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S U M M A R Y

Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex

non-linearity associated with the problem of velocity update. In anisotropic media, the non-

linearity becomes far more complex with the potential trade-off between the multiparameter

description of the model. A gradient filter helps us in accessing the parts of the gradient that

are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on

representing the gradient in the time-lag normalized domain, in which the low scattering angle

of the gradient update is initially muted out in the FWI implementation, in what we may refer

to as a scattering angle continuation process. The result is a low wavelength update dominated

by the transmission part of the update gradient. In this case, even 10 Hz data can produce

vertically near-zero wavenumber updates suitable for a background correction of the model.

Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering

angles to contribute higher-resolution information to the model. The benefits of the extended

domain based filtering of the gradient is not only it’s ability in providing low wavenumber

gradients guided by the scattering angle, but also in its potential to provide gradients free of

unphysical energy that may correspond to unrealistic scattering angles.
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1 I N T RO D U C T I O N

The hierarchical approach of full waveform inversion (FWI) of

starting with the low-frequency (Bunks et al. 1995; Pratt et al.

1996; Virieux & Operto 2009) and the early-arrival part of the

data (Jang et al. 2009) is slowly giving way to more emphases

on filtering and conditioning the gradient (Albertin et al. 2013;

Tang et al. 2013). This is especially true as we are trying to mix

migration velocity analysis (MVA) and FWI (Almomin & Biondi

2012; Fleury & Perrone 2012; Ma et al. 2012; Xu et al. 2012; Wang

et al. 2013). This is a natural progression that should remind us

of our transformation in imaging analysis from flattening surface

offsets to focusing on subsurface offsets. Despite the value of data

decimation and selection, the real objective of this process is far

more apparent in the model domain and specifically at the gradient

level (Sirgue & Pratt 2004). With MVA integrated into FWI, we

rarely damp the later arrivals as they are needed for the MVA part,

but the model domain provides the opportunity to select or shape the

proper updates. For anisotropic media, model domain conditioning

becomes even more important as we are able to apply different

filters to different parameters update, a feature not readily available

in the data domain. It also goes beyond model regularization as it is

extracted from the data.

However, a viable process to filter the gradient has always been

either expensive or inadequate. A simple wavenumber filter could

mute essential background update information like those coming

from diving waves. A directional wavenumber filtering suitable

for diving waves is totally orthogonal to what an MVA gradient

would require. A velocity-guided Gaussian filter (Ravaut et al.

2004) will isolate the low wavenumbers, which is helpful, but,

again, without a clear physical understanding of what was filtered

within the FWI context. In fact, the diving wave directional fil-

ter very much coincides with gradients that promote reflections

(perturbations), which is something we try to avoid in FWI at

the early stages. In his paper, Mora (1989) clearly pointed out

the role of reflections and transmissions in updating the high and

low wavenumbers of a model, respectively. However, in the Born

approximation, which is used to develop the gradient, such

a distinction is not as clear. I will show here that the real

distinction is in the scattering angle alone, and specifically within

diving waves along (only) the ray path, which actually allow zero

wavenumber updates that can be used for updating the background

model.

Wu & Toksz (1987) and Mora (1989) in two classic papers

describe the behaviour of the gradients (model updates) in the

wavenumber domain by analysing the diffraction tomography be-

haviour at the heart of the update process (Cohen & Bleistein 1977;

Panning et al. 2009). Such work paved the way to Sirgue & Pratt

(2004) among other results, as they used such insights to confirm the

hierarchical approach in dealing with data for FWI. Only recently

was the concept of filtering the gradient recognized as a valid alter-

native. If the gradient includes updating more than one parameter,
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the gradient conditioning and filtering will be more useful in the

model domain.

In this paper, I extend the axis of the model update with a normal-

ized time lag component capable of resolving the scattering angle,

efficiently. This additional axis is used to properly filter the gradient

to admit usable background updates for FWI from reflections and

diving waves, as well as reflection (Chavent & Plessix 1999) full

waveform inversion (RFWI). It utilizes the fact that a proper back-

ground update is not necessarily given by the low frequencies or

low wavenumbers, but more accurately by large scattering angles,

where the update actually follows the rays.

2 T H E M O D E L’ s U P DAT E

C H A R A C T E R I S T I C S

The model update is at the heart of full waveform inversion. First, to

understand the action of the update and its resolution, let us revisit

the model update wavenumber, which will provide us some insight

into the relation between transmissions and reflections.

2.1 The model’s wavenumber update

The Born approximation provides us with the first-order sensitivity

of the data to the model parameters, and thus, provides us with

the gradient with respect to the model and the corresponding wave-

length content. In isotropic media, the update wavelength at a model

point, as illustrated by diffraction tomography, is governed by the

dip of a potential reflector and the scattering angle. Specifically, the

local model wavenumber vector with respect to a potential scatterer

in our model (Miller et al. 1987; Jin et al. 1992; Thierry et al.

1999),

km = ks + kr =
ω

v
cos

θ

2
n, (1)

which depends on, among other things, the angular frequency, ω,

with a direction guided by a unit vector, n, normal to a potential

reflector. Here, ks and kr are the source and receiver (or state and

adjoint state) wavefield wavenumbers, respectively, at the model

point, with θ as the scattering angle between the source and receiver

wavefields (or any two wavefields involved in the creation of the

gradient) and v is the velocity.

A proper scheme for an appropriate FWI is to update the

low wavenumber components necessary to take us to the global

minimum region (basin of attraction), prior to updating the high

wavenumber components. Also, lower frequencies induce long

wavelength updates, but they are not the only source of long wave-

length information. Clearly, large offsets, inducing large scattering

angles, reduce the wavenumber of the model update. Hence, our

inversion schemes prefer lower frequencies and large offsets (Pratt

et al. 1996; Virieux & Operto 2009). Since the model updates for

direct, diving and reflection waves are handled using the same Born

assertions, they all conform to this wavenumber formula (1). For

refractions or direct arrivals, where θ = π , the wavenumber is zero.

However, the confusing part to many is that the common banana sen-

sitivity kernel (between a source and receiver) that we have grown

accustomed to seeing (Woodward 1992) disputes this assertion. We

will show below that direct and diving waves actually admit zero

wavenumber velocity updates only along the ray (scattering angle

equal to π ) part of the banana kernel.

2.2 The myth of the transmitted and reflected waves in

FWI

We have always divided waves, especially for FWI, into direct and

diving waves (or transmitted waves in general) and reflected ones,

though they are handled by the same Born-approximated update ker-

nel. They, of course, provide different information, but in physics

they are connected by the same wave equation that imposes the con-

tinuity of its solutions, even for a discontinuous Earth. A reflection

is simply a mirror image of a potential direct wave with a virtual

source placed below the reflector. In the limit of the scattering an-

gle approaching 180◦ for an inhomogeneous medium, the reflected

arrival becomes a diving one and, in that case, no contrast is needed

as the wavenumber corresponding to this phenomenon equals zero.

Waves with a wavenumber component in the direction normal to

a potential reflector that is smaller in value than the maximum

model wavenumber of that reflector will induce a reflection by that

wavenumber. For a sharp discontinuity, the maximum wavenumber

will include most wave components hitting that sharp discontinu-

ity. However, in a smoothly increasing velocity model with depth,

the wavenumber component normal to the wave path is zero (along

the ray), and at some point that zero wavenumber will be smaller

than the maximum wavenumber in the model, which will turn the

ray or even reflect it, depending on the nature of the increase. In

this case, that component is in the depth direction. For scattering

angles slightly lower than 180◦, the model wavenumber is small,

indicating that even a smooth velocity increase with a wavenumber

higher than that given by the wave can induce scattering. In fact,

the model update wavenumber can be thought of as the scattering

wavenumber, and for diving waves along the ray, it is zero.

As transmission (i.e. diving) waves admit near zero wavenum-

ber updates according to the model wavenumber update formula

(1), and depending on the frequency (and specifically with high

frequencies), the wavenumber can increase within the first Fresnel

zone reasonably fast away from the ray path, yielding reasonable

resolution to the model update. Defining the border between trans-

missions and reflections, based on the first Fresnel zone, is both

frequency and experiment dependent, and more importantly it ig-

nores the natural continuity between transmissions and reflections

as they adhere to the same model update formula. Though beyond

the first zero crossing away from the ray may admit the wrong back-

ground update direction (in the reflection zone), they are needed to

admit proper weighting for the updates over the whole model. We

will look into a more natural way to develop smooth model updates

for the early part of FWI, and specifically to maneuver the classic

local minima of the FWI objective function.

3 G R A D I E N T S F O R C L A S S I C A L A N D

R E F L E C T I O N - B A S E D F W I

The classic objective function for FWI is given by (Tarantola 1987)

E1(m) =
∑

i

∣

∣doi
− dsi

(m)
∣

∣

2
, (2)

where the i corresponds to the source index, do is the observed data,

ds = us(x, y, z = 0, t) is the modelled synthetic data and m(x) is the

velocity model described in space using the vector x = {x, y, z},

along the Cartesian coordinates, with t as time. From this point on,

and for simplicity of derivation, I will represent wavefields and data

in the frequency domain. In this case, the modelled wavefield, us,

satisfies the wave equation

L(m)usi
= f δ(x − xsi

), (3)
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Filtering the inversion gradient 365

for a particular source location, xsi
, and f is the source function

given in the frequency domain with

L(m) = L t (m) = ∇2 + ω2m(x), (4)

as L is the Helmholtz operator, which in this case is self adjoint, ω is

the angular frequency and ∇ is the Laplacian operator. The gradient

corresponding to such an objective function is given by

R1(x) = ω2
∑

i

usi
(x)ur1i

(x) (5)

with

L(m)ur1i
=

∑

j

δ(x − xr j
)(doi j

− dsi j
)∗, (6)

where xr j
are the locations of the receivers for a particular

receiver, j.

Since one of the biggest challenges in FWI is to have reasonably

accurate reflections in the modelled data, the migrated image is

used as a source for such reflections (Clément et al. 2001). This

approach, however, produces only smooth updates since producing

a reflection is not an objective of the approach. Nevertheless, such

inverted models can be used as a starting model for classic FWI.

This new objective functional is given by:

E2(m, I ) =
∑

i

∣

∣doi
− dmi

(m, I )
∣

∣

2
, (7)

where dm is the modelled data from the image, I(x), obtained by

classic (hopefully true amplitude) migration is

I (x) =
∑

i

usi
(x)uai

(x), (8)

where the receiver wavefield, uai
, satisfies

L t (m)uai
=

∑

j

δ(x − xr j
)d∗

oi j
, (9)

and thus,

L(m)δusi
= I (x)usi

(x), (10)

and dmi
= δusi

(xri
). The gradient corresponding to this objective

functional is given by

R2(x) = ω2
∑

i

[

usi
(x)δuri

(x) + ur2i
(x)δusi

(x)
]

, (11)

where

L t (m)ur2i
=

∑

j

δ(x − xr j
)(doi j

− dmi j
)∗, (12)

L t (m)δuri
= I (x)uri

(x). (13)

For cross-correlation objective functions (Choi & Alkhalifah 2012;

Xu et al. 2012), we obtain similar gradient formulations, but the

residual is replaced by the observed data, a feature that will mitigate

the role of the source and specifically reduce the role of amplitudes

to a scaling factor.

4 F I LT E R I N G T H E G R A D I E N T

As an alternative to the conventional hierarchal data selection ap-

proach used initially to isolate the long wavelength updates to the

model (Sirgue & Pratt 2004), we can filter the gradient to provide

such updates despite the data (Albertin et al. 2013; Almomin &

Biondi 2013; Tang et al. 2013). This recent development is based

on the separation of scales in the updates by applying the proper

wavenumber filtering to the model update or matching the direc-

tional components of the source and receiver wavefields and, thus,

decomposing the updates to reflection and transmission parts. In

both cases, reflections corresponding to dipping reflectors, in which

the low wavenumber components are present in a direction not easily

isolatable from the transmission, can cause problems. In fact, div-

ing waves with limited source and receiver coverage may have high

wavenumber components (at high frequencies) in certain directions,

despite their value in updating the background, and specifically the

path through which the wave travels.

To improve the action of the gradient and specifically to allow

it to focus on the appropriate long wavelength components of the

gradient, we can utilize an approach devised by Khalil et al. (2013)

to filter out such components for a cleaner RTM image free of low-

frequency artifacts, to do exactly the opposite and enhance these

components. This approach is based on a partial decomposition of

the image to it’s angle gather components using a slightly modified

approach to that originally suggested by Sava & Fomel (2006). In

line with Khalil et al. (2013), we introduce a slightly modified time

lag (velocity scaled, ζ ) to our conventional gradient (Alkhalifah

2014),

R1(x, ζ ) =
∑

i

usi
(x)uri

(x)e
−4iω

ζ
v(x) , (14)

R2(x, ζ ) =
∑

i

[

usi
(x)δuri

(x) + uri
(x)δusi

(x)
]

e
−4iω

ζ
v(x) , (15)

where v is the velocity, and ζ = τ

2
v(x). An inherent feature of

this modified time-lag (distance units) representation is that the

relationship between the scattering angle and the wavenumber of

the gradient is free of a velocity (space) dependency. In fact, the

scattering angle, θ , is then given by the following relation:

cos2 θ

2
=

|k|2

k2
ζ

, (16)

where k = km is the space wavenumber vector of the gradient and

kζ is the wavenumber (Fourier transform) corresponding to ζ . A

4-D Fourier transform of R(x, ζ ) (3-D in 2-D), will allow us to

map R̂(k, kζ ) to its angle gather equivalence, R̂(k, θ ) using eq.

(16). In our case, we use eq. (16) to filter out the gradient energy

corresponding to small θ (reflections), starting probably by muting

energy with θ < 170◦, and just sum the rest over kζ (the zero ζ

imaging condition). As a result, there is no need to map to angle

gathers. Of course, we will have to inverse Fourier transform the

image back to space to apply the gradient in space. The mute region

to eliminate reflections in R̂(k, kζ ) is interestingly given by low

space wavenumbers and high ζ wavenumbers. Obviously, we also

mute all energy laying in regions of R̂(k, kζ ), where cos θ

2
> 1,

which is unphysical for the considered model (i.e. acoustic).

Relating eq. (16) to the model update wavenumber demonstrates

that kζ = ω

v
, which allows us to directly control the frequency con-

tent scaled by the velocity in the update. In other words, kζ controls

the update wavenumber scale. Thus, the wavenumber of the model

updates can be written:

km = kζ cos
θ

2
n. (17)

This allows for a full control of the model update wavelengths

regardless of frequencies.
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366 T. Alkhalifah

Figure 1. A plot showing in grey the regions in the model update (gradient) that are spared the muting to allow a minimum scattering angle of (a) 100◦ and

(b) 160◦. The highlighted regions correspond to reflections (bottom), to RFWI (upper corners) and diving waves (upper centre).

Figure 2. The model update response for a monochromatic wavefield at

10 Hz and a source located at 1 km and a receiver at 4 km, both at 0.1 km

depth. The scale bar reflects the relative update that needs to be scaled by

the residual and a normalized Hessian. The white dots correspond to the

locations of the source and receiver.

For minimum scattering angles of 100◦ and 160◦, the grey area

in Figs 1(a) and (b), respectively, shows the areas of the gradient

represented in the space and ζ wavenumber domain that will be

spared the muting. Below, we mute scattering angles lower than

178◦, which will provide a focus on the ray part of the gradient that

admits actually almost zero wavenumber updates.

5 G R A D I E N T S U N D E R F I LT E R I N G

Since the update (gradient) is best understood by analysing its im-

pact on the model with a single frequency, as well as with a single

source, receiver, and, in the case of using reflections, a single model

point perturbation, we focus here on analysing the effect of filtering

the update on such sensitivity kernels. We consider monochromatic

wavefields initially in a homogeneous background velocity model,

with velocity equal to 2 km s−1, and a source and receiver at 0.1 km

depth, with an offset of 3 km. Fig. 2 shows the 10 Hz monochro-

matic gradient function. Clearly displayed is the classic sensitivity

kernel we have grown accustomed to and attributable to Woodward

(1992). The velocity gradient scale is meant here for comparison,

as the actual value depends on the residual and is scaled by the

Hessian, or simply by an appropriate line search. In Fig. 3, the ζ

extended version of the gradient is displayed. In the prescribed

implementation, we next perform a 3-D Fourier transformation

to this extended gradient, and then filter out the low scattering

Figure 3. The model update (sensitivity kernel) of Fig. 2 with a ζ extension

to allow for scattering angle identification.

angle energy using eq. (16). Figs 4(a)–(f) display the gradient af-

ter filtering for various low-cut scattering angles. For low-cut at

high scattering angles, we obtain a low wavelength model update,

with most of the update focused between the source and receiver.

As we include lower scattering angles, the gradient includes high

wavenumber information. Since we cut most of the angles, the am-

plitude of the update is smaller. This is the gradient for a single

10 Hz frequency, corresponding to a single source and receiver. As

we include more sources and receivers, the gradient will develop

into a more complete representation of the required update. More

importantly, the energy associated with reflections, the dominant

source of non-linearity, is mitigated at high scattering angle cuts. A

simple wavenumber filtering of the gradient in Fig. 2 will not yield

such updates, as some of the reflection energy includes zero wave-

length components, specifically along the reflector. This response

to a single frequency and source and receiver position reveals the

essence of the capability of this filter. Note that a zero scattering

angle cut update provides the gradient of our classical FWI update

shown in Fig. 2.

If we use reflections to update the background medium as sug-

gested by Xu et al. (2012), the update for a perturbation in the model

at 2.5 km depth between the source and receiver is shown in Fig. 5.

Embedded in the update is the classic rabbit ear response masked

slightly by the monochromatic nature of the wavefields involved.

Fig. 6 includes the ζ extended gradient. Figs 7(a)–(f) show the re-

sponse to a low-cut scattering angle filter for various angles. We

obtain a similar effect to that for the classic FWI gradient. How-

ever, we also obtain the rabbit ears at scattering angle cuts of 170–

176◦ even for this monochromatic operator. In fact, with a single
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Filtering the inversion gradient 367

Figure 4. The model update (sensitivity kernel) after applying the low-cut scattering angle filter muting angles below (a) 179.4◦, (b) 179◦, (c) 178◦, (d) 176◦,

(e) 160◦ and (f) 140◦. The white dots correspond to the locations of the source and receiver.

Figure 5. The model update response for a monochromatic wavefield at

10 Hz and a source located at 1 km and a receiver at 4 km, both at 0.1 km

depth, and a model point at 2.5 km laterally and 2.5 km depth. The white

dots correspond to the locations of the source, receiver and model point

perturbation.

relatively high frequency (in the FWI world), we obtain an operator

equivalent to that obtained using RFWI for a band of frequencies

(Xu et al. 2012).

If the reflector is horizontal, instead of assuming a point scat-

terer as used by Xu et al. (2012), the update for a perturbation

in the reflector at 2.5 km depth is shown in Fig. 8. Embedded in

the update is the actual rabbit ear response masked slightly by

the monochromatic nature of the wavefields involved. Figs 9(a)–(f)

Figure 6. The model update (sensitivity kernel) of Fig. 5 with a ζ extension

to allow for scattering angle identification.

show the response to a low-cut scattering angle filter for various

angles. A focusing of the energy for the update near the reflector is

a result of the contribution of the reflector as a group of scatterers.

6 F O R I N H O M O G E N E O U S M E D I A

For inhomogeneous media, and for efficiency purposes only, I use

Born theory (Beydoun & Mendes 1989; Moser 2012) for rays to

develop the sensitivity kernels. Equivalent results are expected from

wave extrapolation based gradients as the implementation is inde-

pendent of the wavefield solution approach. We repeat the setup

for the classic FWI and the reflection one first for a vertical linear
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368 T. Alkhalifah

Figure 7. The model update (sensitivity kernel) for the reflection-based inversion after applying the low cut scattering angle filter muting angles below (a)

179.4◦, (b) 179◦, (c) 178◦, (d) 176◦, (e) 160◦ and (f) 140◦. The white dots correspond to the locations of the source, receiver and model point perturbation.

Figure 8. The model update response for a monochromatic wavefield at

10 Hz and a source located at 1 km and a receiver at 4 km, both at 0.1 km

depth, and a model point at 2.5 km laterally and 2.5 km depth.

velocity variation of v(z) = 1500 + z m s−1. Fig. 10 shows the

classic FWI monochromatic sensitivity kernel for this v(z), with its

diving wave characteristic (semi circle) central ray path. The kernel

also includes the response of scattering in the full model providing

the common imaging isochrons for this source and receiver pair.

Figs 11(a)–(f) display the gradient after filtering for various low-cut

scattering angles. Again, for high scattering angles, we obtain a low

wavelength model update, with most of the update focused between

the source and receiver. As we include lower scattering angles, the

gradient includes high wavenumber information and follows the ray

path of the diving waves. Reflections, especially those correspond-

ing to horizontal reflectors (where scattering angles are the largest)

start to appear. We slowly obtain the classical update, like that given

by Fig. 2, as we allow the small scattering angles to pass.

Next, we investigate the Marmousi response. I use the eikonal

solver, for simplicity, to provide me with the traveltimes required

for the ray-Born representation. Although we will miss the later

arrivals, the point here is to investigate the action of the filter. The

Marmousi model is shown in Fig. 12 along with a traveltime contour

map courtesy of the eikonal solver for a source at 2 km location and

0.1 km depth. For the Marmousi model, we consider monochromatic

wavefields with a frequency of 7 Hz, for a change. Fig. 13 shows

the corresponding sensitivity kernel from classic FWI. It bares all

the complexity expected from such a complicated model. The ζ

extended version is shown in Fig. 14, which we will use to filter

out energy below certain scattering angles. Figs 15(a)–(f) show the

response to a low-cut scattering angle filter for various angles. Note

that the update energy is focused more toward the (low velocity)

source part of the kernel. Some of this discrepancy will be corrected

by the geometrical spreading (given by the diagonal elements of the

Hessian), not applied here. However, there is also a natural bias of

update energy to low velocities due to the larger amplitudes and

shorter wavelengths of the involved waves in such areas.
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Filtering the inversion gradient 369

Figure 9. The model update (sensitivity kernel) for the reflection-based inversion after applying the low cut scattering angle filter muting angles below (a)

179.4◦, (b) 179◦, (c) 178◦, (d) 176◦, (e) 160◦ and (f) 140◦.

Figure 10. The model update response for a monochromatic wavefield at

10 Hz and a source located at 1 km and a receiver at 4 km, both at 0.1 km

depth. The scale bar reflects the relative update that needs to be scaled by

the residual and a normalized Hessian. The white dots correspond to the

locations of the source and receiver.

For the reflection FWI, I place the perturbation at 2.5 km depth,

located within the presumed reservoir location as shown in Fig. 16.

Fig. 17 shows the corresponding sensitivity kernel for the back-

ground model corresponding to this model perturbation. Figs 19(a)–

(f) display the result of the application of the low-cut scattering

angle filter. The bias seen in the classical FWI is mildly miti-

gated by the model point perturbation influence and location near

the receiver. The high-cut scattering angle resulting in the gra-

dient energy is concentrated almost in the middle between the

source, receiver, and the model perturbation point. Again, as we

lower the low-cut scattering angle, we obtain higher resolution

information.

7 T H E A P P L I C AT I O N

Despite that the scattering angle filtering, applied throughout the pa-

per, was for a single source and receiver. It’s application in practice

will include all available (or used) source and receivers. Thus, the

filtering maybe applied directly on the full gradient. The resultant

filtered gradient may also be used to obtain an approximate Hessian

along the lines of the Gauss–Newton implementation. Fig. 20(a)

shows the gradient obtained from the Marmousi model considering

an initial homogenous background model and sources and receivers

covering most of the surface. The gradient corresponds to solving

the Helmholtz wave equation for a frequency of 5 Hz. The gradient

clearly includes some of the update features we need and expect

for the Marmousi model, but it also includes some of the high

wavenumber information we want to avoid at this stage since the

background velocity model is not accurate.

Figs 20(b)–(d) show the result of applying the scattering angle

filtering to cut low scattering angle energy under 178◦, 176◦ and

174◦, respectively. In all cases the new gradient includes only low

wavenumber updates, the kind we would like to have at the early

stages of FWI. The updates at lower scattering angle low cut includes

some of the key features of the Marmousi model. The difference
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370 T. Alkhalifah

Figure 11. The model update (sensitivity kernel) after applying the low-cut scattering angle filter muting angles below (a) 179.4◦, (b) 179◦, (c) 178◦, (d) 176◦,

(e) 160◦ and (f) 140◦. The white dots correspond to the locations of the source and receiver.

Figure 12. The Marmousi model filtered with a 20 sample box window in

both directions to its original sampling at 4 m. The contours correspond to

the traveltime solution of the eikonal equation for a source located near the

surface, given by the white dot.

Figure 13. The model update response for a monochromatic wavefield at

7 Hz and a source located at 2 km and a receiver at 7 km, both at 0.1 km

depth. The scale bar reflects the relative update that needs to be scaled by

the residual and a normalized Hessian. The white dots correspond to the

locations of the source and receiver.

between updates conditioned by the scattering angle and those ob-

tained from a simple filter is that the updates here have a physical

meaning tied with one component of our diffraction tomography

model wavenumber formula.

Figure 14. The model update (sensitivity kernel) of Fig. 2 with a ζ extension

to allow for scattering angle identification.

8 D I S C U S S I O N

The new filtering method described here takes the ray information

and smears it over the model domain. This is what low frequency

tends to do over the Fresnel zone, but no low frequency was re-

quired here. The physical meaning of these filters is highlighted by

isolating the energy that provides the spared scattering angles, and

for a very narrow band around the transmission angle of 180◦, this

corresponds to reducing the wavefield from the source and receiver

to plane waves. As the narrow band widens slightly, the plane waves

start to have a width controlled by the distance of the model point

from the source and receiver. In other words, some point source

characteristics come into play. We actually have a phenomenon

similar to what we encounter with beams for even a monochromatic

wavefield. Low frequencies present in the data are still important as

the dispersion phenomena guaranties that the wavefield behaviour

at low frequencies is different and cannot be predicted from high

frequencies, and contains its unique information. The objective of a

scattering angle filter strategy is to avoid falling into local minima

at the prescribed frequency.
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Filtering the inversion gradient 371

Figure 15. The model update (sensitivity kernel) after applying the low-cut scattering angle filter muting angles below (a) 179.4◦, (b) 179◦, (c) 178◦, (d) 176◦,

(e) 160◦ and (f) 140◦. The white dots correspond to the locations of the source and receiver.

Figure 16. The contours now correspond to the traveltime solution of the

eikonal equation for a source located at the reservoir area, given by the white

dot.

Figure 17. The model update response for a monochromatic wavefield at

10 Hz and a source located at 1 km and a receiver at 4 km, both at 0.1 km

depth, and a model point at 2.5 km laterally and 2.5 km depth. The white

dots correspond to the locations of the source, receiver and model point

perturbation.

There are a lot of weighting aspects that were ignored in the de-

velopment of the update. Specifically, those extracted from the full

Hessian. The diagonal part of the Hessian provides the appropriate

geometrical spreading correction to the sensitivity kernel. Never-

theless, the contribution of the Hessian or its approximation will not

alter the performance of the filtering. The filtering will still high-

light the energy corresponding to the angles that we pass resulting

in more localized energy along the ray path regions. What would

differ is the distribution of energy within the filtered gradient. If

an approximate Hessian is developed from the filtered Gradient us-

ing for example Quasi–Newton methods, the action of the Hessian

Figure 18. The model update (sensitivity kernel) of Fig. 17 with a ζ exten-

sion to allow for scattering angle identification.

will be consistent with the gradient (i.e. the information within the

Hessian will correspond to the spared scattering angles).

Despite the many features that filtering the gradient brings to the

table in the isotropic case, the benefits for anisotropic media are

even greater. It allows us to apply different scattering-angle filtering

on different parameters. We can apply a specific filter for FWI

and another for RFWI, with specific features corresponding to the

parameters of perturbation. For an acoustic anisotropic medium,

in which we invert for three anisotropic parameters, using FWI

and RFWI allows for six different filtering strategies. Scattering

angles for multiparameter inversion provides the key information to

mitigate trade-off (Alkhalifah & Plessix 2014), and thus, its control

will help make the inversion better posed.

For global Earth tomography, we are capable of producing the

banana shaped kernels from monochromatic wavefields. Though

the effective span of a monochromatic wavefield is controlled by

the frequency, constrained by the first Fresnel zone, the filters here

span beyond that limit to take on a regularization role as well, in

FWI. Figs 11(a)–(f) are examples of the kind of sensitivity kernels

that we can extract from the scattering angle filter. Since such filters

are applied to the gradient constructed for all sources and receivers,

the cost of this filtering depends mainly on the extension axis and

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
0
/1

/3
6
3
/7

4
4
9
7
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



372 T. Alkhalifah

Figure 19. The model update (sensitivity kernel) for the reflection-based inversion after applying the low-cut scattering angle filter muting angles below (a)

179.4◦, (b) 179◦, (c) 178◦, (d) 176◦, (e) 160◦ and (f) 140◦. The white dots correspond to the locations of the source, receiver and model point perturbation.

Figure 20. (a) The FWI gradient corresponding to a background homogenous model with a velocity of 3 km s−1 at 5 Hz frequency. The gradient after scattering

angle filtering with a low cut under (b) 178◦, (c) 176◦ and (d) 174◦.

it’s sampling. The sampling of the extension axis is governed by

the maximum kζ we plan to keep, which may be small for high

scattering angles. Of course, the range of the ζ extension controls

the sampling of kζ . In all cases, we need only limited number of ζ

samples, far less than what is commonly used to sample the time or

frequency axis needed to construct the wavefields. As a result, the

cost of the scattering angle filter pales in comparison to the cost of

building the gradient. Zuberi & Alkhalifah (2014) even formulate

a mapping approach to the angle gather formulation that allows us

to avoid the extended domain.

The scattering angle filter has additional features. By isolating

scattering angle ranges we are not only, in some cases, smoothing the

gradient, but also, muting out non-physical waves, that may induce

unphysical scattering angles, like those with cos θ

2
> 1. This can

happen for recorded (or converted to) shear wave events under the

acoustic model assumption. It may also be the case with multisource

modelling and the unphysical scattering angles associated with the

crosstalks.

Developing an efficient space domain equivalent to the pro-

posed scattering angle filter is possible, but might not be efficient.
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Filtering the inversion gradient 373

The equivalence to the abrupt low scattering angle cut off in

the wavenumber domain is a convolution with an isotropic non-

stationary Bessel function in the space domain in 2-D. The cost of

applying such a filter will depend on the filter size and the taper-

ing methodology. The wavenumber domain provides us with the

opportunity to apply the filter in an efficient matter.

9 C O N C LU S I O N

A scattering-angle based filtering of the full waveform inversion (or

the reflected version) gradient is capable of isolating the background

update information regardless of the frequency. For monochromatic

wavefields, I show that cutting out energy corresponding to scat-

tering angles below 170◦ yields velocity updates along the general

ray path of the wavefields involved. Stronger cutting thresholds

(∼179◦), yield smooth updates covering most of the model, all

from a single frequency of 10 Hz.
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Clément, F., Chavent, G. & Gómez, S., 2001. Migration-based traveltime

waveform inversion of 2-D simple structures: a synthetic example, Geo-

physics, 66, 845–860.

Cohen, J. & Bleistein, N., 1977. Seismic waveform modelling in a 3-D Earth

using the born approximation: potential shortcomings and a remedy, J.

Appl. Math., 32, 784–799.

Fleury, C. & Perrone, F., 2012. Bi-objective optimization for the inversion

of seismic reflection data: combined FWI and MVA, in Proceedings of

the SEG Technical Program, Expanded Abstracts 548, pp. 1–6.

Jang, U., Min, D. & Shin, C., 2009. Comparison of scaling methods for

waveform inversion, Geophys. Prospect., 57, 49–59.

Jin, S., Madariaga, R., Virieux, J. & Lambare, G., 1992. Two-dimensional

asymptotic iterative elastic inversion, Geophys. J. Int, 108, 575–588.

Khalil, A., Sun, J., Zhang, Y. & Poole, G., 2013. RTM noise attenuation and

image enhancement using time-shift gathers, in Proceedings of the SEG

Technical Program, Expanded Abstracts 733, pp. 3789–3793.

Ma, Y., Hale, D., Gong, B. & Meng, Z., 2012. Image-guided sparse-model

full waveform inversion, Geophysics, 77, R189–R198.

Miller, D., Oristaglio, M. & Beylkin, G., 1987. A new slant on seismic

imaging: migration and integral geometry, Geophysics, 52, 943–964.

Mora, P., 1989. Inversion = migration + tomography, Geophysics, 54, 1575–

1586.

Moser, T., 2012. Review of ray-born forward modeling for migration and

diffraction analysis, Stud. Geophys. Geod., 56, 411–432.

Panning, M., Capdeville, Y. & Romanowicz, A., 2009. An inverse method

for determining small variations in propagation speed, Geophys. J. Int.,

177, 161–178.

Pratt, R.G., Song, Z.-M., Williamson, P. & Warner, M., 1996. Two-

dimensional velocity models from wide-angle seismic data by wavefield

inversion, Geophys. J. Int., 124, 323–340.

Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. & Dell’Aversana,

P., 2004. Multiscale imaging of complex structures from multifold wide-

aperture seismic data by frequency-domain full-waveform tomography:

application to a thrust belt, Geophys. J. Int., 159, 1032–1056.

Sava, P.C. & Fomel, S., 2006. Time-shift imaging condition in seismic

migration, Geophysics, 71, S209–S217.

Sirgue, L. & Pratt, R., 2004. Efficient waveform inversion and imaging: a

strategy for selecting temporal frequencies, Geophysics, 69, 231–248.

Tang, Y., Lee, S., Baumstein, A. & Hinkley, D., 2013. Tomographically

enhanced full wavefield inversion, in Proceedings of the SEG Technical

Program, Expanded Abstracts 201, pp. 1037–1041.

Tarantola, A., 1987. Inverse Problem Theory, Elsevier.

Thierry, P., Operto, S. & Lambare, G., 1999. Fast 2-d ray+born migra-

tion/inversion in complex media, Geophysics, 64, 162–181.

Virieux, J. & Operto, S., 2009. An overview of full-waveform inversion in

exploration geophysics, Geophysics, 74, WCC1–WCC26.

Wang, S., Chen, F., Zhang, H. & Shen, Y., 2013. Reflection-based full

waveform inversion (RFWI) in the frequency domain, in Proceedings of

the SEG Technical Program, Expanded Abstracts 171, pp. 877–881.

Woodward, M. J., 1992. Wave-equation tomography, Geophysics, 57, 15–26.

Wu, R. & Toksz, M., 1987. Diffraction tomography and multisource holog-

raphy applied to seismic imaging, Geophysics, 52, 11–25.

Xu, S., Wang, D., Chen, F., Lambare, G. & Zhang, Y., 2012. Inversion on

reflected seismic wave, in Proceedings of the SEG Technical Program,

Expanded Abstracts 509, pp. 1–7.

Zuberi, M. & Alkhalifah, T., 2014. Frequency scaling for angle gath-

ers, in Proceedings of the 76th EAGE Conference and Exhibition, 76,

doi:10.3997/2214–4609.20141495.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
0
/1

/3
6
3
/7

4
4
9
7
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2


