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1. Introduction

Scattering from a one dimensional periodic surface has been stud-
ied extensively with a large number of techniques, including both ap-
proximate [1–3], and numerically exact [4–11] methods. Models for
one dimensional periodic surface scattering have found application in
a wide range of areas, ranging from optical grating design [8] to the
prediction of wave propagation over the ocean [10]. In a more recent
application, theories and experiments involving passive remote sensing
of one dimensional periodic surfaces [11–16] have conclusively demon-
strated the existence of a third Stokes parameter component of the
thermal emission, UB . Assumed to be non-zero only in polarimetric
passive remote sensing, UB is known to respond to the azimuthal
anisotropy of the medium under view [17] and thus is currently being
investigated for application to remote sensing of wind direction over
the ocean [18–21].

The one dimensional periodic surface studies previously perform-
ed allow surfaces to be rough in one spatial direction only. Surface
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profiles do not vary perpendicular to this direction, so that a “row”
type structure results as shown in Figure 1. While there are many in-
teresting surfaces which do have a row structure, more general surfaces
vary in two spatial directions as shown in Figure 2 and therefore render
the one dimensional models invalid. Scattering from two dimensional
periodic surfaces has previously been studied in reference [22], in which
a volume equivalent current moment method was applied to investi-
gate the reflection characteristics of microwave absorbing materials.
However, to date no numerically exact results for two dimensional sur-
face polarimetric thermal emission have been presented, so that the
extension of UB properties observed in the one dimensional case to
the two dimensional case remains uncertain. For example, a one di-
mensional periodic surface model allows no insight into the effect of
varying levels of surface azimuthal anisotropy on UB signatures since
a one dimensionally rough surface represents only a limiting case of
anisotropy.

Figure 1. Geometry of a one dimensional periodic surface.
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Figure 2. Geometry of a two dimensional periodic surface.

In this paper, a numerically exact model for scattering from a two
dimensional dielectric periodic surface is presented, based upon an ex-
tension of the extended boundary condition (EBC) technique for one
dimensional periodic surfaces [7] to the two dimensional case. Since the
region below the surface profile is considered to be a half space in this
paper, use of a surface integral equation technique as opposed to the
volume integral equations of [22] results in a more efficient solution.
Although the limitations of the EBC method for surfaces with deep
corrugations are well known [23], previous one dimensional periodic
surface studies showed the EBC to perform efficiently for non-steep
surfaces when compared to a method of moments approach [16]. Use
of the EBC method for two dimensional surface profiles is motivated
by the fact that computational requirements are much greater than in
the one dimensional case, so that efficiency becomes an even more im-
portant issue if a thorough study is to be performed. Since properties
of UB for two dimensional surfaces can be studied within the limita-
tions of the EBC, the method is adequate for the goals of this paper.
Computational efficiency is further improved by performing required
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integrals analytically over an arbitrary faceted surface profile.
The model is applied in a study of the response of UB to the level

of anisotropy of the medium under view. Calculations are performed
for simple pyramidal surfaces, which reduce computational complexity
and provide physical insight into the mechanisms which generate third
Stokes parameter emission. Sensitivities of UB to observation angle,
pyramidal surface heights and lengths, and surface dielectric constants
are studied, and illustrate that properties of UB observed for one di-
mensional periodic surfaces remain similar in the two dimensional case.

The formulation of the extended boundary condition method is
detailed in the next section, followed by a discussion of required integral
evaluation in Section 3. The model is validated in Section 4 through
reduction to the one dimensional periodic surface case, and convergence
of predicted brightnesses with the number of surface field unknowns is
discussed for two dimensional surfaces. A study of pyramidal surface
polarimetric thermal emission in Section 5 is followed by conclusions
in Section 6.

2. Formulation and Numerical Method

The extended boundary condition technique for periodic surface
scattering involves solution of the Huygens’ principle integral equations
for unknown tangential electric and magnetic fields on a surface sepa-
rating two homogeneous dielectric regions of space, labeled regions 0
and 1 . The standard electric field integral equation (EFIE) [24] can
be written as∫ ∞
−∞

dS′
{
iωµ

(
I +
∇∇
k2

0

)
g0(r, r′)[n̂′ ×H(r′)]+

+∇g0(r, r′)× [n̂′ × E(r′)]
}

+ Einc(r) =
{
E0(r) z > zs(x, y)
0 z < zs(x, y)

(1)

where Einc represents the incident electric field, taken to be a single
incident plane wave with propagation vector ki = x̂kxi + ŷkyi + ẑkzi
in the following discussions, and zs(x, y) is a function describing the
surface profile separating regions 0 and 1 . It is assumed that the
observation point r does not coincide with any of the source points r′

in the integral equation, so that no singularities are encountered. The
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scalar Green’s function in the above equation is

gj(r̄, r̄′) =
eikj |r̄−r̄

′|

4π|r̄ − r̄′| (2)

where kj represents the electromagnetic wave number in regions j = 0
or j = 1 respectively. A similar integral equation can be written for
the electric field in the region below the surface,

−
∫ ∞
−∞

dS′
{
iωµ

(
I +
∇∇
k2

1

)
g1(r, r′)[n̂′ ×H(r′)]+

+∇g1(r, r′)× [n̂′ × E(r′)]
}

=
{
E1(r) z < zs(x, y)
0 z > zs(x, y)

(3)

If the surface height function is assumed to be periodic in both
the x and y directions, so that zs(x+Px, y) = zs(x, y) and zs(x, y+
Py) = zs(x, y) , integration regions in the above integral equations can
be reduced to a single period through the use of a periodic Green’s
function. Such Green’s functions are well known and have been derived
elsewhere [24] as

gPj =
i

PxPy

∞∑
m=−∞

∞∑
n=−∞

1
2kzjmn

ei[kxn(x−x′)+kym(y−y′)+kzjmn |z−z′|] (4)

where the spectral form of the periodic Green’s function has been used,
kxn = kxi + 2πn

Px
, kym = kyi + 2πm

Py
and kzjmn =

√
k2
j − k2

xn − k2
ym .

The branch cut of the square root function for kzjmn is defined so
that

√
−1 = +i . Upon substitution of this Green’s function into the

integral equations, and assuming observation points above or below the
points of maximum and minimum surface height respectively, integral
equations (1) and (3) become

Einc(r) +
∞∑

m=−∞

∞∑
n=−∞

amne
ik

+
mn0·r = E0(r) z > zs(x, y)max (5)

Einc(r) +
∞∑

m=−∞

∞∑
n=−∞

bmne
ik
−
mn0·r = 0 z < zs(x, y)min (6)
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∞∑
m=−∞

∞∑
n=−∞

cmne
ik
−
mn1·r = −E1(r) z < zs(x, y)min (7)

∞∑
m=−∞

∞∑
n=−∞

dmne
ik

+
mn1·r = 0 z > zs(x, y)max (8)

where

āmn =
i

2PxPykz0mn

∫
P
dS′e−ik

+
mn0·r

{
iωµ

(
I − k̂+

mn0k̂
+
mn0

)
[n̂′ ×H(r′)]+

+ik
+
mn0 × [n̂′ × E(r′)]

}
(9)

b̄mn =
i

2PxPykz0mn

∫
P
dS′e−ik

−
mn0·r

{
iωµ

(
I − k̂−mn0k̂

−
mn0

)
[n̂′ ×H(r′)]+

+ik
−
mn0 × [n̂′ × E(r′)]

}
(10)

c̄mn =
i

2PxPykz1mn

∫
P
dS′e−ik

−
mn1·r

{
iωµ

(
I − k̂−mn1k̂

−
mn1

)
[n̂′ ×H(r′)]+

+ik
−
mn1 × [n̂′ × E(r′)]

}
(11)

d̄mn =
i

2PxPykz1mn

∫
P
dS′e−ik

+
mn1·r

{
iωµ

(
I − k̂+

mn1k̂
+
mn1

)
[n̂′ ×H(r′)]+

+ik
+
mn1 × [n̂′ × E(r′)]

}
(12)

and
k
±
mnj = x̂kxn + ŷkym ± ẑkzjmn

From equations (5) and (7), it is clear that the scattered field in
region zero above the surface profile and the transmitted field in region
one below the surface profile consist of a sum of upgoing and downgoing
plane wave fields respectively, known as Floquet modes, with unknown
vector amplitudes amn and cmn . These unknown amplitudes can be
determined from equations (9) and (11) once tangential electric and
magnetic fields at the surface boundary are known.

The formulation of equations (1) to (12) is general for two dimen-
sional periodic surfaces. The EBC approach is based upon solution of
vector equations (6) and (8) for the unknown tangential electric and
magnetic fields, which involve the regions of “no-interest” in the Huy-
gens’ formulation. Use of these equations is advantageous because a
knowledge of both tangential fields on the surface profile and the total
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fields above or below the surface profile E0 and E1 is not required as
in equations (5) and (7), and a simple mode matching technique can
be applied to their solution. However, the non-local nature of equa-
tions (5) to (8) cause the previously mentioned conditioning problems
for steep surfaces, as evanescent waves generated within the surface
profile are modeled only after having been exponentially attenuated.

Applying the orthogonality property for plane wave fields in equa-
tions (6) and (8) yields the following vector equations

bmn =− êiδmn0 (13)

dmn =0 (14)

where δmn0 is one for m = n = 0 and zero otherwise and a plane wave
incident field of Einc = êie

iki·r has been assumed. Next, unknown
tangential fields on the surface profile are written as

n̂′ ×H =x̂Jx + ŷJy + ẑ

(
∂zs
∂x′

Jx +
∂zs
∂y′

Jy

)

−n̂′ × E =x̂Mx + ŷMy + ẑ

(
∂zs
∂x′

Mx +
∂zs
∂y′

My

)

where

n̂′ =
{
ẑ − ∂zs

∂x′
x̂− ∂zs

∂y′
ŷ

}
/

√
1 +

(
∂zs
∂x′

)2

+
(
∂zs
∂y′

)2

and unknown surface field amplitudes are expanded in Fourier series
as

Jx =
∑
o

∑
p

qope
ikxox′+ikypy′ (15)

Jy =
∑
o

∑
p

rope
ikxox′+ikypy′ (16)

Mx =−
∑
o

∑
p

sope
ikxox′+ikypy′ (17)

My =−
∑
o

∑
p

tope
ikxox′+ikypy′ (18)

Vector equations (13) and (14) each consist of one set of m times
n equations for three Cartesian components. However, these six sets
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of equations are restricted to four by the divergenceless condition of
plane wave fields. Using the x and y components of these equations
and substituting in the Fourier series expansions (15–18) results in the
following matrix equation:




A
−
xx0 A

−
xy0 B

−
xx0 B

−
xy0

A
−
yx0 A

−
yy0 B

−
yx0 B

−
yy0

A
+

xx1 A
+

xy1 B
+

xx1 B
+

xy1

A
+

yx1 A
+

yy1 B
+

yx1 B
+

yy1






q[op]

r[op]

s[op]

t[op]


 =



Ex[mn]

Ey[mn]

0
0


 (19)

where[
A
±
αβj

]
[mn][op]

=∫
P
dx′dy′

{ −ωµ
2PxPykzjmn

e−i(kxn−kxo)x
′−i(kym−kyp)y′−i(±kzjmn )z′

√
1 +

(
∂zs
∂x′

)2

+
(
∂zs
∂y′

)2

α̂ ·
(
I − k̂±mnj k̂

±
mnj

)
·
(
β̂ + ẑ

∂zs
∂β

)
 (20)

[
B
±
αβj

]
[mn][op]

=∫
P
dx′dy′

{
i

2PxPykzjmn
e−i(kxn−kxo)x

′−i(kym−kyp)y′−i(±kzjmn )z′

√
1 +

(
∂zs
∂x′

)2

+
(
∂zs
∂y′

)2

iα̂ ·
[
k
±
mnj ×

(
β̂ + ẑ

∂zs
∂β

)]
 (21)

and
Eα[mn] = −α̂ · êiδmn0 (22)

In the above notation, [mn] references the row number of the
matrix, while [op] references the column. These indices actually are a
single number, which is obtained by consecutively labeling the set of m
times n scattered modes in two dimensions and the set of o times p
Fourier series coefficients. The above matrix equation is infinitely large
in theory, but must be truncated in order to be inverted. Convergence
of model predictions with the number of equations retained will be dis-
cussed in Section 4. Matrix elements can be calculated once the surface
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profile is specified, and the matrix can be inverted to obtain Fourier se-
ries expansion coefficients of unknown surface fields, qop, rop, sop, and
top . These expansion coefficients can then be substituted into equations
(9) and (11), which involve integrals similar to the matrices A and B
above, to determine vector amplitudes of the reflected and transmitted
Floquet modes, a[mn] and c[mn] respectively, as




A
+

xx0 A
+

xy0 B
+

xx0 B
+

xy0

A
+

yx0 A
+

yy0 B
+

yx0 B
+

yy0

A
−
xx1 A

−
xy1 B

−
xx1 B

−
xy1

A
−
yx1 A

−
yy1 B

−
yx1 B

−
yy1






q[op]

r[op]

s[op]

t[op]


 =



ax[mn]

ay[mn]

cx[mn]

cy[mn]


 (23)

Components of a[mn] and c[mn] in the ẑ direction are obtained
from the divergence condition as

az[mn] = − 1
kz0mn

(
kxnax[mn] + kymay[mn]

)
cz[mn] =

1
kz1mn

(
kxncx[mn] + kymcy[mn]

)

3. Evaluation of Required Integrals

Construction of matrix equation (19) requires evaluation of the
integrals of (20) and (21) for each combination of [mn] and [op] in-
dices. There are many options for evaluating these integrals, ranging
from a fully numerical integration scheme to an FFT based method
in which the e−i(±kzjmn )z′ term inside the integral is expanded in a
Fourier series. In this paper, a method in which the surface profile is
assumed to be made up of triangular facets is adopted, and resulting
integrals over individual surface facets are performed analytically. This
approach should be an efficient technique for surfaces that are accu-
rately described in terms of a small number of triangular facets, such
as the pyramidal type surface illustrated in Figure 3.
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Figure 3. Geometry of a two dimensional pyramidal surface.

Consider a triangular grid in the x − y plane, shown in Figure
4, for which surface heights above the x − y plane are specified at
each of the points xγ = (γ − 1)∆x , yδ = (δ − 1)∆y on the grid, with
γ = 1, 3/2, 2, ... and δ = 1, 2, 3, ... . A 4 × 8 point grid is assumed
in Figure 4, with the lines x = x5 and y = y9 equivalent to x = x1

and y = y1 respectively due to surface periodicities. The particular
structure of the grid in Figure 4 is chosen to enable simple construction
of pyramidal type surfaces, as will be discussed in Section 5.

Figure 4. Triangular grid in x− y plane for surface specification.
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Since the integrals of (20) and (21) are over one period of the sur-
face profile, matrix elements can be rewritten as a sum of the integrals
over each individual triangular facet making up the profile. In addition,
surface derivatives, ∂zs

∂x′ and ∂zs
∂y′ remain constant on an individual pla-

nar surface facet, so that vector product terms can be factored out of
facet integrals. The resulting matrix elements are

[
A
±
αβj

]
[mn][op]

=

−ωµ
2PxPykzjmn

∑
f




√
1 +

(
∂zs
∂x′

)2

+
(
∂zs
∂y′

)2 [
α̂ ·

(
I − k̂±mnj k̂

±
mnj

)
·

·
(
β̂ + ẑ

∂zs
∂β

)]∫
Ff

dx′dy′e−i(kxn−kxo)x
′−i(kym−kyp)y′−i(±kzjmn )z′

}
(24)

[
B
±
αβj

]
[mn][op]

=

i

2PxPykzjmn

∑
f




√
1 +

(
∂zs
∂x′

)2

+
(
∂zs
∂y′

)2

iα̂ ·
[
k
±
mnj ×

(
β̂ + ẑ

∂zs
∂β

)]
∫
Ff

dx′dy′e−i(kxn−kxo)x
′−i(kym−kyp)y′−i(±kzjmn )z′

}
(25)

where Ff indicates the particular facet over which the integral is to be
performed. From the above equations, it is clear that evaluation of the
sixteen matrix elements for each [mn] and [op] combination actually
requires calculation of only two integrals for each surface facet.

The surface profile of each triangular facet is simply a plane pass-
ing through the three points bounding the triangle. The equation of
this plane is

z′ = ax′ + by′ + c (26)

where
a =

z2 − z1

∆x

b =
z3 − (z2 + z1)/2

∆y

c =z1 − axγ − byδ
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and z1, z2, z3, xγ , and yδ are as defined in Figure 5.

Figure 5. Definition of surface plane through triangle.

Upon substitution of this equation for z′ into (24) and (25), in-
tegrals over each surface facet can be performed analytically. The nec-
essary integrals are

I±γδ = e−i(±kzjmnc)
∫
Ff

dx′dy′e−t2x
′−t1y′ (27)

where
t1 =i(kym − kyp ± kzjmnb)
t2 =i(kxn − kxo ± kzjmna)

and the domain of the integral corresponds to triangles on the grid of
Figure 4. A closer examination of Figure 4 reveals that there are four
types of triangular domains to be considered, isolated and referred to
as triangles u , d , l , and r in Figure 6, each with a unique domain
and definition of a , b , and c . Integrals for each of these triangles must
be performed separately. In addition, integrals for the special cases of
t1 = 0, t2 �= 0 and t1 �= 0, t2 = 0 must be considered. Results of these
integrations are
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Triangle u :
t1 = 0, t2 �= 0

I±γδ =
2∆y

∆x

1
t22
e−t2xγ (1− e−t2∆x/2)2 (28)

t1 �= 0, t2 = 0

I±γδ =
∆x

t1
e−t1yδ(1− 1

t1∆y
(1− e−t1∆y)) (29)

t1 �= 0, t2 �= 0

I±γδ =
2∆y

∆x

1
t2
e−t2(xγ+∆x

2 )e−t1(yδ+∆y)

{
1− et5∆x/2

t5
+

1− e−t4∆x/2

t4

}

(30)
Triangle d :
t1 = 0, t2 �= 0

I±γδ =
2∆y

∆x

1
t22
e−t2xγ (1− e−t2∆x/2)2 (31)

t1 �= 0, t2 = 0

I±γδ = −∆x

t1
e−t1yδ(1 +

1
t1∆y

(1− e−t1∆y)) (32)

t1 �= 0, t2 �= 0

I±γδ =
2∆y

∆x

1
t2
e−t2(xγ+∆x

2 )e−t1(yδ−∆y)

{
1− e−t5∆x/2

t5
+

1− et4∆x/2

t4

}

(33)
Triangle l :
t1 = 0, t2 �= 0

I±γδ =
2∆y

t2

(
1− 2

t2∆x
(1− e−t2∆x/2)

)
(34)

t1 �= 0, t2 = 0

I±γδ =
∆x

2∆yt21
e−t1(yδ+∆y)

((
1− et1∆y

)
+ e2t1∆y

(
1− e−t1∆y

))
(35)

t1 �= 0, t2 �= 0

I±γδ =
1
t1
e−t1(yδ+∆y)

{
1− et5∆x/2

t5
− e2t1∆y 1− et4∆x/2

t4

}
(36)
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Triangle r :
t1 = 0, t2 �= 0

I±γδ = −2∆y

t2
e−t2(xγ+∆x/2)

(
1 +

2
t2∆x

(1− et2∆x/2)
)

(37)

t1 �= 0, t2 = 0

I±γδ =
∆x

2∆yt21
e−t1(yδ−∆y)

(
(1− e−t1∆y) + e−2t1∆y(1− et1∆y)

)
(38)

t1 �= 0, t2 �= 0

I±γδ =
1
t1
e−t1(yδ+∆y)e−t2(xγ+∆x/2)

{
e2t1∆y 1− e−t5∆x/2

t5
− 1− e−t4∆x/2

t4

}
(39)

where

t4 = −t2 − t12
∆y

∆x

t5 = −t2 + t12
∆y

∆x

and xγ , yδ,∆x, and ∆y are as defined in Figure 4.
Thus, evaluation of the matrix elements for equation (19) requires

summing the analytical expressions above for each facet of the surface
profile multiplied by the appropriate vector products for each of the
eight matrix elements involving this integral. This procedure is re-
peated for every combination of the [mn] and [op] indices, with the
final number of operations proportional to m×n×o×p×f ×2 where
f is the number of facets making up the profile. Since integrals are
performed analytically in this formulation, the only numerical approx-
imation used involves truncation of the surface field unknown Fourier
series.

A direct LU inversion technique was used for the matrix equation
(19), although more efficient methods could potentially be applied.
Note that a direct inversion of the matrix equation requires retaining
an equal number of m × n scattered modes and o × p Fourier series
coefficients. Individual indices m , n , o , and p do not necessarily
range over the same values, although a symmetric expansion about
zero seems reasonable, especially for a normally incident plane wave
field, and was adopted in the results to be presented. Although only
direct solutions with square matrices are considered in this paper, use
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of non-square matrices inverted with a singular value decomposition
technique has been reported for one dimensional periodic surfaces in
the literature [10] and has shown potential for avoiding the EBC’s
conditioning problems.

Figure 6. Types of triangles in surface grid.
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4. Model Validation

To validate the code developed, comparisons were made with both
EBC [13] and moment method codes [11] for a one dimensional saw-
tooth surface profile as shown in Figure 1. The triangular grid of Figure
4, however, is unable to model a one dimensional surface profile due to
the presence of triangles l and r along the lines x = x1 and x = Px
respectively. The modified triangular grid shown in Figure 7 is used
instead, which now contains four new triangular domains, lu , ld , ru ,
and rd , for which the I±γδ integrals must be evaluated. Results are

Triangle lu :
t1 = 0, t2 �= 0

I±γδ =
∆y

t2

(
1− 2

t2∆x
(1− e−t2∆x/2)

)
(40)

t1 �= 0, t2 = 0

I±γδ =
∆x

2∆yt21
e−t1yδ

(
−(1− e−t1∆y) + ∆yt1

)
(41)

t1 �= 0, t2 �= 0

I±γδ =
1
t1
e−t1(yδ+∆y)

{
1− et5∆x/2

t5
+ et1∆y 1− e−t2∆x/2

t2

}
(42)

Triangle ld :
t1 = 0, t2 �= 0

I±γδ =
∆y

t2

(
1− 2

t2∆x
(1− e−t2∆x/2)

)
(43)

t1 �= 0, t2 = 0

I±γδ =− ∆x

2∆yt21
e−t1yδ

(
−et1∆y(1− e−t1∆y) + ∆yt1

)
(44)

t1 �= 0, t2 �= 0

I±γδ =
1
t1
e−t1(yδ+∆y)

{
−et1∆y 1− e−t2∆x/2

t2
− e2t1∆y 1− et4∆x/2

t4

}

(45)
Triangle ru :
t1 = 0, t2 �= 0

I±γδ =− ∆y

t2
e−t2(xγ+∆x/2)

(
1 +

2
t2∆x

(1− et2∆x/2)
)

(46)
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t1 �= 0, t2 = 0

I±γδ =
∆x

2∆yt21
e−t1(yδ−∆y)

(
∆yt1e

−t1∆y) + e−2t1∆y(1− et1∆y)
)
(47)

t1 �= 0, t2 �= 0

I±γδ =
1
t1
e−t1yδe−t2xγ

{
1− et4∆x/2

t4
+

1− e−t2∆x/2

t2

}
(48)

Triangle rd :
t1 = 0, t2 �= 0

I±γδ =− ∆y

t2
e−t2(xγ+∆x/2)

(
1 +

2
t2∆x

(1− et2∆x/2)
)

(49)

t1 �= 0, t2 = 0

I±γδ =
∆x

2∆yt21
e−t1(yδ−∆y)

(
−∆yt1e

−t1∆y) + (1− e−t1∆y)
)

(50)

t1 �= 0, t2 �= 0

I±γδ =
1
t1
e−t1yδe−t2xγ

{
et5∆x/2 − 1

t5
− 1− e−t2∆x/2

t2

}
(51)

Figure 7. Modified triangular grid in x− y plane for 1-D wedge profile.
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Figure 8. Comparison of induced currents on one dimensional wedge

profile (a) My (b) Jx (c) Mx (d) Jy.

Construction of a sawtooth profile now requires only two points
specified on the surface profile, (x1, y1) and (x3/2, y2) which are set
equal to 0 and h , the height of the sawtooth profile, respectively. Cal-
culations were performed for a surface height of 0.5λ , period 3.01λ ,
dielectric constant (6, 0) and a normally incident plane wave field. Pre-
dicted values for the induced currents on the surface profile are plotted
in Figure 8 for the one dimensional EBC, one dimensional MOM, and
two dimensional EBC codes. A total of 13 Fourier series terms were
used with the one dimensional EBC, 169 terms with the two dimen-
sional EBC (using m = −6 to 6 and n = −6 to 6 as the period
in the x direction was set to 3.01λ also), and 50 pulse basis func-
tions in the point matching MOM code, corresponding to 6 points per



Two dimensional periodic surface scattering 321

wavelength sampling in the dielectric medium. Surface currents My

and Jx are plotted in Figures 8 (a) and (b) for a vertically polarized
incident field, meaning that the unit magnitude incident electric field
is directed along the row direction of the surface profile, while surface
currents Mx and Jy are plotted in Figure 8 (c) and (d) for a hori-
zontally polarized incident field. Power conservation for all three codes
was within 1% , and predicted brightness temperatures as discussed in
the next section differed by less than 0.5 K under the assumption of a
300 K surface temperature. These comparisons show that the two di-
mensional EBC model correctly reduces to the one dimensional surface
case, and also that the extended boundary condition approach yields
an accurate solution when compared to the method of moments for
the sawtooth profile considered. Note that the accuracy of the EBC
for this profile is not immediately obvious, as induced surface currents
near the edges of the surface have potentially singular behavior. Mo-
ment method results were also generated using larger numbers of basis
functions and showed that no strong singular behavior occurred near
the edges of the wedge profile.

Figure 9 illustrates the convergence of predicted reflectivities with
the total number of surface field Fourier coefficients retained for a pyra-
midal type surface as shown in Figure 3. A surface height of 0.5λ ,
period in the x and y directions of 3 and 6 λ respectively and
a dielectric constant of (6, 0) is used, and total reflected powers are
plotted in Figures 9 (a) and (b) for a normally incident plane wave in
horizontal and vertical polarizations respectively. The resulting power
conservation corresponding to Figures 9 (a) and (b) is also plotted in
Figures 9 (c) and (d), and illustrates a clear convergence as the number
of surface field mode amplitudes approaches and exceeds 121. Conver-
gence of the predicted total reflected power is of primary concern since
this quantity determines the brightness temperature as described in the
next section. The results of Figure 9 indicate the accuracy of the EBC
approach for the relatively smooth pyramidal surfaces to be consid-
ered in this paper, and show that 169 surface field Fourier coefficients
should be sufficient to model induced current variations. The remaining
calculations of this paper were generated using 169 coefficients, which
results in a matrix size of 676 by 676 , and required approximately 70
seconds of CPU time on a DEC AXP 3000-M800 for each brightness
temperature point.
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Figure 9. Convergence of total reflected power with number of Fourier

coefficients (a) Horizontal incidence (b) Vertical incidence (c) Horizontal

power conservation (d) Vertical power conservation.

5. Pyramidal Surface Thermal Emission

To assess the response of the third Stokes brightness tempera-
ture to degree of surface azimuthal anisotropy, the two dimension-
ally periodic surface scattering model developed is applied in a study
of polarimetric thermal emission from pyramidal surfaces, as shown
in Figure 3, for which the faceted surface model approach should be
very efficient. The pyramidal surfaces studied are made up of only 4
triangular facets, corresponding to including only the points (x1, y1)
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and (x3/2, y2) in the surface profile description, with remaining surface
facets generated by the required periodicities.

In polarimetric passive remote sensing, brightness temperatures
corresponding to all four modified Stokes parameters are investigated
in polarimetric passive remote sensing. The brightness temperature
Stokes vector is defined as

T̄B =
1
C
Ī =

1
C



Ih

Iv

U

V


 =

1
ηC



〈EhE∗h〉
〈EvE∗v〉

2Re〈EvE∗h〉
2Im〈EvE∗h〉


 (52)

In the above equation, Eh and Ev are the horizontally and vertically
polarized emitted electric fields, η is the characteristic impedance of
free space, and C = k/λ2 with K denoting Boltzmann’s constant, λ
the wavelength. The first two parameters of the brightness temperature
Stokes vector correspond to the received powers for horizontal and
vertical polarizations, respectively. The third and fourth parameters
correspond to the complex correlation between electric fields received in
horizontal and vertical polarizations. These four parameters are labeled
TBh, TBv, UB, and VB , respectively in this paper.

It is shown in [11] that the third and fourth Stokes parameters
may be related to the brightness temperatures in a 45 degree linearly
polarized measurement (TBp) and a right-hand circularly polarized
measurement (TBr) as follows:

UB = 2TBp − TBh − TBv (53)

VB = 2TBr − TBh − TBv (54)

Thus, to compute all four parameters of the Stokes vector, brightness
temperatures in horizontal, vertical, 45 linear, and right-hand circular
polarizations are first calculated, and the above equations are used to
obtain UB and VB .

The emissivity of an object is defined as the ratio of the brightness
temperature emitted by the object to its actual physical temperature,
under the assumption that the object is at a constant physical tem-
perature Tphys ,

TBa = ea(θ, φ)Tphys (55)

In the above equation, the subscript a refers to the polarization of
the brightness temperature, θ to the polar observation angle, and φ
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to the azimuthal observation angle. Through the principles of energy
conservation and reciprocity, Kirchhoff’s Law relates this emissivity to
the reflectivity of the surface [25]:

ea(θ, φ) = 1− ra(θ, φ) (56)

The reflectivity ra(θ, φ) for the given incident polarization a is de-
fined as the fraction of the power incident from direction (θ, φ) that
is rescattered, and is evaluated through calculation of the scattering
mode amplitudes amn for the specified pyramidal surface. Due to the
periodic nature of the surface profile, the net power reflected from the
surface travels only in the ẑ direction, so that the total reflectivity of
the surface can be written as

ra(θ, φ) =
∑
m

∑
n

Re{kz0mn}
|kzi|

|amn|2 (57)

Thus, to determine polarimetric thermal emission from a pyramidal
surface, reflected mode amplitudes amn are calculated for an incident
field polarized in each of four directions. Note that this requires only
one matrix generation and inversion procedure since only the right
hand side of the matrix equation varies with different incident fields.
Reflectivities, emissivities, and polarimetric brightness temperatures
are then calculated from these modes as described previously. A phys-
ical temperature of 300 K is assumed for all of the surfaces studied in
this section.

The total power transmitted into the surface medium can also be
calculated similarly from the cmn amplitudes, and a power conserva-
tion check can be performed to insure code accuracy. Power conser-
vation errors lead to differences in brightness temperatures computed
with 1−ra(θ, φ) from those computed using ea(θ, φ) which is obtained
from the power absorbed in the medium. For the results presented in
this section, the maximum power conservation error was 0.7% with
a corresponding maximum uncertainty in TBh and TBv brightness
temperatures of 2 K. Brightnesses calculated using the power absorbed
exceeded those calculated using one minus the reflectivity in all cases.
Azimuthal variations in these brightness temperatures and the corre-
sponding UB brightnesses, however, were found to have a maximum
uncertainty of 0.7 K from the two methods, indicating the insensitiv-
ity of the UB brightness to these errors. Azimuthal variations and UB
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brightnesses were larger using the 1 − ra(θ, φ) calculation. Thus, a
maximum uncertainty of approximately 2 K in the absolute level of
TBh and TBv results in this study, with a maximum uncertainty of
0.7 K in TBh and TBv azimuth variations and in the UB brightness
temperature. The following results are those calculated using the one
minus reflectivity approach.

Figure 10 presents predicted polarimetric brightness temperatures
for a pyramidal surface with a height of 0.5λ , period in the x direction
of 3.01λ and a varying period in the y direction, ranging from 3.01 to
24.08λ . A period of 3.01λ was chosen to avoid any resonance effects
due to the n = 3,m = 0 scattered Floquet mode transition from non-
propagating to propagating, which would occur for a period of 3λ . A
dielectric constant of (6, 0) is assumed for the surface medium. Note
that the slopes of this surface are no greater than those for which
the wedge profile validation was performed in the previous section,
so that the EBC approach should be valid for this surface. Brightness
temperatures are plotted for a 0 degree polar observation angle, (nadir
looking), and for azimuthal angle, φ , varying from 0 (along the +x
direction) to 90 degrees (along the +y direction). The expected sin 2φ
variation of the UB brightness required for nadir observation due to
the reflection symmetries of the surface profile [19] is observed. Also,
the Py = 3.01λ curve illustrates the zero value of UB obtained for
nadir observation due to the square pyramid reflection symmetries at
0, 45, and 90 degrees. The response of UB to the level of anisotropy
of the surface is clearly demonstrated in Figure 10, which shows that
values of UB predicted assuming a very large value of Py significantly
overestimate UB values obtained in the Py = 2Px case. However, the
convergence of UB results for Py > 4Px illustrates that azimuthal
anisotropy beyond this level has little effect.
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Figure 10. Predicted polarimetric brightness temperatures from a pyra-

midal surface: Variation with Py (a) TBh (b) TBv (c) UB (d) VB

The response of the polarimetric brightness temperatures to pyra-
midal surface height is plotted in Figure 11, for nadir observation,
Px = 3.01λ , Py = 6.02λ , and a dielectric constant of (6, 0) . The re-
sponse of UB to surface slope, as indicated by higher UB values for
larger surface heights, is demonstrated in Figure 11. This response has
been observed in the literature for 1-D periodic surfaces [11,16]. Sur-
faces with heights less than 0.25λ and maximum slopes consequently
less than 0.08 are seen to produce negligible UB emission.
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Figure 11. Predicted polarimetric brightness temperatures from a pyra-

midal surface: Variation with surface height (a) TBh (b) TBv (c) UB (d)

VB

The response of the polarimetric brightness temperatures to po-
lar observation angle is plotted in Figure 12, for pyramidal surfaces
with height 0.5λ , Px = 3.01λ , Py = 6.02λ , and dielectric constant
of (6, 0) . Only variations in the TBh and TBv brightness tempera-
tures with azimuthal angle are illustrated in Figures 12 (a) and (b),
due to the strong response of the mean TBh and TBv brightnesses to
polar angle variations for these relatively low dielectric constant mate-
rials. Mean values of TBh and TBv (averaged over the 7 observation
angles computed between 0 and 90 degrees azimuth) are indicated in
parentheses in the curve labels of these figures, and the total bright-
ness temperature at a given angle is given by the sum of the deviation
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indicated in the figure and the mean value in the curve labels. Re-
sponses to polar observation angle similar to those in Figure 12 have
been observed for 1-D periodic surfaces [11]. However, simulations in
the literature with much higher, ocean like dielectric constant media
show smaller variations in UB with polar observation angle in this
range [16]. Also, VB is observed to show some response to polar ob-
servation angle, although it is quite small.

Figure 12. Predicted polarimetric brightness temperatures from a pyra-

midal surface: Variation with polar angle (a) TBh azimuth variations (b)

TBv azimuth variations (c) UB (d) VB

The response of the polarimetric brightness temperatures to the
real part of the surface dielectric constant is plotted in Figure 13,
for pyramidal surfaces with height 0.5λ , Px = 3.01λ , Py = 6.02λ ,
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and nadir viewing observation. Only azimuth variations in TBh and
TBv are plotted, again due to the strong influence of dielectric con-
stant variations on mean TBh and TBv brightnesses. Note that linear
brightness azimuthal variations and the UB brightness are affected less
significantly and still show the same azimuthal signatures. Increasing
UB values obtained are observed to saturate in simulations performed
with dielectric constants higher than (9, 0) .

Figure 13. Predicted polarimetric brightness temperatures from a pyra-

midal surface: Variation with real dielectric constant (a) TBh azimuth

variations (b) TBv azimuth variations (c) UB (d) VB

The response of the polarimetric brightness temperatures to the
imaginary part of the surface dielectric constant is plotted in Figure
14, for pyramidal surfaces with height 0.5λ , Px = 3.01λ , Py = 6.02λ ,
and nadir viewing observation. Again, the linearly polarized brightness
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temperatures show large variations in their means as the imaginary
part of the dielectric constant is increased, but azimuth variations and
UB remain relatively unaffected, showing only slight increases with
increasing imaginary part.

Figure 14. Predicted polarimetric brightness temperatures from a pyra-

midal surface: Variation with imaginary dielectric constant (a) TBh az-

imuth variations (b) TBv azimuth variations (c) UB (d) VB

6. Conclusions

A model for the prediction of scattered Floquet mode amplitudes
from a surface periodic in two spatial directions has been developed.
This model applies the extended boundary condition approach, and
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uses an analytical evaluation of matrix elements over an assumed tri-
angularly faceted surface profile. This method should be very accurate
and efficient for surface profiles which are represented in terms of a
small number of triangular facets, such as the pyramidal surfaces stud-
ied. The model was applied in a study of polarimetric passive remote
sensing, and demonstrated that properties of UB observed in the one
dimensional periodic surface case are similar in the two dimensional
rough surface case. Also, the response of UB to the level of anisotropy
of the medium under view was studied, and pyramidal surfaces with x
to y period ratios greater than 4 were found to show little variation
in predicted UB brightnesses. Other applications of this model include
the design of optical gratings and simulation of scattering from two di-
mensional surfaces at low grazing angles, where the large surface sizes
involved in a periodic surface simulation are required.
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