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Abstract – We present a formulation of the multi resolution time-domain (MRTD) algorithm

using scaling and one-level wavelet basis functions, for orthonormal Daubechies and

biorthogonal Cohen-Daubechies-Feauveau (CDF) wavelet families. We address the issue of the

analytic calculation of the MRTD coeff icients. This allows us to point out the similarities and the

differences between the MRTD schemes based on the aforementioned wavelet systems and to

compare their performances in terms of dispersion error and computational eff iciency. The

remainder of the paper is dedicated to implementation of the CDF-MRTD method for scattering

problems. We discuss the approximations made in implementing material inhomogeneities and

validate the method by numerical examples.

I. Introduction

The multi resolution time-domain (MRTD) method [1-5] has recently emerged as an

eff icient tool for time-domain electromagnetic field analysis, with applications including

microwave cavities and circuits [1,3,4] as well as scattering by general targets [2].  In many

cases, MRTD can save important computational resources, as compared to the traditional FDTD

method [6], without sacrificing solution accuracy. The main mechanisms by which MRTD

achieves computational eff iciency are the higher-order accuracy in the spatial finite-difference

approximations and the multi -resolution partitioning of the computational domain. With regard

to the latter, denser resolution is employed in zones with relatively fast spatial field variation,
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while applying a lower-resolution representation in slowly varying regions.

In the existing literature on MRTD, the basis functions of choice have been the Battle-

Lemarie wavelet family [1], the Haar wavelet family [2], the Daubechies scaling functions [3,4]

and the biorthogonal Cohen-Daubechies-Feauveau (CDF) wavelet systems [5]. In a previous

paper [5], we demonstrated the advantages of the CDF wavelet systems vis-à-vis the Battle-

Lemarie or Haar wavelet families. In general, the choice of basis functions with minimal support

leads to a small stencil size and a large Courant stability limit [5], which in turn yield a

computationally efficient scheme. Another advantage of the reduced support of the basis

functions becomes apparent as we discuss the implementation of material boundaries.

 In the current paper, we focus on the compactly supported wavelets from the

orthonormal Daubechies and biorthogonal CDF families. First, we extend the Daubechies MRTD

scheme to include first-level wavelet functions (Sec. II). After reviewing the CDF-MRTD

formulation (Sec. III), we present an algorithm for the analytic computation of the MRTD

coefficients, which is faster, more accurate and more general than the numerical integration

utilized in [1-5]. We compare the MRTD schemes based on low-order orthonormal Daubechies

and biorthogonal CDF wavelet systems in terms of numerical performance in Sec. IV. In order to

implement the CDF-MRTD scheme for scattering problem, we discuss modeling the material

inhomogeneities and the plane-wave incident field (Sec. V).  In Sec. VI we present numerical

results on two-dimensional scattering configurations, emphasizing the efficiency of the method.

We draw conclusions in Sec. VII.

II. MRTD Based on Orthonomal Daubechies Wavelets

A. Formulation

The MRTD algorithm based on compactly supported orthonormal Daubechies scaling

functions was presented in [3,4].  Here, we extend the algorithm to include one-level wavelet
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functions, from which we obtain a multi-resolution algorithm.  Restricting the presentation to one

dimension (for simplicity), the field expansion can be written as:
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Here, we denote by mΦ and mΨ  the scaling and the wavelet function, respectively, displaced by

m units.  For time discretization we use rectangular pulses hk(t), where k represents the shift in

time units. The MRTD magnetic-field update equations are:
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B. Calculation of the MRTD coefficients

In previous MRTD papers based on Daubechies scaling functions (as well as other
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MRTD schemes), the MRTD coeff icients a, b, c and d were computed by numeric integration

(usually in the Fourier domain). However, based on the algorithm presented in [7], these

coeff icients can be derived analytically in the case of compactly supported wavelet systems,

starting directly from the scaling/wavelet filter coeff icients [8], without the need to explicitl y

compute the scaling/wavelet functions (or their Fourier counterparts). Using the definition of the

scaling and wavelet filter coeff icients:
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we introduce the following correlation coeff icients: ∑ +=
k

nkkn hh2α , ∑ +=
k

nkkn gg2β ,

∑ +=
k

nkkn gh2γ , ∑ +=
k

nkkn hg2δ , with n = –L+2, … L–2, with the sums over k running from

max(0, -n) and min(L-1, L-1-n).  In the above, L is the length of the non-zero scaling filter

coeff icient sequence.

We start with the calculation of the coeff icients ( ) ( ) ( )∫ −Φ
∂
Φ∂= dxix

x

x
ir , as described in

[7].  Specifically, these coeff icients must satisfy the following linear system:
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Notice that one of the equations in (4.a) is redundant and that only a finite number of coeff icients

r(i) are non-zero, with indices running from –L+2 to L–2. Once these coeff icients were found, the

MRTD coeff icients are given by the following expressions:
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Again, the number of non-zero MRTD coeff icients is finite and we can establish the following

symmetry relationships: ( ) ( )irir =− , ( ) ( )1+−=− iaia , ( ) ( )1+−=− ibib , ( ) ( )1+−=− idic .

III. MRTD Based on Biorthogonal CDF Wavelets

A. Formulation

The biorthogonal CDF-MRTD scheme was introduced and analyzed in detail i n [5]. In

this paper, we consider only the symmetric CDF (2,M) families of wavelets (where M is half the

support length of the scaling function), for the purpose of comparison with the orthonormal

Daubechies wavelet families. The field expansions in one dimension can be written as:
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The above notation assumes that both ( )xΨ  and ( )xΨ~  peak at x = ½. We obtain the following

magnetic field update equations:
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B. Calculation of the MRTD coefficients

The calculation of the MRTD coefficients in the case of the CDF (2,M) biorthogonal

wavelet expansion is similar to that described for the Daubechies wavelet-based MRTD scheme.

 In this case, we define:
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In the above, L+1 = 2M+1 indicates the length of the hk filter-coeff icient sequence (notice that we

use a symmetric form of this sequence, with indices running from –L/2 to L/2). We also bring the

other filter coeff icient sequences gk , kh
~

and kg~  to the same length, by zero-padding where

needed. The correlation coeff icients are defined as: ∑ +=
k

nkkn hh
~

2α , ∑ +=
k

nkkn gg ~2β ,

∑ +=
k

nkkn gh ~2γ , ∑ +=
k

nkkn hg
~

2δ , with n = –L, … L, and the sums over k running from max(-

L/2, -L/2+n) and min(L/2-n, L/2).  One can show that the coeff icients ( ) ( ) ( )∫ −Φ
∂
Φ∂= dxix

x

x
ir

~

formally satisfy the same set of equations as indicated in (4.a) and (4.b).  From here, the MRTD

coeff icients are computed as following:
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The following symmetry relationships can be established: ( ) ( )irir =− , ( ) ( )1+−=− iaia ,

( ) ( )1+−=− ibib , ( ) ( )icic −=− , ( ) ( )idid −=− .

IV. Analysis of Daubechies-4 and CDF (2,2) MRTD Schemes

In this section we explicitl y compute the MRTD coeff icients for the Daubechies-4

wavelet family (i.e., L = 4) and for the CDF (2,2) wavelet family. The values of the non-zero

correlation coeff icients α, β, γ, δ, as well as the MRTD coeff icients a, b, c, d are given in Table I.

As expected, the a coeff icients are the same for the two wavelet families, which means that the
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MRTD schemes based only on scaling functions from these families are completely equivalent.

However, the c and d coefficients are different for the two wavelet families, therefore the two

MRTD schemes are not identical at the wavelet-expansion level.  Similar conclusions can be

drawn in general when one compares the MRTD schemes resulting from expansions in terms of

Daubechies-(M+2) and CDF (2,M) basis functions.

We can also compare other aspects related to the computational efficiency and

performance of the MRTD schemes based on Daubechies-(M+2) or CDF (2,M) wavelet families.

The stability analysis [5] shows that the Courant numbers at the stability limit are not identical,

but very close for the two schemes. In particular, for Daubechies-4, this limit is 0.6040859,

whereas for the CDF (2,2) it is 0.6045534 (both scaling and one level wavelet functions are taken

in the expansion). Also, the dispersion curves [5] are very similar, although not identical. In Fig.

1 we plot the phase error (in degrees per wavelength) measured as 





−1360

discrete

continuous

λ
λ

 (the

expression involves the theoretical and numerical wavelengths), as a function of the number of

sampling points per wavelength, in one-dimensional propagation. Three pairs of schemes were

compared (Daubechies-4 with CDF (2,2), Daubechies-6 with CDF (2,4) and Daubechies-8 with

CDF (2,6)), while the Courant number was taken 95% of the stability limit for each scheme. We

notice again the similar performance of Daubechies-(M+2) and CDF (2,M) schemes (the curves

are not identical, but they cannot be distinguished as plotted in Fig. 1).

Finally, the stencil size of the numerical scheme (given by na, nb, nc, nd in equations (2) or

(7)) determines the number of floating point operations executed at each time step. A low stencil

size is desirable in order to reduce the CPU time required by the algorithm. The values of na, nb,

nc and nd are given in Table II for the MRTD schemes based on the same three pairs of

expansions. Once again, we notice very similar characteristics between the Daubechies-(M+2)

and the CDF (2,M) schemes.
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V. MRTD Implementation of Scattering Problems

A. Plane-wave incident field implementation

Modeling of electromagnetic scattering problems with distant sources involves the

implementation of the incident field as a plane wave.  For the MRTD algorithm, the incident

field can be implemented in a manner similar to as in the traditional FDTD scheme, that is,

splitti ng the computational domain into two regions: one of total fields and the other of scattered

fields only, separated by a connecting surface [6].  The incident field is introduced as a ‘boundary

condition’ at this surface, in order to enforce the continuity of the tangential field components. 

This idea was used in [2], where the MRTD method based on the Haar wavelet system was

utili zed in modeling scattering problems.  The extension to other wavelet bases is

straightforward.  If the update equations involve more than one field scaling/wavelet coeff icient

on each side of the current point (which now is placed next to the connecting surface), all the

field coeff icients placed on the other side of the connecting surface must be adjusted by the

appropriate incident field scaling/wavelet coeff icients, such that we preserve the consistency of

the equations.

B. Modeling material inhomogeneities

The treatment of inhomogeneous media configurations in the context of MRTD poses

significant problems, because the material properties, as functions of space, introduce coupling

between adjacent basis functions. In [1], the inhomogeneities are treated rigorously, using a

matrix formulation. The authors of [3] and [4] make use of the shifted interpolation property of

the Daubechies scaling functions in order to simpli fy the equations. However, their formulation

is valid only as an approximation. In this section, we present the exact formulation of the CDF-

MRTD equations at a dielectric interface and discuss the approximations that can be made in

order to simpli fy the formulation.
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Let us assume a one-dimensional expansion in terms of scaling functions from the CDF

(2,2) wavelet family. In Fig. 2, the interface is placed at the coordinate n∆x, and the permittivities

on the two sides are ε1 and ε2, respectively. The scaling and dual scaling basis functions which

get coupled through ε(x) are schematically drawn in the same figure. The cross-terms between

MRTD equations appear when the integrals
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We have used simplified notation for the curl terms on the right hand side, meaning the scaling-

level discretized version of the spatial derivative of the magnetic field component, at the current

point (e.g., n) and the current time step k. With the notation [ ]















=

ΦΦΦΦ

ΦΦ

ΦΦ
−−

ΦΦ
−−

1,10,1

0,0

0,11,1

0

00

0

εε
ε
εε

ε , we obtain

the following matrix equation:
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Notice that 11,1 εε =ΦΦ
−− , 21,1 εε =ΦΦ  and 

2
21

0,0

εεε +=ΦΦ . A similar treatment is obtained by

considering lossy medium, with a frequency independent conductivity (see [2]). The formulation

can be generalized to any basis of symmetric scaling functions (including higher-order CDF or

Battle-Lemarie wavelet families). If the scaling function Φ  has a support of length 2M and the

dual scaling function Φ~  has a support of length M
~

2 , then the ε-matrix has dimensions

( ) ( )1212 +×+ PP , where 2
~ −+= MMP , and a band-diagonal structure, with P+1 non-zero

diagonals.

In the case where the interface does not coincide with a grid line, as in Fig. 3 (where the

boundary falls between the coordinates n∆x and (n+1)∆x ), the formulation is similar, only this

time we have four coupled equations (for CDF (2,2) expansion), involving the field expansion

coefficients at points n-1, n, n+1 and n+2.  The ε-matrix has the following structure:
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If wavelet functions are considered in the expansion, the situation complicates even

further, because of the coupling that appears between the scaling and wavelet functions. Without

going into details, we indicate the structure of the ε-matrix in the case of the CDF (2,2)

expansion involving scaling and one-level wavelet functions:
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where the × ’s symbolize non-zero entries.

The presence of the matrix equations, although limited to regions close to the interface,

introduces extra calculations that reduce the computational eff iciency of the algorithm. In theory,

one can compute and invert the ε-matrices for a given media configuration at the beginning of the

program, and then add the extra terms to the appropriate equations at each time step (notice that

the inverse ε-matrices have identical structures with the original ε-matrices for all the cases

discussed above). However, for a general two- or three-dimensional scattering problem, and

inhomogeneities of irregular shapes, this procedure becomes cumbersome and the whole

algorithmic simplicity of the MRTD method is lost. Based on the work in [3,4], we propose the

approximation of the ε-matrices by keeping only their diagonal elements. This greatly simpli fies

the MRTD formulation by decoupling the update equations. The quality of this approximation

depends on the relative magnitude of the off-diagonal elements. In reference to Figs. 2 and 3, we

can make the following observations: (a) the off-diagonal terms are larger when the contrast

between the two media is greater; (b) the largest off-diagonal term is minimal when the interface

is placed exactly half-way between two grid points. Also, the approximation made by truncating

the off-diagonal elements is better as the size of the matrix is smaller. This is another reason for

choosing scaling/wavelet functions with minimal support, li ke the CDF (2,2) family (as opposed

to higher-order CDF or Battle-Lemarie wavelet families). The resulting MRTD update scheme

involves the equations in (7), where ε is replaced by the diagonal elements of the ε-matrices

(computed according to (10)). Such a scheme resembles the classic FDTD algorithm, where the

material properties are sampled pointwise at the current grid point. This approach can be justified
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by the fact that, in the limit of very small discretization steps, the scaling functions behave like

delta impulses.

In order to quantify the errors made by the approximation described above, we studied

scattering by canonical dielectric targets, with different permittivity contrasts with respect to the

background medium. The reference solution was obtained by the FDTD algorithm with a

sampling rate of at least 12 points-per-wavelength at the smallest wavelength present in the

computational domain. The CDF (2,2)-MRTD solution studied involved a scaling function

expansion only, and a discretization rate half of that used by the FDTD algorithm (based on the

dispersion curves in [5]). We measured the relative error of the far-zone frequency response

magnitude, over a wide band of frequencies. Our results show that, up to a contrast of 4:1 in

permittivity, the errors made in the CDF (2,2)-MRTD implementation are typically under 3%,

and even when the contrast was increased up to 12:1, the errors did not exceed 7% (the results

are generally very good as a function of frequency, with most of the discrepancy seen in the

frequency-localized nulls of the scattered spectrum).

The errors introduced by a diagonal approximation to the permittivity matrix do not

increase simply with increasing dielectric contrast. In particular, as the dielectric contrast

increases the scaling-function support decreases (in order to maintain the same sampling rate per

wavelength inside the dielectric). As indicated above, the accuracy of the diagonal approximation

improves with decreasing scaling-function support (since the scaling function better represents

delta-function-like sampling). Therefore, the expected increased error due to increased dielectric

contrast is mitigated by the reduced size of the scaling functions. We investigate these issues

further in Sec. VI, where we present some numerical results.

C. Absorbing boundary conditions

The absorbing boundary conditions (ABC) for the MRTD algorithm can be implemented

as a perfectly matched layer (PML) [6]. Since the PML consists of several successive layers with

different material properties, a rigorous implementation within the MRTD algorithm would
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involve large ε- and σ-matrices, reflecting the mutual coupling between all the scaling/wavelet

functions corresponding to those layers. However, the implementation can be simpli fied using

the approximations discussed in the previous section, that is, neglecting the coupling between

update equations corresponding to adjacent layers. Our tests show no significant difference in the

reflection coeff icient between the rigorous and approximate implementations of the PML.

We also need to address the outer boundary of the computational grid, which is

traditionally terminated by a perfect electric (or magnetic) conductor (PEC or PMC).  Since

updating the fields at points close to the boundary requires some field coeff icients outside the

domain, we can use image theory in order to obtain these coeff icients. However, image theory

becomes extremely complicated in the presence of a layered medium next to the boundary, and

therefore its rigorous application is not practical. Instead, we notice that, if the PML is thick

enough (compared to the stencil size), the magnitude of the field coeff icients close to the

boundary is very small and therefore errors made in computing these terms do not have a

significant impact on the reflection coeff icient. Our tests on a PML of just eight layers, in the

context of a CDF (2,2)-MRTD two-dimensional implementation, show reflection coeff icients no

more than –70 dB, when the field coeff icients outside the computational domain were simply set

to zero.

VI. Numerical Results

In this section we present the results of two-dimensional simulations obtained with the

CDF (2,2)-MRTD scheme on scattering by dielectric targets and compare them with the FDTD

solutions. The configuration is described in Fig. 4, and consists of two dielectric rectangular

cylinders placed in free-space at a relatively large distance with respect to each other. For the

MRTD implementation we use wavelet functions only in the shaded areas around the targets.

This kind of configuration, in which targets are placed at relatively large distances from one

another in a homogeneous medium, is particularly suitable for the MRTD algorithm, because the

coverage with high-resolution basis functions is modest compared to the entire computational



15

domain. Therefore, significant savings in terms of computer memory can be obtained as

compared to the Yee algorithm using a uniform mesh.

The excitation consists of a pulsed plane wave, with the incident waveform given by the

4th order Rayleigh pulse, centered at 3 GHz (Fig. 5). We consider TE (horizontal) polarization.

The incidence angle is 450 and the observation is made in the backscatter direction, in the far

zone.  We consider three permittivities for the targets: εr = 2, 4, 8.  For FDTD, we use a

discretization rate of rε40  samples per central wavelength (λc) in air and a Courant number of

0.6.  For the CDF-MRTD, we use a grid with rε10  samples per central wavelength in air.   

The Courant number is 0.3, therefore the time step is twice as large as for FDTD.  The wavelets

cover about 12% of the MRTD computational domain, so the total number of scaling and

wavelet coefficients is about 1.36 times the total number of MRTD cells. This means that we

expect MRTD to utilize about 12 times less memory than FDTD, and to run about 6 times faster.

 However, our numerical experiments show that the increase in computational speed is more

significant (typically, about 11 times).  We attribute this to the fact that the MRTD update

equations are more efficiently processed on the particular type of computer (Pentium III) that we

used in our simulations. The MRTD dielectric matrices are approximated as diagonal, as

discussed in Sec. VB.

The resulting waveforms, plotted in Figs. 6-8 show very good agreement between the two

methods, even for permittivity contrasts as high as 8:1. This validates our approximations

described in Sec. VB, and also illustrates the clear advantage of the method versus the traditional

FDTD algorithm in terms of computational resources, for this kind of application.

VII. Conclusions

In this paper we compared the MRTD algorithms based on certain families of compactly

supported wavelets and applied them to the analysis of electromagnetic scattering problems. The

low-order orthogonal Daubechies and biorthogonal CDF wavelet systems offer good



16

computational eff iciency, especially because of their low stencil size and the high Courant

stabilit y limit (the latter enabling the choice of a large time step). We also formulated an

algorithm for the calculation of the MRTD coeff icients, which avoids the numerical integration

utili zed by previous authors. We concluded that the schemes based on Daubechies-(M+2) and

CDF (2,M) basis functions have very similar performances, although the formulations are not

identical. The discussion on applying the CDF (2,M)-MRTD to a scattering analysis included the

implementation of the plane-wave incident field, material inhomogeneities and the absorbing

boundary conditions, as well as numerical examples. We demonstrated that the approximation

made in the treatment of dielectric boundaries keeps the implementation simple and eff icient and,

at the same time, yields accurate results. The computational savings of the CDF (2,2)-MRTD

scheme versus the traditional FDTD method were clearly demonstrated in a numerical example.

In future work, we will extend these MRTD schemes to three-dimensional problems.
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i -3 -2 -1 0 1 2 3

α -0.1250000 0 1.1250000 2.0000000 1.1250000 0 -0.1250000

β 0.1250000 0 -1.1250000 2.0000000 -1.1250000 0 0.1250000

γ -0.4665064 0 0.9665064 0 -0.5334936 0 0.0334936

δ 0.0334936 0 -0.5334936 0 0.9665064 0 -0.4665064

(a)

i -2 -1 0 1 2 3

r -0.0833333 0.6666667 0 -0.6666667 0.0833333 0

a -0.0104167 0.0937500 -1.2291667 1.2291667 -0.0937500 0.0104167

b 0.0104167 -0.0937500 1.437500 -1.437500 0.0937500 -0.0104167

c -0.0388755 0.0805422 -0.0055823 -0.0777511 0.0444578 -0.0027911

d 0.0027911 -0.0444578 0.0777511 0.0055823 -0.0805422 0.0388755

(b)

i -4 -3 -2 -1 0 1 2 3 -4

α 0 -0.1250 0 1.1250 2.0000 1.1250 0 -0.1250 0

β 0 0.1250 0 -1.1250 2.0000 -1.1250 0 0.1250 0

γ 0.0625 0 -1.0000 0 1.8750 0 -1.0000 0 0.0625

δ 0 0 -0.2500 0 0.5000 0 -0.2500 0 0

(c)
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i -3 -2 -1 0 1 2 3

r 0 -0.0833333 0.6666667 0 -0.6666667 0.0833333 0

a 0 -0.0104167 0.0937500 -1.2291667 1.2291667 -0.0937500 0.0104167

b 0 0.0104167 -0.0937500 1.437500 -1.437500 0.0937500 -0.0104167

c 0.0052083 -0.0833333 0.1510417 0 -0.1510417 0.0833333 -0.0052083

d 0 -0.0208333 0.0416667 0 -0.0416667 0.0208333 0

(d)

Table I. (a) Correlation coefficients for the Daubechies-4 wavelet family; (b) MRTD coefficients
for the Daubechies-4 scheme; (c) Correlation coefficients for the CDF (2,2) wavelet family; (d)

MRTD coefficients for the CDF (2,2) scheme.

Daub-4 Daub-6 Daub-8 CDF (2,2) CDF (2,4) CDF (2,6)

na 3 5 7 3 5 7

nb 3 5 7 3 5 7

nc 3 5 7 3 6 9

nd 3 5 7 2 3 4

Table II. Stencil sizes for Daubechies-(M+2) and CDF (2,M)  MRTD schemes.
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Figure Captions

Figure 1. Phase error (in degrees per wavelength) vs. discretization rate for MRTD schemes

using expansion of the fields in terms of scaling and one level wavelet functions.  For all

schemes, the Courant number is 95% of the stabilit y limit .  One-dimensional propagation.

Figure 2. Support of the CDF (2,2) scaling and dual scaling basis functions involved in coupling

through a permittivity discontinuity. The discontinuity is placed at a grid point. Note that the

supports of the scaling/dual scaling functions are drawn schematically – they do not represent the

graphs of the actual basis functions.

Figure 3. Support of the CDF (2,2) scaling and dual scaling basis functions involved in coupling

through a permittivity discontinuity. The discontinuity is placed in between grid points. Note that

the supports of the scaling/dual scaling functions are drawn schematically – they do not represent

the graphs of the actual basis functions.

Figure 4. Computational domain for the numerical example in Section VI.  It consists of two

rectangular dielectric cylinders, placed in free-space. The central wavelength is λc = 10 cm.

Figure 5. The incident pulse (Rayleigh, 4th order) in (a) time and (b) frequency domain. The

central frequency is 3 GHz.

Figure 6. Time-domain scattered field for the configuration in Fig. 4 and εr = 2. The two curves

are almost identical.

Figure 7. Time-domain scattered field for the configuration in Fig. 4 and εr = 4. The two curves

are almost identical.

Figure 8. Time-domain scattered field for the configuration in Fig. 4 and εr = 8. The two curves

are almost identical.
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Figure 1
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Figure 2

Figure 3
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Figure 4

(a)                                                                                   (b)              Figure 5
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Figure 6

Figure 7
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Figure 8
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