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With a view to calculating depolarization and differential attenuation of microwaves by rain, 
with allowance for the variable shape and orientation of raindrops, the theory of P. C. Waterman 
is applied to the calculation of cross sections and depolarization ratios of spheroids, and drops 
of the shapes determined by H. R. Pruppacher and R. L. Pitter. Use of Waterman's extended 
boundary condition facilitates computation. The scattering characteristics of spheroids appear similar 
in nature to those of spheres, in the regimes considered. Marked singularities in the characteristics 
of backscattering depolarization appear at optical size 1.5. The Pruppacher and Pitter drops scatter 
similarly to equivalent oblate spheroids. Implications for weather radar measurements are briefly 
discussed. 

INTRODUCTION 

Attenuation and depolarization of microwaves by 
rain are being studied, to provide data for the design 
of terrestrial and satellite communication links, and 
as a basis for attempts to evolve radars capable 
of distinguishing between, and measuring accurate- 
ly, different types of precipitation. The purpose 
of this paper is to establish a new base from which 
to calculate depolarization and differential attenua- 
tion, in rain with drops of spheroidal shapes and 
arbitrary orientations. 

The theory of scattering by spheroidal raindrops 
has been developed by Oguchi [1973] and Oguchi 
and Hosoya [ 1974]. They have used a point-match- 
ing technique in which electric and magnetic fields 
are expanded in spherical vector wave functions. 
The coefficients of the latter two expansions are 
obtained from boundary conditions for representa- 
tive points on the surface of the scatterer: no 
discontinuities of tangential components of the total 
fields occur across the surface. This point-matching 
technique has been refined by Morrison and Cross 
[ 1974], and several authors have observed attenua- 
tion and cross polarization of microwaves in rain 
[Chu, 1974; Taut, 1975]. By modelling the rain 
in terms of oblate spheroids, canted in a plane 
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containing the direction of propagation, or normal 
to it, some success has been achieved in comparing 
theory with observations. However, raindrops take 
on a variety of shapes [Jones, 1959], and the 
regimentation of raindrops according to a canting 
angle seems unsatisfactory. 

In order to calculate cross polarization and atten- 
uation using more realistic models of rainfall, in- 
volving drops with a variety of shapes and orienta- 
tions, the theory of Waterman [1965, 1969] is 
applied to backscattering and extinction by spheroi- 
dal drops both oblate and prolate, and to the drops 
of the equilibrium shapes of Pruppacher and Pitter 
[ 1971]. The latter are similar to oblate spheroids, 
but with concavity on the underside. Waterman's 
theory appears easier to implement than the point- 
matching technique, by virtue of the 'extended 
boundary condition' [ Waterman, 1965]. This meth- 
od invokes equivalent electric and magnetic currents 
on the surface of the scatterer, producing fields 
which, according to the field equivalence principle, 
precisely cancel the incident fields throughout the 
interior volume; the boundary condition is referred 
to a spherical surface inscribed within the scatterer. 
After outlining the theory, and comparing results 
with other work, backscattering and extinction cross 
sections and depolarization ratios are calculated for 
a variety of drops, for incident polarization both 
linear and circular. 
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SCATTERING THEORY 

Scattering theory originally due to Waterman 
[ 1965, 1969] is outlined below. The time dependence 
is assumed to be of the form exp(-ikct), where 
k and c respectively are the wave number and 
velocity of light in vacuo. This factor is omitted 
in equations for field quantities below. Spherical 
wave expansions correspond with those used by 
Hizal and Marincic [1970], except that here all 
spatial variables are normalized with k. 

A scatterer of symmetry about an axis of rotation, 
and of uniform dielectric constant •, is considered. 
Its surface (S) is assumed to be sufficiently regular 
that the divergence theorem is applicable, and a 
continuous, single-valued normal u, is defined at 
each point. Spherical coordinates (r, 0,•) are used, 
with the origin inside the scatterer and the direction 
0 = 0 along the axis of symmetry (Figure 1). 

The incident electric and magnetic fields may 
be expressed by the following expansions, repre- 
senting solutions of the vector wave equation in 
spherical coordinates: 

E ' = iZ o E yi.• F • ( x,O 
n=l m=--n /9-----I 

• • • ill> !p H'= y..•F (x,O 
n=l m=--n p=l 

(l) 

AXIS OF' 
SYMMETRY 

8--0 

Ur • 

•• ••_.? INCIDENT 
o U0 • • E RADIATION 

Fig. 1. Scattering geometry. 

= )o.•refers to free Here the constant Zo 
space. The superscript p = 1 or 2 and 

q = 3 - p (2) 

The coefficients yilp for p = 1 and 2 correspond tim 

to electric and magnetic multipoles; the subscripts 
m and n refer to harmonics of azimuth and elevation 

respectively. F are the spherical wave functions 

F/I C,,z•,ei,,,(mPT dP• ) =_ ,• uo + i•u,t ' ... \ sin 0 dO 

FI2 = C,T e •'"* {in(n + 1)(% / Ix) P• u + [(xz.l) '/x] !! ttl 

ß [(idPT/dO) u 0 - (m P•/sin 0) u.] } 

(3) 

where u are the unit vectors of spherical coordi- 
nates; P• (cos 0) is the associated Legendre func- 
tion, and 

(2n + 1) (n- m)! CT = 4'rrn(n + 1) (n + (4) 

With x = kr, z•,(x) is the spherical Bessel function 
for f = 1, the spherical Hankel function of the 
first kind for œ = s, and of the second kind for 
œ = 2. The prime in (3) denotes differentiation with 
respect to x. The use of œ = 1 only in (1) means 
restriction to incoming waves, finite at the origin 
within the scatterer, as opposed to a summation 
over both incoming and outgoing types. 

The total electric and magnetic fields inside the 
scatterer are expressed as spherical waves: 

E' = iZ E y,t,l,,,, F Iq (.X ,0,(•)) (5) nm d 

n= I m=--n p= ! 

with a similar equation for Ht. In this case Z = 
Zo ½-o.5, referring to the scatterer, and x 
kr, replacing x as the argument of the Bessel 
functions. 

Finally, scattered fields in vacuo are expressed 
as spherical waves' 

E" = iZ0• • • •p •q (x,0,,)(6) 
n=l m=-n /9=1 

with a similar equation for H •. Outside the largest 
sphere enclosing the scatterer, the waves are outgo- 
ing at infinity so as to satisfy the radiation condition, 
and multipole coefficients Y•,Pm are used. For the 



scattered waves which are incoming, the multipole 
lp coefficients are y 

Now the conditions on the boundary S are con- 
sidered, or rather, on a surface S' displaced outward 
from S across a small vacuum gap. Equivalent 
electric and magnetic sources exist on S', related 
to the total fields as follows' 

K E = u n g H t 

(7) 

K • = -ungE t 

Outside S', these sources yield the scattered fields. 
Inside S' they precisely cancel the incident fields. 
This is Waterman's [1965] extended boundary 
condition. 

Tangential components of H' and E' are continu- 
ous across S, so that the scattered fields both interior 
and exterior to ,q may be obtained from the sources 
K, through the free space dyadic Green's function. 
Expanding the latter in spherical waves [Morse and 
Feshbach, 1953] it is found that 

• =• (iK • ?.• K•oF•)ds• (8) Y•m ß F _ Z•! bp* 
S 

where ds • = k 2 ds is the normalized surface element, 
and the asterisk means complex conjugation (not 
involving the argument x a of the radial functions, 
which may be complex if the dielectric is lossy). 

b= 2-•as (9) 

where •as is Kronecker's delta, and q is given by 
(2). 

From the extended boundary ½ondition• the scat- 
tered fields within S precisely cancel the incident 
fields. We refer this to a spherical surface within 
S, centered at the origin. The orthogonality proper- 
ties of the vector wave functions over a spherical 
surface then allow one to write 

Ip -- __vilp y ..... (tO) 

By analytic continuation arguments, it follows that 
this relationship is valid everywhere within S [ Wa- 
terman, 1965]. 

After substituting (5) and (7) in (8), the following 
matrix equations are obtained for the coefficients 
of the scattered fields respectively inside and out- 
side S: 

Wiipp, vtlp, lp __ lip (tt) 
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where p' = 1,2; n' = 1,2, ..., and m' = -n', 
.... 0 .... , n • are the independent indices over which 
summation is carried out. For rotational bodies, 
which are considered here, m = m'. The coefficients 
for m < 0 are related to those for m > 0 by the 
property 

C,•-"• P•- "• = (- 1 ) "• C7 P•' ( t 3) 

This reduces the number of equations to be solved. 
Further, since the Legendre functions P7 are zero 
for m > n, then for each azimuth mode m > 1, 
elevation modes n are started from the value of 

m, rather than from 1. Only sufficient terms are 
evaluated to arrive asymptotically at settled results, 
as indicated in appendix A. Where m• is the chosen 
number of azimuth modes (the first corresponding 
to m = 0), and n• is the chosen number of elevation 
modes (starting from m), the number of equations 
in each of (11) and (12) is 2m•n 1. The scattering 
matrices are given by 

Walpp' = -i {F,•,R* x F.,•,.(x8) 
s 

where the pairs q,p and q',p' independently satisfy 
(2) and b is given by (9) The coefficients 
are found from (11), and then the coefficients Y nm 

of the scattered fields from (12). This completes 
the formulation of the problem. 

CROSS SECTIONS AND DEPOLARIZATION RATIOS 

For individual particles of prescribed size and 
shape, for a particular frequency, cases are consid- 
ered of linearly polarized plane waves incident at 
angle ot (Figure 1). The E field is normal to the 
axis of the scatterer, with 'vertical (V)' polarization, 
or it has a 'horizontal (H)' direction. In the former 
case, the multipole coefficients of the incident 
radiation are given by 

il ! m (2m+ -- !) m y,,., = 4'rr C,, i " (dP,,/ dO)o:,• 

yi,2 = 4•rC,7, i(2m+n!) m PW (cos ct)/sin ct 

(15) 

In the latter case, the right hand sides of these 
equations are interchanged. Outgoing scattered far- 
fields as follows are found for these two polariza- 
tions: 
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e iX o• E s = Z o • (2-• mo)(--i) n+! C•n[( s: Ynm mP• v 

x n• ! m:O 

sl • sin 0 ß y.• dP,•/d 0) cos m• u • - (y• dP• 

+d0+ s• Y•m mP•/sin 0) sin m•u,] = Zo(e•/x) 

[(Av• o + iAw•)u • + (Av, o + iAv•!)u•] (16) 

E s = Z o • (2-•mo)(-i)n+!C • [(y• mP• H 

X n= I m=0 

+sin0+ s• dP•/d0) sinm•u•+(ys: dP•/d0 Y ll Ill 

• sl m y ..... mP•/sin0)cosm•u,] = Zo(e•/x)[(Amo 

+ iA,•) u• + (A,, o + iA,,•) 

In these equations x is the optical distance from 
the origin of coordinates within the scatterer; here 
x is large. The factor (2 - • •o) caters for the cases 
of m • 0. The components A of amplitude are 
identified, to find depolarization. 

Backscattering (B) and extinction (E) cross sec- 
tions, normalized with respect to the equivolume 
spherical diameter (d) of the scatterer, for each 
polarization, are obtained from the expressions 

16 

- Iz•' x e -'• •(• - •,0)1: (•7) •v k:d: 
16 

tr •v - Re(Z• -• x e -•x E•(ot,•) ß u o) 
k2d 2 

16 

- Re(Z•' x e -ix E •(ot,xr) ß u,) (18) o'• k2d 2 

where E•(0,q>) is the scattered field along the 
direction of elevation 0 and azimuth q>, and a, the 
angle of incidence, is varied in the computations. 
The expression for • a•u is similar to that for • a• v. 

If only backscattering and extinction are consid- 
ered, the amplitudes 

Ave= Av,• = A•=A•0• =0 

For the general case of linear polarization not along 
the direction V or H, but at an angle • from the 
V direction, it is found that 

• •, = cos 2 • • • v + sin 2 • • • (19) 

and similarly for • e•,- 
The depolarization ratio (DR) is defined as the 

ratio of the power in the orthogonal component 
to that in the main component of the scattered 
radiation. Then for back (B) or forward (F) scatter- 

ing with linear (L) polarization, of orientation q•, 
the two depolarization ratios 

BLDR (Avo ø _+ A H, o)2 + (Avo ! ___ A H,! )2 

FLDR (Avoo/t -T- A •,ot) 2 + (Av0 !/t -T- A•,•t) 2 

(20) 

the upper and lower signs referring to BLDR, FLDR 
respectively, with t = tan q•. For circular (C) 
polarization, cross sections, and circular depo- 
larization ratios BCDR and FCDR, are obtained 
by setting q• = 45 ø (t = 1). At a certain value q• 
= q• ,,, LDR reaches a maximum: 

LDR m = CDR (1 + X) 

This maximum is given by 

(21) 

tan4 ½m- (A•/0o + m•/ol)/(m•-.I•bo "[- m•-i•bl) 
and 

(22) 

0.5 (1 - cot 2 q• .,)2 
X = (23) 

A v0o A •,o + A v0 ! A •,, ) Cot 2 q• m -T- -- --- 
A•oo + A•o, 

the upper and lower signs *- referring, respectively, 
to back and forward scattering. 

Calculations were made for temperature 10øC 
using dielectric constants obtained from parameters 
given by Buckley and Maryott [1958], which are 
close to those of Ray [1972]. 

The computation proceeds with specification of 
the shape of the scatterer at 32 Gauss nodes [Abra- 
mowitz and Stegun, 1968], with numerical integra- 

t•p, of equations (11). tion for the coefficients y,,m, 
Double precision (64 bit) arithmetic is used, on an 
IBM computer. Bessel functions are calculated after 
the manner of Shafai et al. [ 1970]. An angle a 
of incidence is specified, equations (12) are solved, 
again using double precision arithmetic, and expres- 
sions (16) through (18) are evaluated, and (20), 
with t = 1, through (23). 

For obtaining cross sections of spheroidal water 
drops to a precision of three significant figures, 
required numbers (m• ,n•)of azimuth and elevation 
modes are given in appendix A. While Morrison 
and Cross [1974] used values of (m•,n•) up to 
(9,23) at 30 GHz with the point-matching technique, 
here it was found necessary to go only as far as 
(7,14), so that Waterman's theory seems easier to 
use in these applications. 



VERIFICATION OF THE THEORY 

Several tests of the scattering computation were 
performed. Results for spheres, with centers dis- 
placed from the origin, corresponded very precisely 
with those obtained from Mie theory for spheres, 
and the reciprocity theorem of bistatic scattering 
was found to be satisfied. Waterman [ 1969] treated 
a sphere-cone-sphere body of optical length 2.6, 
and 2:1 prolate spheroids, both with E - 4. His 
curves for the former body (his Figure 4) were 
reproduced accurately, using m• - 3 and rt I -- 
10. Computations for the largest prolate spheroid 
(his Figure 5), of optical length 5, showed agreement 
in general features, but a discrepancy (0.34 instead 
of 0.22) in • • near 'aspect angle' 30 ø. (It was found 
necessary to take m• - 6 and fJl • 15 to get g• 
for aspect angle 0 accurate to _ 15 percent.) 
Calculations of Oguchi [1973] were reproduced 
very closely, confirming that the accuracy of the 
p9int-matching technique is better than those of 
his alternative methods. Results of laboratory mea- 
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o 

OPTICAL PERIMETER, 0-5 Kd, OF EQUIVOLUME SPHERE 
0-5 1.0 1.5 2.0 

I I I I 

H90 

V90 

-30 • I I 
I0 20 30 

FREQUENCY, GHz 

Fig. 2. Scattering cross sections for a drop of diameter 5.8 mm, 
b/a = 0.55, normalized by the cross section of an equivolume 
sphere; backscatter. Labels V90, H90: vertical, horizontal 
polarization, respectively, at incidence ot = 90 ø. Label 0: linear 

polarization with ot = 0. 
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surements of Atlas and Wexler [ 1963], of backscat- 
tering by oblate spheroids made of a material like 
ice, were reproduced to within the limits of accuracy 
of the measurements. 

RESULTS: SCATTERING BY RAINDROPS 

Jones [1959] has measured the shapes of rain- 
drops, and Pruppacher and Pitter [1971] have 
photographed drops in a wind tunnel, and calculated 
equilibrium shapes, as a function of size, for drops 
falling steadily. After the work of Jones, spheroidal 
drops are treated, with axis/diameter ratios from 
0.55 to 1.3, nearly covering his observed range. 
Scattering by the drops of Pruppacher and Pitter 
also is included. In a companion paper [ Warner, 
1975] following upon these results, ways have been 
found of dealing simply with the dependence of 
cross section and depolarization ratio on drop shape 
and orientation. 

A large oblate raindrop, of diameter 5.8 mm and 
axis/diameter b/a = 0.55, is considered first. 
Normalized backscatter cross sections of it are 

plotted as a function of frequency in Figure 2; 
normalized extinction cross, sections are plotted in 
Figure 3 (which may be compared with results of 

60 
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FREQUENCY, GHz 

Fig. 3. See caption for Figure 2; extinction. 
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Oguchi [ 1964]). The trios of curves V90, H90, and 
0 refer respectively to incidence with vertical linear 
polarization (q• = 0) at a = 90 ø, horizontal polariza- 
tion (q• = 90 ø) with a = 90 ø, and linear polarization 
with ot = 0 (looking along the axis of symmetry). 
The curves of Figures 2 and 3 resemble those of 
Mie scattering by spheres, but the minima in the 
curves of backscattering are very pronounced at 
a = 90 ø , and not so at a = 0. The opposite is 
the case with prolate drops. There is no very simple 
explanation for the curves, but one notes that Inada 
and Plonus [1970] have explained Mie curves for 
certain dielectric spheres in terms of surface waves, 
which partially penetrate into the sphere and under- 
go internal reflection. The pronounced rninima of 
backscattering shown in Figure 2 occur at optical 
perimeter 0.5kd • 1.5, which suggests that their 
explanation may be applicable to these cases also. 

Striking results are obtained for depolarization 
ratios. For two sizes of large oblate drop, BCDR 
and BLDR,• (equations (20) through (23)) are shown 
in Figure 4 as a function of frequency. At optical 
perimeter 1.5, the rising of these two ratios above 
0 dB is a result of decrease of the main component, 
rather than increase of the orthogonal component, 
of the scattered radiation. Both this effect, and 
at lower frequencies the lesser maxima and minima 
of the curves, are associated with certain of the 
components A of the scattered fields going through 
zero. With b/a closer to 1.0 the effects are less 
marked. Depolarization ratios for prolate drops 

i[ 0.SKd ,;0 • 2:0 
I II \• 

•-I• - FCDR -- •BLDRm • o-5 0.5 Kd I-0 

, o 

• -• FLDRm • -I0 - 

• I , I I 
• 20 $0 

FREQUENCY, GHz 

FCDR 

i 

Fig. 4. Depolarization ratios (DR) for drops of diameters 5.8 
and 3.6 mm, with b/a = 0.55. B,F: back, forward scattering, 
respectively. Labels C,L: circular, linear polarization, respec- 

tively. Values of BLDR are maxima. 
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Fig. 5. Normalized cross sections at 5.6 GHz as a function 
of b/a, for four drop diameters (d) as indicated; backscatter. 
The labels V90, H90, and 0 refer to different linear polarizations 
of incident radiation, as in Figure 2. Points X represent the 
PP drops. The label 0, H indicates validity for all values of 

ot with H polarization. 

5'6 GHz 

• 2E• x H90 5.8MM • 
ol- _Fv9o 

•-IO L 0 •.. •• 

0-6 0-8 I-O 1.2 
AXIS/DIAMETER, b/o 

Fig. 6. See caption for Figure 5' extinction. 



were found to remain quite small. 
The. drop shapes of Pruppacher and Pitter (PP) 

are nearly oblate spheroids, but are flattened on 
the underside. Their drop of equivolume spherical 
diameter 5.8 mm has b/a -• 0.66. Depolarization 
ratios for this drop, and for those of slightly smaller 
sizes, follow curves which are similar to those of 
oblate spheroids. 

For the frequency 5.6 GHz, normalized backscat- 
tering and extinction cross sections are plotted 
against axis / diameter ratio in Figures 5 and 6. These 
graphs contain trios of lines for orientations V90, 
H90, and 0 as above, for each of four equivolume 
spherical diameters. For angles of incidence tx other 
than 90 ø or 0, cross sections lie between the appro- 
priate line of tx = 90 ø and that labelled 0. Results 
are added for the larger PP drops: the label 0 refers 
to incidence upwards onto the concave bottom of 
the drop. With t• = 180 ø, from the opposite direction, 
results were very similar. The cross sections are 
smaller for linear polarization along a small dimen- 
sion of the obstacle than for the opposite case: 
the lines of V90 lie below those of H90 for oblate 

-IO 

0'1 0'2 0'5 Kd 0'3 
I 

5-6 GHz 

67-5 

1'2 

0-7, 22-5 

I I 

0-55,90 

0'55,67'5 

I-3,90 
I-3, 675 

I 2 $ 4 5 
d, mm 

Fig. 7. BCDR as a function of drop diameter (d), at 5.6 GHz. 
Curves are labelled With different axis/diameter ratios and angles 
of incidence: b/a, •x(degrees). PP indicates drops of Pruppacher 
and Pitter, for •x = 90 and 45 ø, and 135 ø where different from 

the latter. 
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-I0 

0-1 0-3 0-5 Kd 0-5 
I 

I0.0 GHz 

• 0.55, 90 
0-55, 67.5 

-2O 

-3O 

1.2 22'5 

I 2 3 4 5 
d, mm 

Fig. 8. BCDR as a function of drop diameter, at 10 GHz. Curve 
labels as in Figure 7. 
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-3O 

I i I I I i 
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Fig. 9. FCDRas a function of drop diameter, at 5.6 GHz. Curves 
labeled as in Figure 7. 
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0-1 0.:5 
I I 

I0.0 GHz 

0-5 Kd 
I 

0.5 
I 

-I0 0'55, 90 
0'55, 

I-3, 67.5 
I-2, 90 

-20 

-3O 

I 2 $ 4 5 

22'5 

d, mm 

Fig. 10. FCDR as a function of drop diameter, at 10 GHz. 
Curves labeled as in Figure 7. 

drops, and above for prolates. Curves for frequen- 
cies other than 5.6 GHz are similar to those shown, 
but different in details. 

For the frequencies 5.6 and 10 GHz, circular 
depolarization ratios BCDR and FCDR are shown 
in Figures 7 through 10. Different curves apply 
to different shapes and angles of incidence a, as 
indicated, with emphasis on the extremes of shape, 
and values of ot near 90 ø. Curves are added for 

the PP drops. Depolarization ratios of practical 
interest exceed -10 dB only for the most distorted 
drops, and only with ot close to 90 ø. When compared 
from one frequency to another, they show regular 
variations according to optical size. The variations 
with size shown in Figures 7 and 9 are matched 
quite closely by variations from drop to drop in 
Figures 5 and 6, and similar correspondence has 
been found at other frequencies. With the PP shapes 
one sees how the smaller asphericities at smaller 
sizes lead to smaller effects on cross sections and 

to small depolarizations, as expected. 

CONCLUSIONS 

The theory of Waterman [1965, 1969] is easy 
to apply to calculating scattering of microwaves 

by raindrops. Results compare favorably with ob- 
servations by Atlas and Wexler [1963]. 

The scattering characteristics of spheroids appear 
similar in nature to those of spheres, in the regimes 
under consideration. For scattering of microwaves 
by raindrops, marked singularities in the charac- 
teristics of depolarization appear at optical size 1.5. 
The drop shapes of Pruppacher and Pitter [1971] 
have cross sections and depolarization ratios not 
very different from those of oblate spheroids, 
implying that modelling rain in terms of spheroids 
would be satisfactory. 

Radiation of vertical linear polarization common- 
ly is attenuated less than radiation of horizontal 
polarization. One infers a preference for oblate 
raindrops and values of a near 90 ø. As seen from 
Figures 5 and 6, effects of asphericity on backscat- 
tering are greater than on extinction. Thus when 
using a weather radar to measure heavy rainfall, 
with V polarization the effect of asphericity is likely 
to be a reduction of the signal by roughly a dB 
or two, and with H polarization a similar enhance- 
ment. Means of exploiting this are explored by 
Seliga and Bringi [ 1976]. 

For the largest oblate raindrops, depolarization 
ratios for backscattering reach a maximum at C- 
band; for drops of diameter 3.5 mm the maximum 
is at X-band (Figure 4). The presence or absence 
of very large raindrops might be recognized by 
measuring depolarization at different frequencies. 
With a radar operating at 16.5 GHz, Hendry and 
McCormick [1974] have demonstrated the useful- 
ness of radar for distinguishing between different 
types of precipitation. 

To know better the potentialities, particularly 
respecting depolarization, it seems important to 
perform integrations over drop spectra using realis- 
tic models of rainfall. For this purpose, approximate 
equations have been found [ Warner, 1975], which 
allow the effects of variable shape and orientation 
to be taken into account. The theory could readily 
be applied to axisymmetric hailstones. 

APPENDIX A: DETAILS OF COMPUTING 

For obtaining cross sections of spheroidal water 
drops to a precision of three significant figures, 
required numbers (m• ,n l) of azimuth and elevation 
modes are given in Table 1. Computing times are 
for five different angles ot of incidence for each 
drop. To allow for n• up to 15, 142K 32-bit words 
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TABLE 1. Computational requirements. 

For spheroids 

Frequency Equivolume Optical Axis/ No. of No. of 
(GHz) spherical perimeter diameter azimuth elevation 

diameter (=d/ (b/a) modes, modes, 

(d, mm) wavelength) m 1 n 1 

Computing 
time (s) 
on IBM 

370/195 

2.9 5.8 0.18 0.55 (3, 6) 5 

5.6 " 0.34 " (3, 7) 6 

10.0 " 0.6 " (4, 7) 7 

18.7 " 1.1 " (5, 10) 15 

37.0 " 2.2 0.55 (7, 14) 40 

' ..... 0.7 (6, 11) 21 

...... 0.85 (6, 7) 10 

...... 1.0 (m:l, 6) 3 

...... 1.2 (5, 7) 8 
ß 

' ..... 1.3 (5, 11) 18 

" 3.6 1.4 0.55 (5, 9) 13 

" 2.2 0.85 0.7 (4, 5) 4 

" 1.24 0.48 " (3, 5) 4 

" 0.7 0.27 " (3, 4) 3 

Requirements of (ml,n 1) for drops of Pruppacher and Pitter 
Frequency (GHz) 2.9 5.6 10.0 18.7 37.0 

Equivolume 5.8 (3,15 +) (3,15 +) 

diameter 5.0 (3,15 +) (3,14) 

d (mm) 3.6 (3,12) F(3,8) 
2.2 (3,5) (3,4) 

(4,10') (5,14') (7,20 + ) 

(4,10) (4,11) (7,18) 

(3,8) (4,6) (5,7) 

(3,4) (3,4) (4,5) 

* for precision of two significant figures 
+ 

for precision of a few percent 

of core storage were used for the whole program. 
For a - 0 or 180 ø, along the axis of rotational 
symmetry, it is necessary to use only m - 1. 

Requirements for treating the drops of 
Pruppacher and Pitter [ 1971] are given in the lower 
half of the table. As indicated by the symbols * 
and +, a precision of three significant figures was 
not attained for the most deformed drop. To get 
the present results, two slightly different programs 
were used; the two regimes are separated by a line 
within the table. The results at 37 GHz were obtained 

with a program as for the spheroids, with 210K 
of storage to get (rn• ,/•/1)up to (7,20). Results for 
the larger drops show an asymptotic settling as the 
maximum value of n is increased. At 2.9 GHz with 

diameter 5.8 mm, this settling is very slow, being 
discernible after taking n l upwards from 6. Here 
with small optical size, individual matrix elements 
are small, and it was found appropriate to build 
quadruple rather than double precision into the 
solution of equations (12). With capacity for (m i ,n i ) 
up to (7,17), this program required 230K of storage. 
It was used also to confirm results at higher fre- 
quencies. 
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