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Recent attempts at the construction of holography for asymptotically flat spacetime have taken two
different routes. Celestial holography, involving a two dimensional (2D) conformal field theory (CFT) dual
to 4D Minkowski spacetime, has generated novel results in asymptotic symmetry and scattering
amplitudes. A different formulation, using Carrollian CFTs, has been principally used to provide some
evidence for flat holography in lower dimensions. Understanding of flat space scattering has been lacking
in the Carroll framework. In this Letter, using ideas from Celestial holography, we show that 3D Carrollian
CFTs living on the null boundary of 4D flat space can potentially compute bulk scattering amplitudes.
Three-dimensional Carrollian conformal correlators have two different branches, one depending on the null
time direction and one independent of it. We propose that it is the time-dependent branch that is related to
bulk scattering. We construct an explicit field theoretic example of a free massless Carrollian scalar that
realizes some desired properties.
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Introduction.—The holographic principle is one of our
primary routes to a theory of quantum gravity, formulated
in terms of a lower dimensional field theory. Although
there has been a great deal of success in understanding
holography in Anti–de Sitter (AdS) spacetime through
AdS=CFT, a similar understanding for asymptotically flat
spacetimes (AFS) is lacking. There is, however, a consorted
recent effort at rectifying this situation. There are two
principal avenues of addressing this problem—celestial
holography and Carrollian holography. Bondi–van der
Burgh–Metzner-Sachs (BMS) [1] symmetries that arise
as asymptotic symmetries of AFS on the null boundary, are
important to both approaches.
Celestial holography has grown out of the basic obser-

vation [2] that, in AFS, soft theorems for S-matrix elements
can be thought of as Ward identities for asymptotic sym-
metries [3–11]. The fundamental claim of celestial holog-
raphy is that there is a two dimensional (2D) conformal
field theory (CFT) on the celestial sphere which computes
the scattering amplitudes for processes taking place in 4D
AFS. This computation is facilitated by writing the Smatrix
in boost eigenstates [12–16] in which the Ward identities
for asymptotic symmetries take the well-known form of

Ward identities in a 2D CFT. This CFT is known as the
celestial CFT. This approach to flat space holography has
already produced many novel results about asymptotic
symmetries and 4D scattering amplitudes [17–38]. Please
see Refs. [39–41] for more details.
Another school of thought has been the attempt to build

duals of AFS in terms of a 1D lower field theory that enjoys
BMS symmetry. These field theories are CFTs living on the
null boundary of AFS and can be understood as Carroll
contractions of usual relativistic CFTs, where the speed of
light c → 0 [42,43]. We shall call this approach Carroll
holography. The success of this formulation has principally
been in 3D bulk-2D field theories, where various holo-
graphic checks have been performed [44–56]. Some higher
dimensional explorations include [57–59]. Crucially, the
understanding of scattering processes has been lacking in
this formulation.
In this Letter, we provide a bridge between the two

formulations. We show that using BMS or conformal
Carroll symmetries in a 3D field theory living on null
infinity, one can formulate the scattering problem in
4D AFS. We further demonstrate the plausibility of
our proposal by constructing an explicit realization of
Carrollian CFTs in terms of a 3D massless Carroll scalar
with some desired features.
BMS and Carroll CFTs.—The symmetries of interest in

AFS in d ¼ 4 extends beyond the Poincare group to an
infinite dimensional group discovered initially by Bondi,
van der Burgh, Metzner, and Sachs [1]. The BMS sym-
metry algebra of 4D AFS at its null boundary I� is
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½Ln;Lm� ¼ ðn−mÞLnþm; ½L̄n; L̄m� ¼ ðn−mÞL̄nþm;

½Ln;Mr;s� ¼
�
nþ 1

2
− r

�
Mnþr;s;

½L̄n;Mr;s� ¼
�
nþ 1

2
− s

�
Mr;nþs; ½Mr;s;Mp;q� ¼ 0: ð1Þ

Mr;s generate infinite dimensional angle-dependent trans-
lations at I� known as supertranslations. The original BMS
group was given by these infinite supertranslations on top
of the Lorentz group fL0;�1; L̄0;�1g. Following [60,61],
there has been an effort to consider the full conformal group
on the sphere at infinity and, hence, all modes of the Ln
generators, the so-called super-rotations [62]. In 2D
celestial CFT, super-rotation or local conformal transfor-
mations on the celestial sphere are generated by a stress
tensor which is the shadow transform of the subleading soft
graviton [5,10,64]. After shadow transformation, the sub-
leading soft graviton theorem [64] becomes the well known
Ward identity for stress tensor in a 2D CFT.
Now, let us discuss 3D Carrollian CFT. This CFT lives

on Iþ, which is topologically Ru × S2, where Ru is a null
line and S2 is the sphere at infinity. The induced metric
of Iþ is degenerate and Carrollian structures emerge on
the intrinsic geometry of the hypersurface. These theories
are naturally expected to be invariant under Carrollian
conformal isometries. Rather intriguingly, conformal
Carrollian symmetries are isomorphic to BMS symmetries
in one higher dimension [42,53]: CCarrd ¼ bmsdþ1.
Hence, a 3D Carrollian CFT naturally realizes the extended
infinite-dimensional BMS4 symmetry. We will show that
these field theories are potential candidates for a holo-
graphic description of scattering amplitudes in 4D AFS.
For these 3D theories, a useful representation of vector

fields is [57]

Ln ¼ −znþ1∂z −
1

2
ðnþ 1Þznu∂u; Mr;s ¼ zrz̄s∂u: ð2Þ

L̄n is defined analogously. z, z̄ are stereographic coordi-
nates on the sphere. We will label the Carroll conformal
fields Φ living on Iþ with their weights under L0, L̄0

½L0;Φð0Þ� ¼ hΦð0Þ; ½L̄0;Φð0Þ� ¼ h̄Φð0Þ: ð3Þ
We will assume the existence of Carrollian primary fields
living on Iþ. The primary conditions are [57,65]

½Ln;Φð0Þ� ¼ 0; ½L̄n;Φð0Þ� ¼ 0; ∀ n > 0; ð4aÞ

½Mr;s;Φð0Þ� ¼ 0; ∀ r; s > 0: ð4bÞ

The last condition is an additional requirement on these
fields unlike a 2D CFT. The transformation rules of the 3D
Carrollian primary fields Φh;h̄ðu; z; z̄Þ at an arbitrary point
on Iþ under the infinitesimal BMS transformations are

δLn
Φh;h̄ ¼ ϵ

�
znþ1∂z þ ðnþ 1Þzn

�
hþ 1

2
u∂u

��
Φh;h̄;

ð5aÞ

δMr;s
Φh;h̄ ¼ ϵzrz̄s∂uΦh;h̄: ð5bÞ

Above Φh;h̄ ¼ Φh;h̄ðu; z; z̄Þ. There is a similar relation for
the antiholomorphic piece.
Relation to 4D scattering via celestial holography.—One

of the main reasons for studying Carrollian CFTs is that
their symmetries are the same as the extended BMS
algebra. So potentially Carroll CFTs can be a holographic
dual of a quantum theory of gravity in AFS. From general
considerations, the only observables in a quantum theory of
gravity in AFS are the S-matrix elements. Therefore, given
a holographic dual, one should be able to compute the
spacetime Smatrix from this. Moreover, if the dual is a field
theory, or at least looks like one, then, presumably, the S-
matrix elements should be somehow related to the corre-
lation functions of the field theory. This is the point of view
that we adopt in this Letter.
Below, we study correlation functions of Carroll CFTs

and find two distinct types of solutions or branches. In one
branch, the correlation functions are independent of the null
time direction [66] and resemble those of a 2D CFT, while
the correlators of the other branch have explicit time
dependence and are very different from 2D CFT. For
example, unlike 2D CFT, the two-point function in this
branch is ultralocal in the spatial directions and nonzero
even when the scaling dimensions of the operators are
different. Similarly, one can show, using 4D Poincare or
global conformal Carroll invariance of the Carrollian CFT,
that the time-dependent three-point function is zero. This
problem can be solved if we treat z and z̄ as independent
complex coordinates rather than complex conjugates of
each other. These are reminiscent of the properties of
scattering amplitudes of massless particles in 4D AFS. So
what is the relation of Carroll CFT correlations to scattering
amplitudes? In this Letter, we propose an answer using
ideas from celestial holography.
In celestial holography, the dual theory is conjectured

to be a 2D (relativistic) CFT living on the celestial sphere.
The important point, for our purpose, is that the correla-
tion functions of the celestial CFT are given by the
Mellin transform of 4D scattering amplitudes [12–16].
Let us briefly describe this. For simplicity, we consider
only massless particles whose four-momenta are para-
metrized as

pμ ¼ωð1þ zz̄; zþ z̄;−iðz− z̄Þ;1− zz̄Þ; pμpμ ¼ 0: ð6Þ

We also introduce a symbol ϵ ¼ �1 if the particle is
(outgoing) incoming. Using this parametrization, the
Mellin transformation can be written as [13,14],
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Mðfzi;z̄i;hi;h̄i;ϵigÞ¼
Yn
i¼1

Z
∞

0

dωiω
Δi−1
i Sðfϵiωi;zi;z̄i;σigÞ;

ð7Þ

where S is the S-matrix element for n massless particle
scattering and Δ ∈ C, σ ∈ ðZ=2Þ are the dilatation weight
and spin of the particle. Here, we have also defined
h ¼ ½ðΔþ σÞ=2�, h̄¼ ½ðΔ− σÞ=2�. One can show [13,14]
using the Lorentz transformation property of S matrix
that the object M on the lhs, indeed, transforms like the
correlation function of n primary operators of weight ðh; h̄Þ
in a 2D CFT [67]. After Mellin transformation, ðz; z̄Þ can be
interpreted as the stereographic coordinates of the celestial
sphere and physically represent the direction of motion of
the massless particle. For our purpose, however, we will use
a modification [15,16] of (7) such that the correlation
functionM is now defined on a 3D space with coordinates
ðu; z; z̄Þ. This space can be interpreted as the (future) null
infinity with u as the retarded time and ðz; z̄Þ as the
stereographic coordinates of the celestial sphere. One
can show [15–17,65] that under supertranslation,

u → u0 ¼ uþ fðz; z̄Þ; z → z0 ¼ z; z̄ → z̄0 ¼ z̄: ð8Þ

Similarly, under super-rotation or local conformal trans-
formations,

u → u0 ¼
�
dw
dz

�1
2

�
dw̄
dz̄

�1
2

u; z → z0 ¼ wðzÞ;

z̄ → z̄0 ¼ w̄ðz̄Þ: ð9Þ

The modified transformation [15,16] has the form

M̃ðfui; zi; z̄i; hi; h̄i; ϵigÞ ¼
Yn
i¼1

Z
∞

0

dωiω
Δi−1
i e−iϵiωiui

× Sðfϵiωi; zi; z̄i; σigÞ; Δ ∈ C:

ð10Þ

One can show [15–17,65] using the celebrated soft
theorem-Ward identity correspondence [2–10] that M̃
transforms covariantly under the extended BMS4 trans-
formations. In celestial holography, the modified Mellin
transformation (10) is used to compute the graviton
celestial amplitudes in general relativity because the origi-
nal Mellin transformation integral (7) is not convergent
due to bad uv behavior of graviton scattering amplitudes in
general relativity. It turns out that, instead, when (10) is
used, the time coordinate u acts as a uv regulator, and as a
result, M̃ is finite. For more details, see Refs. [17,65,68].
Now, it is useful to write the modified celestial amplitude

M̃ as a correlation function of fields defined on null
infinity. So, following [15], we define

ϕϵ
h;h̄
ðu; z; z̄Þ ¼

Z
∞

0

dωωΔ−1e−iϵωuaðϵω; z; z̄; σÞ; ð11Þ

where aðϵω; z; z̄; σÞ is the momentum space (creation)
annihilation operator of a massless particle with helicity
σ when (ϵ ¼ −1) ϵ ¼ 1. In terms of these fields, we can
write

M̃ðfui; zi; z̄i; hi; h̄i; ϵigÞ ¼
�Yn

i¼1

ϕϵi
hi;h̄i

ðui; zi; z̄iÞ
�
: ð12Þ

Now, the field ϕϵ
h;h̄
ðu; z; z̄Þ transforms covariantly under

the extended BMS4 transformation. Under super-rotation
[15–17,65],

ϕϵ
h;h̄
ðu; z; z̄Þ →

�
dw
dz

�
h
�
dw̄
dz̄

�
h̄
ϕϵ
h;h̄
ðu0; z0; z̄0Þ; ð13Þ

where the primed coordinates are defined in (9). Similarly,
under supertranslation,

ϕϵ
h;h̄
ðu; z; z̄Þ → ϕϵ

h;h̄
ðuþ fðz; z̄Þ; z; z̄Þ: ð14Þ

It is easy to see that, for infinitesimal BMS4 transforma-
tions, (13) and (14) reduce to the equations (5) written in
terms of the primaries of a Carrollian CFT.
Therefore, it is not unreasonable to wonder whether one

can identify the Carrollian primaries with the primaries
ϕϵ
h;h̄
ðu; z; z̄Þ of celestial holography. If this is true, then, this

will open the road toward connecting the Carrollian CFT
correlation functions with bulk scattering amplitudes
because the field ϕϵ

h;h̄
ðu; z; z̄Þ is directly related to standard

creation-annihilation operators by (11).
The proposal.—Our central claim in this Letter is the

following. It is natural to identify the time-dependent
correlation functions of primaries in a Carrollian CFT with
the modified Mellin amplitude

M̃ðfui; zi; z̄i; hi; h̄i; ϵigÞ ¼
Y
i

hϕϵi
hi;h̄i

ðui; zi; z̄iÞi:

In other words, the time-dependent correlators of a 3D
Carrollian CFT compute the 4D scattering amplitudes in
the Mellin basis.
We would like to emphasize that we are not saying that

every Carrollian CFT computes spacetime scattering ampli-
tude. But, if a specific Carrollian CFT does so, then it does
it in the modified Mellin basis (10).
One may think that this identification is kinematical

because both the objects transform in the same way under
relevant symmetries. However, the dynamics enters non-
trivially when we choose one branch of the Carrollian CFT
correlators.
Celestial holography, as it stands, requires the existence

of an infinite number of conformal primary fields with
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complex scaling dimensions. So, any Carrollian CFT that
computes 4D scattering amplitudes should also have this
feature. Over the last few years, study of tree level massless
scattering amplitudes using the framework of celestial
holography has revealed a much larger asymptotic sym-
metry group than the extended BMS4. For example, the
SL2 current algebra at level zero turns out to be a symmetry
algebra [17] of tree level graviton scattering amplitudes. In
fact, it has been shown that the w1þ∞ is a symmetry algebra
[19–23] for massless scattering amplitudes. This also holds
at the loop level in some special cases. Therefore, the
asymptotic symmetry algebra for AFS is expected to be far
richer than the extended BMS4 algebra. The current
Carrollian framework has to be extended in order to
accommodate these additional symmetries.
Different branches of Carroll CFT correlators.—Now,

we show the existence of two different branches of
correlation functions for 3D Carroll CFTs by computing
the two-point vacuum correlation functions of primary
fields. Like relativistic CFTs, it is possible to completely
determine the two- and three-point functions here using
symmetry arguments. We demand that the correlation
functions are invariant under the Poincare subalgebra
(fMl;m; Lng with l, m ¼ 0, 1 and n ¼ 0;�1) of (1).
Consider the two-point function

Gðu1; z1; z̄1; u2; z2; z̄2Þ ¼ h0jΦðu1; z1; z̄1ÞΦ0ðu2; z2; z̄2Þj0i:
ð15Þ

Here, Φðu1; z1; z̄1Þ and Φ0ðu2; z2; z̄2Þ are primaries with
weight ðh1; h2Þ and ðh̄1; h̄2Þ, respectively. Invariance under
Carroll time translations leads to

� ∂
∂u1 þ

∂
∂u2

�
Gðu1; z1; z̄1; u2; z2; z̄2Þ ¼ 0: ð16Þ

Carroll boost invariance (u → uþ bzþ b̄ z̄) [69] gives us

�
z1

∂
∂u1 þ z2

∂
∂u2

�
G ¼

�
z̄1

∂
∂u1 þ z̄2

∂
∂u2

�
G ¼ 0: ð17Þ

Combining the above equations, we get

z12
∂
∂u1Gðu12; z12; z̄12Þ ¼ z̄12

∂
∂u1 Gðu12; z12; z̄12Þ ¼ 0:

ð18Þ

These equations have two independent solutions that give
rise to two different classes of correlators [70]. The first
class of correlators corresponds to the choice of solution

∂
∂u1Gðu12; z12; z̄12Þ ¼ 0: ð19Þ

Using invariance under the subalgebra fL0;�1; L̄0;�1g of
BMS4, the above gives rise to a standard 2D CFT two-point
correlation function [57]

Gðu1; z1; z̄1; u2; z2; z̄2Þ ¼ δh1;h2δh̄1;h̄2z
−2h
12 z̄−2h̄12 : ð20Þ

For our discussions in this Letter, we will not be interested
in this particular branch. The second class of solution
corresponds to the choice

∂
∂u1Gðu12; z12; z̄12Þ ∝ δ2ðz12Þ: ð21Þ

This gives rise to correlation functions in which we are
interested [15]. Thus,

Gðu1; z1; z̄1; u2; z2; z̄2Þ ¼ fðu12Þδ2ðz12Þ: ð22Þ

We will call this the delta-function branch [73]. By
demanding invariance under the subalgebra fL0;�1; L̄0;�1g
of BMS4, it is straightforward to show

ðΔþ Δ0 − 2Þfðu12Þ þ u12∂u1fðu12Þ ¼ 0; ð23aÞ

ðσ þ σ0Þfðu12Þ ¼ 0: ð23bÞ

Here,Δ ¼ ðhþ h̄Þ is the scaling dimension and σ ¼ ðh − h̄Þ
is spin. The solution of the above equations is

fðu12Þ ¼ Cδσþσ0;0u
−ðΔþΔ0−2Þ
12 ; ð24Þ

where C is a constant factor. Hence,

Gðu1; z1; z̄1; u2; z2; z̄2Þ ¼ Cu−Δ−Δ
0þ2Þ

12 δ2ðz12Þδσþσ0;0: ð25Þ

Once this correlator has this form (25), the equation which
imposes M11 or the transformation u → uþ ϵzz̄ is trivially
satisfied.
Notice that, very unlike a relativistic CFT two-point

function, here, one does not have to have equal scaling
dimensions for the fields to get a nonzero answer. Thus, this
branch cannot be accessed by taking a limit from relativistic
CFT correlation functions.
Now, let us discuss how one can obtain the same two-

point function by modified Mellin transformation (10) of
scattering amplitudes [15]. Of course, in the case of a two-
point function, the scattering amplitude is trivial and is
given by the inner product

hp1; σ1jp2; σ2i ¼ ð2πÞ32Ep1
δ3ðp⃗1 − p⃗2Þδσ1þσ2;0: ð26Þ

Here, the notation is standard except that we label the
helicity of an external particle as if it were an outgoing
particle. Using (6), we write
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hp1; σ1jp2; σ2i ¼
4π3

ω1

δðω12Þδ2ðz12Þδσ1þσ2;0: ð27Þ

Now, the Mellin transformed two point function is

M̃ðu1; z1; z̄1; u2; z2; z̄2; h1; h̄1; h2; h̄2; ϵ1 ¼ 1; ϵ2 ¼ −1Þ
¼ 4π3δσ1þσ2;0;Z

∞

0

dω1dω2ω
Δ1−1
1 ωΔ2−1

2 e−iω1u1eiω2u2
δðω12Þδ2ðz12Þ

ω1

¼ 4π3ΓðΔ1 þ Δ2 − 2Þ δ2ðz12Þ
½iðu12Þ�Δ1þΔ2−2

δσ1þσ2;0: ð28Þ

We see that, modulo the constant normalization, this has the
same structure as the time dependent two-point function of
the Carrollian CFT. More importantly, the presence of the
spatial delta function δ2ðz12Þ in the Carrollian two-point
function has the (dual) physical interpretation that the
momentum direction of a free particle in the bulk spacetime
does not change.
In the same way, following [15], one can show that

the time dependent three-point function in the Carrollian
CFT is zero. This has the physical interpretation that, in
Minkowski signature, the scattering amplitude of three
massless particles vanish due to energy momentum
conservation.
Therefore, the peculiarities of the time dependent corre-

lators of a Carroll CFT are precisely what we need to
connect to the spacetime scattering amplitudes of massless
particles. This is the main message of our Letter.
Massless Carrollian scalar field.—Now, we will focus

on a particular simple example, that of a massless Carroll
scalar field, to show that this gives us the correlation
functions in the delta-function branch. The minimally
coupled massless scalar field on a flat Carrollian back-
ground is described by

S ¼
Z

dud2xi
1

2
ð∂uΦÞ2: ð29Þ

The 2D analog of this action (29) has been extensively used
to study the tensionless limit of string theory (see, e.g.,
Ref. [74]). We will see that, here, this simple 3D action
carries the seeds of a potential dual formulation of 4D
gravity in AFS.
Now, we compute the two-point correlation function of

the massless Carroll scalar first by computing the Green’s
functions. The Green’s function equation, here, is

∂2
uGðu12; zi12Þ ¼ δ3ðu12; zi12Þ: ð30Þ

This can be solved in the usual way by going to Fourier
space where we get G̃ðku; kiÞ ¼ −ð1=k2uÞ. Transforming
back into position space yields

Gðu12; zi12Þ ¼ −
Z

dku
k2u þ μ2

eikuu12
Z

d2zeikiz
i
12

¼ i
2
ðμ−1 − u12Þδ2ðz12Þ: ð31Þ

As the equation of motion has no spatial derivatives, this
integral diverges. We regulate it by throwing away the
troublesome infinite piece

Gðu12; zi12Þ ¼ −
i
2
u12δ2ðz12Þ: ð32Þ

For scalar fields, the spin σ ¼ 0 and conformal weights of
Φðu; z; z̄Þ are [e.g., from (29)] h ¼ h̄ ¼ 1

4
. Hence, (32) is in

perfect agreement with the answer previously derived from
symmetry arguments.
Now, we rederive this two-point correlator through

canonical quantization. We put the free scalar theory on
the round sphere and, then, take its radius to infinity to
recover our answer in the plane coordinates. The scalar
field action on a manifold with topology R × S2 is

S ¼
Z

dud2z
ffiffiffi
q

p �
1

2
ð∂uΦÞ2 − k2Φ2

�
: ð33Þ

Here, k ¼ ð1=2RÞ where R is the radius of the sphere and
qij is its metric. The equation of motion is

Φ̈þ k2Φ2 ¼ 0: ð34Þ

Generic real solutions are given by

Φðu; z; z̄Þ ¼ 1ffiffiffi
k

p ½C†ðz; z̄Þeiku þ Cðz; z̄Þe−iku�: ð35Þ

Canonical commutation relation between the C fields and
the Hamiltonian are, respectively,

½Cðz; z̄Þ; C†ðz0; z̄0Þ� ¼ 1

2
δ2ðz − z0Þ; ð36Þ

H ¼ k
Z

d2z
ffiffiffi
q

p �
2C†ðz; z̄ÞCðz; z̄Þ þ 1

2
δ2ð0Þ

�
: ð37Þ

The physical part of the Hamiltonian [neglecting the
unphysical zero point energy δ2ð0Þ] implies that the time
translation symmetric ground state is annihilated by C

Cðz; z̄Þj0i ¼ 0; for ðz; z̄Þ ∈ S2: ð38Þ

It is straightforward to calculate the two-point function

Gðu1; u2; zi1; zi2Þ ¼ h0jTΦðu1; z1; z̄1ÞΦðu2; z2; z̄2Þj0i:

Taking u1 > u2, we obtain
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Gðu12; zi12Þ ¼ −
1

2k
½cos ku12 þ i sin ku12�δ2ðz12Þ: ð39Þ

In the limit R → ∞, or k → 0

Gðu1; u2; zi1; zi2Þ ¼ −
�
1

2k
þ i
2
u12

�
δ2ðz12Þ: ð40Þ

We read off the scaling dimension of Φ as Δ ¼ 1=2. The
physical part of the two-point function (40) matches exactly
with the one computed earlier.
Conclusions.—In this Letter, we have provided evi-

dence that the correlation functions of 3D Carrollian
CFTs encode scattering amplitudes for 4D AFS, specifi-
cally in the Mellin basis. The Carroll correlators have two
distinct branches, and one of these, the one with explicit
Carroll time dependence which we called the delta-function
branch, was the one relevant for the connection to flat space
scattering.
Carrollian theories can be of two types, electric and mag-

netic. The electric type theories generically exhibit ultra-
local correlation functions, while the magnetic ones do not.
This can be seen, e.g., in the scalar theory as well. In [71],
two distinct scalar theories with Carroll invariance were
constructed and their two-point functions computed, and it
was shown that the electric theory has ultralocal behavior
while the magnetic theory gives a different branch. Massless
versions of these theories are conformalCarroll invariant. So,
of the types of scalar theories, the one that captures scattering
information of a higher dimensional asymptotically flat
spacetime is the electric one, which we have discussed in
the Letter. It is clear that this is not fixed by just kinematic
considerations and contains dynamics. Although the electric
leg is connected to higher dimensional scattering, we don’t
yet understand what determines this choice.
There are a number of intriguing questions that arise

from our considerations in this Letter. Originally, the
version of flat space holography envisioned with connec-
tions with Carroll CFTs was one that emerged as a
systematic limit from AdS=CFT. It is clear that the
correlation functions that we focused on in this Letter
cannot emerge as a Carroll limit from standard relativistic
3D CFT correlators in position space, since, e.g., the CFT
two-point function would vanish for unequal weight
primaries, and in the time-dependent Carroll branch, this
does not happen. Hence, it would seem that the formulation
of Carroll holography we require for connections to
scattering amplitudes is disconnected from AdS=CFT.
While this makes sense because AFS and AdS are
fundamentally different, how this fits in with, e.g., the
program of attempting to find flat space correlations from
AdS=CFT (see, e.g., Refs. [75–77]), remains to be seen.
Our construction and, specifically, the emergence of two

different branches of correlation functions is also reminis-
cent of recent advances in the tensionless regime of string

theory where three distinct quantum theories appear from a
single classical theory [78,79]. Recent findings of different
correlation functions in these theories [80,81] is an indi-
cation that perhaps there is an interesting nontrivial
quantum vacuum structure underlying the Carrollian the-
ories we have discussed in our Letter.
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