
Scattering experiments

with a diving cylinder

Michael Paulus1,2 and Olivier J. F. Martin1

1 Electromagnetic Fields and Microwave Electronics Laboratory

Swiss Federal Institute of Technology, ETH–Zentrum, ETZ

CH-8092 Zurich, Switzerland

2 IBM Research, Zurich Research Laboratory
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Abstract: We present numerical experiments of light scattering by a
circular dielectric cylinder embedded in a stratified background, using
the Green’s tensor technique. The stratified background consists of two
or three dielectric layers, the latter forming an anti–reflection system.
We show movies of the scattered field as a function of different pa-
rameters: polarization, angle of incidence, and relative position of the
cylinder with respect to the background interfaces.
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1 Introduction

The optical properties of cylindrical particles have generated a lot of interest, as they
provide a simple model for specific physical systems. The scattering on a cylinder situ-
ated in an infinite homogeneous background was for example already treated by Lord
Rayleigh in 1881 [1].

However, most real situations are more complex, the particles are located on a sub-
strate or embedded in an even more complicated stratified background. To investigate
such geometries many analytical and numerical approaches were developed. They in-
clude, for example, image methods [2–4], applications of the extinction theorem [5, 6],
expansions of cylindrical waves [7, 8] or integral–equation methods [9–13]. Most of these
methods only consider a background medium consisting of two half spaces [2–11] or
restrict the choice of the material or geometry parameters [2–5, 7].

Recently, we presented a general technique for light propagation and scattering in
two–dimensional (2D) structures formed by a stratified background with embedded scat-
terers [14]. This approach is based on the Green’s tensor associated with the stratified
background and provides a rigorous solution of the vectorial wave equation with the
boundary conditions given at the different material interfaces.

In this paper we apply our approach to study the light scattered by a dielectric
circular cylinder in the presence of a stratified dielectric background. We investigate the
different phenomena that can occur, depending on the relative cylinder position with
respect to the background interfaces, as well as on the illumination direction.

In Sec. 2 we briefly recall our computational approach and in Sec. 3 we show cal-
culations of the total electric field amplitude A =

√
E ·E∗ as a function of different

geometrical and illumination parameters. Our results are summarized in Sec. 4.

2 Model

Throughout the paper we consider a circular cylinder with radius r = 150 nm and
permittivity εCyl = 2 embedded in a two– or three–layer background. This system is
illuminated from the top with a plane wave under different angles of incidence Θ. The
illumination wavelength is λ = 633 nm and two different polarizations are considered: s
polarization, with the electric field E0 in y direction, and p polarization with the electric
field E0 lying in the xz plane.

Since the scattering geometry under study is translation invariant in y direction
we can restrict the investigation to a cross section in the xz plane [14]. When such
a system formed by a stratified background (L layers, permittivity εl, l = 1, . . . , L)
with embedded scatterers is illuminated with an incident field E0(r) propagating in the
stratified background [we consider harmonic fields with time dependence exp(−iωt)],
the total field E(r) is given by the electric field integral equation:

E(r) = E0(r) +

∫

A

dr′G(r, r′) · k2
0∆ε(r′)E(r′) , (1)
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where G(r, r′) is the Green’s tensor associated with the stratified background, k2
0 =

ω2ε0µ0 the vacuum wave number and ∆ε(r) the dielectric contrast:

∆ε(r) = ε(r)− εκ , r ∈ layer κ . (2)

Whereas the Green’s tensor for an infinite homogeneous background can be expressed
analytically [15], this is not possible when the background is stratified. In this case
G(r, r′) must be computed numerically with Sommerfeld type integrals [14].

Since the integration in Eq. (1) runs only over the scatterer section A, the dis-
cretization is limited to this volume, the stratified background being accounted for by
the Green’s tensor. Another advantage of this method is that the boundary conditions
at the different material interfaces, as well as at the edges of the computation window
are perfectly and automatically fulfilled [14, 15].

3 Results

3.1 Homogeneous space

Before studying complex effects that can arise when the cylinder is placed in a stratified
background, it is educational to review the simpler case of the scattering by a cylinder in
an infinite homogeneous space εH = 1. Figure 1 shows the total electric field amplitude
in such a system for both s and p polarizations, when the cylinder is illuminated with
an incident electric field E0 propagating in −z direction:

E0(x, z) = A0 exp(ikr) = A0 exp(ikzz) , (3)

where A0 is the amplitude vector with |A0| = 1, k = (kx, kz) is the wave vector of the
incident wave and kz = −|k|. (For all the calculations we normalize the electric field
amplitude of the incident field |A0| = (E0 · E0∗)1/2 = 1.)

Some features of the field distributions in Fig. 1 are common to both polarizations: in
backward direction stationary waves are created due to the interference of the incident
and the reflected waves. In the forward direction we recognize the diffraction pattern of
the cylinder. However, the near field distribution at close vicinity of the cylinder strongly
depends on the polarization of the incident field. For s polarization a maximum of the
intensity can be observed inside the cylinder whereas for p polarization two peaks occur
on the left and right sides of the scatterer. This behavior can be explained with the

(a) (b)

Fig. 1. Electric field amplitude distribution for the scattering by a cylinder in an
infinite homogeneous background. Two different polarizations are investigated: (a)
s polarization, (b) p polarization.
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boundary conditions resulting from Maxwell’s equations. When the electric field E is
parallel to a material interface it must be continuous [16]. When it is normal to the
interface, it is the displacement field D = εE which must be continuous. Hence, for
a p–polarized excitation the total electric field amplitude is discontinuous by a factor
εCyl/εH wherever the incident field is normal to a material interface (i.e. on the left
and right sides of the cylinder in Fig. 1(b)). Such depolarization effects do not occur at
the top and bottom sides of the cylinder for p polarization [Fig. 1(b)] or on the entire
circumference for s polarization [Fig. 1(a)], since in those locations the incident field is
parallel to the material interfaces [17].

As a consequence of the depolarization effects for a p–polarized excitation, the for-
ward scattered light is focussed by the cylinder and reaches a maximum at z ≈ −300 nm.
For s polarization, on the other hand, the field maximum is situated inside the cylinder.

The total scattering cross section of a dielectric circular cylinder is greater for s
polarization than for p polarization, the difference increasing with a larger dielectric
contast [18]. As a matter of fact, we observe in Fig. 1(a) a more pronounced interference
pattern than in Fig. 1(b). This polarization dependence of the total scattering cross
section is also observable for all further configurations under study.

3.2 Scattering in the presence of a surface

Now we divide the background into two half spaces ε1 = 1 (z ≥ 0) and ε2 = 2 (z < 0),
in such a way that the lower layer has the same permittivity as the cylindrical scatterer,
ε2 = εCyl.

The movies in Fig. 2 show the response of the system under normal incidence (Θ = 0)
for s– and p–polarized illumination. Each movie frame corresponds to a given distance
h between the cylinder center and the material interface.

Since the incident wave is now reflected back at the plane interface, the illumination
electric field becomes in the top layer

E0(x, z) = A0[exp(ik1zz) +R exp(−ik1zz)] , z ≥ 0 , (4)

and in the bottom layer

E0(x, z) = A0 T exp(ik2zz) , z < 0 , (5)

(a) (b)

Fig. 2. Electric field amplitude distribution for the scattering by a cylinder above a
dielectric surface with same permittivity, as a function of the distance h between the
cylinder center and the interface. Normal incidence (Θ = 0o, the arrow represents
the propagation direction of the illumination wave) (a) s polarization (528 KB), (b)
p polarization (479 KB).
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where kiz , i = 1, 2, is the z component of the wave vector in layer i, R is the Fresnel re-
flection coefficient and T the corresponding transmission coefficient for normal incidence
[19]:

R =

√
ε1 −

√
ε2√

ε1 +
√

ε2

, (6)

T =
2
√

ε1√
ε1 +

√
ε2

. (7)

Note that R and T are real for absorptionless media. The negative reflection coefficient
obtained in our system leads to a phase shift of 180◦ for the reflected field.

The illumination amplitude in the upper half space reads now

A = (E0 ·E0∗)
1

2 = |A0| [1 +R2 + 2R cos(2k1zz)]
1

2 , z ≥ 0 , (8)

and a stationary wave with period ∆ = π/k1z = λ/2 is created in the upper half space
(Fig. 2). Because of R < 0 the amplitude is minimal directly at the interface.

The cylinder is not anymore illuminated by a homogeneous plane wave but moves in
the field of the stationary wave. Hence, in the top layer the total field distribution is a
superposition of the stationary wave and a diffraction pattern similar to that in Fig. 1.
This pattern determines also the field distribution in the bottom layer depending on
the transmittance of the interface.

As in the case of the homogeneous background the near field of the cylinder depends
on the polarization of the excitation. Additionally, the location and strength of the
scattered field maxima are modulated by the cylinder altitude h.

The stationary wave itself is further amplified in the region between the cylinder
and the interface. This is caused both by the focusing provided by the cylinder and by
multiple reflections between the surface and the cylinder. Note also that the interaction
between the excitation and the field scattered by the cylinder creates an interference
pattern in x direction.

For h = −15 nm, when half of the cylinder is included in the surface, most of the back-
scattering disappears in a narrow sector of the upper halfspace. Finally, for h = −165 nm
the cylinder is entirely immersed in the lower layer with identical permittivity, and the
total electric field is simply given by the excitation in the stratified background. Since
without the cylinder s and p polarization are indistinguishable for normal incidence, the
field distributions are identical in both frames.

Let us now rotate the angle of incidence Θ with respect to the surface normal. Figure
3 shows again the scattering as a function of the cylinder altitude h, but for Θ = 30o.

In this case, the illuminating electric field in the top layer becomes

E0
α(x, z) = A0

α[exp(ik1zz) +Rα exp(−ik1zz)] exp(ikxx) , z ≥ 0 , α = x, y, z , (9)

where the reflection coefficients correspond to the polarization of the given component:
Rx = −Rp, Ry = Rs, and Rz = Rp. In this case of non–normal illumination, the Fresnel
coefficients Rs/p depend on the polarization of the incident wave [19]:

Rs =
k1z − k2z

k1z + k2z
, (10)

Rp =
ε2k1z − ε1k2z

ε2k1z + ε1k2z
. (11)

The illumination amplitude in the upper half space is then

A = {A0
x
2
[1 +Rp2 − 2Rp cos(2k1zz)] +A0

y
2
[1 +Rs2 + 2Rs cos(2k1zz)]

+A0
z
2
[1 +Rp2 + 2Rp cos(2k1zz)]}

1

2 , z ≥ 0 . (12)
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(a) (b)

Fig. 3. Same situation as in Fig. 2, but now the illumination field is incident at a
Θ = 30o angle. (a) s polarization (530 KB), (b) p polarization (452 KB).

Again, a stationary wave excites the cylinder, but the period is now increased to ∆ =
π/kz = λ/(2 cosΘ) = λ/

√
3.

The diffraction patterns and position of the near field maxima rotate accordingly
to the change of the incidence angle (compare Figs. 2 and 3). For p polarization, one
of the two field maxima previously visible on the lateral sides of the cylinder (Fig. 1)
disappears and only a maximum is now visible on the right, in the direction of the
illumination momentum (Fig. 3).

The computer experiments reported in Fig. 3 also illustrate the polarization de-
pendence of the boundary conditions at the interface between the two layers: for s
polarization the electric field must be continuous, whereas p polarization enforces a
discontinuity proportional to the ratio ε1/ε2.

To further investigate the effect of the angle of incidence Θ, we show in Fig. 4 movies
for a fixed cylinder altitude h = 615 nm and a varying illumination angle Θ.

As expected, the period of the stationary wave increases for larger angles Θ and
the diffraction pattern becomes more and more twisted (Fig. 4). Since the reflection
coefficients Rs/p of the interface approach 1 in the limit Θ = 90o, the field transmitted

(a) (b)

Fig. 4. Electric field amplitude distribution for the scattering by a cylinder above
a dielectric surface with same permittivity, as a function of the illumination angle
Θ (the arrow indicates the propagation direction of the illumination field). The
cylinder position is kept fixed: h = 615 nm. (a) s polarization (227 KB), (b) p
polarization (204 KB).
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into the lower half space vanishes for larger angles and the amplitude maxima of the
stationary wave converge towards their upper value for total reflection A = 2 (see
Eq. (12) with kz → 0 and Rs/p → 1). This produces a strong scattering both in forward
and in backward direction when the maximum of the stationary wave coincides with
the cylinder altitude (Θ = 75o, Fig. 4).

At first sight, it may be surprising that in the case of p polarization the stationary
wave in the top layer vanishes for Θ ≈ 40o–60o, and only the field scattered by the
cylinder can be observed [Fig. 4(b)]. Depending on the angle, two different mechanisms
contribute to this behavior. First, for Θ = 45o the x and z components of the p–polarized
illumination electric field are identical, A0

x = A0
z, and Eq. (12) becomes

A = |A0| (1 +Rp2)
1

2 . (13)

Hence, the z dependence of E ·E∗ is cancelled out.
To illustrate the second mechanism we report in Fig. 5 the amplitude Arefl reflected

by a plane interface between two half spaces ε1 = 1 and ε2 = 2, as a function of the
angle of incidence Θ. At Θ ≈ 55o, the Brewster angle of the material system under
study, Arefl = 0. At this angle, the reflectivity vanishes for p–polarized plane waves and
all the energy of the incident field is transmitted into the lower half space. Note however
that zero reflectivity does not imply that the amplitude of the transmitted light T in the
bottom layer is 1 [19]. A straightforward calculation gives T =

√

ε1/ε2, which yields in
our case T ≈ 0.75, in perfect agreement with our calculations. Both above–mentioned
phenomena do not exist for s polarization.

In Fig. 5 we can further observe that on the entire angle range s polarization leads
to a larger reflectivity. This behavior is similar to the polarization dependence of the
scattering on a cylinder (see Sec. 3.1).

3.3 Anti–reflection layer

In the following, we add a third layer to create a structure with ε1 = 1, ε2 = 1.334, and
ε3 = 1.78. This structure represents an air/water system, separated by an intermediated
slab acting as anti–reflection layer [19]. For normal incidence on the material interfaces,
the reflectivity is indeed strictly zero only if the permittivities are connected by

ε2 =
√

ε1ε3 ≈ 1.334 , (14)
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Fig. 5. Relative reflected amplitude Arefl for a two–layer medium with ε1 = 1,
ε2 = 2, and a three–layer medium with ε1 = 1, ε2 = 1.334, ε3 = 1.78, as a function
of the angle of incidence Θ. Incident s and p polarizations are compared. The minima
for p polarization correspond to the Brewster angle.
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and the thickness d of the slab is

d =

(

n+
1

2

)

λ

2
√

ε2

, n = 1, 2, 3, ... (15)

Taking n = 2 in Eq. (15), we use for our calculations d = 411 nm, so that the cylinder
fits within the antireflection layer.

The movies in Fig. 6 clearly illustrate that, independent of the cylinder location,
there is no stationary wave in the top layer due to reflection of the illuminating field by
the slab. Striking in these movies is the fact that the antireflection layer remains very
efficient, even in the presence of the cylinder. Again, it is the s–polarized illumination
which produces a weak interference pattern. To explain this behavior, in Fig. 5 we also
report the reflected amplitude Arefl for the three–layer system under study. Similar to
the case of the single interface, s polarization leads to a stronger scattering for all angles
Θ and, consequently, to an enhanced backreflection of the field components scattered
by the cylinder and impinging at non–normal incidence on the interface. Note also that
Arefl = 0 for Θ = 0o since we designed the slab to be reflectionless. Further, in Fig. 5
we observe that for p polarization the Brewster angle is slightly shifted to Θ ≈ 53o, and
the corresponding reflected amplitude does not vanish completely for that three-layers
system.

4 Summary

When a cylindrical particle is located in a stratified background, the resulting electric
field distribution is determined by the interaction between the cylinder and the differ-
ent material interfaces. In this paper, we used the Green’s tensor technique to illustrate
the scattering phenomena occurring in such structures. The Green’s tensor technique is
very well adapted to this kind of geometry because the optical processes in the layered
material system are accurately described by the Green’s tensor. Further, only the cylin-
der needs to be discretized, irrespective of the number of layers forming the stratified
background. Our calculations illustrate the complexity of the phenomena that can occur
in such a rather simple system, depending on the relative position of the cylinder to the
different material interfaces.

(a) (b)

Fig. 6. Electric field amplitude distribution for the scattering by a cylinder in a
three–layer system, including an anti–reflection slab, as a function of the cylinder
altitude h above the top interface. Normal incidence (Θ = 0o, the arrow represents
the propagation direction of the illumination wave). (a) s polarization (1052 KB),
(b) p polarization (959 KB).
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