
J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Published for SISSA by Springer

Received: August 16, 2016

Revised: November 23, 2016

Accepted: November 24, 2016

Published: December 7, 2016

Scattering amplitudes over finite fields and

multivariate functional reconstruction

Tiziano Peraro

Higgs Centre for Theoretical Physics,

School of Physics and Astronomy, The University of Edinburgh,

James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.

E-mail: tiziano.peraro@ed.ac.uk

Abstract: Several problems in computer algebra can be efficiently solved by reducing

them to calculations over finite fields. In this paper, we describe an algorithm for the

reconstruction of multivariate polynomials and rational functions from their evaluation

over finite fields. Calculations over finite fields can in turn be efficiently performed using

machine-size integers in statically-typed languages. We then discuss the application of the

algorithm to several techniques related to the computation of scattering amplitudes, such as

the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and

multi-loop integrand reduction via generalized unitarity. The method has good efficiency

and scales well with the number of variables and the complexity of the problem. As an

example combining these techniques, we present the calculation of full analytic expressions

for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box

and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of

independent helicity configurations.

Keywords: Scattering Amplitudes, Perturbative QCD

ArXiv ePrint: 1608.01902

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2016)030

mailto:tiziano.peraro@ed.ac.uk
https://arxiv.org/abs/1608.01902
http://dx.doi.org/10.1007/JHEP12(2016)030

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Contents

1 Introduction 2

2 Basic concepts, definitions and notation 5

2.1 Finite fields 5

2.2 Polynomials and rational functions 6

2.3 Rational reconstruction from finite fields 7

3 Functional reconstruction 8

3.1 The black-box interpolation problem 9

3.2 Univariate polynomials 10

3.3 Univariate rational functions 12

3.4 Multivariate polynomials 14

3.5 Multivariate rational functions 14

3.6 Examples 17

4 Spinor-helicity and tree-level techniques 20

4.1 Four-dimensional momenta and spinors 20

4.2 Berends-Giele recursion 23

5 Multi-loop integrand reduction and generalized unitarity 25

5.1 Two-loop five-point planar penta-box 28

5.2 Two-loop five-point non-planar double-pentagon 30

6 Implementation 32

7 Conclusions and outlook 35

A Basic finite-field algorithms 36

A.1 Multiplicative inverse and rational reconstruction 36

A.2 Chinese remainder theorem 38

B Six-dimensional momenta and spinors 39

C Two-loop unitarity cuts from Berends-Giele currents 40

– 1 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

1 Introduction

Scattering amplitudes in Quantum Field Theory (QFT) are an essential ingredient for

understanding the interactions among fundamental particles that we observe in nature.

The development of techniques and algorithms for their calculation is therefore of crucial

importance for comparing observations with theoretical predictions. In particular, the high

accuracy expected from experimental data which is being collected at the Large Hadron

Collider (LHC), as well as the high centre-of-mass energy of the interactions produced by

this machine, require accurate predictions for processes with high-multiplicity final states.

This has motivated, in recent years, many studies of the structure of scattering amplitudes

in QFT, especially in gauge theories, which often led to the development of new efficient

methods for their evaluation.

Despite the remarkable recent progress in the calculation of high-multiplicity tree-level

and one-loop amplitudes, and the numerical automation of the latter in several codes and

frameworks [1–19], at two and higher loops these calculations are still essentially restricted

to 2 → 2 processes. This is due to the significant increase in complexity of the two-loop

problem with respect to the one-loop case. More in detail, the most common strategy

for the calculation of loop amplitudes is to rewrite them as a linear combination of loop

integrals. While the coefficients of this linear combination are rational functions of kine-

matic invariants, the loop integrals can instead be computed in terms of special functions.

While for low-multiplicity processes the most demanding task is arguably the calculation of

the integrals, for high-multiplicity processes the computation of the coefficients can often

have comparable or higher complexity (notice e.g. that a complete planar basis of mass-

less five-point two-loop integrals is known [20, 21], but five-point QCD amplitudes are

still unavailable for a generic helicity configuration). While one-loop amplitudes are often

computed numerically, two-loop amplitudes are more often computed analytically.

There are several reasons to prefer an analytic approach to a numerical one. Analytic

expressions often yield a faster and more stable numerical evaluation than purely numer-

ical algorithms. Moreover, analytic results allow to perform various kinds of studies and

manipulations, such as the analysis of the behaviour of amplitudes in interesting kinematic

limits (e.g. infrared and high-energy limits). Analytic calculations also allow to have better

control over the results and possibly infer general properties which might be useful for the

development of new analytic or numerical algorithms.

A well known bottleneck of analytic calculations in high-energy physics is however the

large size of intermediate expressions, which can often be orders of magnitude larger than

the final results. This is to be expected, since physical results often enjoy properties which

are not shared by each intermediate step of the calculation. Moreover, intermediate steps

are often described by a larger number of variables (such as the loop components) which

do not appear in the final result. The problem can be mitigated by the use of computer

algebra systems such as Form [22], which specializes in handling large expressions, or by

using techniques such as generalized unitarity [23, 24], where intermediate steps of the

calculation are gauge invariant and hence the complexity of their expressions is reduced

with respect to a diagrammatic approach.

– 2 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

In this paper we assess the possibility of side-stepping the issue of large intermediate

expressions, by reconstructing analytic results from their numerical evaluation, where each

intermediate step is trivially a number or a set of numbers (this will be better defined

in the next paragraph). A polynomial or a rational function can be reconstructed, with

very high probability, from its numerical evaluation at several values of its arguments.

In particular we focus on the functional reconstruction of multivariate polynomials and

rational functions with applications to calculations in high-energy physics.

The first question to address is which kind of numerical evaluation is suited for a func-

tional reconstruction. An obvious choice would be a floating-point calculation, but these

are affected by numerical inaccuracies which would add an additional layer of complexity

to the functional reconstruction algorithms. Exact calculations might instead be performed

over the field of rational numbers. However, numerical calculations with rational numbers

are affected by a similar problem to the one of analytic calculations. Indeed, while a large

intermediate expression would be translated into a rational number, in general the number

of digits of the numerator and the denominator of this number would be very high. This

requires extensive use of computationally expensive arbitrary-precision arithmetic, which

can significantly slow down the calculation. A common and successful approach in com-

puter algebra is the use of finite fields, which have a finite number of elements and can be

represented by machine-size integers, offering the possibility of performing fast but exact

calculations in statically-typed languages such as C and C++. Their main drawback is

that, switching from the rational field to a finite field, some information is lost and must be

recovered by repeating a functional reconstruction over several finite fields. This strategy

is however much more efficient than a calculation over the rational field.

The usage of finite fields in computer algebra in actually quite common. Many com-

puter algebra systems use finite fields under the hood for solving problems such as polyno-

mial factorization and Greatest Common Divisor (GCD). The application of finite fields in

high-energy physics has been introduced in ref. [25], in the context of Integration-By-Parts

(IBPs). However, to the best of our knowledge, an application of finite-field techniques

to a realistic problem in high-energy physics involving the reconstruction of multivariate

rational functions is not present in the literature and is presented here for the first time. In

particular, the main missing ingredient which we illustrate in this paper is the application of

a functional reconstruction algorithm capable of handling relatively complex results which

depend on many variables, such as those appearing in typical high-multiplicity multi-loop

calculations.

The paper is roughly divided in two parts. In the first part we describe dense1 func-

tional reconstruction algorithms for univariate and multivariate polynomials and rational

functions. These algorithms reconstruct polynomials and rational functions from their re-

peated numerical evaluation over finite fields (although in principle they can actually be

used over any field) and they are independent of the specific algorithm used for their evalu-

1A dense reconstruction algorithm for polynomials and rational functions, unlike a sparse reconstruction

algorithm, seeks to be efficient in the general case where the result has many non-vanishing terms, rather

than in the special case where it only has a small number of non-vanishing terms compared with its total

degree.

– 3 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

ation. In particular, for univariate polynomials we use the well known Newton’s polynomial

representation. For univariate rational functions, we use Thiele’s interpolation formula.2

For multivariate polynomials, we use a recursive version of Newton’s formula. For multi-

variate rational functions we were not able to find a dense reconstruction algorithm suited

for our needs in the literature. However we found that the technique proposed in ref. [26] for

sparse rational functions can be easily adapted to the dense case, by combining it with the

other techniques we mentioned for univariate rational functions and multivariate polyno-

mials. The resulting algorithm is capable of efficiently reconstructing functions with many

non-vanishing terms and depending on several variables, as we will show in the examples.

Using these methods, the analytic calculation of any polynomial or rational function can be

turned into the problem of providing an efficient numerical evaluation of the same function

over finite fields.

The second part of the paper concerns the application of the mentioned reconstruction

algorithms to techniques relevant for the calculation of scattering amplitudes. It should

be stressed that any algorithm which can be implemented via a sequence a rational ele-

mentary operations (addition, subtraction, multiplication and division) is suited for the

usage of these reconstruction techniques, which therefore have a very broad spectrum of

applications. In particular, widely used methods such as tensor reduction and IBPs ob-

viously fall into this category. In this paper we however focus on multi-loop integrand

reduction via generalized unitarity [23, 24, 27–46], since the algorithm is suited for high-

multiplicity processes and, as stated, writing scattering amplitudes as linear combinations

of integrals (which may be further processed by IBPs at a later stage) is currently one of

the main bottlenecks of high-multiplicity multi-loop calculations. These techniques have

indeed been used in recent five- and six-point calculations of two-loop amplitudes in non-

supersymmetric Yang-Mills theory [37, 47, 48]. In order to provide the building blocks

needed by generalized unitarity, we also discuss in some detail a finite-field implementa-

tion of the spinor-helicity formalism in four [49, 50] and six dimensions [51–53], as well as

the calculation of tree-level amplitudes over finite fields via Berends-Giele recursion [50].

In particular, the six-dimensional spinor-helicity formalism is used to provide a higher-

dimensional embedding of loop momenta and spinors, which will thus have an explicit

finite-field numerical representation.

As explicit examples combining all these techniques, we present the calculation of full

analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of

the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory,

for a complete set of independent helicity configurations. In particular, in the all-plus case

we find agreement with the results available in the literature, while for the other helicity

configurations the result is new and we make it publicly available for comparisons with

future calculations.

All the algorithms discussed in the paper have been implemented in a C++ library

which can produce the mentioned analytic results from finite-field evaluations using 64-bit

integers, without relying on any external computer algebra system.

2The formula is named after the mathematician Thorvald Nicolai Thiele (1838–1910).

– 4 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

The paper is structured as follows. In section 2 we set the notation and review some

notions about finite fields which we will use in the rest of the paper. While all these notions

are well known, they are rarely used in high-energy physics and hence they are reviewed

in some detail for the convenience of the reader. In section 3 we describe the functional

reconstruction algorithms mentioned above. In section 4 we discuss the implementation

of spinor-helicity and tree-level techniques over finite fields. These are mostly meant as a

stepping stone for the discussion of integrand reduction and generalized unitarity, which is

illustrated in section 5, where we also provide the two-loop five-point examples mentioned

above. In section 6 we give some details about our proof-of-concept C++ implementation

of the algorithms illustrated in this paper, which might be useful for other implementa-

tions. In section 7 we finally draw our conclusions and briefly discuss further possible

applications of these techniques. In appendix A we recall some well known theorems and

algorithms involving modular arithmetic and finite fields, highlighting the role they play

in the reconstruction algorithms illustrated in this paper. More details about our usage

of the six-dimensional spinor-helicity formalism over finite fields are given in appendix B.

In appendix C we discuss an efficient method for generating two-loop unitarity cuts from

Berends-Giele currents, which is a generalization of the one-loop algorithm used by the pub-

lic code NJet [18], and whose two-loop extension is not present elsewhere in the literature.

2 Basic concepts, definitions and notation

In this section we set the notation and review some well known concepts about finite fields

which will be used later in the paper.

2.1 Finite fields

Finite fields are fields containing a finite number of elements. For the purposes of this

paper, we will only consider fields of integers modulo p, denoted by Zp, where p is a prime

number.

In particular, we identify Zn, with n a positive integer (not necessarily prime), with

the set of non-negative integers3 smaller than n,

Zn = {0, . . . , n− 1}. (2.1)

Elementary arithmetic operations in Zn, such as addition, subtraction and multiplication,

are defined using modular arithmetic, namely by performing the corresponding operation

in Z and taking the remainder of the integer division of the result modulo n. Given an

element a ∈ Zn with a 6= 0, if a and n are co-prime we can define the inverse a−1 of a in

Zn with respect to multiplication, i.e. an element b ∈ Zn such that

a−1 mod n ≡ b ⇔ (a b) mod n = 1. (2.2)

One can indeed show that such a number b exists (and is unique in Zn) if and only if a

and n are co-prime. If n = p is a prime number, the existence of an inverse is therefore

3One could alternatively define Zn as a set of equivalence classes in Z, but we find the definition given

in this section more pragmatic and useful for the purposes of this paper.

– 5 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

guaranteed for every non-vanishing element of Zp. This implies that Zp is a field and

any rational operation on its elements is well defined. The multiplicative inverse can be

computed using the extended Euclidean algorithm, as explained in appendix A.1.

The existence of a multiplicative inverse implies that we can define a map between

rational numbers and elements of a finite field Zp. In particular, given a rational number

q = a/b ∈ Q, we define

q mod p ≡
(
a× (b−1 mod p)

)
mod p. (2.3)

This map is obviously not invertible (since Q is infinite and Zp is finite), however it turns

out one can reconstruct q, with very high probability, from its images in several finite fields

Zpi where {pi} is a set of prime numbers, as explained in section 2.3 and appendix A. This

will enable us to reconstruct rational functions with rational coefficients from their values

over finite fields. It is worth observing that we can similarly map q in Zn, with n not prime,

as long as n and the denominator b are co-prime.

2.2 Polynomials and rational functions

In this paper we use a multi-index notation. Given a sequence of n variables z =

(z1, . . . , zn), and the n-dimensional multi-index α = (α1, . . . , αn) with integers αi ≥ 0,

a monomial zα is defined as

zα ≡
n∏

i=1

zαi
i . (2.4)

The total degree of a monomial is denoted by |a|,

|a| =
∑

i

αi. (2.5)

With F a generic field, we use the following (standard) definitions:

• F[z] is the ring of polynomials in the variables z with coefficients in F. Any polyno-

mial function f ∈ F[z] can be uniquely identified by a set of multi-indexes {α} and

coefficients cα ∈ F as

f(z) =
∑

α

cα zα. (2.6)

• F(z) is the field of rational functions in the variables z with coefficients in F. Functions

f ∈ F(z) can be expressed as a ratio of two polynomials p, q ∈ F[z] as

f(z) =
p(z)

q(z)
=

∑
α nα zα∑
β dβ zβ

, (2.7)

where nα, dβ ∈ F, while {α} and {β} are sets of multi-indexes. Unlike the polyno-

mial representation given in eq. (2.6), the representation of a rational function is not

unique, even if we assume p and q to have no common polynomial factors. How-

ever, after GCD simplification, the only possible ambiguity is an overall constant

normalization of the numerator and the denominator. In order to have a unique rep-

resentation, useful e.g. when comparing functions obtained in different finite fields,

– 6 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

we use the convention of defining the coefficient of the lowest degree term of the

denominator (with respect to the chosen monomial order) to be equal to one.

The functional reconstruction methods described in this paper are based on multiple

evaluations of the function f to be reconstructed, which in turn correspond to assigning

to each variable a value in the field F. For the univariate case we denote these values by

yi ∈ F while multivariate we denote them by yi ∈ Fn, where i is a label distinguishing

different evaluation points.

In this paper the field F will either be the rational field Q or a finite field Zp. More in

detail, our goal is the calculation of polynomial functions in Q[z] and rational functions in

Q(z). We will do so by performing a functional interpolation of the same functions in Zp[z]

or Zp(z) respectively, for several primes p if needed, and then use these to reconstruct the

results over the rational field.

2.3 Rational reconstruction from finite fields

In the next sections we will describe an algorithm for efficiently reconstructing polynomials

and rational functions over finite fields. As apparent from their representation in eq. (2.6)

and (2.7), these functions can be identified by a sequence of monomials and their respective

coefficients. The final step of the reconstruction algorithm therefore consists in promoting

these coefficients from elements of a finite field Zp into a proper rational number. As we

have seen in section (2.1), one can map a rational number q into an element of the set

Zn of integers modulo n, as long as n and the (reduced) denominator of q are co-prime.

Although this map is not invertible, it turns out one can use a variation of the extended Eu-

clidean algorithm [54] (see also appendix A.1) in order to make a guess for q from its image

q mod n ∈ Zn. This method is known as rational reconstruction. The guess will, in general,

be correct when the numerator and the denominator of q are much smaller than n (heuris-

tically one finds that the threshold is around
√
n). However, because of our requirement

of working with machine-size integers (see section 6 for more details), we cannot always

choose the prime p defining the field Zp to be significantly larger than the numerator and

the denominator of any rational number which can be expected to appear in the results.

The solution to the problem comes from the Chinese remainder theorem, which allows

to uniquely reconstruct an element in Zn, with n = n1 · · ·nk and the ni pairwise co-prime,

from its images in Zni for i = 1, . . . k, as explained in appendix A.2. This implies that,

given a set of prime numbers pi, we can perform the functional reconstruction over Zpi
and then combine the results to find the image of the rational coefficients in Zp1···pk . By

performing the rational reconstruction over Zp1···pk , the result will thus be correct when

the product of the selected primes is large enough.4 This allows us to use machine-size

integers for a fast functional reconstruction in Zpi , while the use of multi-precision arith-

metic (computationally much more expensive) is restricted to this rational reconstruction

4A minor subtlety arises when the denominator of a rational number is a multiple of one of the primes pi.

We observe that this is very unlikely to happen if the pi are of O(106) as in our implementation. Besides,

in this case the functional reconstruction would fail and thus one can simply discard the prime and proceed

with a different one.

– 7 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

step in Zp1···pk , which takes a very small fraction of computing time compared to the one

spent for the functional reconstruction over prime fields.

More in detail, given a sequence of primes p1, . . . , pk, we adopt the following algorithm

for the full reconstruction of a rational function in f ∈ Q(z) (a completely analogous one

can obviously be used for a polynomial):

1. Reconstruct the function f in Zp1(z) and store the result.

2. Use the rational reconstruction algorithm to promote the stored result to a (new)

guess g ∈ Q(z).

3. Consider a new prime pi+1, where i is the number of primes which have already been

used so far. Evaluate the guess g over the new field Zpi+1 for several values of z. If the

result for g(z) agrees with the evaluation of the function f(z), accept the guess g as

the correct answer, i.e. assert g(z) = f(z), and successfully terminate the algorithm.

Otherwise proceed to the next point.

4. Reconstruct the function in Zpi+1(z) and combine it with the stored result in

Zp1···pi(z) using the Chinese remainder theorem in order to obtain the correct re-

sult in Zp1···pi+1(z). The latter thus replaces the previously stored result. Repeat

from point 2.

The algorithm terminates when the comparison in point 3 is successful. For the examples

presented in this paper, we typically only need to perform the functional reconstruction

over one or two prime fields.

We observe that the techniques reviewed in this section (which, as stated, are well

known) allow reconstructing a multivariate rational function with very high probability.

In practice, exceptional cases are very artificial and irrelevant for realistic applications. It

should also be noted that the final result can be extensively checked against the evaluation

of the function f on even more values of the prime p and the variables z.

In the rest of this paper, we will discuss a functional reconstruction algorithm which

is suited for complex theoretical calculations in high-energy physics, and its application to

techniques related to the computation of tree-level and multi-loop scattering amplitudes in

QFT.

3 Functional reconstruction

In this section we describe a dense functional reconstruction algorithm for polynomials and

rational functions whose performance scales well with the complexity of the result. For the

sake of generality we make no further assumption about the functions to be reconstructed.

Unless explicitly stated otherwise, the techniques illustrated in this section can be applied

to functions over any field, although in practice we are mostly interested to their application

over finite fields.

– 8 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

3.1 The black-box interpolation problem

Given a function f of n variables z = (z1, . . . , zn) over a field F, the so-called black-box

interpolation problem is the problem of reconstructing the function f from the results of

its evaluation for several values of z. In other words, one can think about the function as

a numerical procedure of the form

z −→ f −→ f(z), (3.1)

while the functional reconstruction method has no knowledge about the algorithm used for

the calculation of f .

In this paper we are interested in reconstructing polynomials and rational functions

over the rational field. Our setup is a modified version of the black-box interpolation

problem, where the function is evaluated modulo a prime number p, and can schematically

be represented as

(z, p) −→ f −→ f(z) mod p. (3.2)

We recall that the rational reconstruction technique reviewed in section 2.3 reduces the

problem of a functional reconstruction over Q to the problem of a functional reconstruction

over prime fields Zp for generic p. This makes the setups in eq. (3.1) and eq. (3.2) effectively

equivalent for our purposes. Hence, in the remainder of this paper, we will focus on

functional reconstruction techniques over finite fields Zp, where p is an arbitrary prime. As

stated, these are actually valid in any field F and the use of finite fields is meant to provide

a fast but exact numerical evaluation of the black-box function f to be reconstructed.

Therefore, in this section we will simply denote the generic field by F.

The advantage of turning an analytic calculation into a black-box interpolation is that

it reduces the problem of computing a function f into the one of providing a fast numerical

evaluation for it. Since the reconstruction is independent of the algorithm used for the

evaluation of f , it has a very broad spectrum of applications. Numerical calculations can in

turn avoid issues such as large intermediate expressions, which affect many computations

in high-energy physics. With this approach, the number of evaluations needed for the

reconstruction of a function scales linearly with the number of terms of the result itself and

is independent of the complexity of intermediate expressions which may appear using fully

analytic techniques.

We remind the reader that, because we are dealing with polynomials and rational

functions, which can be represented as in eq. (2.6) and eq. (2.7) respectively, the goal

of a functional reconstruction algorithm is to identify the monomials appearing in their

definition and the corresponding coefficients as elements of the field F.

Functional reconstruction algorithms roughly fall into two categories: dense and

sparse algorithms. As suggested by their name, sparse reconstruction algorithms attempt

to be more efficient (with respect to number of function evaluations needed) in the

case where the number of non-vanishing terms is small compared to the one expected

from their total degree. In this paper we focus, as mentioned, on dense reconstruction

– 9 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

algorithms, seeking good efficiency in the most general case where many non-vanishing

terms are present, rather than being optimal in the special cases where the function to be

reconstructed is relatively simple.

In order to better motivate the discussion which follows, it is useful to consider first

a straightforward system-solving strategy for the functional reconstruction, and point out

why it is not suitable for our purposes. Given a set of values yi ∈ Fn, using eq. (2.6) and

eq. (2.7), one can build systems of equations of the form

∑

α

cα yαi − f(yi) = 0 (3.3)

and ∑

α

nα yαi −
∑

β

dβ yβi f(yi) = 0, (3.4)

to be solved for the coefficients {cα} and {nα, dβ} for polynomials and rational functions

respectively, using basic techniques such as Gauss elimination. Notice, however, that one

cannot know a priori which monomials will appear in the result. Moreover, in section 2.2

we defined the coefficients of our canonical representation of rational functions such that

the coefficient of the lowest degree term in the denominator is equal to one, in order to

solve the ambiguity in their representation. Unfortunately we have no knowledge about the

mentioned term before having performed the reconstruction. This is however a minor issue

which will be solved as discussed in section 3.5 using techniques proposed in ref. [26]. The

same techniques will allow us to assess the total degree of the numerator and the denomina-

tor of a multivariate rational function, or the one of a polynomial, using a relatively small

number of evaluations. Hence, a viable solution to the functional reconstruction problem

consists in listing the full set of N monomial terms compatible with the total degree of the

function involved, sampling the function with (at least) N values for the set of variables

z, and solving the resulting N × N system of equations for the coefficients. While this

method is straightforward and efficient for simple functions depending on only one or two

variables, it has however a bad scaling behaviour when increasing the number of variables

or the total degree of the result. This can be understood simply by recalling that solving

an N × N dense system of linear equations is an O(N3) operation, and the multivariate

problems in which we are interested in can have several thousands (or even hundreds of

thousands) of potentially non-vanishing terms (notice e.g. that the most general polynomial

in n variables and total degree R has N =
(
R+n
R

)
terms).

The reconstruction algorithms we are going to describe have instead a much better

scaling with the complexity of the result, and the time spent for the functional reconstruc-

tion itself is typically much smaller than the time required for evaluating the function to

be reconstructed. In the following, we start by describing well established algorithms for

the univariate case and later use them as ingredients for the multivariate one.

3.2 Univariate polynomials

For univariate polynomial functions f = f(z) we adopt a well known reconstruction

method based on Newton’s polynomial representation. Given a sequence of distinct values

– 10 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

y0, . . . , yR ∈ F, a univariate polynomial f ∈ F[z] of total degree R can be written as [55]

f(z) =

R∑

r=0

ar

r−1∏

i=0

(z − yi)

= a0 + (z − y0)
(
a1 + (z − y1)

(
a2 + (z − y2)

(
· · ·+ (z − yr−1) ar

)))
. (3.5)

The coefficients ar can be computed recursively by evaluating the function f at the values

yi as

a0 = f(y0)

a1 =
f(y1)− a0
y1 − y0

a2 =

((
f(y2)− a0

) 1

y2 − y0
− a1

)
1

y2 − y1
· · · = · · ·

ar =

(((
f(yr)− a0

) 1

yr − y0
− a1

)
1

yr − y1
− · · · − ar−1

)
1

yr − yr−1
. (3.6)

An important feature of the method is that each coefficient ar only depends on the evalua-

tion of f at the points yi with i ≤ r. This implies that new evaluation points cannot change

the value of the previously computed coefficients. This is ideal for the case where the total

rank R of the polynomial f is not known a priori, and it is our main reason for preferring

this method over alternatives. In practice, we apply the algorithm recursively until we find

a set of consecutive coefficients ar which evaluate to zero. This is the termination crite-

rion of the algorithm (notice that, even when the canonical form of the polynomials has

several vanishing entries, in general the entries of its Newton representation will be non-

vanishing, hence the described termination criterion is robust and an incorrect termination

is extremely unlikely).

The sequence yi is generated dynamically, taking into account that the algorithm

evaluating of the function f might fail at a particular point. More in detail, we choose y0
as an arbitrary element of the field F and then we recursively define the following ones as

yi = yi−1 +1, as long as the evaluation of f is successful. If the evaluation of f fails, we try

replacing the current point yi with yi+1, until we find a value for which the evaluation of f

is possible. If too many consecutive evaluations fail, we terminate the algorithm declaring

the reconstruction unsuccessful.

Even though Newton’s representation is more practical for functional reconstruction

purposes, after a succesful reconstruction it is convenient to convert it back into the canon-

ical representation given by eq. (2.6), which in the univariate case can be written as

f(z) =
R∑

r=0

cr z
r. (3.7)

It is worth observing that the conversion from the representation in eq. (3.5) to the one in

eq. (3.7) only requires the following two operations

– 11 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

• addition of univariate polynomials,

• multiplication of a univariate polynomial by a linear univariate polynomial.

Both operations are simple enough to be efficiently implemented over finite fields Zp in

statically-typed languages, without resorting to external computer algebra systems. More

details on our implementation are given in section 6.

3.3 Univariate rational functions

For univariate rational functions f ∈ F(z) it is worth distinguishing two cases. The first

case is applicable when the degree of the numerator and the denominator (R and R′

respectively) are known and the constant term of the denominator is known to be non-

vanishing. As we shall see, this is useful for the multivariate reconstruction discussed in

section 3.5. In this particular case, the function admits a representation of the form

f(z) =

∑R
r=0 nr z

r

∑R′

r′=0 dr′ z
r′
, (3.8)

with d0 = 1. We find the system-solving method explained at the end of section 3.1 is well

suited for this univariate case, since the rank of the numerator and the denominator are

unlikely to be high enough to make Gauss elimination impractically expensive, at least for

the kind of problems we are interested in this paper (as we stated, the same is not true for

the multivariate case, as the number of variables or the degree of the numerator and the

denominator increase). Having set d0 = 1, the system of equations reads

R∑

r=0

nr y
r
i −

R′∑

r′=1

dr′ y
r′
i f(yi) = f(yi), (3.9)

and can be solved for the unknown coefficients {nr, dr′} by evaluating the function f at

least R+R′+ 1 times. In practice we include a few more evaluation points yi, making the

system slightly over-constrained as a cross check.

We now address the more general case where the degree of the numerator and the

denominator are not known. We find convenient to use a method based on Thiele’s inter-

polation formula [55], which expresses a rational function f ∈ F(z) as a continued fraction

f(z) = a0 +
z − y0

a1 +
z − y1

a2 +
z − y3

· · ·+ z − yr−1
aN

= a0 + (z − y0)

a1 + (z − y1)

(
a2 + (z − y2)

(
· · ·+ z − yN−1

aN

)−1)−1

−1

, (3.10)

where y0, . . . , yN is a sequence of distinct elements of F. Thiele’s interpolation formula can

be regarded as the analog of Newton’s formula for rational functions. The second line of

eq. (3.10), by comparison with the second line of eq. (3.5), makes the analogy manifest.

– 12 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

The coefficients ai can be recursively computed by evaluating the function f at the

values yi,

a0 = f(y0)

a1 =
y1 − y0

f(y1)− a0
a2 =

(
(f(y2)− a0)−1 (y2 − y0)− a1

)−1
(y2 − y1)

· · · = · · ·

aj =

((
(f(yj)− a0)−1 (yj − y0)− a1

)−1
(yj − y1)− · · · − aj−1

)−1
(yj − yj−1). (3.11)

Similarly to Newton’s interpolation formula, each value aj only depends on the evalua-

tions at z = yi with i ≤ j, which makes the algorithm convenient in the case where the

total number of terms is not known, since new evaluation points do not change previously

computed terms. Our strategy for generating the sequence of points yi is also the same as

the one used in the polynomial case. It is worth pointing out that Thiele’s interpolation

formula, being a continued fraction, contains spurious singularities which might make the

application of equations (3.11) impossible. Similarly to the case where the evaluation of

f fails, if such a spurious singularity is encountered at a point yi, we simply discard the

value and replace it with yi + 1. The termination criterion is the agreement between a

new evaluation f(yi) with the evaluation of the rational function defined by the coefficients

a0, . . . ai−1 already computed. We make the algorithm more robust by requiring agreement

between the reconstructed function and several new evaluations of f .

After a successful interpolation, the result is converted into the canonical form given

by eq. (3.8), except that the condition d0 = 1 is replaced by dmin r′ = 1, where zmin r′ is the

lowest degree monomial with a non-vanishing coefficient in the denominator. We observe

that Thiele’s formula with N + 1 terms represents a rational function with degree R and

R′ for the numerator the denominator respectively, where R = R′ = N/2 if N is even, and

R = R′ + 1 = (N + 1)/2 if N is odd. In other words, either the degree of the numerator

and the denominator of the reconstructed function are equal, or they differ by one unity at

most. This implies that the highest degree coefficients nr or dr′ , obtained by converting the

result into its canonical form, might be vanishing, in which case they are discarded. For this

reason, if the degrees R and R′ are already known, the system-solving strategy typically

requires fewer evaluations of the function, since this way one can avoid reconstructing zeros.

Thiele’s interpolation is however preferred when R and R′ are not known.

The conversion into a canonical form can be implemented by performing on the polyno-

mial numerator and the denominator of the function the same kind of operations we listed

for converting Newton’s polynomial representation into the canonical form (and inversion,

which is simply implemented by swapping numerator and denominator). Hence, as we

stated for the previous case, this does not require the usage of computer algebra systems and

can be easily implemented in statically-typed languages using functions over finite fields Zp.
We stress that the result we obtain can be shown to be minimal with respect to the

degrees of the numerator and the denominator, and hence no GCD simplification is needed

– 13 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

after the reconstruction is converted into a canonical form (and possible high-degree zero

terms are discarded).

3.4 Multivariate polynomials

Given a sequence of variables z = (z1, . . . , zn) and a multivariate polynomial function

f ∈ F[z], the interpolation of f can be performed by recursive application of the univariate

Newton’s reconstruction method described above. In other words, we consider a generic

multivariate polynomial f ∈ F[z1, . . . , zn] as a univariate polynomial in the first variable z1,

whose coefficients are polynomials in the remaining variables (z2, . . . , zn). Newton’s inter-

polation formula (3.12) can thus be generalized to the multivariate case, by upgrading the

coefficients ai from elements of the field F to elements of the polynomial ring F[z2, . . . , zn],

f(z1, . . . , zn) =

R∑

r=0

ar(z2, . . . , zn)

r−1∏

i=0

(z1 − yi), (3.12)

where, as before, the yi are distinct elements of F. The solutions for the coefficients ar in

eq. (3.6) also apply to the multivariate case, with the following substitutions

f(yj) −→ f(yj , z2, . . . , zn), aj −→ aj(z2, . . . , zn). (3.13)

In this case, the right hand side of each equation (3.6) for ar(z2, . . . , zn) thus depends on the

previously computed polynomial coefficients aj(z2, . . . , zn) with j < r, and on the function

f where the first variable z1 has been set to the value z1 = yr. Therefore the reconstruction

of ar(z2, . . . , zn) is reduced to the black-box interpolation of a polynomial function in n−1

variables. In particular, the evaluation of ar(z2, . . . , zn) can be obtained by evaluating

f(yr, z2, . . . , zn) and then combining it with the previously computed polynomial coeffi-

cients aj by applying the formulas in eq. (3.6). The recursion ends with the univariate case,

where we apply the univariate polynomial reconstruction algorithm we already discussed.

In order to convert a multivariate polynomial from a (recursive) Newton representation

into the canonical form in eq. (2.6), one needs the following basic operations

• addition of multivariate polynomials,

• multiplication of a multivariate polynomial by a linear univariate polynomial.

Although these operations are slightly more involved than the corresponding ones for the

univariate case, they still allow a rather straightforward and efficient implementation in

statically-typed languages, especially in the case of polynomials over finite fields Zp. We

will discuss the details of our implementation and the polynomial representation we used

in section 6.

3.5 Multivariate rational functions

The reconstruction of multivariate rational functions is a considerably more complex prob-

lem that those addressed so far. We were not able to find a dense multivariate recon-

struction algorithm suited for our purposes in the literature. However, we observe that

– 14 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

the techniques proposed in ref. [26] for sparse rational functions, can also be applied, with

some minor modifications, to dense rational functions as well. In this section we describe

our version of the techniques proposed in [26], and in particular their combination with the

dense functional reconstruction methods discussed above. The efficiency of the resulting

algorithm turns out to meet our performance goals, as we shall see in the next sections.

We consider the variables z = (z1, . . . , zn) and a rational function f ∈ F(z), which

admits a canonical representation of the form of eq. (2.7). A first issue to be addressed is the

ambiguity in the overall normalization of the numerator and denominator of the function.

As we stated, we get rid of this ambiguity by requiring the canonical representation of the

function to have the coefficient of the lowest degree term in the denominator equal to one.

However, identifying such a term (or indeed any term in the function) before the functional

reconstruction is in general not possible. As observed in ref. [26], there is however a simple

case where this issue can be easily solved, i.e. when the lowest-degree non-vanishing term

of the denominator is the constant term, in which case we can simply set the canonical

normalization by imposing

d(0,...,0) = 1. (3.14)

It is also noted in ref. [26] that, even in the case where d(0,...,0) = 0, one can always identify

a shift s = (s1, . . . , sn) ∈ Fn in the arguments of f such that the shifted function

fs(z) = f(z + s) = f(z1 + s1, . . . , zn + sn) (3.15)

satisfies d(0,...,0) 6= 0 (i.e. is non-singular in z = (0, . . . , 0)) and can thus be normalized as in

eq. (3.14). Hence, in these cases, the method we are going to describe can be applied to the

function fs instead. A minor subtlety is the fact that, after such a shift, the new function

fs might become considerably more complex than the original function f , and thus harder

to reconstruct. This issue is actually much more relevant for the sparse reconstruction case

discussed in ref. [26], but it can also affect the dense reconstruction case, especially if the

variables z have been carefully chosen for being suited to describe the function at hand.

We will address this subtlety later and for the time being we turn to the description of

the functional reconstruction of a rational function f ∈ F(z) whose constant term in the

denominator is non-vanishing.

The method illustrated in ref. [26] consists in introducing an auxiliary variable t and

defining a new function h ∈ F(t, z) as

h(t, z) = f(t z) = f(t z1, . . . , t zn). (3.16)

Using the canonical representation of f given by eq. (2.7) and denoting the total degree of

the numerator and the denominator of f by R and R′ respectively, we get

h(t, z) =

R∑

r=0

pr(z) tr

1 +
R′∑

r′=1

qr′(z) tr
′

, (3.17)

– 15 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

where

pr(z) ≡
∑

|α|=r

nα zα, qr′(z) ≡
∑

|β|=r′
dβ zβ . (3.18)

In other words, the function h can be regarded as a univariate rational function in the

variable t, whose coefficients are multivariate homogeneous polynomials in the variables z.

We obviously have

f(z) = h(1, z). (3.19)

Notice that the constant term of the denominator of f coincides with the constant term of

the denominator of h seen as a univariate rational function in t, hence by normalizing the

latter to 1, the same normalization is automatically applied to the former.

Our implementation of the method consists in reconstructing the homogeneous poly-

nomials pr and qr′ for 0 ≤ r ≤ R and 1 ≤ r′ ≤ R′, using the multivariate Newton

reconstruction method illustrated above. The evaluations of these polynomials at a generic

point z = yi ∈ Fn are in turn obtained by reconstructing

hyi(t) ≡ h(t,yi) (3.20)

as a univariate rational function in t and identifying pr(yi) and qr′(yi) with its coefficients.

Notice that this univariate reconstruction is actually equivalent to the evaluation of all the

polynomials pr and qr′ at the same time. In order not to waste evaluations, for each sam-

pled value yi ∈ Fn we cache the corresponding reconstructed univariate function hyi ∈ F(t)

so that its coefficients can be re-used for the reconstruction of several polynomials. More-

over, since pr(z) and qr′(z) are homogeneous polynomials of degree r and r′ respectively,

during their reconstruction we can drop their dependence on the first variable z1 by setting

z1 = 1 and consider the polynomials pr(1, z2, . . . , zn) and qr′(1, z2, . . . , zn) instead. The

dependence on z1 is thus restored by homogenizing the result. This simplification makes

up for having introduced the auxiliary variable t.

We now briefly discuss the univariate reconstruction algorithm we use for the functions

hyi ∈ F(t) at each point yi ∈ Fn. Since we typically cannot know a priori the degrees R and

R′ of the numerator and the denominator respectively, we first perform a few univariate

reconstructions using Thiele’s interpolation method, in order to obtain this information.

As a byproduct, this is also used to check whether the constant term of the denominator

vanishes, in which case, as mentioned, we proceed by specifying a different shift z→ z + s

in the arguments of f (more details about this point are given below). Once the degree of

the numerator and the denominator are known, and a shift s such that d(0,...,0) 6= 0 is found,

we switch to the system-solving algorithm described at the beginning of section 3.3, since it

typically requires fewer evaluations of the function (as explained, Thiele’s interpolation be-

comes optimal with respect to the number of evaluations needed only when the degree of the

numerator and the denominator are equal or the former is one unity higher than the latter).

We finally briefly describe a convenient way to implement the aforementioned variable

shift to avoid the case where d(0,...,0) 6= 0 (this point is more extensively discussed in

ref. [26], to which we refer the reader for further details). For simplicity we focus on the

polynomials pr in the numerator of the function, although it should be clear that completely

– 16 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

analogous statements can be made for the polynomials qr in the denominator. The key

observation is that a shift in the variables z→ z+s in one of the homogeneous polynomials

pr can only affect the homogeneous polynomials pr′ with r′ < r. In particular the highest

degree polynomial pR is the same for the function f and the shifted function fs defined

in eq. (3.15). We then start with the reconstruction of the highest degree polynomial pR,

which is the same for f and fs. We then compute the effects of the shift on lower rank

terms, which for a generic pr are given by

pr(z + s)− pr(z). (3.21)

During the reconstruction of lower degree terms, each function evaluation of the polynomi-

als defining fs are thus corrected by the effects of this shift induced by higher rank terms.

With this method we can reconstruct the function f directly (up to an overall common nor-

malization of the numerator and the denominator, which can be fixed at the end using our

definition of their canonical form), which as stated can be expected to be simpler than fs.

As a final remark, we point out that, on top of the basic polynomial operations needed

for the multivariate polynomial reconstruction, in order to implement this algorithm one

also needs to compute the effects of a shift z → z + s in the variables. This is relatively

straightforward if done for one variable at a time, by using

(z + s)r =

r∑

j=0

(
r

j

)
sr−j zj . (3.22)

Another operation which is needed is the homogenization required to restore the depen-

dence of the polynomials pr and qr on their first variable, but depending on the polynomial

representation used this can be trivial, since it amounts to adjusting the first entry of the

multi-indexes α = (α1, . . . , αn) representing the exponents of the monomials. As already

mentioned, more details about our implementation are given in section 6.

This completes the description of the functional reconstruction algorithms used in this

paper. In sections 4 and 5 we show how to evaluate functions relevant for calculations

high-energy physics over finite fields Zp, making thus possible to use these techniques for

the reconstruction of their analytic form as rational functions over the field Q.

3.6 Examples

Before moving to applications in high-energy physics, we briefly discuss two simple exam-

ples of functional reconstruction, which might be useful in order to clarify the concepts in-

troduced in this section, especially for the reconstruction of multivariate rational functions,

which is considerably more involved than the other cases. We perform the reconstruction

over the field Q, since it is easier to follow, but any step can equivalently be performed

over finite fields Zp, yielding the same result modulo p.

Function non-singular at z = (0, . . . , 0). We consider the following rational function

of two variables

f(z) = f(z1, z2) =
3 + 2z1 + 4z2 + 7z21 + 5z1z2 + 6z22
1 + 7z1 + 8z2 + 10z21 + z1z2 + 9z22

. (3.23)

– 17 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Because the function is well defined at z = (0, 0) there is no need to shift variables in this

case. Our goal is thus to reconstruct the analytic formula of this function from a black-box

providing a numerical evaluation of it. The first step consists in defining the function h in

eq. (3.17), which in this case is given by

h(t, z) = f(t z1, t z2) =
p0 + p1(z1, z2) t

2 + p2(z1, z2) t
2

1 + q1(z1, z2) t2 + q2(z1, z2) t2
, (3.24)

with

p0(z1, z2) = 3, q0(z1, z2) ≡ 1,

p1(z1, z2) = 2z1 + 4z2, q1(z1, z2) = z1 + z2,

p2(z1, z2) = 7z21 + 5z1z2 + 6z22 , q2(z1, z2) = 10z21 + z1z2 + 9z22 . (3.25)

We thus reconstruct the polynomials pr and qr′ by interpolating the function hyi(t) ≡
h(t,yi) for several points yi. As stated, since the polynomials pr and qr′ are homogeneous

and have degree r and r′ respectively, we can set z1 = 1 and homogenize the result at the

end.

We assume no knowledge about the total degree of f . Hence we first perform a re-

construction of hy1(t) using Thiele’s interpolation formula for a specific value of y1, say

y1 ≡ (1, 1), which yields

h(1,1)(t) =
3 + 6t+ 18t2

1 + 2t+ 20t2
. (3.26)

This gives us information about the total degree of the numerator and the denominator,

which can then be confirmed by repeating the reconstruction at more values of z = yi.

Moreover, by comparison with eq. (3.24), this also yields the value of the polynomials pr
and qr′ at (z1, z2) = (1, 1), namely

p0(1, 1) = 3, q0(1, 1) = 1,

p1(1, 1) = 6, q1(1, 1) = 2,

p2(1, 1) = 18, q2(1, 1) = 20, (3.27)

which can be used for their polynomial fit. We perform two more reconstructions, say at

y2 = (1, 2) and y3(1, 3), which yield

h(1,2)(t) =
3 + 10t+ 41t2

1 + 3t+ 48t2

h(1,3)(t) =
3 + 14t+ 76t2

1 + 4t+ 94t2
. (3.28)

These, together with the previous point z = y1, are sufficient in order to reconstruct, using

e.g. Newton’s formula, the univariate polynomials

p1(1, z2) = 2 + 4z2, q1(1, z2) = 1 + z2,

p2(1, z2) = 7 + 5z2 + 6z22 , q2(1, z2) = 10 + z2 + 9z22 . (3.29)

After homogenization, these reproduce the ones in eq. (3.25) and thus the function f(z) =

h(1, z).

– 18 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Function singular at z = (0, . . . , 0). We now briefly discuss the case of a function

which is singular at z = (0, 0). We consider

f(z) = f(z1, z2) =
3 + 2z1 + 4z2 + 7z21 + 5z1z2 + 6z22

z1 + z2 + 10z21 + z1z2 + 9z22
, (3.30)

which differs from the previous example only for the missing constant term in the denom-

inator. Using Thiele’s interpolation formula for h(1,1)(t), we now get

h(1,1)(t) =
3/2 + 3t+ 9t2

t+ 10t2
, (3.31)

which tells us that the constant term of the denominator is vanishing and thus we need to

specify an argument shift. By trial and error, repeating the univariate functional recon-

struction for several shifts, we find e.g. that s = (2, 0) is a good shift, i.e.

fs(z) = f(z1 + 2, z2) (3.32)

is non-singular at (z1, z2) ≡ 0. The function hs is now defined as

hs(t, z) = f(t z1 + 2, t z2) (3.33)

and can similarly be written as in eq. (3.24). Now its shifted polynomial coefficients are

ps,0(z1, z2) =
35

43
, qs,0(z1, z2) ≡ 1,

ps,1(z1, z2) =
30

43
z1 +

14

43
z2, qs,1(z1, z2) =

41

43
z1 +

3

43
z2,

ps,2(z1, z2) =
7

43
z21 +

5

43
z1z2 +

6

43
z22 , qs,2(z1, z2) =

10

43
z21 +

1

43
z1z2 +

9

43
z22 . (3.34)

These coefficients can be reconstructed similarly to the previous case, but as we explained

we use a different strategy where the effects of the shift are recursively subtracted from the

evaluations of each polynomial coefficient. This allows us to reconstruct the polynomials

coefficients pr and qr′ of the original function f , up to an overall normalization of the

numerator and the denominator, rather than the coefficients ps,r and qs,r′ of the shifted

function fs. For simplicity we focus on the reconstruction of the polynomials pr in the

numerator. We observed that the highest degree polynomial p2 is independent of the

chosen shift, and thus we can simply reconstruct it from several interpolations of hs,yi(t)

as in the non-singular case. We then compute the effects of the variable shift on the lower

degree terms, which are given by

p2(z1 + 2, z2)− p2(z1, z2) =

(
28

43
z1 +

10

43
z2

)
+

(
28

43

)
. (3.35)

The term in the first and second parenthesis on the r.h.s. are the effects of the variable

shift coming from p2 on the coefficients p1 and p0 respectively. When reconstructing p1, we

thus evaluate ps,1 (for which we can re-use the interpolations of hs we already performed

for p2) and correct its values using

p1(z1, z2) = ps,1(z1, z2)−
(

28

43
z1 +

10

43
z2

)
=

2

43
z1 +

4

43
z2. (3.36)

– 19 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Hence the polynomial ps,1 is never actually reconstructed, since we correct its evaluation

as in the previous equation and reconstruct p1 instead. We thus proceed with the recon-

struction of p0, for which we need the effects of the shift on p1

p1(z1 + 2, z2)− p1(z1, z2) =

(
4

43

)
, (3.37)

which combined with the ones on p2 give

p0 = ps,0 −
4

43
− 28

43
=

3

45
. (3.38)

Once again, the evaluation of ps,0 is obtained by the interpolations of hs we already per-

formed for p2. A similar strategy can obviously be applied to the denominator. While q2,

following the same arguments, is not affected by the variable shift (i.e. q2 = qs,2), the other

terms corrected by the shift are

q2(z1, z2) =
z1
43

+
z2
43
, q0 = 0. (3.39)

Notice that, after correcting for the shift, the lowest degree term of the denominator,

namely z2/43, does not have coefficient equal to unity. In order to bring the result into

our canonical form, all the coefficients are thus multiplied by its inverse (in this case 43),

obtaining the result in eq. (3.30).

4 Spinor-helicity and tree-level techniques

In this section we describe how spinor-helicity techniques and tree-level calculations can

be implemented over finite fields Zp, and thus used in combination with the reconstruc-

tion algorithms illustrated above. In particular, one has to ensure that both the inputs

and each intermediate step of a calculation performed via these technique can be imple-

mented through a sequence of rational operations. These techniques also serve as building

blocks for multi-loop calculations via integrand-reduction and generalized unitarity, whose

implementation on finite fields will be described in section 5.

More in detail, in section 4.1 we describe how to use the well known four-dimensional

spinor-helicity formalism in finite-field calculations. As we shall see, for loop calculations

in the context of generalized unitarity, it can also be convenient to embed loop momenta

in a D-dimensional space with integer D > 4. For this purpose, we will also use the six-

dimensional spinor-helicity formalism [51–53], as described in appendix B. In section 4.2 we

recall how to combine these techniques for tree-level calculations by means of Berends-Giele

recursion.

4.1 Four-dimensional momenta and spinors

The four-dimensional spinor-helicity formalism offers a very convenient way of expressing

helicity amplitudes in gauge theories. This formalism is widely used and here we only

review a few details which are relevant for our implementation.

– 20 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Given a massless momentum p, its corresponding two-component spinors |p〉 and |p]
can be defined as the independent solutions of the Dirac equation,

pµ σµ|p〉 = pµ σµ|p] = 0, (4.1)

where σµ = (12×2, σi) with σi being the Pauli matrices, and they satisfy

|p〉 [p| = pµ σ
µ. (4.2)

In particular, if p is the momentum of an outgoing particle of a process, |p〉 and |p] are

identified as the negative- and positive-helicity solution of the Dirac equation respectively.

We consider an arbitrary n-point process, with external momenta p1, . . . , pn, all taken

as outgoing for simplicity. In the following we assume all external particles are massless,

but our statements can be easily generalized to the massive case by performing a massless

decomposition of the massive external momenta into a sum of massless vectors. For each

external particle pi we have the associated spinors |pi〉 and |pi], also denoted by |i〉 and |i]
for simplicity. Scattering amplitudes are rational functions of the spinor components, as

apparent from well known relations valid for external momenta

pµ =
1

2
〈p|σµ |p], (4.3)

and polarization vectors

εµ+(p, η) =
〈η|σµ|p]√

2 〈η p〉
, εµ−(p, η) =

〈p|σµ|η]√
2 [p η]

, (4.4)

where η is a reference vector such that the scalar product (p · η) 6= 0.

The total number of these spinor components is however much larger than the number

of independent variables needed to describe an amplitude. We therefore find much more

convenient to adopt the strategy described in references [37, 56, 57], which consists in

describing scattering amplitudes with a minimal number of variables, which in turn provide

a rational parametrization of the components of the spinors.

More in detail, we recall that, under a redefinition of the spinor phases given by the

little group tranformation

|i〉 → ti |i〉, |i]→ 1

ti
|i], (4.5)

an n-point amplitude A(1, . . . , n) transforms as

A(1, . . . , n)→
(

n∏

i=1

t−2hii

)
A(1, . . . , n), (4.6)

where hi is the helicity of the i-th particle (e.g. ±1/2 for fermions and ±1 for gluons). It

is thus convenient to extract from the amplitude an overall factor A(phase)(1, . . . , n) which,

under eq. (4.5), has the same transformation properties as the amplitude A. While there

is obviously no unique choice for A(phase), it is clear that it can be chosen based on the

external helicities only and does not require any other knowledge about the amplitude A

– 21 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

itself (see e.g. ref. [57] for a choice valid for any number of external legs, or section 5.1 for

a five-point example).

The ratio A/A(phase) is obviously phase-free, i.e. invariant under the transformation in

eq. (4.5). Any phase-free function of the (four-dimensional) kinematic components which

is invariant under the Poincaré group can depend on 3 n − 10 independent invariants.

Depending on the problem at hand, these may be chosen as a subset of the Mandelstam

invariants sij = (pi + pj)
2, however these are not suited for our purposes since they don’t

provide a rational parametrization of the spinor components. It is however not hard to

build, for an arbitrary process, a set of 3 n − 10 invariants which, up to a Poincaré and

little group transformation, yield a rational parametrization of the spinor components. A

particularly convenient one, based on earlier work by Hodges on momentum twistors [56],

is given in references [37, 57] (we will also give some examples later, when discussing

explicit applications). Hence, in the following we denote by x1, . . . , x3n−10 a complete

set of invariants which provide a rational parametrization of the spinor components (up

to a Poincaré and little group transformation). We refer to these as momentum-twistor

variables. Twistor variables can be interpreted as a rational parametrization of the phase

space and, despite having been introduced in the context of conformal theories, they can be

used in any relativistic quantum field theory and indeed they played an important role in

multi-leg higher-loop calculations in non-supersymmetric gauge theories presented recent

years [37, 47, 48]. Since they can give a complete description of the ratio A/A(phase), a

generic scattering amplitude can be rewritten in terms of them as

A(1, . . . , n) = A(phase)(1, . . . , n) Ã(x1, . . . , x3n−10). (4.7)

Because Ã is a rational function of the momentum-twistor variables, it is suited to being

evaluated over finite fields Zp, and therefore to the application of the functional reconstruc-

tion algorithms described earlier in this paper.

When dealing with helicity amplitudes, our starting point is therefore the definition

of the spinor components in terms of momentum-twistor variables. In practice we observe

that we can always choose our variables such that all but one, say x1, are dimensionless.

For the purpose of the functional reconstruction, it is thus convenient to set x1 = 1 and

recover its functional dependence at the end via dimensional analysis. Hence our chosen

set of independent variables is

z = (x2, . . . , x3n−10) . (4.8)

If internal or external massive particles are involved, we should also add their masses to the

list of the independent variables. From the components of the spinors, we then build the

external momenta pµ. Explicit analytic formulas for these in terms of the corresponding

spinors can be easily worked out once and for all using eq. (4.3). In particular we represent

any (massless or massive) momentum p by its light-cone components

p ≡ (p0 + p3, p0 − p3, p1 + i p2, p1 − i p2), (4.9)

– 22 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

where, with respect to their usual definition, we dropped a factor 1/
√

2, which being irra-

tional cannot be translated into Zp.5 With this representation, the light-cone components

of p are also rational functions of the momentum-twistor variables (factors i cancel out

against those in the Pauli matrices). Similarly, we compute polarization vectors according

to eq. (4.4), except that we divide them by an extra
√

2 (more details are given in the next

paragraph). The resulting expression, in light-cone components, is also a rational function

of the momentum-twistor variables.

A minor issue arises from overall factors i and
√

2 present in the definition of polar-

ization vectors and in the color-ordered Feynman rules of gauge theories. These factors

are however completely spurious, since Ã(x1, . . . , x3n−10) is always a rational function of

the momentum-twistor variables, provided that a factor i is also extracted in A(phase).

Therefore, if εµ is an external polarization vector, Vn is a generic n-point vertex, and P

is a propagator, with colour matrices normalized as tr[T a, T b] = δab, we get rid of these

unwanted factors by making the following substitutions

εµ → 1√
2
εµ, Vn → (−i 2

√
2)4−n Vn, P → i P. (4.10)

Notice that the rescaling of Vn is consistent when combining different kinds of vertexes

(e.g. V3 × V3 scales in the same way as V4). The correct overall factor, which is a rational

number, is restored at the end with a power counting on the number of external gluons,

internal vertexes and propagators.

The ingredients outlined so far are sufficient for expressing a tree-level amplitude, as

well as the coefficients of a multi-loop amplitude written as a linear combination of loop

intergrals, as a function of the momentum-twistor variables which can be evaluated, either

on Q or on finite fields Zp, via a sequence of elementary rational operations. The application

of functional reconstruction algorithms based on finite-field evaluations is thus possible,

and it can be an efficient way of computing scattering amplitudes in gauge theories. In

the following we give more details about how to combine these ingredients for tree-level

calculations via recursion relations, and for multi-loop calculations via integrand reduction

and generalized unitarity.

Similar concepts apply to the spinor-helicity formalism in higher numbers of dimensions

which, as stated, can be useful in order to provide a higher-dimensional embedding of loop

momenta. Details on the six-dimensional spinor-helicity formalism are given in appendix B.

4.2 Berends-Giele recursion

Berends-Giele recursion [50] is an efficient method for the numerical calculation of tree-

level amplitudes. Even though it is typically used with floating-point arithmetics, it can

similarly be applied with trivial modifications to finite fields Zp.
It is straightforward to apply the concepts outlined in section 4.1 for the four-

dimensional case and in appendix B for the six-dimensional one, to Berends-Giele recursion.

5In principle square roots and factors i may also be included by considering more general finite fields,

but since these are always overall factors which cancel out in the final result for Ã, we do not need to

introduce this additional complication into the algorithm.

– 23 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

J(1, . . . ,m) = =
∑

j1

1

Figure 1. Schematic depiction of Berends-Giele recursion relations. The grey blobs Vk represent

contractions defined by the k-point Feynman rules of the theory.

One can start defining one-point on-shell currents, which we symbolically denote by

J iJ(i) =
, (4.11)

as external polarization vectors (J(i) ≡ εµhi(pi)), spinors (J(i) ≡ |i〉, |i]) or constants (J(i) ≡
1) depending on the kind of particle involved, i.e. vector bosons, fermions, and scalars

respectively. Then, higher-point off-shell currents are computed by contracting two or

more lower-point currents with appropriate spinor and tensor structures which can be

easily worked out from the Feynman rules of the theory. For color-ordered amplitudes,

the recursion for the calculation of an off-shell current J(1, . . . ,m) is depicted in figure 1.

In the last step of the recursion for the calculation of an n-point amplitude, an on-shell

current J(1, . . . , n − 1) is computed via a similar recursion relation as the one in figure 1,

except that there is no multiplication by the propagator factor, and then it is contracted

with the on-shell one-point current defined by the n-th external leg.

Besides its efficiency, largely due to the fact that lower-point currents can be re-used

for the calculation of several higher-point currents, Berends-Giele recursion also has the ad-

vantage that it can be straightforwardly implemented for any theory and that the algorithm

is largely independent of the number of space-time dimensions. For these reasons Berends-

Giele currents can also be efficiently used as building blocks for multi-loop integrands, as

we will describe in the next section and in appendix C.

– 24 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

5 Multi-loop integrand reduction and generalized unitarity

In this section we discuss a finite-field implementation of a specific algorithm for the cal-

culation of scattering amplitudes in gauge theories, namely integrand reduction via d-

dimensional generalized unitarity. The algorithm uses as building blocks tree-level ampli-

tudes and Berends-Giele currents, which in turn can be computed using the spinor-helicity

formalism as discussed in section 4.

We consider `-loop contributions to n-point scattering amplitudes in dimensional reg-

ularization. In particular we choose a regularization scheme such that [58]

• external momenta and polarizations are in four dimensions

• loop momenta are in d dimensions, with d > 4

• internal gluon states live in a ds-dimensional space, with ds > d.

The popular t’Hooft-Veltman [59] and Four-Dimensional-Helicity [58] schemes can be ob-

tained as special cases, by setting ds = d and ds = 4 respectively at the end of the

calculation.

A generic contribution to a loop amplitude takes the form

∫ ∞

−∞

(∏̀

i=1

ddki

)
N (ki)∏
j Dj(ki)

, (5.1)

where N and D are polynomials in the components of the loop momenta ki (a rational

dependence on the external kinematic variables is always understood). In particular, the

denominators Di correspond to loop propagators and have the generic quadratic form

Di = `2i −m2
i , lµi =

∑̀

j=1

αijk
µ
j +

n∑

j=1

βijp
µ
j (αij , βij ∈ {0,±1}). (5.2)

It is often useful to split the loop momenta ki in a four-dimensional part k
[4]
i and a (d− 4)-

dimensional part k
[d−4]
i as

kµi = k
[4]
i
µ + k

[d−4]
i

µ, (5.3)

and define extra-dimensional scalar products

µij = −
(
k
[d−4]
i · k[d−4]j

)
. (5.4)

In the regularization scheme defined above, a loop integrand can only depend on the addi-

tional (d−4)-dimensional components of the loop momenta through the scalar products µij
defined above. In particular, for one-loop amplitudes we only have one extra-dimensional

scalar product, i.e. µ11, while at two loops we have three of them, namely µ11, µ22 and µ12.

The dependence on these extra-dimensional components can be implemented by embedding

the loop momenta in a D-dimensional space, where D is a sufficiently large integer. In par-

ticular, the choice D = 6 is sufficient for both one- and two-loop applications. An advantage

– 25 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

of this higher-dimensional embedding, especially in the context of generalized unitarity, is

that one can use a higher-dimensional spinor-helicity formalism for the calculation of the

integrands, having thus an explicit representation of both external and internal states. This

strategy has been used e.g. in references [37, 48]. Having an explicit representation of loop

momenta and spinors is also obviously advantageous in numerical calculations, including

computations on finite fields Zp, which make this formalism suited for our goals.

Integrand reduction methods rewrite loop integrands of the form of eq. (5.1) as a sum

of irreducible contributions,

N (ki)∏
j Dj(ki)

=
∑

T

∆T (ki)∏
j∈T Dj(ki)

, (5.5)

where the sum on the r.h.s. runs over the sub-topologies T of the parent topology identified

by the set of denominators Dj . The so-called on-shell numerators ∆T , also known in this

context as residues, are linear combinations of basis elements {mα
T }, namely

∆T (ki) =
∑

α

cT,α (mT (ki))
α , (5.6)

where α runs over an appropriate topology-dependent set of multi-indexes and mT rep-

resents a sequence of polynomials in the loop momenta. The coefficients cT,α, which only

depend on the external kinematics, can be obtained by evaluating the integrand on values

of the loop momenta satisfying the so-called multiple-cut conditions {Dj = 0}j∈T . This

corresponds to put on-shell a subset of the loop momenta. In particular, by evaluating

the integrand on several solutions of the cut constraints, one obtains a linear system of

equations for the coefficients cT,α which can be solved e.g. via Gaussian elimination.

In general, there is no unique choice for the set of basis elements {mα
T }, which are only

constrained by the requirements of being independent of the aforementioned cut conditions

and forming a complete integrand basis compatible with the rank of numerator with respect

to the loop momenta, up to terms proportional to the denominators Di of the topology T .

Techniques for choosing an appropriate integrand basis have been proposed elsewhere [29–

31, 48] and their discussion is outside the purposes of this paper. Here we will limit ourself

to specify case-by-case the integrand basis we used in each example.

As stated, in the calculations presented in this paper, we embed the loop momenta in

a D-dimensional space (with D = 6). Each loop momentum ki is thus decomposed into a

basis {eij}Dj=1,

kµi =
D∑

j=1

yij e
µ
ij . (5.7)

For each cut, we identify a set of independent free parameters {τk} which describe the set of

solutions. In particular we look for a set of variables such that the coefficients yij = yij(τk)

of the linear combination are rational functions of the parameters τk, which is particularly

convenient when working with finite fields.6 We point out that this has been shown to be

6Irrational solutions might also be accommodated by considering fields that are more general than Zp,

at the price of making some intermediate steps of the calculation more involved.

– 26 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

+ + +

Figure 2. Sum of diagrams with gluon (solid lines) and scalar (dashed lines) loops, for the penta-

box topology. Each scalar loop should be multiplied by the number of scalar flavours, which in our

case is equal to ds −D.

possible in many two-loop examples in d dimensions [37, 38, 48], while in general it is not

in the four-dimensional limit. Using D-dimensional cut loop momenta defined by assigning

numerical values to the free parameters τk, we thus evaluate both the integrand the on-shell

basis mα
T , generating the linear system of equations we can solve for the coefficients cT,α

in eq. (5.6).

The evaluation of the integrand on multiple cuts might be done by means of its ana-

lytic expression, if available (e.g. via diagrammatic techniques). The method of generalized

unitarity instead exploits the fact that a multi-loop integrand, when a subset of the loop

momenta are put on-shell by the cut constraints, factorizes as a product of tree-level ampli-

tudes. This factorization can be understood by the fact that the numerator of an on-shell

propagator factorizes as a sum of polarization states. Using generalized unitarity, the

amplitude is expressed in terms of a smaller number of contributions compared with di-

agrammatic techniques, and gauge invariance is guaranteed in intermediate steps of the

calculation, thus avoiding cancellations of gauge-dependent terms between different dia-

grams. Moreover, it offers the possibility of exploiting efficient tree-level techniques for

loop calculations as well. When using Berends-Giele currents, additional simplifications

are possible during the evaluation of the cut integrands, along the lines of what is imple-

mented in the one-loop public code NJet [18], whose two-loop extension is briefly discussed

in appendix C.

Since we embed loop momenta in D = 6 dimensions, we can evaluate the ampli-

tudes relevant for each cut using the six-dimensional spinor-helicity techniques presented

in ref. [51] and whose application to finite-field calculations is discussed in appendix B.

We also add to the theory ds − D flavours of scalars representing additional polarizations

of the internal gluons which, as stated at the beginning of this section, are taken to be

ds-dimensional. In particular, each on-shell integrand at two-loops can be written as

∆T = ∆
(D,0)
T + (ds −D) ∆

(D,1)
T + (ds −D)2 ∆

(D,2)
T , (5.8)

where ∆
(D,i)
T is a D-dimensional integrand with i scalar loops. Notice that the result for

∆T does not depend on the dimension D of the chosen embedding, unlike each of the

terms on the r.h.s. of the previous equation. Moreover, for pure Yang-Mills theories, the

contribution ∆
(D,2)
T is non-vanishing only for one-loop squared topologies. As an example,

the two-loop planar penta-box is obtained as the sum of contributions in figure 2. This is

the same set-up used for the analytic calculations presented in references [37, 47, 48].

– 27 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

1

2

3

4

5

k1k2

Figure 3. The two-loop planar penta-box topology.

In the following examples, we apply the functional reconstruction algorithm to the

coefficients c
(i)
T,α, with i = 0, 1, 2, defined by the expansion of each coefficient cT,α of eq. (5.6)

in powers of ds − 2,

cT,α = c
(0)
T,α + (ds − 2) c

(1)
T,α + (ds − 2)2 c

(2)
T,α. (5.9)

Using ds − 2, rather than just ds, is motivated by the fact that ds − 2 is the number of

internal gluon polarizations, and indeed this choice makes the coefficients c
(i)
T,α significantly

simpler. In our implementation, because a numerical evaluation consists in solving for

all the coefficients c
(i)
T,α at the same time, we cache their results and reuse them across

the functional reconstruction of all the coefficients. Because the examples below involve

genuine two-loop topologies (as opposed to one-loop squared topologies), in these cases we

always have c
(2)
T,α = 0. All the analytic results are publicly available, and should be useful

for comparisons with future calculations.7

5.1 Two-loop five-point planar penta-box

We consider the two-loop penta-box topology, where the five external gluons are taken as

outgoing. The loop momenta k1 and k2 are defined as in figure 3.

As stated, the kinematics is defined by the spinor components, which in turn

are parametrized by momentum-twistor variables. For the five-point case we use the

parametrization given in [37], namely

|1〉 =

(
1

0

)
, |1] =

(
1

x4−x5
x4

)
,

|2〉 =

(
0

1

)
, |2] =

(
0

x1

)
,

|3〉 =

(1
x1

1

)
, |3] =

(
x1 x4
−x1

)
,

|4〉 =

(1
x1

+ 1
x1 x2

1

)
, |4] =

(
x1(x2 x3 − x3 x4 − x4)

−x1 x2 x3 x5
x4

)
,

|5〉 =

(1
x1

+ 1
x1 x2

+ 1
x1 x2 x3

1

)
, |5] =

(
x1 x3(x4 − x2)

x1 x2 x3 x5
x4

)
. (5.10)

7They can be obtained at the url https://bitbucket.org/peraro/ff2lexamples.

– 28 –

https://bitbucket.org/peraro/ff2lexamples

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

The variables xi can be expressed in terms of the Mandelstam invariants sij and tr5(1 2 3 4)

using eq. (A.8) of ref. [37]. In particular, all the momentum-twistor variables but x1 (we

recall that x1 = s12) are dimensionless. This means that the dependence of the result on

x1 can be fixed by dimensional analysis and the functional reconstruction will thus use the

following set of variables

z = (x2, x3, x4, x5). (5.11)

As discussed in section 4.1, we factor out of the result a global helicity-dependent phase

A(phase). In this example we define it as

A(phase)(1+, 2+, 3+, 4+, 5+) = i
s612

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

A(phase)(1−, 2+, 3+, 4+, 5+) = i
(〈1 2〉 [23]〈3 1〉])2 s312
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

A(phase)(1−, 2−, 3+, 4+, 5+) = i
〈1 2〉4s412

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 ,

A(phase)(1−, 2+, 3−, 4+, 5+) = i
〈1 3〉4s412

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 , (5.12)

and similar for all the ones obtained by cyclic permutations of the external legs. Helic-

ity configurations with three or more negative helicities are not listed, since they can be

obtained from the ones above and their cyclic permutations by charge conjugation.

Notice that charge conjugation corresponds to swapping the spinors |i〉 ↔ |i] both in

the definition of A(phase) and in their parametrization in terms of momentum-twistor vari-

ables. In this case the definition of the xi is modified by applying the same transformation,

which amounts to the substitution tr5 → −tr5 in eq. (A.8) of ref. [37].

Given the symmetries of the penta-box diagram, all the helicity configurations can be

obtained from the following set

{(1+, 2+, 3+, 4+, 5+),

(1−, 2+, 3+, 4+, 5+), (1+, 2−, 3+, 4+, 5+), (1+, 2+, 3+, 4−, 5+),

(1−, 2−, 3+, 4+, 5+), (1−, 2+, 3+, 4+, 5−), (1+, 2+, 3+, 4−, 5−),

(1−, 2+, 3−, 4+, 5+), (1+, 2−, 3+, 4−, 5+), (1−, 2+, 3+, 4−, 5+)}. (5.13)

For each of these, the on-shell integrand is parametrized as

∆pb = A(phase)
∑

α

(s12)
−|α| cpb,α mα

pb, (5.14)

where

cpb,α = c
(0)
pb,α(x2, x3, x4, x5) + (ds − 2) c

(1)
pb,α(x2, x3, x4, x5), (5.15)

and the c
(i)
pb,α are computed via the functional reconstruction method previously illustrated

in this paper. The integrand basis is chosen as in ref. [37], namely

mpb = (2 (k1 · p5), 2 (k2 · p2), 2 (k2 · p1), µ11, µ12, µ22), (5.16)

– 29 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

4

5
k1k2

1

2

3

Figure 4. The two-loop non-planar double-pentagon topology.

with

α ∈ {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 0),

(0, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 2), (0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1),

(0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 0, 1), (1, 0, 0, 0, 0, 1), (0, 0, 0, 0, 2, 0), (0, 0, 0, 1, 1, 0),

(0, 0, 1, 0, 1, 0), (0, 1, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0), (0, 0, 0, 2, 0, 0), (0, 0, 1, 1, 0, 0),

(0, 1, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 2), (1, 0, 0, 0, 0, 2), (0, 0, 0, 0, 2, 1),

(0, 0, 0, 1, 1, 1), (0, 0, 1, 0, 1, 1), (0, 1, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1), (0, 0, 0, 2, 0, 1),

(0, 0, 1, 1, 0, 1), (0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1), (0, 0, 2, 0, 0, 1), (0, 1, 1, 0, 0, 1),

(0, 0, 0, 0, 3, 0), (0, 0, 0, 1, 2, 0), (0, 0, 1, 0, 2, 0), (0, 1, 0, 0, 2, 0), (1, 0, 0, 0, 2, 0),

(0, 0, 0, 2, 1, 0), (0, 0, 1, 1, 1, 0), (0, 1, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0), (0, 0, 2, 0, 1, 0),

(0, 1, 1, 0, 1, 0), (0, 0, 0, 3, 0, 0), (0, 0, 1, 2, 0, 0), (0, 1, 0, 2, 0, 0), (1, 0, 0, 2, 0, 0),

(0, 0, 2, 1, 0, 0), (0, 1, 1, 1, 0, 0), (1, 0, 0, 1, 0, 2), (1, 0, 0, 0, 2, 1), (0, 0, 1, 1, 1, 1),

(0, 1, 0, 1, 1, 1), (1, 0, 0, 1, 1, 1), (0, 0, 1, 2, 0, 1), (0, 1, 0, 2, 0, 1), (1, 0, 0, 2, 0, 1),

(0, 0, 1, 0, 3, 0), (0, 1, 0, 0, 3, 0), (1, 0, 0, 0, 3, 0), (0, 0, 1, 1, 2, 0), (0, 1, 0, 1, 2, 0),

(1, 0, 0, 1, 2, 0), (0, 0, 2, 0, 2, 0), (0, 1, 1, 0, 2, 0), (0, 0, 1, 2, 1, 0), (0, 1, 0, 2, 1, 0),

(1, 0, 0, 2, 1, 0), (0, 0, 3, 0, 1, 0), (0, 1, 2, 0, 1, 0), (0, 0, 1, 3, 0, 0), (0, 1, 0, 3, 0, 0),

(0, 0, 3, 1, 0, 0), (0, 1, 2, 1, 0, 0), (0, 0, 4, 1, 0, 0), (0, 1, 3, 1, 0, 0)}. (5.17)

This basis is smooth in the four-dimensional limit µij → 0.

The results we obtain for the all-plus topology agree with those computed in refer-

ences [37, 48]. The on-shell integrands for the other helicity configurations are new. The

results are summarized in table 1.

5.2 Two-loop five-point non-planar double-pentagon

We now consider the two-loop non-planar double-pentagon topology depicted in figure 4.

The set-up of the calculation is completely analogous to the one for the penta-box. The

kinematics and the global spinor phase are still defined using eq. (5.10) and eq. (5.12)

respectively.

For this topology, we consider the following complete set of independent helicity con-

figurations

{(1+, 2+, 3+, 4+, 5+),

(1−, 2+, 3+, 4+, 5+), (1+, 2+, 3−, 4+, 5+),

– 30 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Helicity Non-vanishing coeff. Max. terms Max. degree Avg. non-zero terms

(1+, 2+, 3+, 4+, 5+) 14 19 8 15.00

(1−, 2+, 3+, 4+, 5+) 27 443 19 152.96

(1+, 2−, 3+, 4+, 5+) 37 1977 24 674.97

(1+, 2+, 3+, 4−, 5+) 61 474 18 184.05

(1−, 2−, 3+, 4+, 5+) 35 1511 24 278.77

(1−, 2+, 3+, 4+, 5−) 79 7027 34 1112.82

(1+, 2+, 3+, 4−, 5−) 18 19 8 15.00

(1−, 2+, 3−, 4+, 5+) 41 2412 22 368.41

(1+, 2−, 3+, 4−, 5+) 85 18960 42 3934.96

(1−, 2+, 3+, 4−, 5+) 85 10386 37 1803.52

Table 1. Summary of the results for the planar penta-box topology. For each helicity configuration

we list the number of non-vanishing coefficients c
(i)
pb,α, the maximum number of terms in a coefficient,

the maximum degree (of either the numerator or the denominator) of a coefficient, and the average

number of terms in the non-vanishing coefficients. The number of terms in a rational function is

defined as the sum of the number of monomials in its numerator and the one in its denominator.

Full analytic expressions are available at the url https://bitbucket.org/peraro/ff2lexamples.

(1−, 2−, 3+, 4+, 5+), (1+, 2−, 3−, 4+, 5+),

(1−, 2+, 3+, 4+, 5−), (1−, 2+, 3+, 4−, 5+)}. (5.18)

For this example we use a slightly different approach for the parametrization of the

integrand. Rather than using an integrand basis with a smooth four-dimensional limit

µij → 0, we choose one which is only composed of scalar products between loop momenta

and external momenta. While this, in general, might make some of the coefficients more

complex and the integration harder, it has the advantage that the result can be directly

plugged into available programs for integration by parts and other multi-loop techniques.

This is also consistent with the adaptive integrand decomposition recently proposed in

ref. [38], where the integrands are always expressed in terms of this kind of scalar product

and the four-dimensional components of the loop which are orthogonal to the external legs

are integrated out (as this is a five-point topology, it corresponds to a limiting case where

no such orthogonal direction is present). More in detail, we use

∆dp = A(phase)
∑

α

(s12)
−|α| cdp,α mα

dp, (5.19)

where, as before,

cdp,α = c
(0)
dp,α(x2, x3, x4, x5) + (ds − 2) c

(1)
dp,α(x2, x3, x4, x5), (5.20)

while the integrand basis is now given by

mdp = (2 (k1 · p5), 2 (k2 · p1), 2 (k1 · p3)− 2 (k2 · p3)), (5.21)

– 31 –

https://bitbucket.org/peraro/ff2lexamples

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

Helicity Non-vanishing coeff. Max. terms Max. degree Avg. non-zero terms

(1+, 2+, 3+, 4+, 5+) 104 1937 26 626.39

(1−, 2+, 3+, 4+, 5+) 104 1449 27 601.43

(1+, 2+, 3−, 4+, 5+) 104 1554 23 642.90

(1−, 2−, 3+, 4+, 5+) 99 1751 26 739.05

(1+, 2−, 3−, 4+, 5+) 104 2524 24 923.71

(1−, 2+, 3+, 4+, 5−) 104 1838 27 823.00

(1−, 2+, 3+, 4−, 5+) 104 1307 24 630.48

Table 2. Summary of the results for the non-planar double-pentagon topology. The entries are

analogous to those in table 1. As in the previous case, full analytic expressions are available at the

url https://bitbucket.org/peraro/ff2lexamples.

with

α ∈ {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 1, 3),

(0, 1, 4), (0, 2, 0), (0, 2, 1), (0, 2, 2), (0, 2, 3), (0, 3, 0), (0, 3, 1), (0, 3, 2), (0, 4, 0), (0, 4, 1),

(0, 5, 0), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 0, 3), (1, 0, 4), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 1, 3),

(1, 1, 4), (1, 2, 0), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 0), (1, 3, 1), (1, 3, 2), (1, 4, 0), (1, 4, 1),

(1, 5, 0), (2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 0, 3), (2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 0),

(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3, 0), (2, 3, 1), (2, 3, 2), (2, 4, 0), (2, 4, 1), (2, 5, 0), (3, 0, 0),

(3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 1), (3, 1, 2), (3, 2, 0), (3, 2, 1), (3, 2, 2), (3, 3, 0), (3, 3, 1),

(3, 4, 0), (4, 0, 0), (4, 0, 1), (4, 1, 0), (4, 1, 1), (4, 2, 0), (4, 2, 1), (4, 3, 0), (5, 0, 0), (5, 1, 0),

(5, 2, 0)}. (5.22)

The results we obtain for the all-plus topology are in agreement with those computed

in ref. [47], although in that reference they were deduced from the known expressions in the

planar case, while here they have been directly computed using integrand-reduction via gen-

eralized unitarity on the non-planar topology. The on-shell integrands for the other helicity

configurations are computed here for the first time. The results are summarized in table 2.

6 Implementation

In this section we give some detail about our implementation of the functional reconstruc-

tion method illustrated in section 3 and its application to the techniques described in

sections 4 and 5.

The programming language of our implementation is C++, and in particular the

C++-11 standard of the language.8

The first design choice regards the definition of the finite fields Zp. Our requirement of

working with machine-size integers imposes an upper limit p < Pmax on the choice of the

8We make extensive use of the std::unique ptr and std::unordered map containers, as well as right-

value and move semantics, for the implementation of our data structures, in order to optimize performance.

– 32 –

https://bitbucket.org/peraro/ff2lexamples

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

primes p defining the fields. We work with 64-bit unsigned integers, which can take values

between imin = 0 and imax = 264 − 1. The most stringent requirement is avoiding integer

overflow in multiplication, i.e. the requirement that by multiplying two integers in Zp with

p < Pmax, before taking modulo p of the result, we still obtain a value smaller than imax.

This implies we can choose Pmax such that P 2
max ≤ imax. In our implementation we find

more practical to use a more conservative choice, namely C P 3
max < imax with C = 9. This

allows us to be slightly more relaxed in the implementation and take (sums of) products

of three integers in Zp before taking modulo p. This approach also drastically reduces the

number of mod p operations which are needed. We hard-code 60 primes satisfying these

criteria, in the interval 897 473 ≤ p ≤ 978 947. With this choice, in most of the examples

presented in this paper we only need one or two primes p for the rational reconstruction of

the result over Q (according to the discussion in section 2.3 and appendix A.1).

One important difference between native operations which involve machine integers or

floating-points numbers and operations on elements of a finite field Zp concerns division.

Indeed, as stated, performing a division in Zp requires the calculation of a multiplicative

inverse (see appendix A.1 for an algorithm). Hence, division in Zp is a relatively expensive

operation (compared to other native operations) which needs a call to a specific routine,

and it is generally a good idea to minimize the number of times it is required. However,

because the calculation of a multiplicative inverse is implemented by a routine, catching di-

visions by zero is very easy. Notice that such cases can be quite common during a functional

reconstruction procedure, where many values for the variables z are probed. This makes de-

tecting (actual or spurious) singularities in the evaluation of a function relatively easy and,

as stated, the reconstruction algorithms illustrated above can accomodate this possibility.

We now briefly describe our internal representation of polynomials and rational func-

tions. For univariate Newton polynomials, defined as in eq. (3.5), we store two arrays

of integers, namely the coefficients ai and the values yi. A completely analogous repre-

sentation is used for Thiele’s rational functions in eq. (3.10). For multivariate Newton

polynomials depending on n variables, recursively defined as in eq. (3.12), we store the

array of integers yi and an array of pointers to the coefficients ai, which are now Newton

polynomials in n − 1 variables. For our canonical representation of polynomials, given in

eq. (2.6), we adopt instead a sparse representation. More in detail, we store an array of

pointers to a data structure representing each non-vanishing term. These terms are in

turn stored as contiguous chunks of memory containing the coefficient cα and the exponent

α corresponding to each monomial. We also store the total degree |α| for convenience.

The internal representation uses the graded lexicographic monomial order (i.e. terms are

ordered by their total degree, and terms with the same total degree are ordered lexico-

graphically). We found this representation suited for implementing the basic polynomial

operations needed by our reconstruction algorithm, namely polynomial addition, multipli-

cation by linear univariate monomials, and homogenization with respect to one variable.

In particular the last two operations take advantage of the possibility of manipulating the

entries of the exponents α, which is trivial using our sparse representation. Finally, rational

functions are simply stored as a pair of polynomials representing the numerator and the

denominator respectively.

– 33 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

As stated, the only technique discussed in this paper which requires multi-precision

arithmetic is the rational reconstruction algorithm. In our implementation we use the

popular GNU Multiple Precision Arithmetic Library (GMP). The final result over the field

Q is stored using a sparse representation similar to the one we use for Zp. For functions

over Q however we do not implement any of the polynomial algorithms mentioned above,

but only the routines needed for merging results over several finite fields Zpi to obtain a

guess in Q, as discussed in section 2.3 and appendix A.2.

It should be stressed that the results obtained with the illustrated reconstruction al-

gorithm for rational functions is minimal with respect to the total degree of the numerator

and the denominator, hence there is no need to import it into an external computer algebra

system for polynomial GCD simplification (although it can obviously be used by algebra

systems for other kinds of manipulations).

It is worth making a few remarks about the application of the reconstruction algorithm

to the examples described in section 5. As stated, the coefficients c
(i)
T,α to be reconstructed

for each topology T are computed by evaluating the loop integrands on the multiple cuts

and thus obtaining a linear system of equations. The latter can be solved for them by

means of Gauss elimination, for which we have a very straightforward implementation

suited for dense systems. In order to minimize the number of integrand evaluations we

need, as well as the size of the system of equations, we first evaluate each coefficient for

a set of arbitrary values of the variables z and the primes p defining the field Zp. These

evaluations are used to collect information about which coefficients are non-vanishing for

each helicity configuration. Then, when applying the functional reconstruction algorithm,

we restrict the system to the non-vanishing coefficients only. With fewer unknowns, we

thus require fewer evaluations of the integrand in order to find a solution. Moreover, as

stated, because the solution of the system returns all the non-vanishing coefficients, we

cache their value for each z in a hash table. This allows to quickly look up the values of

c
(i)
T,α if they have already been computed during the reconstruction of other coefficients.

Our current implementation can be considered a proof-of-concept and lacks many opti-

mizations which can be estimated to improve the performance by at least one order of mag-

nitude. However it is already suited for applications to complex problems in high-energy

physics such as multi-loop high-multiplicity calculations, where it can easily outperform

equivalent fully-analytic approaches. In the examples presented in the previous section, for

most of the helicity configurations, the total run time required for obtaining full analytic

results for all the coefficients of the on-shell integrands varies between a fraction of a second

and about ten minutes, on a single core. For exceptionally complex cases (such as the one

involving functions of total degree up to 42), we need to perform the reconstruction over

up to three finite fields, for a total run time of about a hundred minutes.

As a final observation, we point out that the purpose of the calculations in section 5 is to

illustrate a straightforward application of functional reconstruction algorithms over finite

fields to modern techniques for loop calculations. In particular, we have not attempted

to find an integrand basis which would yield simple results (such as the local integrands

discussed in ref. [48]). We observe however that, using the techniques we described in

section 3.5, one can compute the total degree of the numerator and the denominator of the

– 34 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

results using a relatively small number of function evaluations. This can be used in order

to estimate the complexity of the total result, when looking for an integrand basis yielding

simpler coefficients, without the need of performing a full functional reconstruction.

7 Conclusions and outlook

We illustrated an algorithm for the reconstruction of multivariate polynomials and rational

functions from their evaluation over finite fields, which has good scaling with the number of

variables and the complexity of the results. We then discussed its application to techniques

for the calculation of scattering amplitudes in gauge theories, such as the spinor-helicity

formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized

unitarity. The algorithm can compute complex analytic results, side-stepping the issue of

large intermediate expressions which would arise in equivalent fully-analytic calculations.

The only input required by the method is a procedure for the numerical evaluation of the

function to be reconstructed over finite fields.

As an application of these techniques, we presented for the first time analytic results for

the maximal cut of two five-point two-loop topologies in Yang-Mills theory, for a complete

set of independent helicity configurations. The complexity of the reconstructed results

highlights the suitability of the method to handle complex problems, in particular high-

multiplicity two-loop calculations, which are currently of great relevance for high-energy

phenomenology.

In this paper we discussed dense reconstruction algorithms. Given that some of our

results contain several thousands of terms, we believe this to be the best choice to handle

the general case. However, when the functions contain a relatively small number of terms

compared to the one expected from the total degree of the result, dense algorithms can be

outperformed by sparse algorithms. A possible approach is the usage of so-called racing

algorithms, i.e. running a dense and a sparse algorithm in parallel, sharing the same func-

tion evaluations, and terminate the reconstruction when the fastest of the two is successful.

If the time spent for the reconstruction is dominated by the numerical evaluation of the

function, as in our case, this method can achieve optimal performance in virtually all cases.

One can observe that the simpler the result is, compared to the intermediate expres-

sions appearing in an equivalent analytic calculation, the greater the advantage we can

expect from using a black-box reconstruction method rather than following a purely ana-

lytic approach. This makes the method ideal in the case where large analytic cancellations

yield simple final results. Even for somehow more complex results, such as many of the

examples presented in this paper, we found that our functional reconstruction algorithm

can easily outperform an equivalent analytic calculation by several orders of magnitude.

We observed however that the analytic results presented here might have been significantly

simpler using a better integrand basis, along the lines of what was proposed in ref. [48]. In

particular, the capability of the proposed reconstruction method of quickly computing the

total degree of the result can be exploited in order to estimate its complexity and thus look

for a choice of variables or an integrand basis which makes the results simpler. As a future

– 35 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

application, the method can thus be beneficial to the extension of the concepts outlined in

ref. [48] to a generic helicity configuration.

Although we focused on integrand reduction via generalized unitarity, we stress that

the number of potential applications of the proposed approach is much larger. Indeed, as we

observed, any method which can be numerically implemented via a sequence of elementary

rational operations is suited for the functional reconstruction algorithm we illustrated. On

top of the ones presented here, other possible applications are diagrammatic techniques and

IBPs (indeed finite-field applications to the latter have already been proposed in ref. [25]).

The methods proposed in this paper are very general and have a very broad spectrum

of potential applications. In particular, as shown by our proof-of-concept implementation,

they are suited for computing complex analytic results in combination with state-of-the-art

multi-loop techniques.

Acknowledgments

The author is indebted to Simon Badger for innumerable discussions and suggestions,

and in particular for pointing out the usefulness of momentum-twistor variables for both

analytic and numerical calculations. Thanks also go to Pierpaolo Mastrolia and Giovanni

Ossola for feedback on the draft and their ongoing collaboration on integrand-reduction

topics. Several analytic results presented in this paper have been numerically checked

with a Mathematica code developed by Simon Badger, Christian Brønnum-Hansen, and

Francesco Buciuni. This work is supported by a Rutherford Grant ST/M004104/1.

A Basic finite-field algorithms

In this appendix we collect some basic algorithms relevant for the finite-field applications

presented in this paper. These algorithms are well known but not broadly used in high-

energy physics, hence we briefly describe them here for the convenience of the reader.

A.1 Multiplicative inverse and rational reconstruction

The calculation of a multiplicative inverse in Zn and the rational reconstruction algorithm

both rely on the extended Euclidean algorithm. Given two integers a, b ∈ Z, the extended

Euclidean algorithm yields their greatest common divisor gcd(a, b) and two integers s, t ∈ Z
such that

a s+ b t = gcd(a, b). (A.1)

It is useful to give a brief description of the algorithm, which consists in generating the

sequences of integers {ri}, {si}, {ti} and the integer quotients {qi} as follows

r0 = a

s0 = 1

t0 = 0

r1 = b

– 36 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

s1 = 0

t1 = 1

· · · = · · ·
qi = bri−2/ri−1c
ri = ri−2 − qi ri−1
si = si−2 − qi si−1
ti = ti−2 − qi ti−1. (A.2)

Notice that, in practical implementations, only the last two entries of each sequence need

to be stored. The algorithm terminates at i = k when rk = 1, and identifies t = tk−1,

s = sk−1, and gcd(a, b) = rk−1.

Let us now turn to the calculation of a multiplicative inverse in Zn. As we mentioned,

a non-vanishing integer a ∈ Zn admits a multiplicative inverse if and only if a and n are

co-prime, i.e. gcd(a, n) = 1. In this case, inserting b = n in eq. (A.1) and taking mod n of

both sides of the equation gives

a s mod n = 1, if gcd(a, n) = 1, (A.3)

which implies that we can identify

a−1 mod n = s, if gcd(a, n) = 1. (A.4)

Because every non-vanishing element of a field must have a multiplicative inverse, we can

consider Zn as a field if n = p is prime. Notice that the calculation of the sequence {ti} is

not needed for the purposes of computing a multiplicative inverse.

A modified version of the extended Euclidean algorithm can also be used for guessing

a rational number q from its image a ∈ Zn [54]. Indeed, it is straightforward to show that

each iteration of the Euclidean algorithm satisfies

a si + b ti = ri, (A.5)

and therefore, by setting b = n and taking mod n of both sides,

ri = a si mod n ⇔ ri/si mod n = a. (A.6)

Hence ri/si is a possible guess for q in each iteration of the extended Euclidean algorithm.

However one can see that, when n is sufficiently large, most of these guesses will have very

large numerators and denominators, except for the case where

r2i , s
2
i . n. (A.7)

Hence the rational reconstruction algorithm can be implemented by terminating the Eu-

clidean algorithm at the iteration i = k, when r2k < n. The calculation of the sequence {ti}
is not needed for the rational reconstruction.

– 37 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

This algorithm typically succeeds in reconstructing a rational number q = a/b ∈ Q
from its image in Zn when its numerator and denominator satisfy

a2, b2 . n. (A.8)

As explained in section 6, our requirement of working with machine-size integers im-

poses an upper bound on our choices of n = p (in our implementation, p < Pmax with

Pmax = O(106)) and thus the former relation is generally not guaranteed to hold. How-

ever, as we mentioned in section 2.3, this issue can be solved by performing the functional

reconstruction on several finite fields Zpi with pi < Pmax, and combining them by means

of the Chinese remainder theorem, as described below.

A.2 Chinese remainder theorem

The Chinese remainder theorem allows us to reconstruct a number a ∈ Zn with n =

n1 · · ·nk and the ni pairwise co-prime, from its images ai in the sets Zn1 , . . . , Znk
. Hence,

by performing a calculation on several prime fields Zpi , with pi < Pmax, and combining

them with the Chinese remainder theorem, one can reconstruct the image of the same result

in Zp1···pk and apply the rational reconstruction algorithm described above to the latter.

More in detail, given a ∈ Zn, a set of pairwise co-prime numbers n1, . . . nk such that

n = n1 · · ·nk, and a set of congruences

ai = a mod ni, (A.9)

a can be uniquely determined in Zn as

a =
∑

i

miai mod n, (A.10)

where

mi ≡
((

n

ni

)−1
mod ni

)
n

ni
. (A.11)

By using several primes p1, . . . , pk, one can thus make their product large enough for

the reconstruction algorithm (described in the previous section) to succeed in Zp1···pk . In

practice, as we explained, we perform the functional reconstruction over one prime field

Zpi at a time and recursively merge the result on the bigger set Zp1···pk . The recursion

terminates when the result of the rational reconstruction is in agreement with the evaluation

of the function on different prime fields. Hence, all our calculations can be performed on

Zpi with primes pi < Pmax using machine-size integers and only the application of the

Chinese remainder theorem requires multi-precision arithmetic.

It is worth observing that, when applying the Chinese remainder theorem to two

congruences at a time, as in our case, one has n = n1n2 and the above formulas reduce to

a =
(
m1a1 +m2a2

)
mod n1n2, (A.12)

with

m1 = (n−12 mod n1)n2, m2 = (n−11 mod n2)n1. (A.13)

The implementation can be further simplified by noting that

m2 = (1−m1) mod n1n2. (A.14)

– 38 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

B Six-dimensional momenta and spinors

We now briefly consider a six-dimensional generalization of some of the techniques outlined

in section 4.1. For the purposes of this paper, six-dimensional momenta and spinors

provide a higher-dimensional embedding of the loop components in one- and two-loop

calculations, which is used for the applications of section 5 in the context of multi-loop

generalized unitarity.

We use the following representation of a generic six-dimensional momentum pµ, which

is consistent with the light-cone representation given in eq. (4.9) for four-dimensional ones,

p ≡ (p0 + p3, p0 − p3, p1 + i p2, p1 − i p2, p4 + i p5, p4 − i p5). (B.1)

The six-dimensional spinor-helicity formalism has been extensively developed in ref. [51],

to which we refer the reader for details. Here we only recall a few basic concepts useful

for our purposes. In six dimensions, one can define four-components spinors |pa〉 and |pȧ]
satisfying the Dirac equation

pµ σ(6)µ |pa〉 = pµ σ̃(6)µ |pȧ] = 0, (B.2)

where σ
(6)
µ and σ̃

(6)
µ , for µ = 0, . . . , 5, are now 4 × 4 matrices which can be regarded as

higher-dimensional versions of the Pauli matrices (an explicit representation can be found

in ref. [51]). The indexes a, ȧ = 0, 1 label the two independent solutions of the Dirac

equation, namely solutions with positive and negative helicity for spinors and anti-spinors

respectively. A sub-set of the six-dimensional spinor components can be identified with

the ones of |p〉 and |p] in the four-dimensional limit, hence making the conversion from

four to six dimensions trivial. For our purposes, the most important relation satisfied by

six-dimensional spinors is

pµ = −1

4
〈pa|σµ|pb〉 εab, pµ = −1

4
[pȧ|σµ|pḃ] εȧḃ, (B.3)

where εab and εȧḃ are anti-symmetric Levi-Civita tensors in two dimensions with ε01 =

−ε01 = 1, and a sum over repeated indexes is understood. The Levi-Civita tensors are also

used for raising and lowering the indexes a and ȧ.

Unlike the four-dimensional case, where momenta are built from spinors (which in

turn are determined by their representation in terms of momentum-twistor variables), in

the six-dimensional one we are mostly interested in the opposite, i.e. building spinors |pa〉
and |pȧ] from the entries in eq. (B.1) of a six-dimensional momentum, such that eq.(B.3)

is satisfied. This is because, in the context of generalized unitarity, we start from six-

dimensional momenta corresponding to on-shell loop propagators, and from these we must

build their corresponding spinors. While the solution of the problem is not unique, it is

not hard to work out a suitable representation, although one has to separately consider

special cases where one or more of the entries are vanishing. It should be pointed out that,

once the sum over the internal helicities of a unitarity cut has been performed, spinors

corresponding to loop momenta always combine as in the right-hand-sides of eq. (B.3),

hence these relations (and the Dirac equation) are the only relevant ones for this purpose.

– 39 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

The last six-dimensional ingredient we need are polarization vectors, for cut loop propa-

gators involving gluons. For six-dimensional gluons we have four independent polarizations,

which can be identified by the labels (a ȧ) of their SU(2)× SU(2) representation

(a ȧ) ∈ {(00), (11), (01), (10)} ≡ {(++), (−−), (+−), (−+)}. (B.4)

While (++) and (−−) respectively correspond to the positive and negative helicity in the

four-dimensional limit, the last two are instead only present in six dimensions. Given an

auxiliary vector ηµ, polarization vectors can be written as [51]

εµaȧ(p, η) =
1√

2 (p · η)
〈pa|σµ|ηb〉 〈ηc|pȧ] εbc. (B.5)

As in the four-dimensional case, in our representation we divide them by an additional

factor
√

2, such that their light-cone components become rational functions of the spinor

variables. In ref. [51] it is shown that these vectors obey all the properties required by

polarizations of gauge bosons, and the following relation

εµaȧ(p, η) ενaȧ(p, η) = gµν − 1

(p · η)
(pµην + pνηµ) . (B.6)

The latter is important in the context of generalized unitarity. Indeed, after the sum over

the internal helicities, polarization vectors corresponding to cut loop propagators always

appear in the combination on the l.h.s. of the equation.

Similarly to the four-dimensional case, the ingredients reviewed here allow us to work

with six-dimensional spinors by performing rational operations on their components, hence

they are suited for numerical evaluations over finite fields Zp and thus for the application

of the functional reconstruction algorithms described in section 3.

C Two-loop unitarity cuts from Berends-Giele currents

In this appendix we briefly illustrate how to evaluate two-loop unitarity cuts efficiently using

off-shell Berends-Giele currents. This is a straightforward generalization of the algorithm

used by the public numerical code NJet [18] at one-loop. The algorithm is suited for

numerical implementations, including evaluations over finite fields Zp.
For simplicity, we consider a multiple cut of the form depicted in figure 5, for a theory

with only gluons, but it should be clear that everything can be easily extended to more

general cases. In particular, figure 5 represents a unitarity cut where the momenta of the

loop propagators which are put on-shell are denoted by `i. We split the loop propagators

in three categories: {`1, . . . , `j1} are propagators depending on the loop momentum k1
only, {`j1+1, . . . , `j1+j2} depend on k2 only, and {`j1+j1+1, . . . , `j1+j2+j12} depend on both

k1 and k2. Double lines represent an arbitrary set of external legs. The cut is defined as

the product of the tree-level amplitudes (represented as grey blobs in the picture) defined

by the on-shell propagators, summed over the helicity states of the internal legs.

We first focus on the tree-level amplitude involving `1 and `2. When this amplitude

is computed via Berends-Giele recursion, the last step of such recursion is the contraction

– 40 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

ℓj1+j2 ℓ1

ℓ2

ℓ3

ℓj1ℓj1+1

ℓj1+j2+1

ℓj1+j2+2

ℓj1+2

ℓj1+3

Figure 5. Schematic depiction of a unitarity cut. Grey blobs represent tree-level amplitudes and

they are joined by the lines corresponding to the on-shell momenta of the cut loop propagators `i.

The loop momenta are defined as k1 = `1, and k2 = −`j1+j2 . Double lines represent an arbitrary

number of external legs.

of the on-shell current involving `1 and the appropriate sequence of external legs with

the polarization vector corresponding to the on-shell propagator `2. This is schematically

represented by the following equation

ℓh22A() =
−ℓ−h1

1
J

−ℓ−h1
1 ·ǫh2(ℓ2). (C.1)

In the calculation of the current appearing on the r.h.s. of the previous equation, the

lower-point currents depending only on the external legs only need to be computed once

per phase-space point, since they are independent of the cut. We now recall that, in the

product of amplitudes defined by this unitarity cut, the polarization vector εh2(`2) always

appears in the combination εµh2(`2)ε
ν
−h2(−`2). After the sum over internal helicities we have

∑

h

sign(h2) ε
µ
h(`2) ε

ν
−h(−`2) = gµν − 1

(`2 · η)
(`µ2η

ν + `ν2η
µ) , (C.2)

as apparent e.g. from eq. (B.6). In the previous equation, η is the reference vector used

to define the internal polarizations, and the second term on the r.h.s. may be dropped

because of gauge invariance. This implies that, instead of computing a product of ampli-

tudes and summing over the internal helicities, one can equivalently simply compute the

Berends-Giele current on the r.h.s. of (C.1), without contracting it with the polarization

vector εh2(`2), and use this current as an input on-shell current for the calculation of the

next amplitude (in this case, the one involving `2 and `3), as if the current itself was the

polarization vector associated to `2.

– 41 –

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

The argument can obviously be iterated over all propagators `i with i ≤ j1, i.e. those

which depend on the first loop momentum k1 only, so that for each helicity h associated

with `1 we build a current Jk1,h as

−ℓ−h
1 ℓ2Jk1,h ≡ Jh,ℓ1→ℓj1

= J
ℓj1

, (C.3)

where each sum over the internal helicities of cut propagators is replaced by a contraction

with gµν . As already observed, lower-point currents depending on external legs only need

to be computed once per phase-space point and can be reused on different cuts. Similarly,

for each helicity h associated with `j1+1 in figure 5 we build a current for the propagators

depending on k2 only, as

Jk2,h ≡ Jh,ℓj1+1→ℓj1+j2
= J

ℓj1+j2
−ℓ−h

j1+1 ℓk1+2

. (C.4)

At this point, we start building currents depending on both k1 and k2, using Jk1,h and

Jk2,h as the input on-shell currents of the recursion. In particular, we define the currents

Jup,k1,k2,h1,h2 and Jdown,k1,k2,h1,h2 corresponding to the upper and lower intersection of the

two loops in figure 5, namely

J

Jk2,h2· ·ǫh1(ℓ1)
Jup,h1,h2 ≡ , Jdown,h1,h2

≡ ǫh2(ℓj1+1)·

J

·Jk1,h1

. (C.5)

Using Jup,k1,k2,h1,h2 as input, we move down along the third sequence of propagators

`j1+j2+1, `j1+j2+2,. . . depending on both k1 and k2, by means of the same algorithm which

defined the currents Jk1,h and Jk2,h,

ℓj1+j2+1

Jk1,k2,h1,h2 ≡ Jup,h1,h2· J

ℓj1+j2+j12

. (C.6)

The value of the cut is thus
∑

h1h2

sign(h1) sign(h2) Jk1,k2,h1,h2 · Jdown,k1,k2,h1,h2 . (C.7)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and

D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

– 42 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807565

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

[2] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP

reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596]

[INSPIRE].

[3] T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program

to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun.

180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].

[4] G. Cullen et al., Golem95C: a library for one-loop integrals with complex masses, Comput.

Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].

[5] J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation:

extension of the Golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828

[arXiv:1312.3887] [INSPIRE].

[6] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from

unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080

[arXiv:1006.0710] [INSPIRE].

[7] P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering

amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012)

128] [arXiv:1203.0291] [INSPIRE].

[8] T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop

amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].

[9] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based complex one-loop library in

extended regularizations, arXiv:1604.06792 [INSPIRE].

[10] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a

proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].

[11] G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986

[arXiv:1110.1499] [INSPIRE].

[12] C.F. Berger et al., An automated implementation of on-shell methods for one-loop

amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].

[13] V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of

one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

[14] G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012)

1889 [arXiv:1111.2034] [INSPIRE].

[15] G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard

Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].

[16] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev.

Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

[17] S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon

amplitudes, Comput. Phys. Commun. 182 (2011) 1674 [arXiv:1011.2900] [INSPIRE].

[18] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual

corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013)

1981 [arXiv:1209.0100] [INSPIRE].

[19] S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive

Computation of One-Loop Amplitudes, arXiv:1605.01090 [INSPIRE].

[20] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon

all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116

(2016) 189903] [arXiv:1511.05409] [INSPIRE].

– 43 –

http://dx.doi.org/10.1088/1126-6708/2008/03/042
https://arxiv.org/abs/0711.3596
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.3596
http://dx.doi.org/10.1016/j.cpc.2009.06.024
http://dx.doi.org/10.1016/j.cpc.2009.06.024
https://arxiv.org/abs/0810.0992
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.0992
http://dx.doi.org/10.1016/j.cpc.2011.05.015
http://dx.doi.org/10.1016/j.cpc.2011.05.015
https://arxiv.org/abs/1101.5595
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5595
http://dx.doi.org/10.1016/j.cpc.2014.03.009
https://arxiv.org/abs/1312.3887
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3887
http://dx.doi.org/10.1007/JHEP08(2010)080
https://arxiv.org/abs/1006.0710
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0710
http://dx.doi.org/10.1007/JHEP06(2012)095
https://arxiv.org/abs/1203.0291
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0291
http://dx.doi.org/10.1016/j.cpc.2014.06.017
https://arxiv.org/abs/1403.1229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1229
https://arxiv.org/abs/1604.06792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06792
http://dx.doi.org/10.1088/1126-6708/2009/09/106
https://arxiv.org/abs/0903.4665
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4665
http://dx.doi.org/10.1016/j.cpc.2012.10.033
https://arxiv.org/abs/1110.1499
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1499
http://dx.doi.org/10.1103/PhysRevD.78.036003
https://arxiv.org/abs/0803.4180
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4180
http://dx.doi.org/10.1007/JHEP05(2011)044
https://arxiv.org/abs/1103.0621
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.0621
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
https://arxiv.org/abs/1111.2034
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2034
http://dx.doi.org/10.1140/epjc/s10052-014-3001-5
https://arxiv.org/abs/1404.7096
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7096
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://dx.doi.org/10.1103/PhysRevLett.108.111601
https://arxiv.org/abs/1111.5206
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5206
http://dx.doi.org/10.1016/j.cpc.2011.04.008
https://arxiv.org/abs/1011.2900
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2900
http://dx.doi.org/10.1016/j.cpc.2013.03.018
http://dx.doi.org/10.1016/j.cpc.2013.03.018
https://arxiv.org/abs/1209.0100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0100
https://arxiv.org/abs/1605.01090
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01090
http://dx.doi.org/10.1103/PhysRevLett.116.062001
http://dx.doi.org/10.1103/PhysRevLett.116.189903
http://dx.doi.org/10.1103/PhysRevLett.116.189903
https://arxiv.org/abs/1511.05409
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05409

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

[21] C.G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the

simplified differential equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404]

[INSPIRE].

[22] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

[23] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4

super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

[24] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes,

JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].

[25] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,

Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

[26] I. Kotsireas, B. Mourrain, V. Pan, A. Cuyt and W. Shin Lee, Symbolic and numerical

algorithms sparse interpolation of multivariate rational functions, Theor. Comput. Sci. 412

(2011) 1445.

[27] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar

integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

[28] P. Mastrolia and G. Ossola, On the integrand-reduction method for two-loop scattering

amplitudes, JHEP 11 (2011) 014 [arXiv:1107.6041] [INSPIRE].

[29] S. Badger, H. Frellesvig and Y. Zhang, Hepta-cuts of two-loop scattering amplitudes, JHEP

04 (2012) 055 [arXiv:1202.2019] [INSPIRE].

[30] Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry

methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].

[31] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate

polynomial division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].

[32] S. Badger, H. Frellesvig and Y. Zhang, An integrand reconstruction method for three-loop

amplitudes, JHEP 08 (2012) 065 [arXiv:1207.2976] [INSPIRE].

[33] R.H.P. Kleiss, I. Malamos, C.G. Papadopoulos and R. Verheyen, Counting to one:

reducibility of one- and two-loop amplitudes at the integrand level, JHEP 12 (2012) 038

[arXiv:1206.4180] [INSPIRE].

[34] B. Feng and R. Huang, The classification of two-loop integrand basis in pure four-dimension,

JHEP 02 (2013) 117 [arXiv:1209.3747] [INSPIRE].

[35] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-reduction for two-loop

scattering amplitudes through multivariate polynomial division, Phys. Rev. D 87 (2013)

085026 [arXiv:1209.4319] [INSPIRE].

[36] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop integrand reduction for

dimensionally regulated amplitudes, Phys. Lett. B 727 (2013) 532 [arXiv:1307.5832]

[INSPIRE].

[37] S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD,

JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

[38] P. Mastrolia, T. Peraro and A. Primo, Adaptive integrand decomposition in parallel and

orthogonal space, JHEP 08 (2016) 164 [arXiv:1605.03157] [INSPIRE].

[39] D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D 85 (2012)

045017 [arXiv:1108.1180] [INSPIRE].

[40] K.J. Larsen, Global poles of the two-loop six-point N = 4 SYM integrand, Phys. Rev. D 86

(2012) 085032 [arXiv:1205.0297] [INSPIRE].

– 44 –

http://dx.doi.org/10.1007/JHEP04(2016)078
https://arxiv.org/abs/1511.09404
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.09404
https://arxiv.org/abs/math-ph/0010025
http://inspirehep.net/search?p=find+EPRINT+math-ph/0010025
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.014
https://arxiv.org/abs/hep-th/0412103
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412103
http://dx.doi.org/10.1088/1126-6708/2008/04/049
https://arxiv.org/abs/0801.2237
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2237
http://dx.doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4513
http://dx.doi.org/10.1016/j.tcs.2010.11.050
http://dx.doi.org/10.1016/j.tcs.2010.11.050
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.012
https://arxiv.org/abs/hep-ph/0609007
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0609007
http://dx.doi.org/10.1007/JHEP11(2011)014
https://arxiv.org/abs/1107.6041
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.6041
http://dx.doi.org/10.1007/JHEP04(2012)055
http://dx.doi.org/10.1007/JHEP04(2012)055
https://arxiv.org/abs/1202.2019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2019
http://dx.doi.org/10.1007/JHEP09(2012)042
https://arxiv.org/abs/1205.5707
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5707
http://dx.doi.org/10.1016/j.physletb.2012.09.053
https://arxiv.org/abs/1205.7087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.7087
http://dx.doi.org/10.1007/JHEP08(2012)065
https://arxiv.org/abs/1207.2976
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2976
http://dx.doi.org/10.1007/JHEP12(2012)038
https://arxiv.org/abs/1206.4180
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4180
http://dx.doi.org/10.1007/JHEP02(2013)117
https://arxiv.org/abs/1209.3747
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3747
http://dx.doi.org/10.1103/PhysRevD.87.085026
http://dx.doi.org/10.1103/PhysRevD.87.085026
https://arxiv.org/abs/1209.4319
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4319
http://dx.doi.org/10.1016/j.physletb.2013.10.066
https://arxiv.org/abs/1307.5832
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5832
http://dx.doi.org/10.1007/JHEP12(2013)045
https://arxiv.org/abs/1310.1051
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1051
http://dx.doi.org/10.1007/JHEP08(2016)164
https://arxiv.org/abs/1605.03157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.03157
http://dx.doi.org/10.1103/PhysRevD.85.045017
http://dx.doi.org/10.1103/PhysRevD.85.045017
https://arxiv.org/abs/1108.1180
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1180
http://dx.doi.org/10.1103/PhysRevD.86.085032
http://dx.doi.org/10.1103/PhysRevD.86.085032
https://arxiv.org/abs/1205.0297
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0297

J
H
E
P
1
2
(
2
0
1
6
)
0
3
0

[41] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012)

026 [arXiv:1205.0801] [INSPIRE].

[42] H. Johansson, D.A. Kosower and K.J. Larsen, Two-loop maximal unitarity with external

masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].

[43] H. Johansson, D.A. Kosower and K.J. Larsen, Maximal unitarity for the four-mass double

box, Phys. Rev. D 89 (2014) 125010 [arXiv:1308.4632] [INSPIRE].

[44] H. Johansson, D.A. Kosower, K.J. Larsen and M. Søgaard, Cross-order integral relations

from maximal cuts, Phys. Rev. D 92 (2015) 025015 [arXiv:1503.06711] [INSPIRE].

[45] H. Ita, Two-loop integrand decomposition into master integrals and surface terms,

arXiv:1510.05626 [INSPIRE].

[46] K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic

geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

[47] S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A complete two-loop, five-gluon helicity

amplitude in Yang-Mills theory, JHEP 10 (2015) 064 [arXiv:1507.08797] [INSPIRE].

[48] S. Badger, G. Mogull and T. Peraro, Local integrands for two-loop all-plus Yang-Mills

amplitudes, JHEP 08 (2016) 063 [arXiv:1606.02244] [INSPIRE].

[49] M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298

(1988) 653 [INSPIRE].

[50] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys.

B 306 (1988) 759 [INSPIRE].

[51] C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07

(2009) 075 [arXiv:0902.0981] [INSPIRE].

[52] Z. Bern, J.J. Carrasco, T. Dennen, Y.-T. Huang and H. Ita, Generalized unitarity and

six-dimensional helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].

[53] S. Davies, One-loop QCD and Higgs to partons processes using six-dimensional helicity and

generalized unitarity, Phys. Rev. D 84 (2011) 094016 [arXiv:1108.0398] [INSPIRE].

[54] P.S. Wang, A p-adic algorithm for univariate partial fractions, in Proceedings of the Fourth

ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ′81, ACM, New York

NY U.S.A. 1981, pg. 212.

[55] M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas, graphs,

and mathematical tables, Dover Publications, New York NY U.S.A. (1964).

[56] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013)

135 [arXiv:0905.1473] [INSPIRE].

[57] S. Badger, Automating QCD amplitudes with on-shell methods, in 17th International

workshop on Advanced Computing and Analysis Techniques in physics research (ACAT

2016), Valparaiso Chile January 18–22 2016 [J. Phys. Conf. Ser. 762 (2016) 012057]

[arXiv:1605.02172] [INSPIRE].

[58] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop

QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271]

[INSPIRE].

[59] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl.

Phys. B 44 (1972) 189 [INSPIRE].

– 45 –

http://dx.doi.org/10.1007/JHEP10(2012)026
http://dx.doi.org/10.1007/JHEP10(2012)026
https://arxiv.org/abs/1205.0801
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0801
http://dx.doi.org/10.1103/PhysRevD.87.025030
https://arxiv.org/abs/1208.1754
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1754
http://dx.doi.org/10.1103/PhysRevD.89.125010
https://arxiv.org/abs/1308.4632
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4632
http://dx.doi.org/10.1103/PhysRevD.92.025015
https://arxiv.org/abs/1503.06711
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06711
https://arxiv.org/abs/1510.05626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.05626
http://dx.doi.org/10.1103/PhysRevD.93.041701
https://arxiv.org/abs/1511.01071
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01071
http://dx.doi.org/10.1007/JHEP10(2015)064
https://arxiv.org/abs/1507.08797
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08797
http://dx.doi.org/10.1007/JHEP08(2016)063
https://arxiv.org/abs/1606.02244
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02244
http://dx.doi.org/10.1016/0550-3213(88)90001-6
http://dx.doi.org/10.1016/0550-3213(88)90001-6
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B298,653%22
http://dx.doi.org/10.1016/0550-3213(88)90442-7
http://dx.doi.org/10.1016/0550-3213(88)90442-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B306,759%22
http://dx.doi.org/10.1088/1126-6708/2009/07/075
http://dx.doi.org/10.1088/1126-6708/2009/07/075
https://arxiv.org/abs/0902.0981
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.0981
http://dx.doi.org/10.1103/PhysRevD.83.085022
https://arxiv.org/abs/1010.0494
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.0494
http://dx.doi.org/10.1103/PhysRevD.84.094016
https://arxiv.org/abs/1108.0398
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0398
http://dx.doi.org/10.1007/JHEP05(2013)135
http://dx.doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1473
http://dx.doi.org/10.1088/1742-6596/762/1/012057
https://arxiv.org/abs/1605.02172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02172
http://dx.doi.org/10.1103/PhysRevD.66.085002
https://arxiv.org/abs/hep-ph/0202271
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202271
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B44,189%22

	Introduction
	Basic concepts, definitions and notation
	Finite fields
	Polynomials and rational functions
	Rational reconstruction from finite fields

	Functional reconstruction
	The black-box interpolation problem
	Univariate polynomials
	Univariate rational functions
	Multivariate polynomials
	Multivariate rational functions
	Examples

	Spinor-helicity and tree-level techniques
	Four-dimensional momenta and spinors
	Berends-Giele recursion

	Multi-loop integrand reduction and generalized unitarity
	Two-loop five-point planar penta-box
	Two-loop five-point non-planar double-pentagon

	Implementation
	Conclusions and outlook
	Basic finite-field algorithms
	Multiplicative inverse and rational reconstruction
	Chinese remainder theorem

	Six-dimensional momenta and spinors
	Two-loop unitarity cuts from Berends-Giele currents

