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The scattering from a metal plane with a ridge is considered for the cases of plane
wave and line source illumination and both polarizations. Exact analytical results
are expressed using series that contain products of radial and angular Mathieu func-
tions. The exact analytical results are computed and compared with high-frequency
approximations and with measurements. 15
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Introduction

The diffraction of electromagnetic waves by an infinitely long metallic strip, or blade, of
finite height connected to a metallic ground plane and perpendicular to it is considered.
The primary source is a plane wave propagating in a direction perpendicular to the 20
edge of the strip and polarized with its electric field either parallel (E polarization) or
perpendicular (H polarization) to the edge, or an electric or magnetic line source parallel
to the edge. The resulting two-dimensional boundary-value problem is solved exactly in
terms of infinite series of products of radial and angular Mathieu functions. The total
field is written as the sum of three terms: the incident field, the field that would be 25
reflected by the metallic ground plane in the absence of the blade, and the scattered
field due to the presence of the blade; this last contribution obeys the two-dimensional
radiation condition and, for plane wave incidence, leads to an exact formula for the
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2 D. Erricolo et al.

radar cross section of the blade. The geometry of the problem is presented in the next
section, and the exact results for plane wave and line source incidence are reported in 30
the following sections. A high-frequency solution is proposed; it is developed in detail
for plane wave incidence. It consists of considering the edge of the blade as the edge
of a half-plane on which two fields are incident: the primary wave, and its image in the
ground plane. Each of these two waves is diffracted by the edge of the blade, and the
diffracted field reaches the observation point both directly and after reflection from the 35
ground plane. Thus, four separate diffraction mechanisms contribute to the scattered field
at the observation point. For plane wave incidence, each mechanism consists of the sum
of two terms, each the product of a Fresnel integral and an exponential. Since the blade is
of finite height, some reflected-field terms must be subtracted, depending on the position
of the observation point. This formulation takes into account the dihedral effect of the 40
blade/ground-plane corner, but does not account for the multiple interactions between
the blade’s edge and the blade/ground-plane corner; thus, it is expected to become a
better approximation as the ratio of blade height to wavelength increases. This high-
frequency result is simplified for the far backscattered field and compared with the exact
solution, whereas numerical results from the exact solutions are later compared to UTD 45
results, for line source incidence. In the case of line source incidence, some bistatic
results computed from the exact solutions for either polarization are also compared to
measurements performed in an anechoic chamber. In all cases, previously known results
are not repeated but may easily be found in the bibliography. In particular, a list of
references on scattering by a strip may be found in Bowman, Senior, and Uslenghi 50
(1987). The present work extends results presented by the authors (Uslenghi, Erricolo,
& Mioc, 2000; Rahman et al., 2005). The frequency-domain analysis is conducted with
a time-dependence factor exp(jωt), which is omitted throughout.

Geometry of the Problem

The cross section of the two-dimensional problem is shown in Figure 1. The axis x = 0 Figure 155
is a PEC plane and the blade OA is also a PEC. The points A and B are the foci of
an elliptic coordinate system and their distance is the focal distance d. The relationship
between elliptic cylinder and rectangular cartesian coordinates is

x = d

2
cosh u cos v, (1)

y = d

2
sinh u sin v, (2)

z = z, (3)

where

0 ≤ u < ∞, 0 ≤ v ≤ 2π. (4)

It is also convenient to introduce the variables (ξ, η, z) defined by 60

ξ = cosh u, η = cos v, (5)



Scattering by a Blade on a Metallic Plane 3

Figure 1. Q1Geometry of the problem: (a) plane wave incidence, (b) line source incidence.

where obviously ξ ≥ 1 and −1 ≤ η ≤ 1. The coordinate surfaces with constant ξ are
cylinders of elliptic cross section with foci at A and B. Coordinate surfaces with constant
η are hyperbolas with the same foci. Observe that, if ξ = 1, each value of η defines a
point (ξ, η) that falls on the segment of the x axis between the foci A and B. Similarly,
if η = 1(−1), each value of ξ > 1 defines a point on the segment of the x axis in the 65
interval x > d/2 (x < −d/2). The positive portion of the y axis corresponds to v = π/2,
and the negative portion, to v = −π/2. The formulas in subsequent sections contain the
dimensionless quantity

c = k
d

2
, (6)

where k is the wavenumber and d is the interfocal distance. The height of the blade OA =
d/2. The inverse transformation from cartesian coordinates (x, y) to elliptic coordinates 70
(ξ, η) is reported here for convenience:

ξ =
√

4(x2 + y2) + d2 + √
16(x2 + y2)2 + d4 − 8d2(x2 − y2)

2d2
(7)

and

η = 2x

dξ
. (8)

The notation for the Mathieu functions that are used in the following sections is that of
Stratton (1941).
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Plane Wave Incidence 75

E Polarization

The incident field may be written as

Ei
z = exp(jk(x cos ϕ0 + y sin ϕ0))

= √
8π

∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+ 1

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
. (9)

The total geometrical optics (incident plus reflected) field in the absence of the blade is

Ei
z + Er

z = √
8π

∞∑
m=0

jm

[
1 − (−1)m

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+ 1 + (−1)m

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
. (10)

The scattered field due to the presence of the blade that obeys the two-dimensional
radiation condition is written as 80

Es
z = √

8π
∞∑

m=0

jm

[
a
(e)
m

N
(e)
m

Re(4)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+ a
(o)
m

N
(o)
m

Ro(4)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
. (11)

The modal coefficients a
(e)
m and a

(o)
m are obtained by applying the boundary conditions

on the plane x = 0 and along the blade ξ = 1:

a
(e)
2l = a

(o)
2l = a

(o)
2l+1 = 0, (12)

a
(e)
2l+1 = −2

Re(1)
2l+1(c, 1)

Re(4)
2l+1(c, 1)

. (13)

Therefore, the perturbation field Es
z is given by Q2

Es
z = −j2

√
8π

∞∑
l=0

(−1)l

N
(e)
2l+1

Re(1)
2l+1(c, 1)

Re(4)
2l+1(c, 1)

× Re(4)
2l+1(c, ξ)Se2l+1(c, η)Se2l+1(c, cos ϕ0),

(14)
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and the normalized bistatic cross section (see Uslenghi [2004]) is

σE(ϕ)

λ
= 32π

∣∣∣∣∣
∞∑
l=0

Re(1)
2l+1(c, 1)

N
(e)
2l+1Re(4)

2l+1(c, 1)
Se2l+1(c, cos ϕ0)Se2l+1(c, cos ϕ)

∣∣∣∣∣
2

; (15)

in particular, for backscattering (ϕ = ϕ0): 85

σb.s.
E (ϕ)

λ
= 32π

∣∣∣∣∣
∞∑
l=0

Re(1)
2l+1(c, 1)

N
(e)
2l+1Re(4)

2l+1(c, 1)
(Se2l+1(c, cos ϕ0))

2

∣∣∣∣∣
2

. (16)

H Polarization

The incident field is

Hi
z = exp(jk(x cos ϕ0 + y sin ϕ0))

= √
8π

∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+ 1

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
. (17)

The total geometrical optics field (incident plus reflected) in the absence of the blade is

Hi
z + Hr

z = √
8π

∞∑
m=0

jm

[
1 + (−1)m

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+ 1 − (−1)m

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
. (18)

The perturbation field due to the presence of the blade, which obeys the two-dimensional
radiation condition, is written as 90

Hs
z = √

8π
∞∑

m=0

jm

[
b
(e)
m

N
(e)
m

Re(4)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+ b
(o)
m

N
(o)
m

Ro(4)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
. (19)

The modal coefficients b
(e)
m and b

(o)
m are obtained by applying the boundary conditions

on the plane x = 0 and along the blade ξ = 1:

b
(e)
2l = b

(e)
2l+1 = b

(e)
2l = 0, (20)

b
(o)
2l+1 = −2

Ro(1)′
2l+1(c, 1)

Ro(4)′
2l+1(c, 1)

. (21)
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Therefore, the perturbation field Hs
z is given by

Hs
z = −j2

√
8π

∞∑
l=0

(−1)lRo(1)′
2l+1(c, 1)

N
(o)
2l+1Ro(4)′

2l+1(c, 1)

× Ro(4)
2l+1(c, ξ)So2l+1(c, η)So2l+1(c, cos ϕ0),

(22)

and the normalized bistatic cross section is given by

σH (ϕ)

λ
= 32π

∣∣∣∣∣
∞∑
l=0

Ro(1)′
2l+1(c, 1)

N
(o)
2l+1Ro(4)′

2l+1(c, 1)
So2l+1(c, cos ϕ0)So2l+1(c, cos ϕ)

∣∣∣∣∣
2

; (23)

in particular, for backscattering (ϕ = ϕ0): 95

σb.s.
H (ϕ)

λ
= 32π

∣∣∣∣∣
∞∑
l=0

Ro(1)′
2l+1(c, 1)

N
(o)
2L+1Ro(4)′

2l+1(c, 1)
(So2l+1(c, cos ϕ0))

2

∣∣∣∣∣
2

. (24)

Line Source Incidence

E Polarization

Consider a line source parallel to the z-axis and located at the elliptic coordinates
(ξ0, η0) = (u0, v0) = (x0, y0), whose primary electric field is

Ei = ẑEi
z = ẑH

(2)
0 (kR), (25)

where 100

R =
√

(x − x0)2 + (y − y0)2 (26)

is the distance between the line source and the observation point (x, y) ≡ (u, v) ≡ (ξ, η).
The incident field may be expanded in a series of elliptic cylinder functions (Bowman,
Senior, & Uslenghi, 1987):

Ei
z = H

(2)
0 (kr) = 4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, ξ<)Re(4)

m (c, ξ>)Sem(c, η0)Sem(c, η)

+ 1

N
(o)
m

Ro(1)
m (c, ξ<)Ro(4)

m (c, ξ>)Som(c, η0)Som(c, η)

]
, (27)

where ξ<(ξ>) means the smaller (larger) between ξo and ξ . Initially, one assumes that the
ridge is absent so that the reflected field is given by an expression similar to (27), where 105
the image of the source is located at (−x0, y0) ≡ (u0, π − v0), as shown in Figure 1.
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The total geometrical optics (incident plus reflected) field is

Ei
z + Er

z = 8
∞∑
l=0

[
Re(1)

2l+1(c, ξ<)Re(4)
2l+1(c, ξ>)

N
(e)
2l+1

Se2l+1(c, η0)Se2l+1(c, η)

+ Ro(1)
2l (c, ξ<)Ro(4)

2l (c, ξ>)

N
(o)
2l

So2l (c, η0)So2l (c, η)

]
. (28)

With the ridge present, the total field is given by

Ez = Ei
z + Er

z + Es
z, (29)

where the scattered field Es
z represents a perturbation to the geometrical optics field (28)

and is written as 110

Es
z = 8

∞∑
l=0

[
A

(e)
2l+1

N
(e)
2l+1

Re(4)
2l+1(c, ξ)Se2l+1(c, η0)Se2l+1(c, η)

+ A
(o)
2l

N
(o)
m

Ro(4)
2l (c, ξ)So2l (c, η0)So2l (c, η)

]
.

(30)

The modal coefficients A
(e)
2l+1 and A

(o)
2l are obtained by applying the boundary conditions

along the metal surfaces using the properties reported in Uslenghi (2004) and Erricolo
and Uslenghi (2004), which yield

A
(e)
2l+1 = −Re(1)

2l+1(c, 1)Re(4)
2l+1(c, ξ0)

Re(4)
2l+1(c, 1)

, (31)

A
(o)
2l = 0. (32)

H Polarization

The incident field is given by 115

Hi
z = H

(2)
0 (kr) =

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, ξ<)Re(4)

m (c, ξ>)Sem(c, η0)Sem(c, η)

+ 1

N
(o)
m

Ro(1)
m (c, ξ<)Ro(4)

m (c, ξ>)Som(c, η0)Som(c, η)

]
. (33)

Assuming that the ridge is absent, the application of the method of images yields
the following expression for the total geometrical optics field:

Hi
z + Hr

z = 8
∞∑
l=0

[
Re(1)

2l (c, ξ<)Re(4)
2l (c, ξ>)

N
(e)
2l

Se2l (c, η0)Se2l (c, η)

+ Ro(1)
2l+1(c, ξ<)Ro(4)

2l+1(c, ξ>)

N
(o)
2l+1

So2l+1(c, η0)So2l+1(c, η)

]
. (34)
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With the ridge present, the total field is given by

Hz = Hi
z + Hr

z + Hs
z , (35)

where the scattered field Hs
z represents a perturbation to the geometrical optics field (34)

and is written as 120

Hs
z = 8

∞∑
l=0

[
B

(e)
2l

N
(e)
2l

Re(4)
2l (c, ξ)Se2l (c, η0)Se2l (c, η)

+ B
(o)
2l+1

N
(o)
2l+1

Ro(4)
2l+1(c, ξ)So2l+1(c, η0)So2l+1(c, η)

]
.

(36)

The application of the boundary conditions leads to

B
(e)
2l = 0, (37)

B
(o)
2l+1 = −Ro(1)′

2l+1(c, 1)Ro(4)
2l+1(c, ξ0)

Ro(4)′
2l+1(c, 1)

(38)

Comparison with High-Frequency Approximations

The exact results derived in the previous sections are evaluated using subroutines de-
scribed in Zhang and Jin (1996) and the acceleration technique presented in Erricolo
(2003). 125

A high-frequency approximation for the field scattered by the blade in the presence of
the ground plane is obtained assuming that the ground plane is removed, thus leaving the
strip AB shown in Figure 1. The total field is computed considering the incident field, its
image with respect to the initial location of the ground plane, and the single diffraction
contributions from the edges of the strip. The diffraction by each edge is evaluated 130
by taking the exact scattering by a PEC half-plane and then inserting the asymptotic
approximations for the Fresnel integrals. As such, it is a first-order high-frequency result
that does not take into account the interaction between the edges. Hence, the approximated
expression for the backscattered electric field is

Eb.s.
z ≈ exp(−jkρ + jπ/4)√

2πkρ
{exp(−j2c cos ϕ0)[2c sin ϕ0 + CE(c, ϕ0)]}, (39)

where 135

CE(c, ϕ0) = j cos(2c cos ϕ0) −
[

sin(2c cos ϕ0)

cos ϕ0
+ j

sin ϕ0

]
. (40)

The approximated monostatic radar cross section is

σb.s.
E

λ
= 1

2π
|2c sin ϕ0 + CE(c, ϕ0)|2. (41)
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Figure 2 shows the comparison between the exact result given in (16) and the high- Figure 2
frequency result given in (41). Only values of ϕ0 that satisfy 100 < ϕ0 < 800 are
considered because the approximation (41) requires

√
2kρ

{
sin
cos

}
ϕ0 � 1, (42)

√
2kρ sin ϕ0 � 1. One observes that for small values of c the difference between the two 140

curves is as large as approximately 15 dB, while the agreement significantly improves
for larger values of c.

It is also possible to obtain an approximated expression in the case of H polarization.
The result for the backscattered magnetic field is

Hb.s.
z ≈ exp(−jkρ + jπ/4)√

2πkρ
{exp(−j2c cos ϕ0)[2c sin ϕ0 + CH(c, ϕ0)}, (43)

where 145

CH(c, ϕ0) = j cos(2c cos ϕ0) +
[

sin(2c cos ϕ0)

cos ϕ0
+ j

sin ϕ0

]
. (44)

Figure 2. Comparison of the monostatic RCS, in dB, computed using the exact analytical for-
mula (16) and the high-frequency approximation (41) for an E-polarized incident plane wave. The
solid lines correspond to the exact solution, while the dashed lines represent the high-frequency
approximation.
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The approximated monostatic radar cross section is

σb.s.
H

λ
= 1

2π
|2c sin ϕ0 + CH(c, ϕ0)|2. (45)

Figure 3 shows the comparison between the exact result (24) and the approximate result Figure 3
(45). In the case of H polarization, the discrepancy between the approximated (45) and
exact (24) results is larger than for the corresponding values of c in the case of E
polarization. This may be due to a traveling wave between the edges that is present for 150
H polarization but not for E polarization. However, as expected, the agreement improves
for larger values of c.

Comparison with the Uniform Theory of Diffraction

The exact total fields given by (29) and (35) for the E and H polarizations, respectively,
are approximated using the uniform theory of diffraction (UTD) (Kouyoumjan & Pathak, 155
1974; Balanis, 1989). Similar to the high-frequency approximation of the previous section,
the UTD approximation is obtained by removing the metal plane x = 0, introducing the
image OB of the segment OA and the image of the source. As a result, the contribution
of the source towards the observation point will consist of two diffracted rays and, if a

Figure 3. Comparison of the monostatic RCS, in dB, computed using the exact analytical formula
(24) and the high-frequency approximation (45) for an H-polarized incident plane wave. The
solid lines correspond to the exact solution, while the dashed lines represent the high-frequency
approximation.



Scattering by a Blade on a Metallic Plane 11

Figure 4. Q3Geometry of the problem without the PEC plane. This figure only shows the contribution
from the original source, but another set of three rays needs to be considered to account for the
total field.

line of sight exists, a direct ray, as shown in Figure 4. A similar set of rays must also be Figure 4160
considered for the image of the source.

Figure 5 shows the results for the comparison when the incidence is an E-polarized Figure 5
plane wave. The curves for the exact and UTD results overlap for the values considered
for c along the observation segment that is located close to the blade at a distance of
only one wavelength; in fact, a small difference is noticeable only when c is quite small, 165
as in Figure 5a.

Figure 6 shows the results for line source incidence and E polarization. In all three Figure 6
cases, the agreement between the exact theory and the high-frequency method is very
good. In fact, one can hardly recognize that for each value of c two curves are actually
overlapped, even though the distances among source, ridge, and observation point are 170
only a few wavelengths.

Figure 7 shows the results for line source incidence and H polarization. Unlike the Figure 7
case of E polarization, it is possible to observe the difference between the solid and dashed
line. This difference is particularly noticeable for the case c = 1, which corresponds to
a ridge that is shorter than one wavelength. When the value of c increases, the UTD 175
approximation provides results that are closer to the exact ones.

Comparison with Measurements

Experiments were also conducted to compare the theoretical results given by (29) and
(35) with measurements. The measurements were taken in the anechoic room at the
University of Illinois at Chicago and the antennas used in the experiments were the same
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Figure 5. E-polarized plane wave incident at an angle ϕ0 = 750. The total normalized field |Ez|
is computed along the line (0 ≤ x ≤ 10λ, y = −λ). The results correspond to: (a) c = 2π/10;
(b) c = 2π ; and c = 20.

used for the experiments described in Erricolo, D’Elia, and Uslenghi (2002) and Erricolo, 180
Crovella, and Uslenghi (2002). Figure 8 shows the results for the E-polarization case. Figure 8
One can observe a very good agreement when the distance of the observation point from
the ground plane exceeds approximately 12λ. When the observation point is closer to
the the ground plane the agreement is not so good and this behavior is attributed to an
interaction between the antenna used in the experiment and the metallic plane. Similar 185
observations apply to Figure 9. Figure 9
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Figure 6. E polarization. Total normalized field |Ez| due to a line source located at (x0 = λ/2,
y0 = 4λ) when the observation point moves along the line (0 ≤ x ≤ 10λ, y = −10λ). The
solid lines represent the exact results, while the dashed lines represent the UTD approximation.
Because of the close agreement between the exact results and the UTD approximation, the two
sets of curves overlap very well and it is hardly noticeable any difference. The computed results
correspond to: (1) c = 1; (2) c = π ; and (3) c = 9.

Figure 7. H polarization. Total normalized field Hz due to a line source located at (x0 = λ/2,
y0 = 4λ) when the observation point moves along the line (0 ≤ x ≤ 10λ, y = −10λ). The solid
lines represent the exact results, while the dashed lines represent the UTD approximation. The
computed results correspond to: (1) c = 1; (2) c = π ; and (3) c = 9.
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Figure 8. E polarization. Normalized value of the total field |Ez| due to a line source located
at (x0 = 6.25λ, y0 = 115λ) when the observation point moves along the line (0 ≤ x ≤ 46λ,
y = −114.17λ). The solid line represents the exact results, while the dashed line represents the
measurements. These results correspond to c = 52.

Figure 9. H polarization. Normalized value of the total field |Hz| due to a line source located
at (x0 = 6.25λ, y0 = 115λ) when the observation point moves along the line (0 ≤ x ≤ 42λ,
y = −114.17λ). The solid line represents the exact results, while the dashed lines represent the
measurements. These results correspond to c = 52.
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Conclusion

The results obtained in this work are important because they present exact solutions to a
new boundary value problem, thus enriching the list of geometries for known canonical
solutions. Other exact solutions to new boundary value problems have been presented in 190
Uslenghi (2004) and Erricolo and Uslenghi (2004). Additionally, the comparisons with
high-frequency approximations and measurements confirm the validity of the theoretical
predictions. We could have introduced higher order terms in the high-frequency approx-
imations; however, we wanted to show that the first-order terms can provide accurate
results, even with relatively small values of c. 195

It should be noted that the results obtained in this work can also be derived from
the results for a PEC strip, in free space, by utilizing the method of images.
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