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We describe a unified classical approach for analyzing the scattering coefficients of superconducting
microwave resonators with a variety of geometries. To fill the gap between experiment and
theory, we also consider the influences of small circuit asymmetry and the finite length of the
feedlines, and describe a procedure to correct them in typical measurement results. We show
that, similar to the transmission coefficient of a hanger-type resonator, the reflection coefficient
of a necklace- or bridge-type resonator does also contain a reference point which can be used to
characterize the electrical properties of a microwave resonator in a single step. Our results provide
a comprehensive understanding of superconducting microwave resonators from the design concepts
to the characterization details.

I. INTRODUCTION

Superconducting microwave resonators are
indispensable components in superconducting quantum
circuits [1]. Owing to the high flexibility of circuit
design, the resonators can be made and coupled to other
components, or an external circuitry, in various ways
with different emphases [2]. For example, a necklace-type
resonator, where the feedline(s) and the resonator are
coupled end-to-end, is often used to control and couple
different qubits [3–16], while a hanger-type resonator,
where one end of the bare resonator is coupled to either
side of the feedline, is more common for reading out
the quantum information [17–28]. Depending on the
detailed geometry of the circuit designs, the scattering
coefficients of superconducting microwave resonators
may show fundamentally different line shapes that carry
the information of different physical processes. However,
relevant discussions are either focused on the hanger-
type λ/4 resonators or restricted to the transmission
coefficient solely [29–38]. A comprehensive study of
the scattering coefficients, especially on the reflection
coefficient of necklace-type resonators, is still missing
in the literature. As a consequence, it is well known
that a hanger-type λ/4 resonator can be characterized
by measuring only the transmission coefficient, which
contains a reference point that distinguishes the internal
and coupling quality factors from the line shape [39–43].
However, to date one still has to combine transmission
measurements with either detailed cable calibration or
finite-element simulations to characterize a necklace-
type resonator [44–49]. This complexity limits not only
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the reliability of the characterization results but also
the applicability of the necklace-type resonators to a
complex circuit.

Here, and also in a parallel paper [50], we study
the scattering coefficients of superconducting microwave
resonators in either classical or quantum perspectives.
In this work, we employ the transfer-matrix method
in microwave engineering and derive the analytical
descriptions of the scattering coefficients for a general
resonator [51]. We also explore the physical origin of
the line-shape distortions that are commonly seen in
experiments, and describe a procedure to remove these
effects. Finally, we experimentally demonstrate that
the reflection coefficient of a necklace-type resonator
does contain a reference point, which can be used to
correct the experimental imperfections and characterize
the electric properties of the resonator. These results
provide a systematic study of the scattering coefficients
of superconducting microwave resonators in the classical
perspective.

The rest of this paper is organized as follows: In Sec. II,
we introduce the circuit diagrams of different types
of superconducting microwave resonators, and review
their electrical properties such as resonant frequency
and quality factors. Next, we outline the transfer-
matrix method and derive the ideal scattering coefficients
of different resonators in Sec. III. We study how the
circuit asymmetries and the finite length of the feedlines
can influence the measured scattering coefficients in
Sec. IV, and obtain a general description of the scattering
response. We demonstrate these results in an experiment
in Sec. V, and, finally, we conclude this study in
Sec. VI. Detailed derivations of the scattering coefficients
for different types of resonators can be found in
Appendices A-E. The detailed procedure for correcting
the experimental imperfections in measured scattering
coefficients is described in Appendix F
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FIG. 1. Schematics of several different microwave resonators.
(a) In lumped-element circuits, the series (left) and parallel
(right) RLC resonant circuits are the two fundamental types
of microwave resonators. (b) In distributed-element circuits,
there are three types of transmission line resonators: the
short-circuited λ/4 (left), the short-circuited λ/2 (middle),
and the open-circuited λ/2 (right) resonators. (c) Microwave
resonators can also be made by bulky 3D devices, which can
be modeled by a short-circuited λ/2 (left) or a short-circuited
λ/4 (right) transmission line resonator. In all the panels, red
and green vectors depict the special modes of the resonator,
which are determined by the boundary conditions.

II. CIRCUIT DESCRIPTION OF MICROWAVE
RESONATORS

In lumped-element circuits, there are two fundamental
types of circuit diagrams that can be modeled as a
zero-dimensional microwave resonator. As schematically
shown in Fig. 1(a), the first one is called the series RLC
resonator, which has an input impedance of

Zs = R+ jωL+
1

jωC
. (1)

Here, R, L, and C are the resistance, inductance, and
capacitance of the circuit, j is the imaginary unit that
follows the convention of electrical engineering. The
resonance occurs at Im (Zs) = 0, which corresponds to a

resonant frequency ω0 = 1/
√
LC and a (internal) quality

factor Qi = ω0L/R = 1/ (ω0RC) [51]. The second one,
as shown in Fig. 1(b), is called the parallel RLC resonator
with an input impedance of

Zp =

(
1

R
+

1

jωL
+ jωC

)−1

. (2)

Similarly, one can calculate the resonance frequency and
the (internal) quality factor as ω0 = 1/

√
LC and Qi =

R/ (ω0L) = ω0RC, respectively [51].
In comparison, a finite length of transmission line with

proper boundary conditions can also be described as
a microwave resonator in one dimensional. Depending
on the load impedance ZL and the length l, the input
impedance of a transmission line, when looking towards
one end, can be written as [51]

Z(l) = Z0
ZL + Z0 tanh γl

Z0 + ZL tanh γl
. (3)

Here, γ = α+ jβ is the complex propagation constant of
the microwave field, Z0 is the characteristic impedance of
the transmission line. By assuming a small damping rate
of the transmission line, i.e., αl � 1, and confining our
discussion in a small frequency range around the resonant
frequency, i.e., |∆| � ω0 with ∆ = ω − ω0, one can get
three types of microwave resonators as shown in Fig. 1(b).
They are (i) the short-circuited λ/4 resonator with

Zλ/4 =
Z0

αl + jπ∆/2ω0
andω0 =

πvp

2l
, (4)

(ii) the short-circuited λ/2 resonator with

Z
(short)
λ/2 = Z0 (αl + jπ∆/ω0) andω0 =

πvp

l
, (5)

and (iii) the open-circuited λ/2 resonator with

Z
(open)
λ/2 =

Z0

αl + jπ∆/ω0
andω0 =

πvp

l
. (6)

Here, vp = ω/β is the phase velocity of the propagating
microwave field in the transmission line.

Comparing these results with the two lumped-element
resonators, we observe that the short-circuited λ/4
resonator and the open-circuited λ/2 resonator are
equivalent to a parallel RLC resonator with R =
Z0/(αl), L = 1/

(
ω2

0C
)
, and C = π/(4ω0Z0) or

C = π/(2ω0Z0), respectively. The short-circuited λ/2
resonator is equivalent to a series RLC resonator with
R = Z0αl, L = πZ0/(2ω0), and C = 1/(ω2

0L). However,
the (internal) quality factor has the same definition for
all the three resonators: Qi = β/(2α), where β = 2π/λ.

The above discussions also apply to 3D microwave
resonators as shown in Fig. 1(c), which attract an
increasing amount of interests during the past decades for
their superior quality factors. The inner surface of a 3D
resonator naturally defines the nodes of the spacial modes
of the electrical field, while the anti-nodes are located
either at the anti-nodes of the standing waves inside the
cavity [52–62], or at the top of a λ/4-long waveguide lead
standing inside the inner space [63–66]. If the electrical
fields can be fairly described as one-dimensional functions
of the coordinator, the two types of 3D resonators can
be equivalently described by a shorted-circuited λ/2
or a shorted-circuited λ/4 transmission line resonator,
respectively. In this regard, we do not distinguish
coplanar waveguide resonators and 3D resonators in
the current discussion. A careful distinction may be
necessary when studying exotic resonator designs, for
example, the 2D resonators introduced in Refs. [67, 68].

III. IDEAL SCATTERING COEFFICIENTS OF
MICROWAVE RESONATORS

To measure the electrical properties of a microwave
resonator, such as the resonant frequency and the quality
factor, one has to couple it to an external circuitry,
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FIG. 2. Schematics of three typical resonator designs and the
corresponding circuit diagrams. They are (a) the hanger-type
λ/4 resonator, (b) the necklace-type λ/2 resonator, and (c)
the bridge-type λ/2 resonator. In all the panels, we denote
l1 and l2 as the lengths of the feedlines that couple to the
resonator, C1 and C2 the coupling capacitors, and ∆Z1 and
∆Z2 the asymmetries that may exist in the circuit. Without
loss of generality, we label the left and right ports by 1 and 2.

called the load, and measure the scattering coefficients,
as schematically shown in Fig. 2(a)-(c). However, the
coupling also leads to an inevitable change of the electric
properties to be measured. By convention, we define the
loaded quality factor, Ql, as a combination of two terms
[51]

1

Ql
=

1

Qi
+

1

Qc
. (7)

Here, Qc is defined as the coupling quality factor
which describes the power-loss ratio induced by the
external circuity, Qi is the internal quality factor that
characterizes the bare resonator loss. In this section, we
study the ideal scattering coefficients of three types of
resonators that are commonly seen in superconducting
quantum circuits. We assume zero-length transmission
feedlines, i.e., l1, l2 = 0 and zero circuit asymmetries,
∆Z1,∆Z2 = 0 for now for simplicity.

A. The hanger-type λ/4 resonator

The hanger-type λ/4 resonator is a short-circuited
transmission line with one end shorted to ground and the
other side-coupled to a one-dimensional waveguide. The
schematic of this resonator is shown in Fig. 2(a), where
we define the coupling capacitance as C1, and label the
left and right ports as port 1 and 2, respectively. The
elements of the transfer matrix read A = D = 1, B = 0,

and C = 1/Z with Z = 1/jωC1 + Zλ/4. Following
the standard procedure, the scattering coefficients can
be readily calculated with the following relations [51]

S11 =
A+B/Z0 − CZ0 −D
A+B/Z0 + CZ0 +D

, (8)

S12 =
2(AD −BC)

A+B/Z0 + CZ0 +D
, (9)

S21 =
2

A+B/Z0 + CZ0 +D
, (10)

S22 =
−A+B/Z0 − CZ0 +D

A+B/Z0 + CZ0 +D
. (11)

To simplify the expressions, let us consider first a
lossless resonator. Knowing that the resonance occurs
at Im (Z) = 0, we can calculate the resonant frequency
as

ωr ≈ ω0 −
2Z0C1ω

2
0

π
. (12)

This result still holds for lossy resonators as long as Qi �√
Qc, where

Qc =
π

2ω2
rZ

2
0C

2
1

. (13)

This relation is valid for typical experimental situations
in superconducting quantum circuits. In this regard, we
rewrite the input impedance of the vertical branch close
to the resonant frequency as Z ≈ Z0Qc [1/ (2Qi) + jδ]
with δ = (ω − ωr) /ωr. Inserting this result in Eqs. (8)-
(11), we obtain the scattering coefficients as

S11 = S22 ≈−
Ql/Qc

1 + j2Qlδ
, (14)

S21 = S12 ≈1− Ql/Qc

1 + j2Qlδ
. (15)

The physical meaning of the parameter, Qc, can
be understood in the perspective of the Norton’s
equivalent lumped-element circuit [69–73]. Assuming
that ω0C1Z0 � 1, the loaded quality factor can be
written as

Ql = ωrC

(
1

R
+
ω2

rZ0C
2
1

2

)−1

. (16)

For λ/4 resonators, we have ωrC ≈ π/4Z0, such that the
coupling quality factor is Qc = π/

(
2Z2

0ω
2
rC

2
1

)
. Thus,

the parameter Qc defined in Eq. (13) can be interpreted
as the coupling quality factor of a hanger-type λ/4
resonator, as is indicated in the notation.

The above discussion can also be generalized to a
hanger-type λ/2 resonator. If one neglects the coupling
between the open-end of the resonator and the ground
plane, the scattering coefficients of a hanger-type λ/2
resonator are exactly the same with those of a hanger-
type λ/4 resonator, as shown in Eqs. (14)-(15). However,



4

the resonant frequency, ωr ≈ ω0 − Z0C1ω
2
0/π, and the

coupling quality factor, Qc = π/
(
ω2

rZ
2
0C

2
1

)
, are defined

differently from those of an λ/4 resonator.
As a crosscheck of the above results, we compare in

Fig. 3(a) the analytical formulae with the numerically
simulated scattering coefficients of a hanger-type λ/4
resonator. Here, the parameters are chosen such that
ω0 = 2π× 6.75 GHz, Qi = 31416 for a bare resonator. In
the presence of the coupling, the analytical expressions
in Eqs. 14-(15) predict the resonant frequency, ωr =
2π × 6.659 GHz, and the quality factors, Qc = 3589,
Ql = 3221. These values exhibit an excellent fit to the
numerical simulation results.

B. The necklace-type λ/2 resonator

The necklace-type resonator, as schematically shown in
Fig. 2(b), consists of an open-circuited transmission line
which is capacitively coupled to two feedlines through the
capacitors, C1 and C2, at the two ends, respectively. The
elements of the transfer matrix of the coupling capacitors
read A = D = 1, B = 1/jωC1 or 1/jωC2, and C = 0.
They are A = D = cosh γl, B = Z0 sinh γl, and C =
(1/Z0) sinh γl for a bare open-circuited λ/2 resonator.
Following a similar treatment as for the hanger-type
resonators, we obtain the scattering coefficients as (see
Appendix A for details)

S11 ≈1− 2Ql/Qc,1

1 + j2Qlδ
, (17)

S21 =S12 ≈
2Ql/

√
Qc,1Qc,2

1 + j2Qlδ
, (18)

S22 ≈1− 2Ql/Qc,2

1 + j2Qlδ
. (19)

Here, 1/Qc = 1/Qc,1 + 1/Qc,2 with

Qc,k =
π

2ω2
rZ

2
0C

2
k

, k = 1, 2. (20)

The resonant frequency is

ωr = ω0 −
Z0 (C1 + C2)ω2

0

π
. (21)

The physical meaning of the parameter, Qc, can
also be understood in the perspective of the Norton’s
equivalent lumped-element circuit [74, 75]. Assuming
that ω0C1Z0, ω0C2Z0 � 1, the loaded quality factor
reads

Ql = ωrC

(
1

R
+ ω2

rZ0C
2
1 + ω2

rZ0C
2
2

)−1

, (22)

where ωrC = π/2Z0 for a λ/2 resonator. In this regard,
the coupling quality factor can be written as

1

Qc
=

2ω2
rZ

2
0C

2
1

π
+

2ω2
rZ

2
0C

2
2

π
, (23)

which is exactly the sum of the two parameters 1/Qc,1

and 1/Qc,2 defined in Eq. (20).
The above discussion can also be generalized to a

necklace-type λ/4 resonator, which is a single-port device
with only the reflection coefficient shown in Eq. (17).
The resonant frequency and the coupling quality factor
are ωr ≈ ω0 − 2Z0C1ω

2
0/π and Qc = π/

(
4ω2

rZ
2
0C

2
1

)
,

respectively. We note that the transmission coefficient,
S21 in Eq. (18), is consistent with the results reported
in the literature [44, 45]. However, the reflection
coefficients, S11 and S22 in Eqs. (17) and (19), have
not been reported but have an important feature:
The complex scattering coefficients form a circle which
intersects with the real axis at a fixed point, (1 + j0),
for δ → ∞. The circle radius, rc, equals to Ql/ (2Qc)
for C1 = C2. When C1 6= C2, the circle radii should
be Ql/Qc,1 and Ql/Qc,2 for S11 and S22, respectively.
These results are similar to the transmission coefficients
of a hanger-type resonator.

We also compare the analytical formulae with
the numerically simulated scattering coefficients of a
necklace-type λ/2 resonator, as shown in Fig. 3(b). Here,
the parameters are set identical to Fig. 3(a) except that
the length of the transmission line is doubled. In the
presence of a finite coupling, the analytical expressions
in Eqs. (17)-(19) predict the resonant frequency, ωr =
2π × 6.659 GHz, and the quality factors Qc = 1795,
Ql = 1698. These values are in excellent agreement
with those obtain by the numerical simulation. We
note that for the same λ/2 resonator coupled in either
hanger- or necklace-type, the coupling quality factors can
show a huge difference. For example, a hanger-type λ/2
resonator will lead to Qc = 7082, which is 4 times larger
than that of a necklace-type resonator. In this regard,
we may conclude that a necklace-type resonator is more
suitable for driving a quantum system or reading out the
quantum information, while a hanger-type resonator for
storing quantum information.

C. The bridge-type λ/2 resonator

There is a third type of superconducting microwave
resonator which is rare in coplanar waveguide designs
but common in 3D structures. The schematic
is shown in Fig. 2(c), where the two ends of the
feedlines are coupled to the voltage anti-nodes of
the bare resonator. Here, we restrict our discussion
to the fundamental mode and figuratively name it
a bridge-type λ/2 resonator. The circuit diagram
is a combination of the hanger- and necklace-type
resonators, which consists of two coupling capacitors,
C1 and C2, and also two parallel short-circuited λ/4
resonators in the vertical branch. The elements of
the transfer matrix read A = 1 + 2/

(
jωC1Zλ/4

)
,

B = −
[
jω (C1 + C2)Zλ/4 + 2

]
/
(
ω2C1C2Zλ/4

)
, C =

2/Zλ/4, and D = 1 + 2/
(
jωC2Zλ/4

)
. The scattering

coefficients can be readily obtained by following the
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(a)

(b)

(c)

FIG. 3. Simulated scattering coefficients of the three types
of microwave resonators shown in Fig. 2. They are (a)
the hanger-type λ/4 resonator, (b) the necklace-type λ/2
resonator, and (c) the bridge-type λ/2 resonator. In all the
panels, the the black dashed curves represent the analytical
results. They fit closely to the red and green curves, which
are the numerical results calculated by using the transfer
matrices.

standard procedure (see Appendix B for details)

S11 ≈1− 2Ql/Qc,1

1 + j2Qlδ
, (24)

S21 =S12 ≈ −
2Ql/

√
Qc,1Qc,2

1 + j2Qlδ
, (25)

S22 ≈1− 2Ql/Qc,2

1 + j2Qlδ
, (26)

where 1/Qc = 1/Qc,1 + 1/Qc,2 with

Qc,k =
π

2ω2
rZ

2
0C

2
k

, k = 1, 2. (27)

The resonance occurs at

ωr = ω0 −
Z0ω

2
0 (C1 + C2)

π
. (28)

Comparing with Eqs. (17)-(19), the scattering
coefficients of a bridge-type resonator have an almost

identical form as for the necklace-type resonator except
a π phase difference in the transmission coefficients, S12

and S21. We also compare in Fig. 3(c) the analytical
formulae with the numerically simulated scattering
coefficients of a bridge-type λ/2 resonator. Here,
the parameters are set identical to Fig. 3(b). In the
presence of a finite coupling, the analytical expressions
in Eqs. (24)-(25) predict the resonant frequency,
ωr = 2π× 6.659 GHz, and the quality factors Qc = 1795,
Ql = 1698. These values are identical to those of a
necklace-type λ/2 resonator.

IV. PRACTICAL DISTORTIONS IN
SCATTERING COEFFICIENTS

A. Influence of small circuit asymmetry

In contrast to the ideal circuits we described above,
asymmetries often exist in real circuits in the form of
mutual inductance [40], impedance mismatch [41], etc. In
this section, we keep the zero-length feedline assumption
but study the influence of a small circuit asymmetry on
the scattering coefficients.

1. Hanger-type resonators

As is schematically shown in Fig. 2(a), we consider
small circuit asymmetries, ∆Z1,∆Z2 � Z0, on both
sides of the ideal system. The elements of the transfer
matrix with asymmetry can be written as A = 1 +
∆Z1/Z, B = ∆Z1 + ∆Z2 + ∆Z1∆Z2/Z, C = 1/Z,
D = 1+∆Z2/Z. Following the derivation in Appendix C,
we obtain the scattering coefficients as

S11 ≈−
Q′l/Q

′
c

1 + j2Qlδ
, (29)

S21 = S12 ≈1− Q′l/Q
′
c

1 + j2Q′lδ
, (30)

S22 ≈−
Q′l/Q

′
c

1 + j2Qlδ
. (31)

Because of the asymmetry, the loaded quality factor
becomes 1/Q′l = 1/Qi + 1/Q′c, where Q′c =
QcZ0 (1/Z1 + 1/Z2) /2 with Z1 = Z0 + ∆Z1 and Z2 =
Z0 + ∆Z2. In this regard, both Q′l and Q′c can take
complex values which indicate a loss mechanism different
from a simple exponential energy decay. However, for
small circuit asymmetries the real parts of Z1 and Z2

should still be dominant. We follow the convention and
redefine the loaded quality factor as 1/Q′l = 1/Qi +
Re (1/Q′c) [40, 41]. The information of the imaginary
part, Im (1/Q′c), is interpreted as a small phase factor φ =
− arctan [Im (Q′c) /Re (Q′c)], which rotates the ideal circle
by ejφ. With this definition, we obtain the following
scattering coefficients in the presence of a small circuit
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asymmetry

S11 ≈−
ejφQ′l/|Q′c|
1 + j2Q′lδ

, (32)

S21 = S12 ≈1− ejφQ′l/|Q′c|
1 + j2Q′lδ

, (33)

S22 ≈−
ejφQ′l/|Q′c|
1 + j2Q′lδ

. (34)

In what follows, we denote the expression of Q′l and
Re (Q′c) as the formal definition of loaded and coupling
quality factors, and do not distinguish their notations
from Ql and Qc.

2. Necklace- and bridge-type resonators

For the necklace-type resonator shown in Fig. 2(b), the
elements of the transfer matrix with asymmetry can be
written as

A =A0 + sinh γl

(
∆Z1

Z0

)
,

B =B0 + sinh γl

(
∆Z1∆Z2

Z0
+

∆Z1

jωC2Z0
+

∆Z2

jωC1Z0

)
+ cosh γl (∆Z1 + ∆Z2) ,

C =C0,

D =D0 + sinh γl

(
∆Z2

Z0

)
,

where we denote the transfer matrix elements of the
symmetric necklace-type resonator as A0, B0, C0, and
D0. Following the derivation in Appendix D and using
the conventional definition 1/Q′l = 1/Qi + Re (1/Q′c), we
obtain the scattering coefficients as

S11 ≈1−
ejφ12Q′l/

∣∣Q′c,1∣∣
1 + j2Q′lδ

, (35)

S21 = S12 ≈
ejφ2Q′l/

√∣∣Q′c,1∣∣ ∣∣Q′c,2∣∣
1 + j2Q′lδ

, (36)

S22 ≈1−
ejφ22Q′l/

∣∣Q′c,2∣∣
1 + j2Q′lδ

. (37)

Here, the coupling quality factor is defined as 1/Q′c =
1/Q′c,1 + 1/Q′c,2 with Q′c,1 = Qc,1Z0/Z1 and Q′c,2 =
Qc,2Z0/Z2. The corresponding phases are φ =
(φ1 + φ2) /2, φ1 = − arctan

[
Im
(
Q′c,1

)
/Re

(
Q′c,1

)]
, and

φ2 = − arctan
[
Im
(
Q′c,2

)
/Re

(
Q′c,2

)]
.

The above results apply also to a bridge-type
resonator, as shown in Fig. 2(c), but with a π phase
difference in the transmission coefficients. The scattering

coefficients read (see Appendix E for details)

S11 ≈1−
ejφ12Q′l/

∣∣Q′c,1∣∣
1 + j2Q′lδ

, (38)

S21 = S12 ≈−
ejφ2Q′l/

√∣∣Q′c,1∣∣ ∣∣Q′c,2∣∣
1 + j2Q′lδ

, , (39)

S22 ≈1−
ejφ22Q′l/

∣∣Q′c,2∣∣
1 + j2Q′lδ

. (40)

In these regards, we conclude that a small circuit
asymmetry leads to a small rotation of the ideal
scattering-response circle in the complex plane. For the
transmission coefficients of a hanger-type resonator or
the reflection coefficients of a necklace- or bridge-type
resonator, this rotation is centered at the reference point
(1 + j0) with an angle φ. This property can be used to
correct for distortions caused by the circuit asymmetry
in the measured scattering coefficients.

In common experiments of superconducting quantum
circuits, φ is often a small value such that our assumption
of a small circuit asymmetry is valid. According to the
literature, a huge circuit asymmetry is expected when
the circuit shows a huge impedance mismatch that leads
to multiple reflections in the cable [40, 41]. However,
we note that the above analyses may still apply and
one can use the phase parameter φ to correct the circuit
asymmetry from the measured scattering coefficients, as
reported in Refs. 39–43.

B. Influence of the finite-length feedlines

Besides the circuit asymmetry, a finite length of the
microwave feedlines can also influence the measured
scattering coefficients, as shown in Fig. 2(a)-(c). We
recall the expression of the incident and reflected voltages
at the position z of a transmission line as [51]

V ±(z) = V ±0 e∓γz, (41)

where the ± sign distinguishes the incident and reflected
wave propagations, and V ±0 are the corresponding
voltage amplitudes at z = 0. For finite lengths of l1 and
l2, the incident and reflected voltages transferred through
the feedlines, V ±1

′ and V ±2
′, can be described as

V ±1
′ = e±γl1V ±1 , V ±2

′ = e±γl2V ±2 . (42)

Here, we denote V ±1 and V ±2 as the voltage amplitudes at
the sample input and output. The scattering coefficients
measured through the feedlines are thus

S′11 = e−2γ1l1S11, (43)

S′21 = e−(γ1l1+γ2l2)S21, (44)

S′12 = e−(γ1l1+γ2l2)S12, (45)

S′22 = e−2γ2l2S22, (46)
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where we have assumed a perfect impedance match
between the feedlines and the sample. A mismatched
feedline causes a circuit asymmetry, which has already
been discussed in the previous section.

Under the high-frequency and low-loss approximations
of the transmission feedlines, α is a constant and β = ωvp

[51]. This reveals that the finite-length feedlines can
cause a damping coefficient A and a frequency-dependent
phase factor, e−jωτ , in the scattering coefficients. Here,
τ is a constant. In addition, there may also exist a
constant phase delay, e−jϕ, because of the imperfect
calibration of the cable delay. It can also be attributed
to the circuit asymmetry, where a global phase factor
was neglected in the previous section under the small
asymmetry assumption.

In total, we obtain a general model that describes
the transmission coefficient of a hanger-type resonator
or the reflection coefficient of a necklace- or bridge-type
resonator

S (ω) ≈ Ae−j(ωτ+ϕ)

(
1− ejφQl/Qc

1 + 2jQl (ω/ωr − 1)

)
. (47)

This formula describes the scattering coefficients of
a single resonator that can be measured in real
experiments. Here, the global factor Ae−j(ωτ+ϕ)

originates from the finite length of the feedlines, while the
local phase ejφ results from a small circuit asymmetry.
In the complex plane, the former rotates the circle of
the ideal scattering coefficientsaround the original point
(0+ j0), which is accompanied with a shrink of the circle
radius. The latter causes a rotation around the reference
point (1 + j0).

As a closing remark, we note that Eq. (47) applies only
to common circuit geometries as discussed above. In a
more complex circuit, for example, when two necklace-
type λ/2 resonators are coupler in a chain [76], Eq. (47)
cannot directly apply. Nevertheless, one can follow the
transfer-matrix method to calculate the exact scattering
coefficients of an arbitrary resonator network. Then,
the influences of circuit asymmetry and feedlines can
be added by hand. We will show in a parallel paper
that a quantum-mechanical perspective of the scattering
coefficients provides a shortcut to this calculation [50].

V. EXPERIMENTAL RESULTS

With the understandings of the line shape in measured
scattering coefficients, we perform a prototypical
experiment to characterize a necklace-type resonator
by measuring only the reflection coefficient. The
experimental setup is schematically shown in Fig. 4(a).
Here, the resonator consists of a commercial NbTi
transmission line with length l ' 81 mm, which is
capacitively coupled to two feedlines through small gaps
with a customizable distance d. In our experiment, we
focus on the third harmonic mode of the resonator, and
measure the reflection coefficient, S11, of the resonator

(c)

(f)(e)

(b)

4.2K
3λ/2

Rohde & Schwarz ZVA24 

VNA
1 2

(a)

(d)

(g)

FIG. 4. (a) Sketch of the experimental setup used to measure
the scattering coefficients of the necklace-type resonator with
two mechanically tunable coupling capacitances by a vector
network analyzer (VNA). (b) The step by step correction
procedure for the measured reflection coefficient S11 of the
third harmonic mode of the necklace-type resonator shown in
(a). Panels (b)-(g) correspond to the correction procedures
described in Appendix F.

with a fixed gap d ' 1.5 mm. The raw data, i.e., the
amplitude |S11|, phase arg [S11(ω)], and the complex
value S11(ω), are shown in the blue dots in Fig. 4(b)-
(c), correspondingly. Following the recipe described
in Appendix F, we correct the influence of the finite
feedlines and the circuit asymmetry sequentially, as
shown in Fig. 4(d)-(g). We obtain the resonant frequency
and the internal, coupling, and loaded quality factors as
ω3r = 2π × 4.195 GHz, Q3l = 133946, Q3i = 154559,
and Q3c = 1004318. Here, the quality factors Q3l, Q3i,
Q3c are defined for the third harmonic mode, which
are different from those of the fundamental mode. The
loaded quality factor for the nth mode is defined as
1/Qnl = 1/Qni + 1/Qnc, with the internal and coupling
quality factors being, ideally,

Qni =
nπ

2αl
= nQi, (48)

Qnc =
nπ

2ω2
nrZ

2
0 (C2

1 + C2
2 )

=
Qc

n
. (49)

This result is consistent with that obtained by the
conventional method, which combines the measurement
of both transmission and reflection coefficients. We note
also that this method is also used in another experiment
with two coupled necklace-type resonators [76].



8

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we provide a comprehensive study of
the scattering coefficients of superconducting microwave
resonators in the classical perspective. By using
the transfer-matrix method, we derive the analytical
expressions of the scattering coefficients with different
circuit geometries, such as hanger-, necklace-, and bridge-
type. We also discuss the physical origin of distortions
in the measured scattering coefficients, which include a
finite circuit asymmetry and the effect of the finite length
of the feedlines. These understandings open a door to
correct the experimental imperfections in measurement
results and characterize the electrical properties of a
general microwave resonator. It is shown that, similar to
the transmission coefficient of a hanger-type resonator,
the reflection coefficient of a necklace- or bridge-type
resonator contains a reference point which can be used to
characterize the electrical properties of the resonator in

a single measurement. We demonstrate this observation
in experiment, and observe an excellent fit among the
analytical, numerical, and experimental results.
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Appendix A: scattering coefficients of a necklace-type λ/2 resonator

As discussed in Sec. III B, the total transfer matrix of a necklace-type λ/2 resonator is

A = cosh γl +
sinh γl

jωC1Z0
, B = sinh γl

(
Z0 −

1

ω2C1C2Z0

)
+ cosh γl

(
1

jωC1
+

1

jωC2

)
, (A1)

C =
sinh γl

Z0
, D = cosh γl +

sinh γl

jωC2Z0
. (A2)

Correspondingly, we write the elements of the corresponding scattering coefficients as

S11 =
(2jωZ0C2 + 1) eγl + (2jωZ0C1 − 1) e−γl

(2jωZ0C1 + 1) (2jωZ0C2 + 1) eγl − e−γl
, (A3)

S21 =
−4ω2Z2

0C1C2

(2jωZ0C1 + 1) (2jωZ0C2 + 1) eγl − e−γl
, (A4)

S22 =
(2jωZ0C1 + 1) eγl + (2jωZ0C2 − 1) e−γl

(2jωZ0C1 + 1) (2jωZ0C2 + 1) eγl − e−γl
, (A5)

where S12 = S21. For open-circuited λ/2 resonators, we define βl = π + π∆/ω0 and αl = π/ (2Qi), and assume that
the frequency ω is very close to the bare resonant frequency ω0. The above equations can be simplified as

S11 ≈

(
1
Qi
− 2ωZ0(C2−C1)∆

ω0

)
+ j

(
2ωZ0(C1+C2)

π + 2∆
ω0

)
(

1
Qi
− 4ω2Z2

0C1C2

π − 2ωZ0(C1+C2)∆
ω0

)
+ j

(
2ωZ0(C1+C2)

π + 2∆
ω0

) , (A6)

S21 ≈
4ω2Z2

0C1C2

π(
1
Qi
− 4ω2Z2

0C1C2

π − 2ωZ0(C1+C2)∆
ω0

)
+ j

(
2ωZ0(C1+C2)

π + 2∆
ω0

) , (A7)

S22 ≈

(
1
Qi
− 2ωZ0(C1−C2)∆

ω0

)
+ j

(
2ωZ0(C1+C2)

π + 2∆
ω0

)
(

1
Qi
− 4ω2Z2

0C1C2

π − 2ωZ0(C1+C2)∆
ω0

)
+ j

(
2ωZ0(C1+C2)

π + 2∆
ω0

) . (A8)

Similar to the analysis in the hanger-type resonator, the coupled resonant frequency ωr is obtained by setting the
imaginary part of the denominator to zero. This gives

ωr ≈ ω0 − ω2
0Z0 (C1 + C2) /π, (A9)
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where we have assumed that ωr is close to ω0. Inserting this relation into the above equations, we obtain

S11 ≈
1
Qi

+
2ω2Z2

0(C2
2−C

2
1)

π + j2δ(
1
Qi

+
2ω2Z2

0(C2
1+C2

2)
π

)
+ j2δ

, (A10)

S21 ≈
4ω2Z2

0C1C2(
1
Qi

+
2ω2Z2

0(C2
1+C2

2)
π

)
+ j2δ

, (A11)

S22 ≈
1
Qi

+
2ω2Z2

0(C2
1−C

2
2)

π + j2δ(
1
Qi

+
2ω2Z2

0(C2
1+C2

2)
π

)
+ j2δ

. (A12)

Here, we have used the assumption that ω ≈ ωr. Using again the assumption that ω, ω0, and ωr are close to each
other, and replace ω in the numerator by ω0, we obtain Eqs. (17)-(19) in the main text.

Appendix B: scattering coefficients of a bridge-type λ/2 resonator

As discussed in Sec. III C, the total transfer matrix of a bridge-type λ/2 resonator is

A =1 +
2 (αλ/4 + jπ∆/2ω0)

jωC1Z0
, B =− 2 (αλ/4 + jπ∆/2ω0)

ω2C1C2Z0
+

(
1

jωC1
+

1

jωC2

)
, (B1)

C =
2 (αλ/4 + jπ∆/2ω0)

Z0
, D =1 +

2 (αλ/4 + jπ∆/2ω0)

jωC2Z0
. (B2)

Correspondingly, we write the elements of the corresponding scattering coefficients as

S11 =
jω(C1 + C2)Z0 + 2 (αλ/4 + jπ∆/2ω0)

[
1 + jω(C2 − C1)Z0 + ω2C1C2Z

2
0

]
[−2ω2C1C2Z2

0 + jω(C1 + C2)Z0] + 2 (αλ/4 + jπ∆/2ω0) [1 + jω(C1 + C2)Z0 − ω2C1C2Z2
0 ]
, (B3)

S21 =
−2ω2C1C2Z

2
0

[−2ω2C1C2Z2
0 + jω(C1 + C2)Z0] + 2 (αλ/4 + jπ∆/2ω0) [1 + jω(C1 + C2)Z0 − ω2C1C2Z2

0 ]
, (B4)

S22 =
jω(C1 + C2)Z0 + 2 (αλ/4 + jπ∆/2ω0)

[
1 + jω(C1 − C2)Z0 + ω2C1C2Z

2
0

]
[−2ω2C1C2Z2

0 + jω(C1 + C2)Z0] + 2 (αλ/4 + jπ∆/2ω0) [1 + jω(C1 + C2)Z0 − ω2C1C2Z2
0 ]
, (B5)

Following a similar procedure in Appendix. A, we omit the intermediate steps and obtain the following scattering
coefficients

S11 ≈
1
Qi

+
2ω(C2

2−C
2
1 )Z0

π[
1
Qi

+
ω2

0(C2
1+C2

2 )Z2
0

π

]
+ j2δ

, (B6)

S21 ≈
−4ω2C1C2Z

2
0

π[
1
Qi

+
ω2

0(C2
1+C2

2 )Z2
0

π

]
+ j2δ

, (B7)

S22 ≈
1
Qi

+
2ω(C2

1−C
2
2 )Z0

π[
1
Qi

+
ω2

0(C2
1+C2

2 )Z2
0

π

]
+ j2δ

. (B8)

Here, the resonance frequency is

ωr = ω0 − Z0ω
2
0 (C1 + C2) /π. (B9)
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Appendix C: Asymmetry in hanger-type λ/4 resonator

With circuit asymmetries ∆Z1 and ∆Z2, we write the scattering coefficients as

S11 =
(∆z1 + ∆z2) z3 + (∆z1 − 1) z2

(z1 + z2) z3 + z1z2
, (C1)

S21 =S12 =
2z3

(z1 + z2) z3 + z1z2
, (C2)

S22 =
(∆z1 + ∆z2) z3 + (∆z2 − 1) z1

(z1 + z2) z3 + z1z2
. (C3)

Here, ∆z1 = ∆Z1/Z0, ∆Z2 = ∆Z2/Z0. To proceed, we define the coupling quality factor Q′c = Qc [1/(2z1) + 1/(2z2)].
The above expression can be simplified as

S11 ≈
(

1− 2

z1 + z2

)
− 2z2

(z1 + z2) z1

Q′l/Q
′
c

1 + 2Q′lδ
, (C4)

S21 =S12 ≈
2

z1 + z2

(
1− Q′l/Q

′
c

1 + 2Q′lδ

)
, (C5)

S22 ≈
(

1− 2

z1 + z2

)
− 2z1

(z1 + z2) z2

Q′l/Q
′
c

1 + 2Q′lδ
, (C6)

where z1 = 1 + ∆z1, z2 = 1 + ∆z2. For small asymmetries z1 ≈ z2 ≈ 1, we obtain the final form of the scattering
coefficients described in Eqs. (32)-(34).

Appendix D: Asymmetry in necklace-type λ/2 resonator

With circuit asymmetries ∆Z1 and ∆Z2, we write the scattering coefficients as

S11 ≈
[
−ω2c1c2 (z1 + z2 − 2) + jω (c1 + c2)

]
+ (αl + jβl)

[
−ω2c1c2z1z2 + jω (c1z1 + c2z2) + 1 − 2ω2c1c2 (1 − z2) − 2jωc1

]
[− (z1 + z2)ω2c1c2 + jω (c1 + c2)] + (αl + jβl) (−z1z2ω2c1c2 + jω (z1c1 + z2c2) + 1 − ω2c1c2)

,

(D1)

S21 =S12 ≈ 2ω2c1c2
[− (z1 + z2)ω2c1c2 + jω (c1 + c2)] + (αl + jβl) (−z1z2ω2c1c2 + jω (z1c1 + z2c2) + 1 − ω2c1c2)

, (D2)

S22 ≈
[
−ω2c1c2 (z1 + z2 − 2) + jω (c1 + c2)

]
+ (αl + jβl)

[
−ω2c1c2z1z2 + jω (c1z1 + c2z2) + 1 − 2ω2c1c2 (1 − z1) − 2jωc2

]
[− (z1 + z2)ω2c1c2 + jω (c1 + c2)] + (αl + jβl) (−z1z2ω2c1c2 + jω (z1c1 + z2c2) + 1 − ω2c1c2)

.

(D3)

Here, we have replaced cosh γl and sinh γl by −1 and − (αl + jβl), respectively, under the assumption of small
loss and defined c1 = Z0C1, c2 = Z0C2. For small asymmetries z1 ≈ z2 ≈ 1 and small coupling capacitances
jωZ0C1, ωZ0C2 � 1, we simplify the expression as

S11 ≈
π

2Qi
+ ω2

(
z2c

2
2 + c21 (z1 − 2)

)
+ jπδ[

π
2Qi

+ ω2 (z1c21 + z2c22)
]

+ jπδ
, (D4)

S21 =S12 ≈
2ω2c1c2[

π
2Qi

+ ω2 (z1c21 + z2c22)
]

+ jπδ
, (D5)

S22 ≈
π

2Qi
+ ω2

(
z1c

2
1 + c22 (z2 − 2)

)
+ jπδ[

π
2Qi

+ ω2 (z1c21 + z2c22)
]

+ jπδ
. (D6)
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To proceed, we define 1/Q′c = 1/Q′c,1 + 1/Q′c,2 with Q′c,1 = π/2ω2c21z1, Q′c,2 = π/2ω2c22z2. The above expression can
be simplified as

S11 ≈1− 1

z1

2Q′l/Q
′
c,1

1 + j2Q′lδ
, (D7)

S21 = S12 ≈
1

√
z1z2

2Q′l/
√
Q′c,1Q

′
c,2

1 + j2Q′lδ
, (D8)

S22 ≈1− 1

z2

2Q′l/Q
′
c,2

1 + j2Q′lδ
. (D9)

For small asymmetries, we omit the phase contributions of 1/z1 and 1/z2, and obtain the final form of the scattering
coefficients described in Eqs. (35)-(37).

Appendix E: Asymmetry in bridge-type λ/2 resonator

With circuit asymmetries ∆Z1 and ∆Z2, we write the scattering coefficients as

S11 =

[
jω (c1 + c2) − ω2c1c2 (z1 + z2 − 2)

]
+ 2 (αl + jπ∆/2ω0)

[
1 + jω (c1z1 + c2z2) − ω2c1c2z1z2 + 2ω2c1c2z2 − 2jωc1

]
[jω (c1 + c2) − ω2c1c2 (z1 + z2)] + 2 (αl + jπ∆/2ω0) [1 + jω (c1z1 + c2z2) − ω2c1c2z1z2]

,

(E1)

S21 =S12 =
−2ω2c1c2

[jω (c1 + c2) − ω2c1c2 (z1 + z2)] + 2 (αl + jπ∆/2ω0) [1 + jω (c1z1 + c2z2) − ω2c1c2z1z2]
, (E2)

S22 =

[
jω (c1 + c2) − ω2c1c2 (z1 + z2 − 2)

]
+ 2 (αl + jπ∆/2ω0)

[
1 + jω (c1z1 + c2z2) − ω2c1c2z1z2 + 2ω2c1c2z1 − 2jωc2

]
[jω (c1 + c2) − ω2c1c2 (z1 + z2)] + 2 (αl + jπ∆/2ω0) [1 + jω (c1z1 + c2z2) − ω2c1c2z1z2]

.

(E3)

For small coupling capacitances jωZ0C1, ωZ0C2 � 1, the above formulae are equivalent to those for a necklace-type
λ/2 resonator, except the π phase difference in the transmission coefficient. In this regard, the scattering coefficients
with regards to small circuit asymmetries are also similar to Eqs. (D7)-(D9). The complete results are shown in
Eqs. (38)-(40) in the main text.

Appendix F: Correction of experimental imperfections

We now take the necklace-type resonator, shown in Fig. 2(c), as an example and describe a circle-fitting procedure
that corrects the experimental imperfections in the reflection coefficient, S11. Here, the test data is generated by using
a distributed-element circuit model, where the parameters can be fully controlled as a crosscheck of our results. We
choose α = 5.0 × 10−3 /m, vp = 1.35 × 108 m/s, C1, C2 = 1.0 × 10−14 F, and l = 1 × 10−2 m for a necklace-type λ/2
resonator. We also assume a small circuit asymmetry, ∆Z1 = jωL1 with L1 = 1× 10−9 H, ∆Z2 = 2 Ω, and consider
two finite-length feedlines with l1 = l2 = 1.2 m with a 50 Ω impedance match. In these regards, one can simulate
the reflection coefficient as shown in Fig. 5(a)-(b). The resonant frequency is estimated to be ωr = 2π × 6.659 GHz,
and the loaded, internal, and coupling quality factors are Ql = 1666, Qi = 31416, and Qc = 1759, respectively. The
correction procedure consists of three major steps:

1. Correction of frequency-dependent phase shift

In the first step, we eliminate the frequency-dependent phase shift e−j(ωτ+ϕ1) with ϕ1 being an arbitrary phase
offset. This phase shift can be directly seen in Fig. 5 (b), where an expected circle of the scattering coefficient is
distorted into a knot in the complex plane. The elimination process can be implemented as follows:

First, we use a linear function to fit τ and ϕ1, which serve as an initial guess for a more precise fitting procedure.
The objective function is

J1 = {−(ωτ + ϕ1)− arg [S (ω)]}2 , (F1)

where arg [S (ω)] is the unwrapped phase of the complex signal. The fitting result is shown as the red dashed line in
Fig. 5(a), where τ = 16.18 s.
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FIG. 5. The step by step correction procedure for the simulated reflection coefficient S11 of a necklace-type microwave resonator.
(a) Rough phase correction with linear fit, and data selection with Lorentzian fit, where the green dots are the data within
the ±4∆3dB bandwidth. (b) The raw data and the selected data shown in the complex plane. (c) Fine phase correction
with circle fit. (d) Resonant frequency determination with phase versus frequency fit. (e) Correction of cable attenuation and
frequency-independent phase. (f) Correction of asymmetry. In all the plots, the blue dots denote raw data and the green dots
the selected data. The fitting results are colored in red, where the red cross and dot represent the circle center and the far
off-resonant point on the circle, respectively.

Next, we use a Lorentzian function to determine the full width at half maximum (FWHM), ∆3dB, of the line shape,
which is used to select data that are close to the resonant frequency. The objective function is [39]

J2 =


A1 +A2f +

A3 +A4f√
1 + 4

(
ω−ωr

∆3dB

)2

− |S (ω)|


2

. (F2)

Here, ωr, ∆3dB, and A1, · · · , A4 are fitting parameters. Because the data within the FWHM can form a half circle in
the ideal case, to minimize the influence of the background signal we keep only the data within 3-5 times of the FWHM
in the following analyses. The fitting result is shown as the green dots in Fig. 5(a)-(b), where ωr = 2π × 6.659 GHz
and ∆3dB = 2π × 1.41 MHz.

Having obtained the initial guess of the parameters τ , ϕ1 and removed the far off-resonant data points beyond
3∆3dB-5∆3dB, we correct the frequency-dependent phase shift by using the circuit-fit technique [42]. On the one
hand, we use an algebraic method to fit a circle to the scattering coefficients[77], and determine the circle center Sc

and the radius rc. On the other hand, we can optimize the parameter τ with the following objective function

J3 =
(
rc −

∣∣ejωτS (ω)− Sc1

∣∣)2 , (F3)

to make the corrected data S1 (ω) = ejωτS (ω) more likely to be a circle. The corrected data S1 (ω) and the fitted
circle is shown in Fig. 5(c), where τ = 17.58 s, Sc1 = −0.218− j0.471.
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2. Correction of attenuation and frequency-independent phase shift

After correcting the phase shift e−j(ωτ+ϕ1), the next step is to eliminate the attenuation and the frequency-
independent phase shift Ae−jϕ2 with ϕ2 = ϕ−ϕ1. We recall the fact that, without the influence of the finite feedline,
the reflection coefficient of a necklace-type resonator interacts with the real axis at the reference point (1 + j0) at
a far-detuned probe frequency ω → ∞. We use this property to correct the attenuation and frequency-independent
phase shift.

First, we determine the resonant frequency, ωr by using a phase-versus-frequency fit, which is proven to be the most
precise and robust fitting method for calibrating a microwave resonator [39]. The objective function is

J4 =

{
ϕ2 + 2 arctan

[
2Ql

(
1− ω

ωr

)]
− arg [S1 (ω)]

}2

, (F4)

where ϕ2 = (ϕ− ϕ1) + (2n+ 1)π, ωr, and Ql are fitting parameters. The fitting results are shown in Fig. 5(d), from
which we determine the resonant frequency ωr = 2π × 6.659 GHz and the loaded quality factor Ql = 1655.

Knowing the value of ωr, one can locate the resonant data point in the fitted circle at Sr = −0.041 − j0.040.
Correspondingly, the far off-resonant point, Soff = −0.395 − j0.902, is determined according to the symmetry of a
circle, i.e., Soff = Sc1 + (Sc1 − Sr). Then, one can correct the attenuation and the frequency-independent phase shift
according to the following relation

S2(ω) = S1(ω)/Soff . (F5)

The corrected data, S2(ω), is shown in Fig. 5(e), where Sr = 0.054 − j0.021, Soff = 1.000, Sc2 = Sc1/Soff = 0.527 −
j0.011, rc2 = rc1/ |Soff | = 0.473.

3. Correction of circuit asymmetry

After the first two steps, we have removed the influence of finite feedlines. The last step is to correct the circuit
asymmetry. Here, we use the property that the circle center should be located on the real axis in an ideal scattering
coefficient. We identify φ by the following relation

φ = arg (Sc2 − Soff)− π, (F6)

and rotate the circle by −φ around the reference point (1 + j0). In the meantime, we also rescale the circle radius by
a factor of |cosφ| to account for the difference between |Qc| and Re (Qc) [40]. In total, the transformation is described
by

S3(ω) = cosφ [S2(ω)− 1] e−jφ + 1. (F7)

The corrected reflection coefficient, S3(ω), is shown in Fig. 5(f). In this example, we determine φ = 0.023 and
thus Sc3 = 0.527, rc3 = 0.473. The internal quality factor can be calculated as Qi = Ql(1 − 2rc3) = 30530, where
Qc = Ql/ (2rc3) = 1750. The loaded quality factor Ql = 1655 is obtained in the phase versus frequency fit. Comparing
the fitted quality factors, Ql, Qi, and Qc, with the estimated values, we obtain the relative errors of the calibration
results to be 0.6%, 2.8%, 0.5%, respectively.
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J. M. Chow, A. D. Córcoles, J. A. Smolin, S. T. Merkel,
J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen,
and M. Steffen, Superconducting qubit in a waveguide
cavity with a coherence time approaching 0.1 ms, Phys.
Rev. B 86, 100506 (2012).

[54] T. Brecht, M. Reagor, Y. Chu, W. Pfaff, C. Wang,
L. Frunzio, M. H. Devoret, and R. J. Schoelkopf,
Demonstration of superconducting micromachined
cavities, Appl. Phys. Lett. 107, 192603 (2015).

[55] T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio,
M. H. Devoret, and R. J. Schoelkopf, Multilayer
microwave integrated quantum circuits for scalable
quantum computing, npj Quantum Inf. 2, 1 (2016).

[56] T. Brecht, Y. Chu, C. Axline, W. Pfaff, J. Z. Blumoff,
K. Chou, L. Krayzman, L. Frunzio, and R. J. Schoelkopf,
Micromachined integrated quantum circuit containing a
superconducting qubit, Phys. Rev. Applied 7, 044018
(2017).

[57] E. Xie, F. Deppe, M. Renger, D. Repp, P. Eder,
M. Fischer, J. Goetz, S. Pogorzalek, K. G. Fedorov,
A. Marx, and R. Gross, Compact 3d quantum memory,
Appl. Phys. Lett. 112, 202601 (2018).

https://doi.org/10.1063/1.2898887
https://doi.org/10.1063/1.2898887
https://doi.org/10.1103/PhysRevB.79.174512
https://doi.org/10.1103/PhysRevB.79.174512
https://doi.org/10.1063/1.3271523
https://doi.org/10.1063/1.3271523
https://doi.org/10.1063/1.3597156
https://doi.org/10.1063/1.3552890
https://doi.org/10.1063/1.3552890
https://doi.org/10.1063/1.3693409
https://doi.org/10.1063/1.3693409
https://doi.org/10.1063/1.4710520
https://doi.org/10.1063/1.4710520
https://doi.org/10.1063/1.4919761
https://doi.org/10.1063/1.4919761
https://doi.org/10.1063/1.4939299
https://doi.org/10.1063/1.368498
https://doi.org/10.1063/1.368498
https://doi.org/10.1063/1.3692073
https://doi.org/10.1063/1.4817512
https://doi.org/10.1063/1.4817512
https://doi.org/10.1063/1.4907935
https://doi.org/10.1063/1.4907935
https://doi.org/10.1063/5.0017378
https://doi.org/10.1063/5.0017378
https://doi.org/10.1109/tasc.2005.850084
https://doi.org/10.1109/tasc.2005.850084
https://doi.org/10.1063/1.3010859
https://doi.org/10.1063/1.3010859
https://doi.org/10.1063/1.4797461
https://doi.org/10.1063/1.4794910
https://doi.org/10.1063/1.4904972
https://doi.org/10.1103/PhysRevApplied.11.054062
https://www.amazon.com/Microwave-Engineering-Edn-David-Pozar/dp/8126541903?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=8126541903
https://doi.org/10.1103/PhysRevLett.107.240501
https://doi.org/10.1103/PhysRevLett.107.240501
https://doi.org/10.1103/PhysRevB.86.100506
https://doi.org/10.1103/PhysRevB.86.100506
https://doi.org/10.1063/1.4935541
https://doi.org/10.1038/npjqi.2016.2
https://doi.org/10.1103/PhysRevApplied.7.044018
https://doi.org/10.1103/PhysRevApplied.7.044018
https://doi.org/10.1063/1.5029514


16

[58] L. V. Abdurakhimov, I. Mahboob, H. Toida,
K. Kakuyanagi, and S. Saito, A long-lived capacitively
shunted flux qubit embedded in a 3d cavity, Appl. Phys.
Lett. 115, 262601 (2019).

[59] A. Romanenko, A. Grassellino, A. C. Crawford, D. A.
Sergatskov, and O. Melnychuk, Ultra-high quality factors
in superconducting niobium cavities in ambient magnetic
fields up to 190 mg, Appl. Phys. Lett. 105, 234103 (2014).

[60] A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov,
M. Awida, S. Belomestnykh, S. Posen, and
A. Grassellino, Three-dimensional superconducting
resonators at t < 20 mk with photon lifetimes up to
τ = 2 s, Phys. Rev. Applied 13, 034032 (2020).

[61] C. U. Lei, L. Krayzman, S. Ganjam, L. Frunzio, and R. J.
Schoelkopf, High coherence superconducting microwave
cavities with indium bump bonding, Appl. Phys. Lett.
116, 154002 (2020).

[62] S. Chakram, A. E. Oriani, R. K. Naik, A. V. Dixit, K. He,
A. Agrawal, H. Kwon, and D. I. Schuster, Seamless
high-q microwave cavities for multimode circuit quantum
electrodynamics, Phys. Rev. Lett. 127, 107701 (2021).

[63] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline,
E. Holland, I. M. Pop, N. A. Masluk, T. Brecht,
L. Frunzio, M. H. Devoret, L. Glazman, and R. J.
Schoelkopf, Reaching 10 ms single photon lifetimes for
superconducting aluminum cavities, Appl. Phys. Lett.
102, 192604 (2013).

[64] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek,
K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou,
M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang,
and R. J. Schoelkopf, Quantum memory with millisecond
coherence in circuit QED, Phys. Rev. B 94, 014506
(2016).
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