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Abstract — We present a formulation d the multiresolution time-domain (MRTD) algorithm
using scding and orellevel wavelet basis functions, for orthonama Daubechies and
biorthogonal Cohen-Daubedies-Feauveau (CDF) wavelet families. We aldressthe isaue of the
analytic cdculation d the MRTD coefficients. This alows usto pant out the simil ariti es and the
differences between the MRTD schemes based onthe dorementioned wavelet systems and to
compare their performances in terms of dispersion error and computational efficiency. The
remainder of the paper is dedicaed to implementation d the CDF-MRTD method for scattering
problems. We discussthe gproximations made in implementing material inhamogeneities and

validate the method by numericd examples.

I. Introduction

The multiresolution time-domain (MRTD) method [1-5] has recently emerged as an
efficient tod for time-domain eledromagnetic field anaysis, with applicaions including
microwave caities and circuits [1,3,4 as well as <atering by genera targets [2]. In many
cases, MRTD can save important computational resources, as compared to the traditional FDTD
method [6], withou saaificing solution acarracy. The main medianisms by which MRTD
achieves computational efficiency are the higher-order acaracy in the spatia finite-difference
approximations and the multi-resolution pertitioning of the computational domain. With regard
to the latter, denser resolution is employed in zones with relatively fast spatial field variation,



while applying alower-resolution representation in slowly varying regions.

In the existing literature on MRTD, the basis functions of choice have been the Battle-
Lemarie wavelet family [1], the Haar wavelet family [2], the Daubechies scaling functions [3,4]
and the biorthogonal Cohen-Daubechies-Feauveau (CDF) wavelet systems [5]. In a previous
paper [5], we demonstrated the advantages of the CDF wavelet systems vis-a-vis the Battle-
Lemarie or Haar wavelet families. In general, the choice of basis functions with minimal support
leads to a small stencil size and a large Courant stability limit [5], which in turn yield a
computationaly efficient scheme. Another advantage of the reduced support of the basis

functions becomes apparent as we discuss the implementation of material boundaries.

In the current paper, we focus on the compactly supported wavelets from the
orthonormal Daubechies and biorthogonal CDF families. First, we extend the Daubechies MRTD
scheme to include first-level wavelet functions (Sec. Il). After reviewing the CDF-MRTD
formulation (Sec. Ill), we present an algorithm for the anaytic computation of the MRTD
coefficients, which is faster, more accurate and more genera than the numerical integration
utilized in [1-5]. We compare the MRTD schemes based on low-order orthonormal Daubechies
and biorthogonal CDF wavelet systems in terms of numerical performancein Sec. IV. In order to
implement the CDF-MRTD scheme for scattering problem, we discuss modeling the material
inhomogeneities and the plane-wave incident field (Sec. V). In Sec. VI we present numerical
results on two-dimensional scattering configurations, emphasizing the efficiency of the method.

We draw conclusionsin Sec. VII.

I1. MRTD Based on Orthonomal Daubechies Waved ets

A. Formulation

The MRTD algorithm based on compactly supported orthonormal Daubechies scaling

functions was presented in [3,4]. Here, we extend the algorithm to include one-level wavelet



functions, from which we obtain a multi-resolution algorithm. Restricting the presentation to one

dimension (for simplicity), the field expansion can be written as:

£ (e0)= 3 [E2,0,00+ £%,%, (h () aa
H y (X’t) = i [H Ij?mq)mﬂlz (X) +H I:I,Jm me+1/2 (X)}]k+1/2 (t) (1b)

Here, we denote by ® and W, the scaling and the wavelet function, respectively, displaced by

m units. For time discretization we use rectangular pulses h(t), where k represents the shift in

time units. The MRTD magnetic-field update equations are:
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d(x+i-1/2)dx , di) =[ W(x+i-1/2)dx arethe MRTD coefficients.

B. Calculation of the MRTD coefficients

In previous MRTD papers based on Daubechies scaling functions (as well as other
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MRTD schemes), the MRTD coefficients a, b, ¢ and d were computed by numeric integration
(usualy in the Fourier domain). However, based on the dgorithm presented in [7], these
coefficients can be derived analyticdly in the cae of compadly suppated wavelet systems,
starting diredly from the scding/wavelet filter coefficients [8], withou the neeal to explicitly
compute the scding/wavelet functions (or their Fourier counterparts). Using the definition o the

scding and wavelet filter coefficients:

®(x)=+/2 Z h.®(2x - k) (32)
lP(x):\/EZg,(CD(Zx—k) 3.0

we introduwce the following correlation coefficients: a, :ZZ hh.,, B, :ZZ 0k 9y »
y, = ZZ hd.,, 0, = ZZ g.h.,, withn=—-L+2, ... L-2, with the sums over k runring from

max(0, -n) and min(L-1, L-1-n). In the @owe, L is the length of the nonzero scding filter

coefficient sequence

We start with the caculation d the wefficients r(i)= Iaq;—)((x)CD(x—i)dx, as described in

[7]. Spedficdly, these wefficients must satisfy the foll owing linea system:

r(i)= _Lz_zanr(Zi +n) (4.9)

ir(i)=-1 (4.b)

Noticethat one of the equationsin (4.a) is reduncant and that only a finite number of coefficients
r(i) are nonzero, with indices running from —L+2 to L-2. Oncethese wefficients were found,the

MRTD coefficients are given by the foll owing expressons:
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L-1

a(i)=- _ZLclxnr(zi +n-1) (5.2)
b(i)=- zfanr(zun—l) (5.b)
ofi)=- Ll )l/nr(Zi +n-1) (5.0)
d()=- _L__l(lsnr(zi +n-1) (5.0)

Again, the number of nonzero MRTD coefficientsisfinite and we can establi sh the following

symmetry relationships: r(-i)=r(i), a(-i)=-a(i +1), b(-i)=-b(i +1), c(-i)=-d(i +1).
[11. MRTD Based on Biorthogonal CDF Wavelets

A. Formulation

The biorthogonal CDF-MRTD scheme was introduced and analyzed in detail in [5]. In
this paper, we @nsider only the symmetric CDF (2,M) families of wavelets (where M is half the
suppat length of the scding function), for the purpose of comparison with the orthonamal

Daubechies wavelet families. The field expansionsin ore dimension can be written as:

£ (et)= 3 [£2,8,00+ £%,®, (h () 62
H y (X’t) = i [H l?majmﬂ/z (X) +H I:qujm—llz (X)],]k+1/2 (t) (6b)

The aove notation asaumes that both W(x) and W(x) pesk at x = ¥%. We obtain the following

magnetic field updite egquations:
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B. Calculation of the MRTD coefficients

The calculation of the MRTD coefficients in the case of the CDF (2,M) biorthogonal
wavelet expansion is similar to that described for the Daubechies wavelet-based MRTD scheme.

In this case, we define:

L/2

®(x)= ﬁk;,?kq)(zx ~k) (8.a)
WY(x+1/2)= ﬁkzi/?k¢(zx ~k) (8.b)
5(x):\/§k:§§k5(2x—k) (8.0
P(x+1/2)= \/Ek_ig“k&'n(zx ~k) (8.d)



In the aowe, L+1 = 2M+1 indicates the length of the h filt er-coefficient sequence (naticethat we
use asymmetric form of this squence, with indices runnng from —L/2 to L/2). We dso hring the

other filter coefficient sequences g ,ﬁk and g, to the same length, by zero-padding where

neaded. The wrrelation coefficients are defined as. a, = ZZ hhens B, = ZZ 0, Osn »
y, = ZZ hOn ., O, = ZZ 9.h..,, withn=—L, ... L, and the sums over k runring from max(-

L/2, -L/2+n) and min(L/2-n, L/2). One ca show that the efficients r(i)= J’aq;—)((x) ®(x —i )dx

formally satisfy the same set of equations as indicated in (4.@) and (4.b). From here, the MRTD

coefficients are cmputed as foll owing:

L

a(i)= —n:z_Lanr(Zi +n-1) (9.3)
o)=-3 p,r(@+n-1) @)
cf)=-3 y.r@+n) ©9)
)=~ 5, +n) 09

The following symmetry relationships can be established: r(=i)=r(i), a(-i)=-a(i+1),

b(=i)=-b(i +1), c(~i)=—c(i), d(~i)=-d().
IV. Analysis of Daubechies-4 and CDF (2,2) MRTD Schemes

In this ®dion we eplicitly compute the MRTD coefficients for the Daubechies-4
wavelet family (i.e., L = 4) and for the CDF (2,2) wavelet family. The values of the nonzero
correlation coefficients a, B, y, J, aswell asthe MRTD coefficients a, b, ¢, d are givenin Table I.

As expeded, the a coefficients are the same for the two wavelet families, which means that the
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MRTD schemes based only on scaling functions from these families are completely equivalent.
However, the c and d coefficients are different for the two wavelet families, therefore the two
MRTD schemes are not identical at the wavelet-expansion level. Similar conclusions can be
drawn in general when one compares the MRTD schemes resulting from expansions in terms of
Daubechies-(M+2) and CDF (2,M) basis functions.

We can also compare other aspects related to the computationa efficiency and
performance of the MRTD schemes based on Daubechies-(M+2) or CDF (2,M) wavelet families.
The stability analysis [5] shows that the Courant numbers at the stability limit are not identical,
but very close for the two schemes. In particular, for Daubechies-4, this limit is 0.6040859,
whereas for the CDF (2,2) it is 0.6045534 (both scaling and one level wavelet functions are taken

in the expansion). Also, the dispersion curves [5] are very similar, although not identical. In Fig.
1 we plot the phase error (in degrees per wavelength) measured as 360%—1% (the
discrete

expression involves the theoretical and numerical wavelengths), as a function of the number of
sampling points per wavelength, in one-dimensional propagation. Three pairs of schemes were
compared (Daubechies-4 with CDF (2,2), Daubechies-6 with CDF (2,4) and Daubechies-8 with
CDF (2,6)), while the Courant number was taken 95% of the stability limit for each scheme. We
notice again the similar performance of Daubechies-(M+2) and CDF (2,M) schemes (the curves

are not identical, but they cannot be distinguished as plotted in Fig. 1).

Finally, the stencil size of the numerical scheme (given by n,, Ny, Ne, Ng iN equations (2) or
(7)) determines the number of floating point operations executed at each time step. A low stencil
sizeis desirable in order to reduce the CPU time required by the algorithm. The values of n,, ny,
n. and ng are given in Table Il for the MRTD schemes based on the same three pairs of
expansions. Once again, we notice very similar characteristics between the Daubechies-(M+2)
and the CDF (2,M) schemes.



V. MRTD Implementation of Scattering Problems

A. Plane-wave incident field implementation

Modeding of eledromagnetic scatering problems with dstant sources invaves the
implementation d the incident field as a plane wave. For the MRTD algorithm, the incident
field can be implemented in a manner similar to as in the traditional FDTD scheme, that is,
splitti ng the computational domain into two regions: one of total fields and the other of scatered
fields only, separated by a @nreding surface[6]. Theincident field isintroduced as a‘boundary
condtion’ at this urface in order to enforce the continuity of the tangentia field comporents.
This ideawas used in [2], where the MRTD method kased on the Haa wavelet system was
utilized in modeling scatering problems. The etension to other wavelet bases is
straightforward. If the update equations involve more than ore field scding/wavelet coefficient
on ead side of the aurrent point (which now is placel next to the wnneding surfacg, all the
field coefficients placal on the other side of the mnneding surface must be aljusted by the
appropriate incident field scding/wavelet coefficients, such that we preserve the mnsistency of

the equations.

B. Modeling material inhomogeneities

The treament of inhamogeneous media cnfigurations in the context of MRTD poses
significant problems, becaise the material properties, as functions of space introduce @ugding
between adjacet basis functions. In [1], the inhamogeneities are treded rigoroudly, using a
matrix formulation. The authors of [3] and [4] make use of the shifted interpolation property of
the Daubedies <ding functions in order to simplify the equations. However, their formulation
isvalid orly as an approximation. In this dion, we present the exad formulation o the CDF-
MRTD equations at a dieledric interface ad dscussthe gproximations that can be made in

order to simplify the formulation.



Let us assume a one-dimensional expansion in terms of scaling functions from the CDF
(2,2) wavelet family. In Fig. 2, the interface is placed at the coordinate nAx, and the permittivities
on the two sides are & and &, respectively. The scaling and dual scaling basis functions which
get coupled through &(x) are schematicaly drawn in the same figure. The cross-terms between

MRTD equations appear when the integrals

&7’ = [e(x),., ()P, (x)ax (10)

are non-zero. In the case of CDF (2,2) scaling functions, this occurswhenj =0, i =-1, 0, 1 (see

oH
Fig. 2). Therefore, discretization of the equation & a@% = a—y about the point of coordinate nAx
X

leads to a set of three coupled MRTD equations:

At [PH
£2 (ECuna —E0 )+ %0 (B2, —ER) == % (11.3)
Axox o
At [PH
e (EP, —-E? =— Y 11.b
0,0 ( k+1,n k,n) AX OX %n ( )
At [PH
e (E0s, ~E )+ e (EPupa ~EPpa )= — % (11.0)
AX 10X a

We have used simplified notation for the curl terms on the right hand side, meaning the scaling-

level discretized version of the spatial derivative of the magnetic field component, at the current

%% &2 0L
|:| -1-1 -1,-0 [
point (e.g., n) and the current time step k. With the notation [e]=50 &5y 0 [, we obtain

(0lo) [olo]
EO £ &

the following matrix equation:
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(ES, .0 ES O oH ax) s
Oga 0. Dlzk"’lD Al (aHY/as ’ 12
OEk«n 07 O e D yJOX) T (12)

%kﬂ,nﬂ% sz,nﬂg gaH )’/ax)k,nﬂE

, g +eE _ : :
Notice that €%, =¢,, &7 =¢, and &g, -%. A similar treatment is obtained by

considering lossy medium, with a frequency independent conductivity (see [2]). The formulation
can be generalized to any basis of symmetric scaling functions (including higher-order CDF or
Battle-Lemarie wavelet families). If the scaling function @ has a support of length 2M and the
dua scaling function® has a support of length 2M , then the e-matrix has dimensions
(2P +1)x (2P +1), whereP=M +M -2, and a band-diagonal structure, with P+1 non-zero
diagonals.

In the case where the interface does not coincide with agrid line, asin Fig. 3 (where the
boundary falls between the coordinates nAx and (n+1)Ax ), the formulation is similar, only this
time we have four coupled equations (for CDF (2,2) expansion), involving the field expansion

coefficients at points n-1, n, n+1 and n+2. The e-matrix has the following structure:

5% e5% €55 OoC
D ECDCD ECDCD 0 [
[8]: 0,0 0,1 C (13)
ECDCD ECDCD 0 |:
1,0 11
50 e e e

If wavelet functions are considered in the expansion, the situation complicates even
further, because of the coupling that appears between the scaling and wavel et functions. Without
going into details, we indicate the structure of the e-matrix in the case of the CDF (2,2)

expansion involving scaling and one-level wavelet functions:
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0 (14)

i

T
BLSIG LS gL
X X X X X X X
O o oo x oo
©O oo x oo o
X X X X X X X
X X X X X X X

wherethe x’s gymbadlize nonzero entries.

The presence of the matrix equations, athouwgh limited to regions close to the interface
introduces extra cdculations that reduce the computational efficiency of the dgorithm. In theory,
one can compute and invert the e-matrices for a given media cnfiguration at the beginning of the
program, and then add the extra terms to the gpropriate equations at ead time step (notice that
the inverse e-matrices have identicd structures with the original e-matrices for all the caes
discussed abowe). However, for a general two- or threedimensiona scatering problem, and
inhamogeneities of irregular shapes, this procedure bemmes cumbersome and the whoe
algorithmic simplicity of the MRTD method s lost. Based onthe work in [3,4], we propase the
approximation d the e-matrices by keeuing only their diagonal elements. This grealy simplifies
the MRTD formulation by decouging the update eguations. The quality of this approximation
depends on the relative magnitude of the off- diagonal el ements. In referenceto Figs. 2and 3,we
can make the following observations: (a) the off-diagona terms are larger when the ntrast
between the two media is greaer; (b) the largest off-diagonal term is minimal when the interface
is placal exadly haf-way between two grid pants. Also, the gproximation made by truncaing
the off-diagonal elementsis better as the size of the matrix is snaller. This is another reason for
choasing scding/wavelet functions with minimal suppat, like the CDF (2,2) family (as oppcsed
to higher-order CDF or Battle-Lemarie wavelet families). The resulting MRTD updete scheme
invalves the equations in (7), where €is replacal by the diagonal elements of the e-matrices
(computed acaording to (10)). Such a scheme resembles the dassc FDTD algorithm, where the
material properties are sampled pointwise & the aurrent grid pant. This approad can be justified
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by the fact that, in the limit of very small discretization steps, the scaling functions behave like

deltaimpul ses.

In order to quantify the errors made by the approximation described above, we studied
scattering by canonical dielectric targets, with different permittivity contrasts with respect to the
background medium. The reference solution was obtained by the FDTD agorithm with a
sampling rate of at least 12 points-per-wavelength at the smallest wavelength present in the
computational domain. The CDF (2,2)-MRTD solution studied involved a scaling function
expansion only, and a discretization rate half of that used by the FDTD algorithm (based on the
dispersion curves in [5]). We measured the relative error of the far-zone frequency response
magnitude, over a wide band of frequencies. Our results show that, up to a contrast of 4:1 in
permittivity, the errors made in the CDF (2,2)-MRTD implementation are typically under 3%,
and even when the contrast was increased up to 12:1, the errors did not exceed 7% (the results
are generaly very good as a function of frequency, with most of the discrepancy seen in the

frequency-localized nulls of the scattered spectrum).

The errors introduced by a diagonal approximation to the permittivity matrix do not
increase simply with increasing dielectric contrast. In particular, as the dielectric contrast
increases the scaling-function support decreases (in order to maintain the same sampling rate per
wavelength inside the dielectric). Asindicated above, the accuracy of the diagonal approximation
improves with decreasing scaling-function support (since the scaling function better represents
delta-function-like sampling). Therefore, the expected increased error due to increased dielectric
contrast is mitigated by the reduced size of the scaling functions. We investigate these issues

further in Sec. VI, where we present some numerical results.

C. Absorbing boundary conditions

The absorbing boundary conditions (ABC) for the MRTD agorithm can be implemented
as a perfectly matched layer (PML) [6]. Since the PML consists of several successive layers with

different material properties, a rigorous implementation within the MRTD algorithm would
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involve large &- and o-matrices, refleding the mutual couping between al the scding/wavel et
functions correspondng to those layers. However, the implementation can be simplified using
the gproximations discussd in the previous fdion, that is, negleding the muding between
update equations correspondng to adjacent layers. Our tests siow no significant differencein the

refledion coefficient between the rigorous and approximate implementations of the PML.

We dso need to address the outer boundry of the cmputational grid, which is
traditionally terminated by a perfed eledric (or magnetic) condwctor (PEC or PMC). Since
updating the fields at points close to the boundry requires me field coefficients outside the
domain, we can use image theory in arder to oltain these cefficients. However, image theory
bemmes extremely complicated in the presence of a layered medium next to the boundary, and
therefore its rigorous applicdion is not pradicd. Instead, we natice that, if the PML is thick
enough (compared to the stencil size), the magnitude of the field coefficients close to the
boundry is very small and therefore erors made in computing these terms do nd have a
significant impad on the refledion coefficient. Our tests on a PML of just eight layers, in the
context of a CDF (2,2-MRTD two-dimensional implementation, show refledion coefficients no
more than —70 dB, when the field coefficients outside the cmmputational domain were simply set

to zero.

V1. Numerical Results

In this dion we present the results of two-dimensional simulations obtained with the
CDF (2,2-MRTD scheme on scatering by dieledric targets and compare them with the FDTD
solutions. The anfiguration is described in Fig. 4, and consists of two deledric redangular
cylinders placed in freespace & a relatively large distance with resped to ead aher. For the
MRTD implementation we use wavelet functions only in the shaded areas around the targets.
This kind o configuration, in which targets are placal at relatively large distances from one
ancther in a homogeneous medium, is particularly suitable for the MRTD agorithm, because the

coverage with high-resolution baesis functions is modest compared to the eitire wmputational
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domain. Therefore, significant savings in terms of computer memory can be obtained as

compared to the Y ee algorithm using a uniform mesh.

The excitation consists of a pulsed plane wave, with the incident waveform given by the
4™ order Rayleigh pulse, centered at 3 GHz (Fig. 5). We consider TE (horizontal) polarization.
The incidence angle is 45° and the observation is made in the backscatter direction, in the far

zone. We consider three permittivities for the targets: & = 2, 4, 8. For FDTD, we use a

discretization rate of 40,/e, samples per central wavelength (Ac) in air and a Courant number of

0.6. For the CDF-MRTD, we use a grid with 10,/¢, samples per central wavelength in air.

The Courant number is 0.3, therefore the time step is twice as large as for FDTD. The wavelets
cover about 12% of the MRTD computational domain, so the total nhumber of scaling and
wavelet coefficients is about 1.36 times the total number of MRTD cells. This means that we
expect MRTD to utilize about 12 times less memory than FDTD, and to run about 6 times faster.
However, our numerical experiments show that the increase in computational speed is more
significant (typically, about 11 times). We attribute this to the fact that the MRTD update
equations are more efficiently processed on the particular type of computer (Pentium I11) that we
used in our simulations. The MRTD dielectric matrices are approximated as diagonal, as
discussed in Sec. VB.

The resulting waveforms, plotted in Figs. 6-8 show very good agreement between the two
methods, even for permittivity contrasts as high as 8:1. This validates our approximations
described in Sec. VB, and aso illustrates the clear advantage of the method versus the traditional

FDTD algorithm in terms of computational resources, for this kind of application.
VII1. Conclusions

In this paper we compared the MRTD algorithms based on certain families of compactly
supported wavelets and applied them to the analysis of electromagnetic scattering problems. The

low-order orthogonal Daubechies and biorthogonal CDF wavelet systems offer good
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computational efficiency, espedaly because of their low stencil size and the high Courant
stability limit (the latter enabling the dhoice of a large time step). We dso formulated an
algorithm for the caculation o the MRTD coefficients, which avoids the numericd integration
utilized by previous authors. We oncluded that the schemes based on Daubedies-(M+2) and
CDF (2,M) basis functions have very similar performances, athouwh the formulations are not
identicd. The discusson onapplying the CDF (2,M)-MRTD to a scatering analysis included the
implementation d the plane-wave incident field, materia inhamogeneities and the asorbing
boundry condtions, as well as numericd examples. We demonstrated that the gproximation
made in the treament of dieledric boundries kegps the implementation simple and efficient and,
at the same time, yields acarate results. The computational savings of the CDF (2,2-MRTD
scheme versus the traditional FDTD method were dealy demonstrated in a numerica example.

In future work, we will extend these MRTD schemes to threedimensional problems.
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0.1250000 0 -1.1250000 | 2.0000000 | -1.1250000 0 0.1250000
-0.4665064 0 0.9665064 0 -0.5334936 0 0.0334936
0.0334936 0 -0.5334936 0 0.9665064 0 -0.4665064
@

-2 -1 0 1 2 3
-0.0833333 0.6666667 0 -0.6666667 0.0833333 0
-0.0104167 0.0937500 -1.2291667 1.2291667 -0.0937500 0.0104167
0.0104167 -0.0937500 1.437500 -1.437500 0.0937500 -0.0104167
-0.0388755 0.0805422 -0.0055823 -0.0777511 0.0444578 -0.0027911
0.0027911 -0.0444578 0.0777511 0.0055823 -0.0805422 0.0388755

(b)
-4 -3 -2 0 1 2 3 -4
0 -0.1250 0 1.1250 2.0000 1.1250 0 -0.1250 0
0 0.1250 0 -1.1250 2.0000 | -1.1250 0 0.1250 0
0.0625 0 -1.0000 1.8750 0 -1.0000 0 0.0625
0 0 -0.2500 0.5000 0 -0.2500 0 0
(©
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i -3 -2 -1 0 1 2 3
r 0 -0.0833333 | 0.6666667 0 -0.6666667 | 0.0833333 0
a 0 -0.0104167 | 0.0937500 | -1.2291667 | 1.2291667 | -0.0937500 | 0.0104167
b 0 0.0104167 | -0.0937500 1.437500 -1.437500 | 0.0937500 | -0.0104167
c 0.0052083 | -0.0833333 | 0.1510417 0 -0.1510417 | 0.0833333 | -0.0052083
d 0 -0.0208333 | 0.0416667 0 -0.0416667 | 0.0208333 0

(d)

Tablel. (a) Correlation coefficients for the Daubechies-4 wavelet family; (b) MRTD coefficients
for the Daubechies-4 scheme; (c) Correlation coefficients for the CDF (2,2) wavelet family; (d)

MRTD coefficients for the CDF (2,2) scheme.

Daub-4 Daub-6 Daub-8 | CDF(22) | CDF(24) | CDF(26)
Na 3 5 7 3 5 7
Mo 3 5 7 3 5 7
Ne 3 5 7 3 6 9
Ng 3 5 7 2 3 4

19

Tablell. Stencil sizes for Daubechies-(M+2) and CDF (2,M) MRTD schemes.




Figure Captions

Figure 1. Phase aror (in degrees per wavelength) vs. discretization rate for MRTD schemes
using expansion d the fields in terms of scding and ore level wavelet functions. For all
schemes, the Courant number is 95% of the stability limit. One-dimensional propagation.
Figure 2. Suppat of the CDF (2,2) scding and dwal scding basis functions invalved in couging
through a permittivity discontinuity. The discontinuity is placed at a grid pant. Note that the
suppats of the scding/dua scding functions are drawn schematicdly — they do nd represent the
graphs of the adual basis functions.

Figure 3. Suppat of the CDF (2,2) scding and dwal scding basis functions invalved in couging
through a permittivity discontinuity. The discontinuity is placed in between grid pants. Note that
the supparts of the scding/dual scding functions are drawn schematicaly — they do nd represent
the graphs of the adual basis functions.

Figure 4. Computational domain for the numericd example in Sedion VI. It consists of two
redangular dieledric cylinders, placed in freespace The ceantral wavelengthis Ac = 10cm.
Figure 5. The incident pulse (Rayleigh, 4" order) in (a) time and (b) frequency domain. The
central frequency is 3 GHz.

Figure 6. Time-domain scatered field for the configurationin Fig. 4 and & = 2. The two curves
are dmost identicd.

Figure 7. Time-domain scatered field for the configurationin Fig. 4 and & = 4. The two curves
are dmost identicd.

Figure 8. Time-domain scatered field for the configurationin Fig. 4 and & = 8. The two curves

are dmost identicd.
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