̃

2
1

)(
η̃ 1
2 η̃

2
2

)(
η̃ 2
3 η̃

3
3

)(
η̃ 2
4 η̃

3
4

)(
η̃ 2
5 η̃

3
5

)(
η̃ 3
6 η̃

4
6

)(
η̃ 3
7 η̃

4
7

)(
η̃ 4
8 η̃

1
8

)(
η̃ 4
9 η̃

1
9

)(
η̃ 4
10η̃

1
10

)
, (16.27)

(a component which vanishes exactly at tree-level and one-loop) vanishes on all

the positroid cells in the boundary of (16.26). Therefore, the only contour integral

available must enclose the Jacobian resulting from the kinematical constraints; this

Jacobian generically involves the square-root of an irreducible quartic, implying that
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(at least for this component) the seven-fold discontinuity of the 2-loop integrand is

an elliptic integral.

We can understand the difference between MHV and higher-k amplitudes from

the Grassmannian. Recall that cells of dimensionality (2n 4) are fully localized

by the kinematical constraints. Since for MHV amplitudes, dim(G(2, n)) = (2n 4),

all of the unfixed degrees of freedom associated with ‘loop-momenta’ are associated

with faces which can always be removed by reduction (as there no irreducible graphs

with more faces than that of the top-cell). Beyond MHV, however, the reduction

of on-shell diagrams can result in cells of higher dimensionality than (2n 4). For

example, consider the top-cell of G(3, 6):

(16.28)

Here, we have chosen a representative graph which makes it clear that it can be

associated with a triple-cut of the 6-particle amplitude at 1-loop. The 9 8 = 1

degree of freedom of the top-cell which is not fixed by the kinematical constants can

always be interpreted as the single integration variable of a triple-cut integral.

Similarly, the top-cell of G(4, 8) is 16-dimensional, while the kinematical con-

straints can be used to isolate only 2×8 4 = 12 degrees of freedom; therefore, the

top-cell on G(4, 8) can be viewed as an on-shell differential form with four unfixed

auxiliary degrees of freedom—which can in fact be interpreted as the four-degrees of

freedom of a ‘loop-integrand’ at one-loop. Indeed, we can represent the top-cell by,

(16.29)

Therefore beyond MHV, while the integration measures are purely dlog’s, some

free integration variables are inside the Grassmannian, and must be localized by

the kinematic constraints. This is the reason why more complicated functions can

appear after integration. However, it is clear that for fixed n and k, the functions

can’t get arbitrarily more complicated at high loop orders. The reason is that at

most dim(G(k, n)) (2n 4) of the integration variables can remain ‘entangled’ in the

Grassmannian (meaning that they cannot be pulled-off as overall dlog factors in the
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measure via bubble-reduction); at arbitrarily-high loop order, all but a finite number

of these auxiliary degrees of freedom must be associated with the more trivial factors

in the measure arising from bubble-reduction.

Actually, it is easy to see that, for NMHV amplitudes, the integrations that are

“stuck” in the Grassmannian can easily be removed, preserving the dlog form, and

thus that all NMHV amplitudes are also polylogarithms. Let us illustrate with the

top cell of G(3, 6); it is convenient to work in momentum-twistor language, where

this maps to the top cell of G(1, 6). On the support of the (ordinary) δ-functions,

we have a 1-form which we can represent as,

[1 2 3 4 (5+β6)]dlog(β), (16.30)

However, we can use the identity among the 5-brackets, (12.2), to rewrite this as

[1 2 3 4 5]dlog(β) + [2 3 4 5 6]dlog

(
β
〈2345〉

〈2346〉

)
+ [3 4 5 6 1]dlog

(
β
〈3451〉

〈3461〉

)

+[4 5 6 1 2]dlog

(
β
〈4512〉

〈4612〉

)
+ [5 6 1 2 3]dlog

(
β
〈5123〉

〈6123〉

)
(16.31)

In this way, we have removed the integration variable from inside the Grassman-

nian and decomposed the result into a sum of terms, each of which is in canonical

form. The same thing can be done for the top cell of any NMHV amplitude, since

the “internal” variables always occur linearly. Things can start becoming non-trivial

at N2MHV, where square-roots first make an appearance, and as we’ve seen con-

cretely above, already for 10-particle N3MHV amplitudes, elliptic integrals do make

an appearance.

The on-shell, BCFW-representation of loop-integrands delivers them manifestly

in a canonical, dlog-form; but having noted that the integrand can be put in this

form, it is natural to wonder if this is a consequence of the BCFW-representation, or

a more general result. For instance, in reference [164], extremely compact, local forms

of many integrands were found; can these also be written in terms of integrands with

only logarithmic singularities? The answer yes: the dlog form is a general property

of “pure” integrands with unit leading singularities. Let us briefly demonstrate this

fact with two examples: local forms of the MHV 1- and 2-loop integrands.

In [164], the 1-loop MHV integrand was given in the local form,

∑

a<b<a

IX [a; b], (16.32)

where IX [a; b] denotes the integrand,

IX [a; b] ≡
〈ABd2zA〉〈ABd2zB〉 〈AB (a 1 a a+1)

⋂
(b 1 b b+1)〉〈X ab〉

〈AB a 1 a〉〈AB aa+1〉〈AB b 1 b〉〈AB b b+1〉〈ABX〉
, (16.33)
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and where X is an arbitrary reference-line in momentum-twistor space (spanned by

any pair of twistors). Remarkably, it turns out that IX [a; b] can be expressed in

canonical form:

dlog

(
〈AB a 1a〉

〈ABX〉

)
dlog

(
〈AB aa+1〉

〈ABX〉

)
dlog

(
〈AB b 1b〉

〈AB(aX)
⋂
(b 1bb+1)〉

)
dlog

(
〈AB bb+1〉

〈AB(aX)
⋂
(b 1bb+1)〉

)
.

(Note that while this form appears to break the symmetry between a and b, the form

is of course symmetrical.)

Similarly, it was found in [164] that 2-loop MHV integrand could be written in

the following local form:

∑

a<b<c<d<a

I [a, b; c, d] (16.34)

where I[a, b; c, d] denotes the integrand,

〈ABd2zA〉〈ABd2zB〉〈CDd2zC〉〈CDd2zD〉〈AB (a 1aa+1)
⋂
(b 1bb+1)〉〈AB (c 1cc+1)

⋂
(d 1dd+1)〉

〈AB a 1a〉〈AB aa+1〉〈AB b 1b〉〈AB bb+1〉〈AB c 1c〉〈AB cc+1〉〈AB d 1d〉〈AB dd+1〉
.

But it turns out that this integrand can also be written in canonical form:

dlog

(
〈AB a 1a〉

〈AB CD〉

)
dlog

(
〈AB aa+1〉

〈AB CD〉

)
dlog

(
〈AB b 1b〉

〈AB(aCD)
⋂
(b 1bb+1)〉

)
dlog

(
〈AB bb+1〉

〈AB(aCD)
⋂
(b 1bb+1)〉

)

×dlog

(
〈CD c 1c〉

〈CD ab〉

)
dlog

(
〈CD cc+1〉

〈CD ab〉

)
dlog

(
〈CD d 1d〉

〈CD(abc)
⋂
(d 1dd+1)〉

)
dlog

(
〈CD dd+1〉

〈CD(abc)
⋂
(d 1dd+1)〉

)
.
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17. Outlook

We have explored much of the remarkable physics and mathematics of scattering

amplitudes in planar N =4 SYM, as seen through the lens of on-shell diagrams as

the primary objects of study. Let us conclude by making some brief comments on

further avenues of research.

One immediate extension of our work is the continued study of theories with

N < 4 SUSY, whose most basic features we sketched out in section 14. For N ≥ 1,

all-loop BCFW recursion holds just as for N = 4, together with its realization in

terms of on-shell diagrams. For N = 0 SUSY, the forward limit of tree amplitudes

are singular, and thus don’t directly give us the single-cuts of the loop-integrand [79].

More thought is needed to establish a connection between on-shell diagrams and the

full amplitude, though it is likely that fully understanding the on-shell diagrams will

continue to play an important role in determining N =0 amplitudes as well.

The general connection between on-shell diagrams and the Grassmannian has

nothing to do with any particular theory, only with the general picture of amalga-

mating basic three-particle amplitudes, and the connection to the positive Grass-

mannian in particular holds for any planar theory. Only the form on the Grassman-

nian changes from theory to theory. As briefly discussed in section 14, the essential

physical novelty of gauge theories with N ≤ 2 supersymmetry is the presence of

UV-divergences. The most physical, Wilsonian, way to think about UV-divergences

makes critical use of off-shell ideas, and so a major challenge is finding the correct

way of thinking about such physics in a directly on-shell language. It is fascinating

to see that the UV and IR singularities, together with UV/IR decoupling, is reflected

directly in on-shell diagrams through simple structures in the Grassmannian. A clear

goal would be to understand the physics of the renormalization group along these

lines.

Another obvious extension is to push beyond the planar limit, starting already

with N = 4 SYM; in this case, there is no longer an obvious notion of “the loop

integrand”, and thus we must learn how to establish a connection between on-shell

diagrams and the full scattering amplitude along the lines of the BCFW construction

in the planar limit. It is also very likely that on-shell ideas can be used to deter-

mine other observables in gauge theories beyond scattering amplitudes, including

all correlation functions. These objects also have discontinuities and cuts, and the

on-shell diagrams for leading singularities of form-factors and correlation functions

are exactly the same as the (in general non-planar) on-shell diagrams we have been

considering. The structure of cuts has already proved to powerful in determining

form-factors, [165]. For scattering amplitudes, we have seen that off-shell notions

like virtual loop integration variables can be fully understood in on-shell terms. It is

tempting to try and compute completely off-shell objects like correlation functions

in the same way.
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Moving further afield, as alluded to in section 15, the basic mathematical struc-

tures we have encountered in scattering amplitudes have also recently made an ap-

pearance in apparently completely different physical settings, related to conformal

blocks for higher Toda theories [35,45], wall-crossing [46,47], various versions of the

AGT conjecture [166], scattering amplitudes at strong coupling [167], and soliton

solutions of the KP equation [54–56]. The identical graphical structure has also ap-

peared in the construction of N = 1 SCFTs associated with quiver gauge theories

(see e.g. [52, 53]). The combinatorial classification of on-shell diagrams and these

planar N = 1 SCFTs coincide perfectly. It would be interesting to see if the rest

of the structure we have been seeing–especially the connection with the positive

Grassmannian–have a natural interpretation as well.

There is a unifying theme running through the physics and mathematics we

have been discussing. We have an object—the positive Grassmannian—which is

fundamentally defined by global properties, either as a real space, by demanding all

ordered minors are positive, or as a complex space, by specifying linear dependencies

between consecutive vectors. However quite remarkably, the best way of building-up

these objects (albeit in a highly redundant way) is through the amalgamation of

elementary building blocks.

For scattering amplitudes, amalgamation representations have a direct physical

interpretation as on-shell diagrams. For N = 1 gauge theories, they correspond to

gluing together gauge groups with bi-fundamental content to generate more com-

plicated quiver gauge theories. For scattering amplitudes, it is physically clear why

we should be interested in complicated on-shell diagrams, since they are ultimately

needed to compute the amplitude to all-loop order. But what is physically impor-

tant about complicated quiver gauge theories? One possible answer is that precisely

these sort of quiver gauge theories, with an infinite number of sites and links, occur

in the deconstruction of the still mysterious (2, 0) and little string theories in six

dimensions, [168]. It would be fascinating to use the powerful new machinery for

studying these quivers to try and learn more about the dynamics of the underly-

ing six-dimensional theories, which would perhaps shed some light on a more direct

physical reason for the appearance of the same Grassmannian structure in seemingly

vastly different settings.

We have seen that scattering amplitudes in (1+1), (2+1) and (3+1) dimensions

are described by various interpretations of permutations and associated structures

in the Grassmannian. It is natural to ask whether other variations of these math-

ematical ideas might have a physical interpretation. There is one natural further

specialization of the positive Grassmannian we have not discussed, which in fact

goes back to the historical roots of the subject: the study of totally positive matri-

ces. Here, one considers (n×n) square matrices M with positive determinant, and

studies the space where all its (m×m)-minors are non-negative. This classical prob-

lem was studied by Gantmacher and Krein [42] and Schoenberg [43] in the 1930’s,
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where the stratification was found to be determined by pairs of permutations σ1 and

σ2. This theory is a special case of the positive Grassmannian G(n, 2n). Consider

cells where the first n columns of the (n× 2n) C matrix are linearly independent,

and also the second n columns are linearly independent. We can then gauge-fix C

to the form
C = (1n×n |Mn×n) , (17.1)

whereM is a positive matrix. Let us label the first n columns 1, . . . , n and the second

n columns by 1′, . . . , n′. It is clear that e.g. σ(1) = a′ for some a′ in the second set of

columns, since 1 can not be in the span of {2, . . . , n}, given that the first n columns

are linearly independent. This is true for all the other columns in the first set—i.e.

σ(a) = b′. Similarly, σ(a′) = b. Thus, we see that our permutation naturally breaks

into two pieces, mapping (1, . . . , n) 7→(1′, . . . , n′) and vice-versa. It would be nice to

find a physical interpretation for the subclass of on-shell diagrams associated with

these pairs of permutations.

We have also seen a reliable guide to the Grassmannian structure associated with

scattering amplitudes is to find a Grassmannian interpretation of the space of external

kinematical data. In four dimensions, the λ- and λ̃-planes are represented by points

in G(2, n). In three dimensions, the λ-plane is an element of the null orthogonal

Grassmannian. What happens in higher dimensions? The description of the external

kinematical data in six dimensions is particularly simple [169]. The complexified

Lorentz group can be taken to be SO(5, 1)∼SL(4), and a null momentum vector can

be represented as an antisymmetric (4×4) tensor pIJ of vanishing determinant. The

complexified little group is SL(2)×SL(2). As such, we can express the momentum

pIJa of particle a as,
pIJa = ǫαβλI

aαλ
J
a β(= ǫα̇β̇λ̃I

a α̇λ̃
J
a β̇
). (17.2)

Note the similarity to ordinary spinor-helicity variables—except that here, the α, α̇

indices aren’t Lorentz indices as familiar from four dimensions, but are instead indices

of the SL(2) × SL(2) little group. We can group all the λ’s for the particles a =

1, . . . , n together into a (4×2n)-matrix,

ΛI
A =

(
λI
1 1 λI

1 2 λI
2 1 λI

2 2 · · · λ
I
n 1 λI

n 2

)
. (17.3)

Momentum conservation is then the statement that,

ΛI
AΛ

J
BJ

AB = 0 where J ≡




0 1
1 0 . . .

0 1
1 0


 . (17.4)

Thus, in close parallel with (2+1) dimensions, the external data in 6 dimensions is

associated with a point in the null symplectic Grassmannian, [170]. It would be

interesting to see if this structure has any role to play in six-dimensional physics.

Let us close by returning to a number of concrete open directions of research

flowing more directly from the ideas presented here.
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In this paper, we have given a complete classification and understanding of all

reduced on-shell diagrams, whose invariant content is captured by the permutation

associated with the left-right paths. Amongst other things, all terms occurring in the

tree-level BCFW recursion relations are reduced graphs, and indeed, the recursion

can be described purely combinatorially as a simple and canonical “bridging” of

permutations. We have however also seen that non-reduced on-shell diagrams are

also physically important, directly giving the loop integrand. Of course, the non-

reduced graphs for the loop integrand arise from merging adjacent legs of higher-point

reduced graphs, which we understand completely. Nonetheless, it would clearly be

interesting and important to try and extend the classification of the on-shell diagrams

to non-reduced graphs as well; in other words, we would like to understand all the

invariants on non-reduced graphs, that can be related by merges and square moves.

Obviously the left-right path permutations are still invariants, but there are clearly

further invariants as well. For instance, suppose we have two non-reduced graphs with

exactly the same permutation, but where the first graph has a bad double-crossing

between the two paths starting at a and b, while the second has a bad double-crossing

for a different pair of paths starting at c and d. Clearly square moves and merges

can’t connect these two diagrams. It is plausible that the complete set of invariants

involves the permutation together with other labels characterizing the pattern of

intersections of the left-right paths. Finding a complete classification will be very

important, not least because it would allow us to cast the BCFW construction of

all-loop integrand in completely combinatorial terms.

We have seen that the all-loop integrand is naturally presented in a “dlog” form.

This form begs to be integrated, indeed most näıvely of course, these forms integrate

to zero! The integrals don’t vanish because of branch cuts in the arguments of the

logarithms, on the real contour of integration. This leads to novel ways of performing

the loop integrations directly in spacetime, which will be pursued in future work.

Finally, the BCFW construction of scattering amplitudes in the Grassmannian

still leaves something to be desired. It is not entirely satisfying to give the scattering

amplitude a fundamentally recursive definition. Put another way, we have yet to see

locality and unitarity fully emerge from more primitive principles in a completely

satisfactory way. We would like to have a direct definition of the amplitude, linked

to the Grassmannian, making all the symmetries manifest, and discover their singu-

larities in the form of factorization and forward limits as an emergent property. This

is bound to be linked to the “polytope picture” studied in [127, 171]. This line of

thought will certainly be taken up again with our vastly improved understanding of

the positive Grassmannian in hand.
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[102] N. E. Mnëv, “The Universality Theorems on the Classification Problem of

Configuration Varieties and Convex Polytope Varieties,” in Topology and

Geometry—Rohlin Seminar, vol. 1346 of Lecture Notes in Math., pp. 527–543.

Springer, Berlin, 1988.

[103] K. Rietsch, “An Algebraic Cell Decomposition of the Nonnegative Part of a Flag

Variety,” J. Algebra 213 (1999) no. 1, 144–154, arXiv:alg-geom/9709035.

– 149 –

http://dx.doi.org/10.1007/JHEP10(2012)026
http://arxiv.org/abs/1205.0801
http://dx.doi.org/10.1007/JHEP06(2012)095
http://dx.doi.org/10.1007/JHEP06(2012)095
http://arxiv.org/abs/1203.0291
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.014
http://arxiv.org/abs/hep-th/0412103
http://arxiv.org/abs/hep-th/0412103
http://dx.doi.org/10.1016/0370-2693(84)90237-5
http://dx.doi.org/10.1016/0370-2693(84)90237-5
http://dx.doi.org/10.1016/0550-3213(94)90179-1
http://dx.doi.org/10.1016/0550-3213(94)90179-1
http://arxiv.org/abs/hep-ph/9403226
http://dx.doi.org/10.1016/0550-3213(94)00488-Z
http://arxiv.org/abs/hep-ph/9409265
http://arxiv.org/abs/hep-ph/9409265
http://dx.doi.org/10.1016/S0370-2693(97)00413-9
http://arxiv.org/abs/hep-ph/9702424
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://arxiv.org/abs/hep-th/0505205
http://dx.doi.org/10.1103/PhysRevD.76.125020
http://arxiv.org/abs/0705.1864
http://arxiv.org/abs/0705.1864
http://dx.doi.org/10.1088/1126-6708/2008/03/042
http://arxiv.org/abs/0711.3596
http://dx.doi.org/10.1016/0001-8708(87)90059-4
http://dx.doi.org/10.1016/0001-8708(87)90059-4
http://dx.doi.org/10.1007/BFb0082792
http://dx.doi.org/10.1007/BFb0082792
http://dx.doi.org/10.1006/jabr.1998.7665
http://arxiv.org/abs/alg-geom/9709035


[104] L. K. Williams, “Shelling Totally Nonnegative Flag Varieties,” J. Reine Angew.

Math. 609 (2007) 1–21, arXiv:math/0509129 [math.CO].

[105] L. K. Williams, “Enumeration of Totally Positive Grassmann Cells,” Adv. Math.

190 (2005) no. 2, 319–342, arXiv:math/0307271 [math.CO].

[106] S. J. Parke and T. R. Taylor, “An Amplitude for n-Gluon Scattering,” Phys. Rev.

Lett. 56 (1986) 2459.

[107] R. Penrose, “Twistor Algebra,” J. Math. Phys. 8 (1967) 345.

[108] R. Penrose and M. A. H. MacCallum, “Twistor Theory: An Approach to the

Quantization of Fields and Space-Time,” Phys. Rept. 6 (1972) 241–316.

[109] R. Penrose, “Twistor Quantization and Curved Space-Time,” Int. J. Theor. Phys.

1 (1968) 61–99.

[110] E. H. Kronheimer and R. Penrose, “On the Structure of Causal Spaces,” Proc.

Cambridge Phil. Soc. 63 (1967) 481–501.

[111] R. Penrose, “The Central Programme of Twistor Theory,” Chaos Solitons Fractals

10 (1999) 581–611.

[112] A. Ferber, “Supertwistors and Conformal Supersymmetry,” Nucl. Phys. B132

(1978) 55.

[113] J. M. Drummond, J. M. Henn, and J. Plefka, “Yangian Symmetry of Scattering

Amplitudes in N =4 Super Yang-Mills Theory,” JHEP 05 (2009) 046,

arXiv:0902.2987 [hep-th].

[114] J. Drummond and L. Ferro, “The Yangian Origin of the Grassmannian Integral,”

JHEP 1012 (2010) 010, arXiv:1002.4622 [hep-th].

[115] J. Drummond and L. Ferro, “Yangians, Grassmannians and T-duality,” JHEP

1007 (2010) 027, arXiv:1001.3348 [hep-th].

[116] N. Beisert, J. Henn, T. McLoughlin, and J. Plefka, “One-Loop Superconformal and

Yangian Symmetries of Scattering Amplitudes in N =4 Super Yang-Mills,” JHEP

04 (2010) 085, arXiv:1002.1733 [hep-th].

[117] J. Drummond, J. Henn, V. Smirnov, and E. Sokatchev, “Magic Identities for

Conformal Four-Point Integrals,” JHEP 0701 (2007) 064, arXiv:hep-th/0607160.

[118] L. F. Alday and J. M. Maldacena, “Gluon Scattering Amplitudes at Strong

Coupling,” JHEP 06 (2007) 064, arXiv:0705.0303 [hep-th].

[119] L. F. Alday and J. Maldacena, “Comments on Gluon Scattering Amplitudes via

AdS/CFT,” JHEP 11 (2007) 068, arXiv:0710.1060 [hep-th].

– 150 –

http://dx.doi.org/10.1515/CRELLE.2007.059
http://dx.doi.org/10.1515/CRELLE.2007.059
http://arxiv.org/abs/math/0509129
http://arxiv.org/abs/arXiv:math/0307271
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1063/1.1705200
http://dx.doi.org/10.1016/0370-1573(73)90008-2
http://dx.doi.org/10.1007/BF00668831
http://dx.doi.org/10.1007/BF00668831
http://dx.doi.org/10.1017/S030500410004144X
http://dx.doi.org/10.1017/S030500410004144X
http://dx.doi.org/10.1016/S0960-0779(98)00333-6
http://dx.doi.org/10.1016/S0960-0779(98)00333-6
http://dx.doi.org/10.1016/0550-3213(78)90257-2
http://dx.doi.org/10.1016/0550-3213(78)90257-2
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://arxiv.org/abs/0902.2987
http://arxiv.org/abs/0902.2987
http://dx.doi.org/10.1007/JHEP12(2010)010
http://arxiv.org/abs/1002.4622
http://dx.doi.org/10.1007/JHEP07(2010)027
http://dx.doi.org/10.1007/JHEP07(2010)027
http://arxiv.org/abs/1001.3348
http://dx.doi.org/10.1007/JHEP04(2010)085
http://dx.doi.org/10.1007/JHEP04(2010)085
http://arxiv.org/abs/1002.1733
http://dx.doi.org/10.1088/1126-6708/2007/01/064
http://arxiv.org/abs/hep-th/0607160
http://arxiv.org/abs/0705.0303
http://dx.doi.org/10.1088/1126-6708/2007/11/068
http://arxiv.org/abs/0710.1060


[120] A. Brandhuber, P. Heslop, and G. Travaglini, “MHV Amplitudes in N =4 Super

Yang-Mills and Wilson Loops,” Nucl. Phys. B794 (2008) 231–243,

arXiv:0707.1153 [hep-th].

[121] J. M. Drummond, G. P. Korchemsky, and E. Sokatchev, “Conformal Properties of

Four-Gluon Planar Amplitudes and Wilson loops,” Nucl. Phys. B795 (2008)

385–408, arXiv:0707.0243 [hep-th].

[122] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “On Planar

Gluon Amplitudes/Wilson Loops Duality,” Nucl. Phys. B795 (2008) 52–68,

arXiv:0709.2368 [hep-th].

[123] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “The Hexagon

Wilson Loop and the BDS Ansatz for the Six-Gluon Amplitude,” Phys. Lett. B662

(2008) 456–460, arXiv:0712.4138 [hep-th].

[124] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “Hexagon Wilson

Loop = Six-Gluon MHV Amplitude,” Nucl. Phys. B815 (2009) 142–173,

arXiv:0803.1466 [hep-th].

[125] Z. Bern et al., “The Two-Loop Six-Gluon MHV Amplitude in Maximally

Supersymmetric Yang-Mills Theory,” Phys. Rev. D78 (2008) 045007,

arXiv:0803.1465 [hep-th].

[126] L. F. Alday and J. Maldacena, “Null Polygonal Wilson Loops and Minimal

Surfaces in Anti- de-Sitter Space,” JHEP 11 (2009) 082, arXiv:0904.0663 [hep-th].

[127] A. Hodges, “Eliminating Spurious Poles from Gauge-Theoretic Amplitudes,”

arXiv:0905.1473 [hep-th].

[128] G. Korchemsky and E. Sokatchev, “Superconformal Invariants for Scattering

Amplitudes in N =4 SYM Theory,” Nucl. Phys. B839 (2010) 377–419,

arXiv:1002.4625 [hep-th].

[129] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, “Dual Superconformal

Symmetry of Scattering Amplitudes in N =4 super Yang-Mills Theory,” Nucl.

Phys. B828 (2010) 317–374, arXiv:0807.1095 [hep-th].

[130] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, “Unification of Residues

and Grassmannian Dualities,” JHEP 1101 (2011) 049, arXiv:0912.4912 [hep-th].

[131] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, “Local Spacetime Physics

from the Grassmannian,” JHEP 1101 (2011) 108, arXiv:0912.3249 [hep-th].

[132] M. Bullimore, L. Mason, and D. Skinner, “Twistor-Strings, Grassmannians and

Leading Singularities,” JHEP 1003 (2010) 070, arXiv:0912.0539 [hep-th].

[133] S. K. Ashok and E. Dell’Aquila, “On the Classification of Residues of the

Grassmannian,” JHEP 1110 (2011) 097, arXiv:1012.5094 [hep-th].

– 151 –

http://dx.doi.org/10.1016/j.nuclphysb.2007.11.002
http://arxiv.org/abs/0707.1153
http://arxiv.org/abs/0707.1153
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.041
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.041
http://arxiv.org/abs/0707.0243
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.007
http://arxiv.org/abs/0709.2368
http://arxiv.org/abs/0709.2368
http://dx.doi.org/10.1016/j.physletb.2008.03.032
http://dx.doi.org/10.1016/j.physletb.2008.03.032
http://arxiv.org/abs/0712.4138
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.015
http://arxiv.org/abs/0803.1466
http://arxiv.org/abs/0803.1466
http://dx.doi.org/10.1103/PhysRevD.78.045007
http://arxiv.org/abs/0803.1465
http://arxiv.org/abs/0803.1465
http://dx.doi.org/10.1088/1126-6708/2009/11/082
http://arxiv.org/abs/0904.0663
http://arxiv.org/abs/0905.1473
http://arxiv.org/abs/0905.1473
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.022
http://arxiv.org/abs/1002.4625
http://arxiv.org/abs/1002.4625
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://arxiv.org/abs/0807.1095
http://dx.doi.org/10.1007/JHEP01(2011)049
http://arxiv.org/abs/0912.4912
http://dx.doi.org/10.1007/JHEP01(2011)108
http://arxiv.org/abs/0912.3249
http://dx.doi.org/10.1007/JHEP03(2010)070
http://arxiv.org/abs/0912.0539
http://dx.doi.org/10.1007/JHEP10(2011)097
http://arxiv.org/abs/1012.5094


[134] M. Staudacher, “Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansátze

and the R-Matrix Formalism,” Lett. Math. Phys. 99 (2012) 191–208,

arXiv:1012.3990 [hep-th].

[135] M. S. Bianchi, M. Leoni, and S. Penati, “An All Order Identity between ABJM and

N =4 SYM Four-Point Amplitudes,” JHEP 1204 (2012) 045, arXiv:1112.3649

[hep-th].

[136] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, “Scattering

Amplitudes/Wilson Loop Duality In ABJM Theory,” JHEP 1201 (2012) 056,

arXiv:1107.3139 [hep-th].

[137] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, “Scattering in

ABJ theories,” JHEP 1112 (2011) 073, arXiv:1110.0738 [hep-th].

[138] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, “One Loop

Amplitudes In ABJM,” JHEP 1207 (2012) 029, arXiv:1204.4407 [hep-th].

[139] T. Bargheer, F. Loebbert, and C. Meneghelli, “Symmetries of Tree-Level Scattering

Amplitudes in N =6 Superconformal Chern-Simons Theory,” Phys. Rev. D82

(2010) 045016, arXiv:1003.6120 [hep-th].

[140] S. Lee, “Yangian Invariant Scattering Amplitudes in Supersymmetric Chern-Simons

Theory,” Phys. Rev. Lett. 105 (2010) 151603, arXiv:1007.4772 [hep-th].

[141] Y.-t. Huang and A. E. Lipstein, “Dual Superconformal Symmetry of N =6

Chern-Simons Theory,” JHEP 1011 (2010) 076, arXiv:1008.0041 [hep-th].

[142] D. Gang, Y.-t. Huang, E. Koh, S. Lee, and A. E. Lipstein, “Tree-level Recursion

Relation and Dual Superconformal Symmetry of the ABJM Theory,” JHEP 1103

(2011) 116, arXiv:1012.5032 [hep-th].

[143] A. Agarwal, N. Beisert, and T. McLoughlin, “Scattering in Mass-Deformed N ≥4

Chern-Simons Models,” JHEP 0906 (2009) 045, arXiv:0812.3367 [hep-th].

[144] T. Bargheer, N. Beisert, F. Loebbert, T. McLoughlin, N. Beisert, et al., “Conformal

Anomaly for Amplitudes in N =6 Superconformal Chern-Simons Theory,” J. Phys.

A45 (2012) 475402, arXiv:1204.4406 [hep-th].

[145] A. Brandhuber, G. Travaglini, and C. Wen, “A Note on Amplitudes in N =6

Superconformal Chern-Simons Theory,” JHEP 1207 (2012) 160, arXiv:1205.6705

[hep-th].

[146] A. Brandhuber, G. Travaglini, and C. Wen, “All One-Loop Amplitudes in N =6

Superconformal Chern-Simons Theory,” JHEP 1210 (2012) 145, arXiv:1207.6908

[hep-th].

[147] M. Kontsevich, “Deformation Quantization of Poisson Manifolds,” Lett. Math.

Phys. 66 (2003) no. 3, 157–216, arXiv:q-alg/9709040.

– 152 –

http://dx.doi.org/10.1007/s11005-011-0530-9
http://arxiv.org/abs/1012.3990
http://arxiv.org/abs/1012.3990
http://dx.doi.org/10.1007/JHEP04(2012)045
http://arxiv.org/abs/1112.3649
http://arxiv.org/abs/1112.3649
http://dx.doi.org/10.1007/JHEP01(2012)056
http://arxiv.org/abs/1107.3139
http://arxiv.org/abs/1107.3139
http://dx.doi.org/10.1007/JHEP12(2011)073
http://arxiv.org/abs/1110.0738
http://dx.doi.org/10.1007/JHEP07(2012)029
http://arxiv.org/abs/1204.4407
http://dx.doi.org/10.1103/PhysRevD.82.045016
http://dx.doi.org/10.1103/PhysRevD.82.045016
http://arxiv.org/abs/1003.6120
http://dx.doi.org/10.1103/PhysRevLett.105.151603
http://arxiv.org/abs/1007.4772
http://dx.doi.org/10.1007/JHEP11(2010)076
http://arxiv.org/abs/1008.0041
http://dx.doi.org/10.1007/JHEP03(2011)116
http://dx.doi.org/10.1007/JHEP03(2011)116
http://arxiv.org/abs/1012.5032
http://dx.doi.org/10.1088/1126-6708/2009/06/045
http://arxiv.org/abs/0812.3367
http://dx.doi.org/10.1088/1751-8113/45/47/475402
http://dx.doi.org/10.1088/1751-8113/45/47/475402
http://arxiv.org/abs/1204.4406
http://dx.doi.org/10.1007/JHEP07(2012)160
http://arxiv.org/abs/1205.6705
http://arxiv.org/abs/1205.6705
http://dx.doi.org/10.1007/JHEP10(2012)145
http://arxiv.org/abs/1207.6908
http://arxiv.org/abs/1207.6908
http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf
http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf
http://arxiv.org/abs/q-alg/9709040


[148] S. Caron-Huot, “Notes on the Scattering Amplitude / Wilson Loop Duality,”

JHEP 1107 (2011) 058, arXiv:1010.1167 [hep-th].

[149] L. Mason and D. Skinner, “The Complete Planar S-Matrix of N =4 SYM as a

Wilson Loop in Twistor Space,” JHEP 12 (2010) 018, arXiv:1009.2225 [hep-th].

[150] M. Bullimore and D. Skinner, “Holomorphic Linking, Loop Equations and

Scattering Amplitudes in Twistor Space,” arXiv:1101.1329 [hep-th].

[151] L. F. Alday, B. Eden, G. P. Korchemsky, J. Maldacena, and E. Sokatchev, “From

Correlation Functions to Wilson Loops,” JHEP 1109 (2011) 123, arXiv:1007.3243

[hep-th].

[152] B. Eden, G. P. Korchemsky, and E. Sokatchev, “From Correlation Functions to

Scattering Amplitudes,” JHEP 1112 (2011) 002, arXiv:1007.3246 [hep-th].

[153] B. Eden, G. P. Korchemsky, and E. Sokatchev, “More on the Duality

Correlators/Amplitudes,” Phys. Lett. B709 (2012) 247–253, arXiv:1009.2488

[hep-th].

[154] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, “The

Super-Correlator/Super-Amplitude Duality: Part I,” arXiv:1103.3714 [hep-th].

[155] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, “The

Super-Correlator/Super-Amplitude Duality: Part II,” arXiv:1103.4353 [hep-th].

[156] P. C. Schuster and N. Toro, “Constructing the Tree-Level Yang-Mills S-Matrix

Using Complex Factorization,” JHEP 0906 (2009) 079, arXiv:0811.3207 [hep-th].

[157] S. He and H.-b. Zhang, “Consistency Conditions on S-Matrix of Spin 1 Massless

Particles,” JHEP 1007 (2010) 015, arXiv:0811.3210 [hep-th].

[158] J. M. Drummond and J. M. Henn, “All Tree-Level Amplitudes in N =4 SYM,”

JHEP 04 (2009) 018, arXiv:0808.2475 [hep-th].

[159] J. L. Bourjaily, “Efficient Tree-Amplitudes in N =4: Automatic BCFW Recursion

in Mathematica,” arXiv:1011.2447 [hep-ph].

[160] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, “The S-Matrix in

Twistor Space,” JHEP 1003 (2010) 110, arXiv:0903.2110 [hep-th].

[161] Z. Bern, “String Based Perturbative Methods for Gauge Theories,”

arXiv:hep-ph/9304249.

[162] Z. Bern and A. Morgan, “Supersymmetry Relations Between Contributions to

One-Loop Gauge Boson Amplitudes,” Phys. Rev. D49 (1994) 6155–6163,

arXiv:hep-ph/9312218.

– 153 –

http://dx.doi.org/10.1007/JHEP07(2011)058
http://arxiv.org/abs/1010.1167
http://dx.doi.org/10.1007/JHEP12(2010)018
http://arxiv.org/abs/1009.2225
http://arxiv.org/abs/1101.1329
http://dx.doi.org/10.1007/JHEP09(2011)123
http://arxiv.org/abs/1007.3243
http://arxiv.org/abs/1007.3243
http://dx.doi.org/10.1007/JHEP12(2011)002
http://arxiv.org/abs/1007.3246
http://dx.doi.org/10.1016/j.physletb.2012.02.014
http://arxiv.org/abs/1009.2488
http://arxiv.org/abs/1009.2488
http://arxiv.org/abs/1103.3714
http://arxiv.org/abs/1103.4353
http://dx.doi.org/10.1088/1126-6708/2009/06/079
http://arxiv.org/abs/0811.3207
http://dx.doi.org/10.1007/JHEP07(2010)015
http://arxiv.org/abs/0811.3210
http://dx.doi.org/10.1088/1126-6708/2009/04/018
http://arxiv.org/abs/0808.2475
http://arxiv.org/abs/1011.2447
http://dx.doi.org/10.1007/JHEP03(2010)110
http://arxiv.org/abs/0903.2110
http://arxiv.org/abs/hep-ph/9304249
http://arxiv.org/abs/hep-ph/9304249
http://dx.doi.org/10.1103/PhysRevD.49.6155
http://arxiv.org/abs/hep-ph/9312218
http://arxiv.org/abs/hep-ph/9312218


[163] A. Kotikov and L. Lipatov, “DGLAP and BFKL Equations in the N =4

Supersymmetric Gauge Theory,” Nucl. Phys. B661 (2003) 19–61,

arXiv:hep-ph/0208220.

[164] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, and J. Trnka, “Local Integrals for

Planar Scattering Amplitudes,” JHEP 1206 (2012) 125, arXiv:1012.6032 [hep-th].

[165] A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini, and G. Yang, “Harmony

of Super Form Factors,” JHEP 1110 (2011) 046, arXiv:1107.5067 [hep-th].

[166] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from

Four-Dimensional Gauge Theories,” Lett. Math. Phys. 91 (2010) 167–197,

arXiv:0906.3219 [hep-th].

[167] L. F. Alday, “Review of AdS/CFT Integrability, Chapter V.3: Scattering

Amplitudes at Strong Coupling,” Lett. Math. Phys. 99 (2012) 507–528,

arXiv:1012.4003 [hep-th].

[168] N. Arkani-Hamed, A. G. Cohen, D. B. Kaplan, A. Karch, and L. Motl,

“Deconstructing (2, 0) and Little String Theories,” JHEP 0301 (2003) 083,

arXiv:hep-th/0110146.

[169] C. Cheung and D. O’Connell, “Amplitudes and Spinor-Helicity in Six Dimensions,”

JHEP 0907 (2009) 075, arXiv:0902.0981 [hep-th].

[170] We thank Yu-tin Huang for discussions on this point.

[171] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. Hodges, and J. Trnka, “A Note

on Polytopes for Scattering Amplitudes,” JHEP 1204 (2012) 081, arXiv:1012.6030

[hep-th].

– 154 –

http://dx.doi.org/10.1016/S0550-3213(03)00264-5
http://arxiv.org/abs/hep-ph/0208220
http://arxiv.org/abs/hep-ph/0208220
http://dx.doi.org/10.1007/JHEP06(2012)125
http://arxiv.org/abs/1012.6032
http://dx.doi.org/10.1007/JHEP10(2011)046
http://arxiv.org/abs/1107.5067
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
http://arxiv.org/abs/0906.3219
http://dx.doi.org/10.1007/s11005-011-0518-5
http://arxiv.org/abs/1012.4003
http://arxiv.org/abs/1012.4003
http://arxiv.org/abs/hep-th/0110146
http://arxiv.org/abs/hep-th/0110146
http://dx.doi.org/10.1088/1126-6708/2009/07/075
http://arxiv.org/abs/0902.0981
http://dx.doi.org/10.1007/JHEP04(2012)081
http://arxiv.org/abs/1012.6030
http://arxiv.org/abs/1012.6030







