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SCATTERING FOR THE CUBIC KLEIN–GORDON EQUATION

IN TWO SPACE DIMENSIONS

ROWAN KILLIP, BETSY STOVALL, AND MONICA VISAN

Abstract. We consider both the defocusing and focusing cubic nonlinear
Klein–Gordon equations

utt −Δu+ u± u3 = 0

in two space dimensions for real-valued initial data u(0) ∈ H1
x and ut(0) ∈ L2

x.
We show that in the defocusing case, solutions are global and have finite global
L4
t,x spacetime bounds. In the focusing case, we characterize the dichotomy

between this behaviour and blowup for initial data with energy less than that
of the ground state.

These results rely on analogous statements for the two-dimensional cubic
nonlinear Schrödinger equation, which are known in the defocusing case and
for spherically-symmetric initial data in the focusing case. Thus, our results
are mostly unconditional.

It was previously shown by Nakanishi that spacetime bounds for Klein–
Gordon equations imply the same for nonlinear Schrödinger equations.
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1572 ROWAN KILLIP, BETSY STOVALL, AND MONICA VISAN

1. Introduction

We consider the cubic nonlinear Klein–Gordon equation

(1.1) utt −Δu+ u+ μu3 = 0,

for real-valued u : Rt × R2
x → R. Here μ = ±1 with μ = +1 is known as the

defocusing equation and μ = −1 as the focusing case.
We consider initial data in the energy space u(0) ∈ H1

x and ut(0) ∈ L2
x. This is

precisely the set of initial data for which the energy
(1.2)

E(u) := E
(
u(t), ut(t)

)
:=

∫
R2

1
2 |ut(t, x)|2+ 1

2 |∇u(t, x)|2+ 1
2 |u(t, x)|

2+ μ
4 |u(t, x)|

4 dx

is finite. The energy is conserved.

Definition 1.1 (Solution). We say that a function u : I ×R2 → R on a nonempty
time interval 0 ∈ I ⊂ R is a (strong) solution to (1.1) if (u, ut) ∈ C0

t (K;H1
x × L2

x),
u ∈ L4

t,x(K × R2) for all compact K ⊂ I, and u obeys the Duhamel formula

(1.3)

(
u(t)
ut(t)

)
=

[
cos(〈∇〉t) 〈∇〉−1 sin(〈∇〉t)

−〈∇〉 sin(〈∇〉t) cos(〈∇〉t)

](
u(0)
ut(0)

)
+ μ

∫ t

0

[
〈∇〉−1 sin(〈∇〉(t− s))

cos(〈∇〉(t− s))

]
u3(s) ds

for all t ∈ I. We refer to the interval I as the lifespan of u. We say that u is a
maximal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that u is a global solution if I = R.

Our main goal is to prove that global strong solutions exist and have finite
spacetime norms. As the equation is energy-subcritical, global well-posedness fol-
lows easily in the defocusing case. In the focusing case, this is known not to be
true for arbitrary initial data. Indeed, explicit counterexamples are known. Let Q
denote the unique positive radial H1

x(R
2) solution to

(1.4) ΔQ+Q3 = Q,

which is known as the ground state and is an optimizer in the Gagliardo–Nirenberg
inequality. (See Subsection 2.4 for more about this.) Then u(t, x) = Q(x) is a static
solution to (1.1). In particular, it does not have finite global spacetime bounds nor
does it scatter to free waves at future/past infinity. Moreover, finite-time blowup
occurs for a large class of initial data that are slightly larger, including the case
u(0) = (1 + ε)Q and ut(0) = 0 for any ε > 0. This is proved by the method of
Payne and Sattinger [34]; see Theorem 1.6 below and Section 9 for more details.
Nevertheless, it is believed that Q is the minimal counterexample to the existence
of spacetime bounds, in a certain sense.

In the focusing case, it is not appropriate to measure the ‘size’ of the initial
data purely in terms of the energy because of the negative sign appearing in front
of the potential energy term. Indeed, the energy of the solution with initial data
u(0) = (1 + ε)Q and ut(0) = 0 for any ε > 0 is strictly less than that of the static
solution Q. For this reason we introduce a second notion of size, namely, the mass :

M(u(t)) :=

∫
R2

|u(t, x)|2 dx.

Unlike the energy, this is not conserved.
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THE CUBIC KLEIN–GORDON EQUATION IN TWO SPACE DIMENSIONS 1573

These considerations, together with our assertions regarding the defocusing case,
can be summarized as follows:

Conjecture 1.2 (NLKG Conjecture). Fix μ = ±1. Let (u0, u1) ∈ H1
x ×L2

x and in
the focusing case assume also that M(u0) < M(Q) and E(u0, u1) < E(Q). Then
there exists a global solution u to (1.1) with initial data u(0) = u0 and ut(0) = u1.
Moreover, this solution obeys the global spacetime bounds

(1.5) ‖u‖L∞
t H1

x
+ ‖ut‖L∞

t L2
x
+ ‖u‖L4

t,x
≤ C(E(u0, u1)).

As a consequence, the solution scatters both forward and backwards in time, that
is, there exist (u±

0 , u
±
1 ) ∈ H1

x × L2
x such that(

u(t)
ut(t)

)
−
[

cos(〈∇〉t) 〈∇〉−1 sin(〈∇〉t)
−〈∇〉 sin(〈∇〉t) cos(〈∇〉t)

](
u±
0

u±
1

)
−→

(
0
0

)
in H1

x × L2
x as t → ±∞.

The main point here is the L4
t,x spacetime bound and concomitant proof of

scattering. Global well-posedness was known previously. In the defocusing case, it
is a simple consequence of energy conservation — the equation is energy-subcritical.
In the focusing case, our hypotheses are sufficient to imply control of the L∞

t (H1
x ×

L2
x) norm and hence also global well-posedness; the key ingredient here is the sharp

Gagliardo–Nirenberg inequality. See the discussion in Subsection 2.4.
Nakanishi [33] has shown that spacetime bounds for the complex-valued Klein–

Gordon equation imply spacetime bounds for the corresponding nonlinear Schrö-
dinger equation (in the mass- and energy-critical settings and all dimensions). By
employing the Xs,b arguments we describe in Section 6, one may adapt his proof to
the case of the real-valued Klein–Gordon equation discussed in this paper. The key
observation behind these results is that the Klein–Gordon equation degenerates to
the Schrödinger equation in the nonrelativistic limit. Thus any solution to NLS can
be used to produce a solution to Klein–Gordon by suitable rescaling and other minor
modifications. We caution the reader that this produces a very narrow subclass of
solutions to Klein–Gordon and that the long-time behaviour of the two types of
solution is not identical.

To summarize, a resolution to Conjecture 1.2 implies a positive answer to the
analogue for NLS, specifically,

Conjecture 1.3 (NLS Conjecture). Fix μ = ±1. Let w0 ∈ L2
x(R

2) and in the
focusing case assume also that M(w0) < M(Q). Then there exists a unique global
solution w to

iwt +Δw = μ|w|2w(1.6)

with w(0) = w0. Furthermore, this solution satisfies

‖w‖L4
t,x(R×R2) ≤ C(M(w0))

for some continuous function C. As a consequence, the solution w scatters both
forward and backwards in time, that is, there exist w± ∈ L2

x such that

‖w(t)− eitΔw±‖L2
x
→ 0 as t → ±∞.

This conjecture has been proved in the defocusing case [12] and for spherically
symmetric data in the focusing case [22]. (See also [11] and [25] for these results
in higher dimensions in the defocusing and focusing cases, respectively.) The ideas
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1574 ROWAN KILLIP, BETSY STOVALL, AND MONICA VISAN

developed in this paper are not sufficient to resolve the remaining case of either
conjecture. Nevertheless, we will prove that the resolution of Conjecture 1.3 is the
only obstruction to spacetime bounds for NLKG. As NLS only represents the non-
relativistic limit, this means providing spacetime bounds for all solutions except
those living at astronomic length-scales. We contend that it is more natural to
treat these excluded solutions in the NLS setting because scale invariance is restored
there.

Here at last is the precise statement of the main theorem in this paper.

Theorem 1.4 (Spacetime bounds). Fix μ = ±1 and assume that Conjecture 1.3
holds for this choice. Then Conjecture 1.2 holds.

As mentioned above, Conjecture 1.3 has been resolved except for the focusing
case with nonradial data. As a consequence, our results are unconditional in all
but this case:

Corollary 1.5. Conjecture 1.3 holds in the defocusing case and for spherically
symmetric data in the focusing case.

We have chosen to present our principal result as Theorem 1.4 since it more
honestly represents what is achieved in this paper. It also reiterates our belief that
the natural way to attack dispersive PDE with broken symmetries is first to treat
independently the limit cases where the symmetries are restored.

In Section 9, we show that the hypotheses in the focusing case are sharp in the
following sense:

Theorem 1.6 (Blowup). Let u be a maximal-lifespan solution to (1.1) in the fo-
cusing case with initial data obeying

E(u) < E(Q) and M(u(0)) > M(Q).

Then the solution u blows up in finite time in at least one time direction.

Both our well-posedness and blowup results for the focusing Klein–Gordon equa-
tion constrain the behaviour of the mass and the energy, while in the NLS setting,
the natural conjecture considers only the mass. In connection with this, we note
that there are Schwartz-space solutions to focusing NLKG with mass that is ar-
bitrarily small uniformly in time but do not scatter (or admit global spacetime
bounds). For instance, given ν ∈ R2,

uν(t, x) := Q(x⊥ + 〈ν〉x‖ − νt), where x = x‖ + x⊥ and x⊥ ⊥ ν,

is a solution to the focusing case of (1.1) with mass M(uν(t)) = 〈ν〉−1M(Q), which
can be made arbitrarily small by sending ν → ∞. This example arises from the fact
that Lorentz boosts do not preserve the mass. By comparison, the corresponding
Galilei symmetry of NLS does conserve the mass and so this phenomenon does not
occur.

The analogue of Conjecture 1.2 for focusing nonlinearities of the form |u|pu
with p > 2 was resolved recently in [16], the defocusing case having been treated
previously in [31]. To properly explain the relation between these works, our efforts
here, and other work in higher dimensions, we need to introduce the notion of
criticality; the fact that our equation does not possess a scaling symmetry makes
this a little more awkward than in related problems such as the Schrödinger and
wave equations.
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THE CUBIC KLEIN–GORDON EQUATION IN TWO SPACE DIMENSIONS 1575

The dispersion relation −ω = 〈ξ〉 := (1 + |ξ|2)1/2 for the free Klein–Gordon
equation has two natural scaling limits: the wave equation at high frequencies
and the Schrödinger equation at large length scales. We deliberately did not refer
to low frequencies here because the action of Lorentz boosts means that a solution
characterized by a large length scale may actually be centered around any frequency
it wishes. (As we will see, Lorentz boosts will be a source of particular vexation in
the treatment of (1.1); this is a phenomenon that is peculiar to our nonlinearity as
compared to |u|pu with p > 2.)

Both the Schrödinger and wave scaling limits restore scale invariance and hence
define a notion of criticality, indeed, a common notion of criticality:

The nonlinearity ± |u|pu is Ḣsc
x (Rd) critical precisely when sc =

d
2 − 2

p .

On the other hand, the energy (1.2) controls both L2
x and Ḣ1

x, at least in the
defocusing case, and hence all intermediate Sobolev spaces. In two space dimen-
sions, 0 ≤ sc < 1 corresponds to nonlinearities with p ≥ 2. Note that the case
p = 2 is L2

x-critical, while there is no Ḣ1
x-critical nonlinearity of power-type in two

space dimensions. In d > 2 dimensions, |u| 4d u is L2
x-critical and known as the mass-

critical case, while |u| 4
d−2 u is Ḣ1

x-critical and is known as the energy-critical case. In
two dimensions the name energy-critical is used for exponential-type nonlinearities
inspired by inequalities of Trudinger–Moser type; see [15, 16].

For simplicity, let us begin with some historical remarks in the defocusing case
in dimensions d ≥ 3. For both the Schrödinger and Klein–Gordon equations in
the inter-critical regime 4

d < p < 4
d−2 and data in the energy space, scattering was

proved some time ago; see [14] and the references therein, as well as [32, 43] for
simplified treatments. The case of energy-critical nonlinearities was first treated
in the NLS setting in breakthrough work of Bourgain [4]. This paper was for
radial initial data, the nonradial case being treated in [9, 35, 46] and (nonradial)
Klein–Gordon in [30]. The L2

x-critical case was resolved recently in [11]; see also
[25, 44, 45] for earlier work in the radial case. For the latest on the focusing case
in dimensions d ≥ 3, see [1, 16, 18, 24, 25].

For the Klein–Gordon equation in the case d = 2 discussed in this paper, scat-
tering has been proved for data in the energy space in the inter-critical cases [31]
(defocusing) and [16] (focusing), as well as in the energy-critical case [15] (defocus-
ing) and [16] (focusing). The remaining L2

x-critical case is the topic of this paper.
As noted above, scattering in the inter-critical regime (for both the Klein–Gordon

and the Schrödinger equations) was proved significantly before any progress was
made in the critical cases. This is with good reason: the fact that conservation
laws control both higher and lower regularity norms gives excellent control over all
scale-invariant quantities. In the critical cases, one of the two controls becomes
redundant/unusable — any attempt to incorporate it results in nonscale-invariant
(and hence patently ridiculous) statements. Of the two critical cases, we contend
that the L2

x-critical case is more difficult. Our reasons for making this claim, which
go beyond the mere fact that one has been resolved and the other not, will become
apparent when we present the outline of the proof.

1.1. Outline of the proof. The key to proving scattering is to show finiteness of a
global spacetime norm. The most natural choice in the case of (1.1) is L4

t,x(R×R2).
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1576 ROWAN KILLIP, BETSY STOVALL, AND MONICA VISAN

This is also the natural choice for the L2
x-critical NLS and, in particular, is scale-

invariant in that setting. For a general time interval I ⊆ R we will use the notation

(1.7) SI(u) =
∥∥u∥∥4

L4
t,x(I×R2)

,

which we refer to as the scattering size of u on the interval I. We will also write
S≥t(u) to denote the scattering size on the the interval [t,∞) and similarly, S≤t(u)
for the interval (−∞, t]. The Strichartz inequality (Lemma 2.3) shows that SR(u)
is finite for solutions u of the linear Klein–Gordon equation.

To prove the existence of a global solution u with SR(u) finite, we will employ an
induction on energy/contradiction argument in the style of Kenig and Merle [18].
(See also [5, 20] for some key steps in the development of this methodology, as well
as the review [23].) The idea is as follows: If Conjecture 1.2 were false, there would
be a sequence of solutions un : In × R2 → R for which

(1.8) E(un) → Ec < ∞ but SIn(un) → ∞.

In the focusing case we would also have

lim sup
n→∞

M(un(0)) < M(Q) and Ec < E(Q).

Without loss of generality we may choose Ec to be the smallest number for which
such a sequence exists, which is then called the critical energy ; it is positive by virtue
of the small-data theory expounded in Section 3. A key observation of Keraani
(originally made in the mass-critical NLS setting) was that from this sequence one
can extract a minimal counterexample to the conjecture.

The proof of the existence of a minimal counterexample is not trivial. Non-
compact symmetries provide an obvious means for a minimizing sequence to fail
to have a convergent subsequence. For the Klein–Gordon equation these include
space and time translations, as well as Lorentz boosts. While not a true symmetry,
dilations (specifically, to large length scales in our case) also provide a manner
in which the minimizing sequence may fail to converge. The usual method for
studying variational problems with symmetry is the concentration compactness
technique and this is what we will employ here. Recall from [28] that concentration
compactness presents us with three scenarios: compactness (the desired outcome)
vanishing (the complete lack of concentration) or dichotomy (the splitting into two
or more wave packets).

The key to disproving vanishing is an inverse Strichartz inequality (see Theo-
rem 4.9), which shows that the scattering size cannot be large without possessing
a bubble of concentration. When the critical regularity is positive, this type of
result can be deduced from an inverse Sobolev embedding inequality. It was in
this manner that concentration compactness techniques were first introduced in
the dispersive setting; see [2]. In the L2

x-critical setting, there is no possibility to
involve Sobolev embedding and all known inverse inequalities rely on deep results
in harmonic analysis, specifically, on progress toward the Restriction Conjecture of
Stein, [38]. (Sections 4.2 and 4.4 of the lecture notes [23] discuss inverse Sobolev
and Strichartz inequalities, respectively, in a consistent manner and should aid the
reader in making comparisons.)

We will use the sharp bilinear restriction theorem of Tao, [40]. The result is global
for the paraboloid (the Schrödinger case), but only applies to compact subsets of
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other elliptic surfaces (for example ω + 〈ξ〉 = 0, which is the dispersion relation
in our case). This necessitates several preliminary reductions: first to a frequency
annulus (cf. Lemma 4.1) and then to a narrow (unit width) sector inside this
annulus (cf. Corollary 4.6). A Lorentz boost is then used to bring this tube into a
fixed neighbourhood of the origin where Tao’s result may then be applied.

The necessity of incorporating Lorentz boosts in the discussion of the inverse
Strichartz inequality is (as mentioned before) a peculiarity of the L2

x-critical case.
L2
x-supercriticality of an equation prevents the characteristic frequency scale of the

functions in the minimizing sequence from shrinking to zero. This reasoning also
explains why previous work on scattering in the L2

x-supercritical regime has not
had to directly address (or appeal to) the connection to NLS, namely, because NLS
is only revealed when the characteristic frequency scale of a solution shrinks to

zero. On the other hand, by playing boundedness of the energy against the Ḣ
1/2
x

scaling of Lorentz boosts, one can deduce that the boost parameters of minimizing
sequences must stay bounded (that is, do not approach the speed of light). As the
speed associated to any boosting of the minimizing sequence is then comparable to
the variation in speed already found in the solution (that is, the variation in ξ/〈ξ〉
as ξ varies over the Fourier support), the very existence of a boost becomes moot.

In the L2
x-critical case, there is no lower bound on the characteristic frequency

scale of a solution and, in particular, it may be much less than the (still bounded)
parameter of a boost. This is why we must address the action of Lorentz boosts in
this paper.

We turn now to a brief discussion of the second unfavourable concentration
compactness scenario: dichotomy. This will be excluded on the basis of the fact
that we are dealing with a minimizing sequence (cf. Case II in Section 7). The
key tools here are the decoupling results discussed in Section 5 and the stability
theory recorded in Section 3. Together they show that despite the fact that our
equation is nonlinear, multiple wave packets act independently; hence, if a solution
consisting of multiple wave packets has infinite scattering size, then so does one of
the constituent wave packets. Passing to the single wave packet would then give a
smaller value for Ec appearing in (1.8), a contradiction!

On the basis of all we have discussed so far, we find ourselves in the desired
(concentration) compactness scenario. In the NLS (or semilinear wave) context
this would mean that, after applying symmetries of the equation to our minimizing
sequence, we may exhibit a convergent subsequence and hence a minimal-energy
blowup solution. In our case, however, one wrinkle remains: the Klein–Gordon
equation does not possess scaling symmetry. As a consequence, the limiting minimal
blowup solution may be a solution to NLS instead of NLKG! Indeed, this occurs
whenever the characteristic length scale of our minimizing sequence diverges to
infinity. (In the energy-subcritical regime, boundedness of the energy prevents
divergence to zero.)

Previously, Nakanishi [33] used this approximate embedding of NLS inside (com-
plex) NLKG to show that the spacetime norm of a solution to the former provides
a lower bound on the function C appearing in (1.5). In this way, he proved that
spacetime bounds for NLKG imply spacetime bounds for NLS. To use Conjec-
ture 1.3 to prove scattering for NLKG, we need to do what is essentially the exact
opposite: transfer upper bounds from NLS to NLKG. This reversal introduces two
new aspects. First, for lower bounds one merely needs to control the quality of
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1578 ROWAN KILLIP, BETSY STOVALL, AND MONICA VISAN

the approximation for the amount of time it takes for the NLS solution to accu-
mulate the majority of its scattering size; for upper bounds, we need to control the
NLKG solution globally in time. In the long-time regime, the quality of the NLS
to NLKG approximation deteriorates to an unsatisfactory degree. We deal with
this issue by noting that by the time the approximation breaks down, the NLS
solution has started emulating a solution to the linear Schrödinger equation and
that, consequently, the future linear Klein–Gordon evolution is small. This is the
topic of Proposition 6.6; the same philosophy was employed in [21], which considers
the embedding of NLS inside gKdV.

The second new aspect is that to prove lower bounds, one may embed the NLS
solution in whichever manner is convenient. For upper bounds, we must contend
with all embeddings, including the possible incorporation of a Lorentz boost.

A third difference between this work and [33] stems from our decision to consider
the Klein–Gordon equation for real-valued functions. This distinction is essentially
irrelevant for most of the arguments, with the notable exception of the NLS/NLKG
correspondence. In order to get an appreciation for the difference, we invite the
reader to consider the nonlinearities

|v|2v versus [Re v]2 Re v

for a plane wave v = eiξx−i〈ξ〉t. The fact that the NLS/NLKG embedding is still
valid is a testament to the fact that cos2(ξx−〈ξ〉t) behaves sufficiently like a constant
function; however, this resemblance cannot be captured using Lq

tL
r
x norms. Instead,

we need to use Xs,b-inspired methods which capture the fact that the error terms
present in this approximation do not exhibit spacetime resonance with the linear
propagator. See also [8, 21, 41] for similar arguments in the NLS/gKdV context.

The details of how these hurdles are overcome may be found in Section 6. Ul-
timately, we show that if the characteristic length scale of a minimizing sequence
were to diverge (to infinity), then the solutions would inherit spacetime bounds
from NLS, which contradicts the required divergence of their scattering sizes (cf.
(1.8)). In this way we deduce that the failure of Conjecture 1.2 implies the existence
of a minimal-energy solution to NLKG of infinite scattering size. This solution is
global (in time). Moreover, by utilizing the action of time translations (in the now
standard manner), we see that this minimal-energy solution is almost periodic (=
has precompact orbit) modulo translations:

Definition 1.7 (Almost periodicity modulo translations). Fix μ = ±1. We say
that a global solution u to (1.1) is almost periodic modulo translations (in H1

x×L2
x)

if there exist functions x : R → R2 and C : R+ → R+ such that for every t ∈ R and
η > 0, we have∫

|x−x(t)|>C(η)

|u(t, x)|2 + |∇u(t, x)|2 + |ut(t, x)|2 dx < η,(1.9) ∫
|ξ|>C(η)

|〈ξ〉û(t, ξ)|2 + |ût(t, ξ)|2 dξ < η.(1.10)

We refer to x(t) as the spatial center function and to C as the compactness modulus
function.
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Remark 1.8. By (1.9) and the Gagliardo–Nirenberg inequality (enlarging C(η) if
necessary),∫

|x−x(t)|>C(η)

|u(t, x)|2 + |∇u(t, x)|2 + |ut(t, x)|2 + |u(t, x)|4 dx < η.

Similarly, by compactness one may ensure that for each t ∈ R,

(1.11)

∫
|ξ|<1/C(η)

|〈ξ〉û(t, ξ)|2 + |ût(t, ξ)|2 dξ < η.

To recap, the arguments discussed thus far in this overview culminate in the
proof (in Section 7) of the following:

Theorem 1.9 (Reduction to almost periodic solutions). Fix μ = ±1 and suppose
that Conjecture 1.3 holds but Conjecture 1.2 fails for this value of μ. Then there
exists a global solution u to (1.1) with energy E(u) = Ec (and mass M(u(0)) <
M(Q) in the focusing case). Moreover, u is almost periodic modulo translations
and blows up (that is, possesses infinite scattering size) both forward and backward
in time.

The proof of this theorem actually shows that all minimal-energy blowup solu-
tions are almost periodic, but this fact is not needed to prove Theorem 1.4.

We refer to solutions of the type described in Theorem 1.9 as being soliton-
like. While they move around in space (potentially arbitrarily), their profile does
not change very much; specifically, it remains inside some compact set in H1

x. To
complete the proof of Theorem 1.4, we merely need to prove that such soliton-like
solutions do not exist. The first step in doing this is to provide some control over
the spatial location x(t) of the soliton. From Einstein’s relation E2 = P 2c2 +m2c4

relating the energy E, momentum

P := −
∫
R2

ut∇u dx,(1.12)

and the rest mass m (c = 1 denotes the speed of light), we see that a minimal-
energy blowup solution must have zero momentum. In Lemma 8.2 we use this to
show that x(t) = o(t). This is then combined with a monotonicity formula of virial
type to obtain a contradiction.

1.2. Notation. Our convention for the Fourier transform is as follows:

f̂(ξ) = 1
2π

∫
R2

e−ixξf(x) dx.

Definition 1.10 (Littlewood–Paley projections). Fix, once and for all, a smooth
function φ : R2 → [0, 1] obeying φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for |ξ| ≥ 99

98 . For

N ∈ 2Z with N ≥ 1, we define

P̂Nf(ξ) =

{
φ(ξ)f̂(ξ) if N = 1,

[φ(ξ/N)− φ(2ξ/N)]f̂(ξ) otherwise.
(1.13)

We will typically abbreviate fN := PNf .
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2. Basic tools

2.1. Strichartz inequalities. It will be more convenient for us to recast Klein–
Gordon as a first-order equation for a complex-valued function via the map

(2.1) (u, ut) �→ v = u+ i〈∇〉−1ut.

This is easily seen to be a bijection between real-valued solutions of (1.1) and
complex-valued solutions of

−ivt + 〈∇〉v + μ〈∇〉−1‘(Re v)3 = 0,(2.2)

with μ as in (1.1). As such, the local/global theories for the two equations are
equivalent.

Corresponding to Definition 1.1, a solution to (2.2) with initial data v(0) satisfies
the Duhamel formula

(2.3) v(t) = e−it〈∇〉v(0)− iμ〈∇〉−1

∫ t

0

e−i(t−s)〈∇〉(Re v(s))3 ds.
We will consistently use the letter u to denote solutions to (1.1) and v the corre-
sponding solution to (2.2). Note that the energies and scattering sizes are related
in the following ways:

SI(u) = SI(v) =

∫
I

∫
R2

|Re v(t, x)|4 dx dt,

E(u(t)) = E(v(t)) =

∫
R2

1
2 |〈∇〉v(t, x)|2 + μ

4 |Re v(t, x)|
4 dx.

Consistent with Definition 1.1, strong solutions of (2.2) must have finite scattering
size on compact subsets of the interval of existence.

The linear propagator associated to this first-order equation is e−it〈∇〉. We will
need to understand how this interacts with scaling. For this reason, we record the
basic dispersive estimate in the following form:

Lemma 2.1 (Dispersive estimate).

(2.4)
∥∥e−iλ2t〈λ−1∇〉PNf

∥∥
L∞

x (R2)
� |t|−1〈λ−1N〉2‖f‖L1

x(R
2).

Proof. The phase function Φ(ξ) = ξ · x− λ2t〈λ−1ξ〉 obeys

Hessian(Φ)(ξ) = det(∂j∂kΦ(ξ)) = t2〈λ−1ξ〉−4.

With this information, the method of stationary phase yields the requisite bounds

on the integral kernel of e−iλ2t〈λ−1∇〉PN . �

Combining this dispersive estimate and the conservation of L2
x in the usual man-

ner (cf. [17] and the references therein) yields the following:

Lemma 2.2 (Strichartz inequality). For each 2 < q ≤ ∞ and 2 ≤ r < ∞ obeying
the scaling condition 2

q + 2
r = 1,

(2.5)
∥∥e−iλ2t〈λ−1∇〉f

∥∥
Lq

tL
r
x(R×R2)

�
∥∥〈λ−1∇〉

r−2
r f

∥∥
L2

x(R
2)
.

Note that the implicit constant is independent of λ.
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Using the λ = 1 case of this lemma, the form of the free propagator, and
Duhamel’s principle yields the following:

Lemma 2.3 (Strichartz inequality). Let I be a time interval and let u and v be
solutions to the forced Klein–Gordon equations

utt −Δu+ u = F and − ivt + 〈∇〉v = 〈∇〉−1G.

Then,

‖〈∇t,x〉
2
r u‖Lq

tL
r
x(I×R2) �

∥∥〈∇t,x〉u(t0)
∥∥
L2

x(R
2)
+
∥∥〈∇〉1− 2

r̃ F
∥∥
Lq̃′

t Lr̃′
x (I×R2)

,

‖〈∇〉 2
r v‖Lq

tL
r
x(I×R2) �

∥∥〈∇〉v(t0)
∥∥
L2

x(R
2)
+
∥∥〈∇〉1− 2

r̃ G
∥∥
Lq̃′

t Lr̃′
x (I×R2)

for any t0 ∈ I and each 2 < q, q̃ ≤ ∞ and 2 ≤ r, r̃ < ∞ obeying the scaling condition
2
q + 2

r = 2
q̃ + 2

r̃ = 1.

2.2. Symmetries. As for the wave equation, the full Poincaré group acts as sym-
metries of our equation. Noncompact symmetries provide a clear obstruction to
proving the existence of minimal blowup solutions; they provide an easy means
for minimizing sequences to fail to converge. In view of this, we will need some
basic information about (as well as notation for) the action of translations and
Lorentz boosts. As noted in the introduction, even though our equation is not
scale-invariant, dilations play an important role in its analysis; thus, we will need
to discuss these as well.

2.2.1. Translations. Our notation for translations is

(2.6) [Tyf
]
(x) := f(x− y).

2.2.2. Lorentz boosts. We parameterize Lorentz boosts in a manner inspired by
their action on the Fourier side: Given a frequency parameter ν ∈ R2, we define

(t̃, x̃) = Lν(t, x) :=
(
〈ν〉t− ν · x, x⊥ + 〈ν〉x‖ − νt

)
.(2.7)

Here x⊥ and x‖ denote (respectively) the components of x perpendicular and par-
allel to ν. This corresponds to a boost by velocity ν/〈ν〉, which is to say that the
observer with coordinates (t, x) perceives the observer with coordinates (t̃, x̃) as
moving with this velocity. An easy computation shows

L−1
ν (t̃, x̃) =

(
〈ν〉t̃+ ν · x̃, x̃⊥ + 〈ν〉x̃‖ + νt̃

)
= L−ν(t̃, x̃).(2.8)

Note that the linear transformation (2.7) has determinant one and hence pre-
serves spacetime volume.

Lorentz invariance of the linear (or nonlinear) Klein–Gordon equation is precisely
the fact that u ◦ L−1

ν is a solution if and only if u is a solution. In particular,

(2.9) u(t, x) = exp(−i〈ξ〉t+ iξ · x) =⇒ u ◦ L−1
ν (t̃, x̃) = exp(−i〈ξ̃〉t̃+ iξ̃ · x̃),

where the new frequency parameters are related to the old via(
〈ξ̃〉, ξ̃

)
= Lν

(
〈ξ〉, ξ

)
or equivalently, ξ̃ = 
ν(ξ) := ξ⊥ + 〈ν〉ξ‖ − ν〈ξ〉.(2.10)

Note in particular that ξ̃ = 0 if and only if ξ = ν, which matches with the fact that
u represents a wave traveling with velocity ξ/〈ξ〉. Note also that 
−ν ◦ 
ν = Id.
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Associated to the action of Lorentz boosts on solutions to the linear Klein–
Gordon equation there is a corresponding action on initial data. We denote this by
the symbol Lν , which is defined as follows:

(2.11) [Lνf ](x) := [e−i · 〈∇〉f ] ◦ Lν(0, x).

By (2.8), this is equivalent to

(2.12) [L−1
ν f ](x) := [e−i · 〈∇〉f ] ◦ L−1

ν (0, x).

Note that Lν has been specifically defined so that

(2.13) [e−it〈∇〉L−1
ν f ](x) := [e−i · 〈∇〉f ] ◦ L−1

ν (t, x).

In view of (2.9), the action of Lν is easily understood on the Fourier side. In
particular, we have the following:

Lemma 2.4 (Action of boosts). Let ξ̃ = 
ν(ξ), as in (2.10). Then(
L−1
ν f

)̂
(ξ̃) = 〈ξ〉〈ξ̃〉−1f̂(ξ).(2.14)

As a result, boosts do not commute with spacetime translations:

L−1
ν Ty e

iτ〈∇〉 = Tỹ e
iτ̃〈∇〉L−1

ν , where (τ̃ , ỹ) = Lν(τ, y).(2.15)

The operator Lν is unitary in H
1/2
x , that is,〈

L−1
ν f, 〈∇〉g

〉
L2

x
=
〈
f, 〈∇〉Lνg

〉
L2

x
,(2.16)

but not in general Hs
x spaces:〈

L−1
ν f, g

〉
Hs

x
=
〈
f, ms(∇)Lνg

〉
Hs

x
, with ms(ξ) = ms(ξ; ν) =

(
〈ξ̃〉
〈ξ〉

)2s−1

.

However, ‖ms‖L∞
ξ

+ ‖m−1
s ‖L∞

ξ
� 〈ν〉|2s−1|.

Proof. From (2.12) and (2.9) we have

[L−1
ν f ](x) = (2π)−1

∫
R2

eiξ̃xf̂(ξ) dξ = (2π)−1

∫
R2

eiξ̃xf̂(ξ) 〈ξ̃〉−1〈ξ〉 dξ̃.

In the last equality we used that

ξ̃‖ = 〈ν〉ξ‖ − ν〈ξ〉 and so
∂ξ̃‖

∂ξ‖
= 〈ν〉 − νξ‖

〈ξ〉 =
〈ξ̃〉
〈ξ〉 ;

hence (by triangularity) the full Jacobian is

(2.17)

∣∣∣∣∂ξ̃∂ξ
∣∣∣∣ = 〈ξ̃〉

〈ξ〉 , that is, dξ = 〈ξ̃〉−1〈ξ〉 dξ̃.

Next we turn to (2.15). As Lorentz boosts preserve the Minkowski metric,

−τ 〈ξ〉+ yξ = −τ̃〈ξ̃〉+ ỹξ̃.

Hence by (2.14),(
L−1
ν Tye

iτ〈∇〉f
)̂
(ξ̃) = 〈ξ〉〈ξ̃〉−1eiτ〈ξ〉−iyξ f̂(ξ) = eiτ̃〈ξ̃〉−iỹξ̃

(
L−1
ν f

)̂
(ξ̃).

The result now follows after inverting the Fourier transforms.

The interaction of Lν with inner products in H
1/2
x , or any Hs

x space, follows
easily from (2.14) and (2.17). �
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Remark 2.5. The behaviour of the H1
x norm becomes less mysterious if we consider

instead the physical quantities of energy and momentum defined in the introduction.
If u is a solution of the linear Klein–Gordon equation and ũ = u ◦ L−1

ν , then the
energy-momentum vectors are related by(

Ẽ, P̃
)
= Lν

(
E,P ),

which follows from (2.9), (2.17), and Plancherel. This relation also holds in the
nonlinear case; see Corollary 3.7.

Remark 2.6. When interpreted in terms of its action on solutions u(t, x) of linear
Klein–Gordon (as opposed to initial data), the relation (2.15) takes the form

(2.18) u(· − τ, · − y) ◦ L−1
ν = u ◦ L−1

ν (· − τ̃ , · − ỹ) when (τ̃ , ỹ) = Lν(τ, y),

which is, of course, nothing but the linearity of the transformation Lν .

2.2.3. Scaling. As noted in the introduction, the (nonlinear) Klein–Gordon equa-
tion does not possess a scaling symmetry; indeed, one of the key themes of this
paper is how solutions with small Fourier support behave as solutions of the (non-
linear) Schrödinger equation. Because shrinking Fourier support is a way that an
optimizing sequence may fail to converge, this is something we need to address in
our concentration compactness principle. In this subsection, we merely introduce
some notation for (L2

x-preserving) dilation/scaling operators and note how these
interact with Fourier multipliers, including the free evolution.

Definition 2.7. For each λ ∈ (0,∞) we define a unitary operator Dλ on L2
x by[

Dλf
]
(x) = λ−1f(x/λ).

Observe that Dλ dilates by a factor λ in the sense that the diameter of the support
of Dλf is λ times larger than that of f .

Note that

(2.19) m(∇)Dλf = Dλm(λ−1∇)f

for any Fourier multiplier m(∇).

2.3. Useful lemmas. The remainder of this section contains certain manipulations
of symmetries that we will need in the proof of the inverse Strichartz inequality,
Theorem 4.9.

Lemma 2.8. Fix h ∈ L2
x and B > 0. Then with m0 as in Lemma 2.4, the set

K :=
{
D−1

λ L−1
ν m0(∇)−1eiνxDλh : |ν| ≤ B and B−1 ≤ λ < ∞

}
is precompact in L2

x. Moreover, the closure of K does not contain 0 unless h ≡ 0.

If ĥ is the characteristic function of [−1, 1]2, then

(2.20) supp(ĝ) ⊆ {|ξ| � 〈B〉}, ‖g‖L2
x
� 〈B〉−1, and

∫
|x|∼R

|g(x)|2 dx � 〈B〉
〈R〉 ,

all uniformly for g ∈ K.

Proof. A careful computation shows that

(2.21)
[
D−1

λ L−1
ν m0(∇)−1eiνxDλh

]̂
(ξ̃) = ĥ ◦G(ξ̃),

where G(ξ̃) = λ[
−1
ν

(
ξ̃/λ

)
− ν] = ξ̃⊥ + 〈ν〉ξ̃‖ + λν[〈λ−1ξ̃〉 − 1]. The conclusions of

the lemma will follow from some basic properties of this function G.
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First we note that G is a bijection on R2; indeed, the computation (2.21) reveals
it to be the composition of dilations, translations (cf. eiνx), and the bijection 
−1

ν

associated to L−1
ν . Moreover, the Jacobian of G is

det[G′] = 〈ν〉+ λ−1〈λ−1ξ̃〉−1ν · ξ̃,
which is uniformly bounded both above and below:

(2.22) 〈ν〉−1 �
∣∣det[G′]

∣∣ � 〈ν〉.

(Here we used |λ−1ξ̃| ≤ 〈λ−1ξ̃〉 and [〈ν〉 − |ν|][〈ν〉+ |ν|] = 1.)

From (2.22) we can conclude that ĥ �→ ĥ ◦ G is a uniformly bounded family
of operators on L2

x for |ν| ≤ B and λ ∈ [B−1,∞]. Note the inclusion of λ = ∞
here; this is possible since limλ→∞ G(ξ̃) = ξ̃⊥+ 〈ν〉ξ̃‖, which is still a bijection with
bounded Jacobian.

To finish the proof of precompactness, it suffices to show that ĥ◦G varies contin-
uously in L2

x as λ and ν vary over the compactified region. By virtue of the uniform

boundedness of ĥ �→ ĥ◦G we may safely replace ĥ by an element of C∞
c (R2). With

this reduction, the result becomes an easy consequence of the continuity of G(ξ̃) as
a function of λ and ν and the fact that

(2.23) [〈ν〉 − |ν|]|ξ̃| � |G(ξ̃)| � [〈ν〉+ |ν|]|ξ̃|,

which follows from |〈λ−1ξ̃〉 − 1| ≤ λ−1|ξ̃|, a consequence of the subadditivity of the
square root.

That K stays away from zero follows immediately from the upper bound in (2.22).
Lastly we turn to (2.20). Inclusion of the Fourier support follows immediately

from the lower bound in (2.23), while the second claim and the case R ≤ 1 of the
last inequality follow directly from (2.22). To treat the case R ≥ 1, we note that
by (2.21), the Fourier transform of a fixed g ∈ K is the characteristic function of a
set with piecewise smooth boundary and

Length(∂ supp ĝ) � ‖(G−1)′‖L∞(R2;R2×2) � 〈ν〉.
Therefore, for each vector |η| ≤ 1,∫

R2

|x||g(x)|2 |e
iηx − 1|2
|η||x| dx = |η|−1

∫
R2

|ĝ(ξ̃ − η)− ĝ(ξ̃)|2 dξ̃ � 〈ν〉.

The estimate then follows by adding together this estimate for vectors η of length
R−1 pointing in a fixed collection of directions. (The exact number of vectors
needed is dictated by the constants in |x| ∼ R.) �

Lemma 2.9. (a) Suppose gn ⇀ g weakly in H1
x and λn → λ ∈ (0,∞). Then there

is a subsequence so that[
e−iλ2

nt〈λ−1
n ∇〉gn

]
(x) → [e−iλ2t〈λ−1∇〉g](x) for almost every (t, x) ∈ R× R2.

(b) For λn → λ ∈ (0,∞) and fixed g ∈ H1
x,∥∥e−iλ2

nt〈λ−1
n ∇〉g − e−iλ2t〈λ−1∇〉g

∥∥
L4

t,x
→ 0.

(c) Fix θ ∈ (0, 12 ) and suppose gn ⇀ g weakly in L2
x and λn → ∞. Then there is a

subsequence so that[
e−iλ2

nt[〈λ−1
n ∇〉−1]P≤λθ

n
gn
]
(x) → [eitΔ/2g](x) for almost every (t, x) ∈ R× R2.
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(d) For λn → ∞, θ ∈ (0, 12 ), and fixed g ∈ L2
x,∥∥e−iλ2

nt[〈λ−1
n ∇〉−1]P≤λθ

n
g − eitΔ/2g

∥∥
L4

t,x
→ 0.

Proof. With regard to almost everywhere convergence of a subsequence, it suffices
(via Cantor’s diagonal argument) to work on a generic cube, say, (t, x) ∈ [−L,L]3.
This in turn can be deduced from L2

t,x-convergence of a larger subsequence there.
Consider part (a). First we show the existence of an almost everywhere con-

vergent subsequence; only after that will we identify the limit. By the Strichartz
inequality Lemma 2.2,

lim sup
n→∞

∥∥〈∂t〉 1
4 〈∇〉 1

4 e−iλ2
nt〈λ

−1
n ∇〉gn

∥∥
L4

t,x(R×R2)
�λ ‖g‖H1

x
.

Combining this with Rellich’s Theorem, specifically, compactness of the embed-
ding W 1/4,4(R3) ↪→ L2([−L,L]3), we obtain an L2

t,x (and thence a.e.) convergent
subsequence on this cube.

The fact that we have local convergence in L2
t,x also allows us to identify the

limit: for all F ∈ C∞
c (R× R2),

lim
n→∞

∫
R

∫
R2

F (t, x)[e−iλ2
nt〈λ

−1
n ∇〉gn](x) dx dt

= lim
n→∞

∫
R2

gn(x)

∫
R

[eiλ
2
nt〈λ

−1
n ∇〉F (t, ·)](x) dt dx

=

∫
R2

g(x)

∫
R

[eiλ2t〈λ−1∇〉F (t, ·)](x) dt dx

=

∫
R

∫
R2

F (t, x)[e−iλ2t〈λ−1∇〉g](x) dx dt.

The proof of (b) is easily adapted from the proof of (d), which we give below.
We now turn to the more subtle part (c) where λn → ∞. By noting that

(2.24) λ2
nt[〈λ−1

n ξ〉 − 1] = 1
2 t|ξ|

2 +O
(
tλ−2

n |ξ|4
)

as λn → ∞,

we deduce that for θ < 1
2 ,∥∥e−iλ2

nt[〈λ−1
n ∇〉−1]P≤λθ

n
− eitΔ/2P≤λθ

n

∥∥
L2

x→L2
x

−→
n→∞

0.

Thus it suffices to prove convergence of a subsequence of eitΔ/2P≤λθ
n
gn on our

generic cube [−L,L]3. The key to doing so is the well-known local smoothing
estimate for the Schrödinger equation:

(2.25)

∫
R

∫
[−L,L]2

∣∣[〈∇〉 1
2 eitΔ/2f

]
(x)

∣∣2 dx dt � L · ‖f‖2L2
x(R

2);

see [10, 36, 47]. This estimate implies

(2.26)
∥∥〈∂t〉 1

8 〈∇〉 1
4 eitΔ/2gn

∥∥
L2

t,x([−L,L]3)
� L1/2 · ‖gn‖L2

x(R
2),

and hence by Rellich’s Theorem, the existence of an L2
t,x-convergent subsequence on

[−L,L]3. The identification of the limit follows by testing against F ∈ C∞
c (R×R2),

as above.
Lastly, we address part (d). By the Strichartz inequality Lemma 2.2 and its

analogue for eitΔ/2, it suffices to treat the case when g is a Schwartz function.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1586 ROWAN KILLIP, BETSY STOVALL, AND MONICA VISAN

(Note the importance of uniformity in λ in Lemma 2.2.) Next we note that by
the (uniform in λ) dispersive estimate (2.4) and its analogue for the Schrödinger
propagator,∥∥e−iλ2

nt[〈λ
−1
n ∇〉−1]P≤λθ

n
g
∥∥
L4

t,x(|t|≥T )
+
∥∥eitΔ/2g

∥∥
L4

t,x(|t|≥T )
� T− 1

4 ‖g‖
L

4/3
x

.

Thus we are left to control the region |t| ≤ T . First we note that∥∥e−iλ2
nt[〈λ−1

n ∇〉−1]P≤λθ
n
g − eitΔ/2g

∥∥
L∞

t L2
x(|t|≤T )

� (λ−2
n T + λ−4θ

n )‖g‖H4
x
,(2.27)

which follows from (2.24) and the fact that∥∥P>λθ
n
g
∥∥
L∞

t L2
x(|t|≤T )

� λ−4θ
n ‖g‖H4

x
.

On the other hand, by the Strichartz estimates and Sobolev embedding,∥∥e−iλ2
nt[〈λ

−1
n ∇〉−1]P≤λθ

n
g
∥∥
L3

tL
6
x
+
∥∥eitΔ/2g

∥∥
L3

tL
6
x
� ‖g‖

H
2/3
x

.(2.28)

Interpolating between (2.27) and (2.28), we obtain

lim
n→∞

∥∥e−iλ2
nt[〈λ−1

n ∇〉−1]P≤λθ
n
g − eitΔ/2g

∥∥
L4

t,x(|t|≤T )
= 0

for each fixed T . �

The significance of this lemma for us is that it provides the input for the following
variant of Fatou’s lemma due to Brézis and Lieb (see also [27, Theorem 1.9]):

Lemma 2.10 (Refined Fatou, [6]). Let d ≥ 1 and 1 ≤ p < ∞ and suppose {Fn} ⊆
Lp(Rd) with lim sup ‖Fn‖p < ∞. If Fn → F almost everywhere, then∫

Rd

∣∣∣|Fn|p − |Fn − F |p − |F |p
∣∣∣ dx → 0.

In particular, if Gn → F in Lp sense, then

(2.29) lim sup
n→∞

‖Fn −Gn‖Lp ≤ lim sup
n→∞

(
‖Fn‖pLp− ‖F‖pLp

)1/p
.

2.4. Elliptic estimates. In this subsection, we first record a special case of the
sharp Gagliardo–Nirenberg inequality of Weinstein [48] and then discuss some con-
sequences for our equation in the focusing setting.

Theorem 2.11 (Sharp Gagliardo–Nirenberg, [48]). For all f ∈ H1
x(R

2),

(2.30) ‖f‖4L4
x
≤ 2‖Q‖−2

L2
x
‖f‖2L2

x
‖∇f‖2L2

x
.

Here Q denotes the unique positive radial Schwartz solution to ΔQ + Q3 = Q.
Moreover, equality holds in (2.30) if and only if f(x) = αQ(λ(x − x0)) for some
α ∈ C, λ ∈ (0,∞), and x0 ∈ R2.

It is not difficult to prove the existence of Q, for example by variational methods.
A proof of uniqueness (along with earlier references) can be found in Kwong [26].
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Integrating the equation for Q against Q and x · ∇Q yields

E(Q) :=

∫
R2

1
2 |Q|2 + 1

2 |∇Q|2 − 1
4 |Q|4 dx =

∫
R2

1
2 |Q|2 =: 1

2M(Q).(2.31)

This is known as Pohozaev’s identity.

Proposition 2.12 (Energy coercivity). Let u : I×R2 → R be a solution to (1.1) in
the focusing case with initial data (u(0), ut(0)) = (u0, u1) ∈ H1

x × L2
x whose energy

E(u) = E(u0, u1) =

∫
R2

1
2 |u1|2 + 1

2 |∇u0|2 + 1
2 |u0|2 − 1

4 |u0|4 dx

obeys E(u) < E(Q).
(i) If M(u(0)) < M(Q), then∫

R2

|u(t)|2 + |ut(t)|2 dx ≤ 2E(u) < M(Q),(2.32) ∫
R2

|∇u(t)|2 + |ut(t)|2 dx ≤ 2E(u) < M(Q)(2.33)

for all t ∈ I. As a consequence,

2E(u) ≤ ‖u(t)‖2H1
x
+ ‖ut(t)‖2L2

x
≤ 4E(u).(2.34)

(ii) If M(u(0)) > M(Q), then

M(u(t)) > M(Q) and

∫
R2

|∇u(t)|2 > M(Q)(2.35)

for all t ∈ I. Moreover,

∂ttM(u(t)) = 2

∫
R2

|ut|2 − |∇u|2 − |u|2 + |u|4 dx > 6

∫
R2

|ut|2 dx.(2.36)

Proof. We begin with part (i). As energy is conserved, E(u(t)) < E(Q) for all
t ∈ I. Combining this with (2.31) and the sharp Gagliardo–Nirenberg inequality
shows that

M(u(t)) ≤ M(Q) =⇒ M(Q) > 2E(u(t)) ≥
∫
R2

|u(t)|2 + |ut(t)|2 ≥ M(u(t)).

By definition, solutions are continuous in H1
x ×L2

x and so we see that (2.32) follows
by a simple bootstrap/continuity argument.

We now turn to the proof of (2.33). By the sharp Gagliardo–Nirenberg inequality
and (2.31),

M(Q) > 2E(u(t)) ≥
∫
R2

|ut(t)|2 + |u(t)|2 +
[
1− M(u(t))

M(Q)

]
|∇u|2 dx

and so, neglecting the ut term and doing a little rearranging, we find that

(2.37)
[
M(Q)−M(u(t))

][
M(Q)− ‖∇u(t)‖2L2

x

]
> 0.

From (2.32), we see that M(u(t)) < M(Q) throughout the interval of existence.
Thus ‖∇u(t)‖2L2

x
< M(Q) and so, by the sharp Gagliardo–Nirenberg inequality,

1
4

∫
R2

|u(t, x)|4 dx ≤ 1
2

∫
R2

|u(t, x)|2 dx.

The estimate (2.33) now follows directly from the definition of energy.
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The proof of part (ii) closely parallels that of part (i). The first inequality in
(2.35) follows from a simple bootstrap argument based on the fact that ifM(u(t)) =
M(Q), then by the sharp Gagliardo–Nirenberg inequality, 2E(u(t)) ≥ M(Q) =
2E(Q). The second inequality in (2.35) follows from the first via (2.37).

The evaluation of ∂ttM(u(t)) is an elementary computation. Note that the an-
swer can be rewritten in the form

∂ttM(u(t)) = −8E(u) +

∫
R2

6|ut|2 + 2|∇u|2 + 2|u|2,

from which (2.36) follows from 2E(u) < M(Q) and both inequalities in (2.35). �

3. Local theory

By using L4
t,x and L∞

t H1
x as the basic spaces in a contraction-mapping argument,

the Strichartz estimates directly yield local well-posedness, persistence of regularity,
and stability results. The arguments leading to local well-posedness can be found
in any textbook on dispersive PDE, for example, [7]. A proof of the persistence of
regularity result may be adapted from the proof for NLS given in [43, Lemma 3.10].
We formulate these basic statements in the context of the first-order equation (2.2);
the reader should have no difficulty reformulating them for solutions to (1.1).

Proposition 3.1 (Local well-posedness for H1 initial data). Let v0 ∈ H1
x(R

2).
Then there exists a unique maximal-lifespan (strong) solution v : I × R2 → C to
(2.2) with v(0) = v0. Furthermore, the following hold:
• (Blowup alternative) If T = sup I is finite, then ‖v(t)‖H1

x
→ ∞ as t → T .

• (Conservation laws) The energy and momentum are finite and constant in time.
• (Scattering) If v does not blow up forward in time, that is, if S[0,∞)(v) < ∞,

then there exists v+ ∈ H1
x(R

2) such that

(3.1) lim
t→∞

‖v(t)− e−it〈∇〉v+‖H1
x(R

2) = 0.

Furthermore, for each v+ ∈ H1
x(R

2), there exists a unique v which solves (2.2) in
a neighbourhood of +∞ and satisfies (3.1). In either case,

(3.2) E(v) = 1
2‖v+‖

2
H1

x(R
2).

Similar statements hold backward in time.
• (Small data result) If ‖v0‖H1

x
is sufficiently small, then v is global and moreover,

SR(v) � E(v)2.

• (Small solution to LKG implies small solution to NLKG) If I is an interval,
0 ∈ I, and ‖Re e−it〈∇〉v0‖L4

t,x(I×R2) is sufficiently small, then I is contained in the

lifespan of v and

SI(v) � ‖Re e−it〈∇〉v0‖4L4
t,x(I×R2).

• (Persistence of regularity) Let I ⊂ R and assume that SI(v) < L. Given s ≥ 0,

(3.3) ‖〈∇〉s+ 2
r v‖Lq

tL
r
x(I×R2) �L,s,q,r ‖〈∇〉s+1v0‖L2

x(R
2)

for each q and r obeying 2 < q ≤ ∞ and 1
q + 1

r = 1
2 .

Remark 3.2. Note that in the small-data setting, the Gagliardo–Nirenberg inequal-
ity shows that ‖v(t)‖2H1

x
∼ E(v). As a consequence, ‖v‖L∞

t H1
x
� ‖v0‖H1

x
.
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In the defocusing case, energy controls ‖v(t)‖2H1
x
and so finite-time blowup cannot

occur. In the focusing case, the energy is no longer coercive in general; nevertheless,
by part (i) of Proposition 2.12 we do obtain the following:

Corollary 3.3 (Global well-posedness). In the defocusing case, any initial data
v0 ∈ H1

x leads to a global solution to (2.2). In the focusing case, any initial data
v0 ∈ H1

x obeying∫
R2

|Re v0|2 dx ≤
∫
R2

Q2 dx and E(v0) < E(Q)

leads to a global solution. Here Q denotes the ground state, as in Theorem 2.11.

In view of this corollary, the main objective of this paper is to prove that these
global solutions obey spacetime bounds, which, by the local theory mentioned
above, will also imply scattering. As described in the introduction, we will ar-
gue by contradiction, showing that failure of Theorem 1.4 implies the existence of
minimal-energy counterexamples (see Section 7). A key ingredient is the follow-
ing stability theory. The significance of stability theory has really only come to
the fore with the investigation of scaling-critical equations. The archetypal argu-
ment appears in [9]; see also [42]. A detailed proof for the mass-critical nonlinear
Schrödinger equation is given in [23], and only minor modifications are required to
extend that argument to the first-order nonlinear Klein–Gordon (2.2).

Proposition 3.4 (Stability theory). Let I be an interval and let ṽ be an approxi-
mate solution to (2.2) on I in the sense that

−iṽt + 〈∇〉ṽ + μ〈∇〉−1(Re ṽ)3 + e1 + e2 = 0,

with small error terms e1 and e2. Assume that∥∥〈∇〉1/2ṽ
∥∥
L∞

t L2
x(I×R2)

≤ M and ‖Re ṽ‖L4
t,x(I×R2) ≤ L

for some positive constants M and L. Let t0 ∈ I and let v0 satisfy the condition∥∥〈∇〉1/2(v0 − ṽ(t0))
∥∥
L2

x(R
2)

≤ M ′

for some positive constant M ′. Then if 0 < ε < ε1(L,M,M ′) and if v0 and the
error terms satisfy

‖e−i(t−t0)〈∇〉(v0 − ṽ(t0))‖L4
t,x(I×R2) ≤ ε,

‖〈∇〉e1‖L4/3
t,x (I×R2)

+ ‖e2‖L1
tH

1/2
x (I×R2)

≤ ε,

then there exists a solution v to (2.2) with initial data v0 at time t = t0. Further-
more, the solution v satisfies

‖v − ṽ‖L4
t,x(I×R2) ≤ εC(M,M ′, L),

‖v − ṽ‖
L∞

t H
1/2
x (I×R2)

≤ M ′C(M,M ′, L).

The local theory described so far treats time as an absolute, which jars with
the Lorentz invariance of our equation. Moreover, it does not allow us to consider
boosted solutions u ◦Lν , even for small values of ν. The next lemma remedies this
by proving local existence in a larger spacetime region; we then make some basic
observations about the behaviour of the boosted solutions in Corollary 3.7.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1590 ROWAN KILLIP, BETSY STOVALL, AND MONICA VISAN

Lemma 3.5 (Boostable local solutions). Given initial data (u0, u1) ∈ H1
x × L2

x,
there is an ε > 0 and a local solution u to (1.1) matching this data (at t = 0) and
defined in the spacetime region Ω = {(t, x) : |t| − ε|x| < ε}. Moreover,

‖u‖Lq
tL

r
x(Ω) := ‖χΩu‖Lq

tL
r
x(R×R2) < ∞ for each 2 < q ≤ ∞ and 1

q + 1
r = 1

2 ,

‖u‖2L∞
t (H1

x×L2
x)(Ω) := sup

t

∫
R2

χΩ(t, x)
[
|ut(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|2

]
dx < ∞,

and

lim
R→∞

sup
|t|<εR

∫
|x|>R

[
|ut(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|2

]
dx = 0.(3.4)

The solution u with these properties is unique.

Remark 3.6. As we will see from the proof, if (u0, u1) leads to a global solution,
then we may take any 0 < ε < 1.

Proof. Both existence and uniqueness follow directly by combining the local theory
described so far with finite speed of propagation. First we note that by Proposi-
tion 3.1 there exists T0 = T0(u0, u1) > 0 so that there is a (unique) local solution u
to (1.1) defined on the spacetime slab |t| < T0 and having finite spacetime norms
there.

Next, let φ denote a smooth cutoff function with φ(x) = 1 outside the unit ball
and φ(x) = 0 when |x| < 1

2 . Given any η > 0 (in particular, the threshold for the
small data theory), there is an R0 sufficiently large so that∫

R2

[
|φ(x/R0)u1(x)|2 + |∇[φ(x/R0)u0(x)]|2 + |φ(x/R0)u0(x)|2

]
dx < η.

Thus by Proposition 3.1, there is a global solution ũ to (1.1) with initial data
ũ(0, x) = φ(x/R0)u0(x) and ũt(0, x) = φ(x/R0)u1(x). By uniqueness and finite
speed of propagation, ũ provides an extension of u to the spacetime region where
|x| − |t| > R0. Note that ũ has finite (global) spacetime norms.

To recap, we have proved that there is a unique local solution with finite space-
time bounds on the region where |t| < T0 or |x| − |t| > R0. This includes the
region Ω provided we choose ε < T0/(1 + R0 + T0) and so settles the majority of
the lemma; it remains only to prove the tightness statement (3.4).

The proof of (3.4) is a simple variation on the ũ construction above. Indeed,

if ũ(R̃) is the solution to (1.1) with initial data ũ(R̃)(0, x) = φ(x/R̃)u0(x) and

ũ
(R̃)
t (0, x) = φ(x/R̃)u1(x), then (cf. Remark 3.2)

lim
R̃→∞

‖ũ(R̃)‖L∞
t H1

x(R×R2) + ‖∂tũ(R̃)‖L∞
t L2

x(R×R2) = 0.

Taking R̃ < (1 − ε)R, this proves (3.4) because u and ũ(R̃) agree on the region

|x| − |t| > R̃. �

Corollary 3.7. In view of Lemma 3.5, any initial data u(0) ∈ H1
x and ut(0) ∈ L2

x

lead to a solution u to (1.1) in a spacetime region of the form Ω = {(t, x) : |t|−ε|x| <
ε} for some ε > 0. For |ν|

〈ν〉 < ε, we have

(i) u ◦ Lν(t, x) is a (strong) solution to (1.1) on (−ε, ε)× R2.
(ii) ν �→

(
u ◦ Lν(0, x), [u ◦ Lν ]t(0, x)

)
is continuous with values in H1

x × L2
x.
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(iii) The energy and momentum obey Einstein’s relation:

(3.5)
(
E(u ◦ Lν), P (u ◦ Lν)

)
= L−1

ν

(
E(u), P (u)

)
.

In particular,

(3.6) E
(
u ◦ Lν(t)

)2 − P
(
u ◦ Lν(t)

)2
is independent of t and ν.

Remark 3.8. The square root of the quantity in (3.6) is usually known as the rest
mass ; compare the famous equation E2 = P 2c2+m2c4, or its P = 0 case E = mc2.
We will not use the term rest mass here so as to avoid confusion with the (non-
conserved) quantity M(u(t)).

Proof. It is not difficult to verify that if |ν|〈ν〉−1 < ε, then Lν maps (−ε, ε) × R2

into Ω. Thus u ◦ Lν is defined in the region claimed. As Lν is volume-preserving,
we also see that

(3.7)

∫ ε

−ε

∫
R2

∣∣u ◦ Lν(t, x)
∣∣4 dx dt ≤ ∫∫

Ω

∣∣u(t, x)∣∣4 dx dt < ∞.

This estimate allows one to justify the elementary manipulations which guarantee
that u◦Lν is a distributional solution. To prove that it is a strong solution we need
to prove that it belongs to C0

t (H
1
x × L2

x). We will settle both this and part (ii) of
the corollary by showing that

(t, ν) �→
(
u ◦ Lν(t, x), [u ◦ Lν ]t(t, x)

)
is a continuous function from {|t| < ε, |ν| < ε} to H1

x × L2
x.

Let ulin denote the solution to the linear Klein–Gordon equation that has the
same initial data as u, namely,

ulin(t) = cos(t〈∇〉)u(0) + 〈∇〉−1 sin(t〈∇〉)ut(0),

and let ũ = u−ulin denote the difference. The action of Lorentz boosts on solutions
of the linear equation was described in Subsection 2.2.2; in particular,

(3.8) ulin ◦ Lν(t, x) + i〈∇〉−1∂t[u
lin ◦ Lν ](t, x) = e−it〈∇〉Lν [u(0) + i〈∇〉−1ut(0)].

The action of e−it〈∇〉Lν on the Fourier side (cf. Lemma 2.4) clearly shows that

(t, ν) �→
(
ulin ◦ Lν(t, x), [u

lin ◦ Lν ]t(t, x)
)

has the required continuity. This leaves us to consider the effect of Lorentz boosts
on ũ, which obeys

ũtt −Δũ+ ũ = −μu3 and ũ(0, x) = ũt(0, x) = 0.

As ũ = u− ulin, Lemma 3.5 and the Strichartz inequality imply

‖ũ‖Lq
tL

r
x(Ω) + ‖∇t,xũ‖L∞

t L2
x(Ω) < ∞ for each 2 < q ≤ ∞ and 1

q + 1
r = 1

2 .(3.9)

We also have

lim
R→∞

sup
|t|<εR

∫
|x|>R

[
|ũt(t, x)|2 + |∇ũ(t, x)|2 + |ũ(t, x)|2

]
dx = 0.(3.10)

Again this follows by writing ũ = u − ulin: For u we use (3.4); the analogous
estimate for ulin follows from finite speed of propagation and energy conservation
(cf. the proof of (3.4)).

We now turn to the main part of the argument. We will give complete details
for the proof that ũ ◦Lν and its time derivative are bounded in the requisite spaces
and that continuity holds at the point (t = 0, ν = 0). The reader should have little
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difficulty adapting the argument to prove continuity at other points, for example,
by using the group property of the transformations.

Let T denote the stress-energy tensor for ũ, which has components

T 00 = 1
2 |ũt|2 + 1

2 |∇ũ|2 + 1
2 |ũ|

2, T 0j = T j0 = −ũtũj ,

and T jk = ũj ũk − δjk
[
T 00 − |ũt|2

]
,

where j, k ∈ {1, 2}. Note that this is the stress-energy tensor associated to the
linear Klein–Gordon equation (cf. (3.13) below). For our immediate purposes, we
do not need to consider the full tensor, but merely the 3-vector p with components

pα := 〈ν〉T 0α + ν1T 1α + ν2T 2α, α ∈ {0, 1, 2}.

This vector has divergence

∇t,x · p = ∂tp
0 + ∂1p

1 + ∂2p
2 = −μu3[〈ν〉ũt − ν · ∇ũ],

and was deliberately constructed so that∫
Lν(t,R2)

p · dS =

∫
R2

[〈ν〉p0 + νjp
j ] ◦ Lν(t, x) dx

= 1
2

∫
R2

|∂t(ũ ◦ Lν)|2 + |∇(ũ ◦ Lν)|2 + |ũ ◦ Lν |2 dx,

where dS denotes surface measure times the unit normal.
Both ũ and ∇t,xũ vanish on the surface t = 0. Thus we may estimate the

required norm by applying the divergence theorem to p on the region

Ωt,ν := {(s, y) : 0 < s < 〈ν〉−1(t− ν · y)} ∪ {(s, y) : 〈ν〉−1(t− ν · y) < s < 0} ⊆ Ω,

whose boundary comprises (0,R2) ∪ Lν(t,R
2). There are two technical obstacles

to doing this: p may not be smooth enough and Ωt,ν is not compact. The former
can be dealt with by the usual mollification technique of convolving with a C∞

c

function. The latter was the reason for proving (3.10), as we will explain.
The main estimate required to prove boundedness and continuity is the following:∫∫

Ωt,ν

|∇t,x · p| dy ds � 〈ν〉
∫∫

Ωt,ν

|u(s, y)|3|∇t,yũ(s, y)| dy ds(3.11)

� ‖u‖L3
sL

6
y(Ωt,ν)‖∇t,xũ‖L∞

s L2
y(Ω) → 0 as (t, ν) → 0.

The last step follows from Lemma 3.5, (3.9), and the dominated convergence theo-
rem since Ωt,ν → ∅ as (t, ν) → 0.

We are now ready to apply the divergence theorem. Let φ : R → [0, 1] be a
smooth function with φ(r) = 1 when r < 1 and φ(r) = 0 when r > 2. Now let

ψR(s, y) = φ( |s|+|y|
R ), where R > 0 will be sent to infinity. Applying the divergence
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theorem to pψR and invoking (3.10) and (3.11) yields

1
2

∫
R2

|∂t(ũ ◦ Lν)|2 + |∇(ũ ◦ Lν)|2 + |ũ ◦ Lν |2 dx

= lim
R→∞

1
2

∫
R2

[
|∂t(ũ ◦ Lν)|2 + |∇(ũ ◦ Lν)|2 + |ũ ◦ Lν |2

]
ψR dx

≤ lim sup
R→∞

∫∫
Ωt,ν

|ψR∇t,x · p|+ |p · ∇t,xψR| dy ds

≤
∫∫

Ωt,ν

|∇t,x · p|+ lim sup
R→∞

1

R

∫ εR

−εR

∫
|x|∼R

|〈∇t,x〉ũ|2 dx dt

≤
∫∫

Ωt,ν

|∇t,x · p| −→ 0 as (t, ν) → 0.(3.12)

This settles parts (i) and (ii) of the corollary.
The proof of part (iii) revolves around the stress-energy tensor associated to the

nonlinear Klein–Gordon equation:

(3.13)
T 00 = 1

2u
2
t +

1
2 |∇u|2 + 1

2 |u|
2 + μ

4 |u|
4, T 0j = T j0 = −utuj ,

and T jk = ujuk − δjk
[
T 00 − |ut|2

]
.

As u is a solution, this is divergence free, that is,

∂tT α0 + ∂1T α1 + ∂2T α2 = 0 for all α ∈ {0, 1, 2}.
Applying the divergence theorem for all values of α, one deduces that (3.5), and
hence (3.6), holds. The estimates needed to deal with the noncompactness of Ωt,ν

can be found in Lemma 3.5. �

Corollary 3.9 (Boosting to zero momentum). Let (u0, u1) ∈ H1
x × L2

x. In the
focusing case assume also that M(u(0)) < M(Q) and E(u) < E(Q). Let u :
R×R2 → R be the solution to (1.1) with this initial data. Then there exists ν ∈ R2

such that uν := u ◦ Lν is a global (strong) solution to (1.1) with

P (uν) = 0,(3.14)

E(uν) ≤ E(u),(3.15)

M(uν(0)) < M(Q) in the focusing case.(3.16)

Remark 3.10. In view of (3.5), if u is not identically zero, then there is at most one
value of ν (cf. (3.18)) so that P (uν) = 0. Moreover, by (3.6) we have E(uν) = E(u)
if and only if P (uν) = P (u) = 0.

Proof. Without loss of generality, we may assume that P (u) �= 0, the result being
trivial otherwise. In particular, this means that u(t) �≡ 0 for all t.

By Remark 3.6, for every t0 ∈ R, the function u(· − t0) satisfies the conclusions
of Lemma 3.5 for every 0 < ε < 1. Thus by Corollary 3.7, uν is a global strong
solution to (1.1) for each ν ∈ R2.

By (3.5), it is possible to find ν such that P (uν) = 0 if and only if

(3.17) |P (u)| < E(u).

Moreover, in this case, one must choose

(3.18) ν = − P (u)√
E(u)2 − |P (u)|2

.
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To see that (3.17) holds in our case we observe that

(3.19) |P (u)| < ‖∇u‖L2
x
‖ut‖L2

x
≤ 1

2‖∇u‖2L2
x
+ 1

2‖ut‖2L2
x
≤ E(u).

The first step here is the Cauchy–Schwarz inequality; note that equality would
imply that ∇u(t) points in only one direction for all x ∈ R, which is inconsistent
with u(t) �≡ 0. The last inequality in (3.19) rests solely on the definition of E(u) in
the defocusing case and is an application of (2.33) in the focusing case.

The bound (3.15) is a trivial consequence of (3.6). Indeed, we have

(3.20) E(usν) ≤ E(u) for all 0 ≤ s ≤ 1.

This follows from the fact that

E(usν) = 〈sν〉E(u) + sν · P (u),

which is convex in s and is bounded by E(u) at both 0 and 1. By the sharp
Gagliardo–Nirenberg inequality (cf. the proof of (2.32)), M(usν(0)) < M(Q) im-
plies that

M(usν(0)) ≤ 2E(usν) ≤ 2E(u) < M(Q).

Thus by the continuity established in Corollary 3.7, we must have M(usν(0)) <
M(Q) for each 0 ≤ s ≤ 1, and in particular at s = 1. This settles (3.16) and
completes the proof of the corollary. �

4. Refinements of the Strichartz inequality

The goal of this section is to prove an inverse Strichartz inequality (Theorem 4.9),
which is an essential ingredient in the concentration compactness argument. As
described in the introduction, we will use Tao’s sharp bilinear restriction estimate;
sharpness here refers to the minimality of the spacetime integrability exponent.
This sharpness is not important for our purposes; what is important is that it
provides exponents beyond the range of the Strichartz inequality.

To apply Tao’s estimate, we need to reduce to a fixed compact set in Fourier
space. This is the role of Lemmas 4.1 and 4.5. The former lemma demonstrates
that a linear evolution cannot be big without a significant contribution from one
of its Littlewood–Paley pieces. The proof employs the same ideas as the proofs of
the inverse Sobolev inequalities needed in energy-critical cases; however, the precise
formulation and argument reflect the authors’ particular perspective, as advertised
in [23].

In the L2
x-critical case (as opposed to the L2

x-supercritical regime), the charac-
teristic frequency scale of a minimal blowup solution can be arbitrarily small. Also,
to a first approximation, Lorentz boosts act as translations on the Fourier side (cf.
Lemma 2.4); thus we see that the characteristic length scale of a wave packet is
not indicated by the Littlewood–Paley annulus to which it belongs. We capture
the dominant portion of the boost parameter by subdividing annuli into tubes of
unit width; these tubes are natural since they are images of the unit cube under
the action of 
ν . The proof that a large linear evolution can be attributed to some
tube rests on the bilinear Strichartz inequality Lemma 4.5.

Lemma 4.1 (Annular decoupling). For f ∈ H
1/2
x ,∥∥e−it〈∇〉f

∥∥2
L4

t,x
� sup

N

∥∥e−it〈∇〉fN
∥∥
L4

t,x

∥∥f∥∥
H

1/2
x

.
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Proof. Using the Littlewood–Paley square function estimate, the Strichartz inequal-
ity (2.5), and Bernstein’s inequality,∥∥e−it〈∇〉f

∥∥4
L4

t,x

�
∑
M,N

∫
R

∫
R2

∣∣e−it〈∇〉fM
∣∣2∣∣e−it〈∇〉fN

∣∣2 dx dt
�

∑
M≤N

∥∥e−it〈∇〉fM
∥∥
L3

tL
6
x

∥∥e−it〈∇〉fM
∥∥
L4

t,x

∥∥e−it〈∇〉fN
∥∥
L4

t,x

∥∥e−it〈∇〉fN
∥∥
L6

tL
3
x

� sup
K

∥∥e−it〈∇〉fK
∥∥2
L4

t,x

∑
M≤N

∥∥fM∥∥H2/3
x

∥∥fN∥∥H1/3
x

� sup
K

∥∥e−it〈∇〉fK
∥∥2
L4

t,x

∑
M≤N

〈M〉1/6
〈N〉1/6

∥∥fM∥∥H1/2
x

∥∥fN∥∥H1/2
x

� sup
K

∥∥e−it〈∇〉fK
∥∥2
L4

t,x

∥∥f∥∥2
H

1/2
x

.

The last step is an application of Schur’s test. �

As noted, this lemma shows that if the L4
t,x norm of the free evolution of f is large,

then one of its Littlewood–Paley pieces must take responsibility for this. To find the
wave packets inside the evolution of f that are responsible, we need to subdivide
each dyadic annulus into tubes. More accurately, they are strips or sectors in the
two-dimensional case we are discussing; nevertheless, we use vocabulary adapted
to the case of arbitrary dimension.

Definition 4.2. Given N ∈ 2Z with N ≥ 1, we (almost-everywhere) cover the
Fourier support of PN by a finite collection TN of nonoverlapping tubes. When
N = 1, the collection consists of just one element, [− 99

98 ,
99
98 ]

2. For N ≥ 2, we

choose TN := {T k
N : 0 ≤ k < 20N} with

T k
N :=

{
ξ : 1

2N < |ξ| < 99
98N and |Arg(ξ)− 2πk

20N | < π
20N

}
,

where Arg(ξ) is the angle between ξ and the positive horizontal axis. Given a tube
T ∈ T :=

⋃
N TN , we define the center as follows: c(T ) = 0 if T is the unique

T ∈ T1 and c(T k
N ) is defined by |c(T k

N )| = 3N/4 and Arg(c(T k
N )) = 2πk

20N .
Associated to each T ∈ TN , we define a Fourier restriction operator PT . To

this end, let ψ : R → [0, 1] be smooth, obey ψ(θ) = 1 when |θ| ≤ 4
10 , supp(ψ) ⊆

[− 6
10 ,

6
10 ], and form a partition of unity via

∑
k∈Z

ψ(θ − k) = 1 for all θ ∈ R. Now
define

f̂Tk
N
(ξ) := P̂Tk

N
f(ξ) := ψ

(
20N
2π Arg(ξ)− k

)
P̂Nf(ξ)

except in the special case N = 1. In this latter case, T = [− 99
98 ,

99
98 ]

2 and

f̂T (ξ) := P̂T f(ξ) := P̂1f(ξ).

Remark 4.3. A careful but mundane computation shows that the Lorentz trans-
formation with parameter ν = c(T ) maps the tube T into the ball |ξ| ≤ 2. More
precisely, the Fourier support of L−1

ν fT lies inside this ball.

The principal significance of this remark is that it allows us to prove the following,
which will be used in the proof of Theorem 4.9.
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Lemma 4.4. Given a tube T ∈ TN , let ν = c(T ) be its center. Then∥∥L−1
ν PT f

∥∥
L4

x
� ‖P≤2L

−1
ν f‖L4

x

uniformly in T and N .

Proof. In view of Remark 4.3, (1.13), and (2.14), we need to prove boundedness of
the multiplier m(∇) defined by

m(ξ̃) = [φ(ξ/N)− φ(2ξ/N)]ψ
(
20N
2π Arg(ξ)− k

)
=: m̃(ξ),

where ξ̃ = 
ν(ξ) as in (2.10). (Minor modifications are needed when N = 1.)
We will apply the Mikhlin Multiplier Theorem (in the form of [37, §IV.3.2]); as

m is supported inside {|ξ̃| ≤ 2}, this is perhaps a little excessive. For the single
tube when N = 1 (or indeed any finite collection of N) the result follows easily.
Our only obligation is to check the uniformity as N → ∞.

The computations that led to (2.17) show that

(4.1)

[
∂ξ̃‖
∂ξ̃⊥

]
= A(ξ̃)

[
〈ν〉∂ξ‖
∂ξ⊥

]
,

where the entries of the matrix A(ξ̃) obey symbol estimates of order zero uniformly
in ν. On the other hand, a direct computation shows that∣∣∣(〈ν〉∂ξ‖)α(∂ξ⊥)βm̃(ξ)

∣∣∣ �α,β 1.

The result then follows by combining these estimates via standard symbol manip-
ulations. �

Lemma 4.5 (Bilinear Strichartz). Fix N ≥ 1 and let T1, T2 ∈ TN . Suppose f, g ∈
L2
x(R

2) obey supp f̂ ⊆ T1 and supp ĝ ⊆ T2. Then

(4.2)
∥∥e−it〈∇〉f e−it〈∇〉g

∥∥
L2

t,x
� N

〈dist(T1, T2)〉
‖f‖L2

x
‖g‖L2

x
.

Proof. By the Strichartz inequality Lemma 2.2, we need only consider the case
when dist(T1, T2) ≥ 100. Moreover, by rotation symmetry we may assume that T1

lies along the ξ1-axis.
Given a generic F ∈ L2(R× R2), let

I :=

∫∫
R×R2

F̂ (t, x)[e−it〈∇〉f ](x)[e−it〈∇〉g](x) dx dt

=

∫∫
R2×R2

F
(
−〈ξ〉 − 〈η〉, ξ + η

)
f̂(ξ)ĝ(η) dξ dη.

Next we change variables according to ω = −〈ξ〉 − 〈η〉, ζ = ξ + η, and β = ξ2. On
the support of the integrand, the Jacobian satisfies

J−1 =
∣∣∣∂(ω, ζ, β)

∂(ξ, η)

∣∣∣ = ∣∣∣ ξ1〈ξ〉 − η1
〈η〉

∣∣∣ � 〈dist(T1, T2)〉2
N2
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and β varies over an interval of lengthO(1). Using this information and the Cauchy–
Schwarz inequality,

|I| �
∣∣∣∣∫∫∫

R×R2×R

F (ω, ζ)f̂(ξ(ω, ζ, β))ĝ(η(ω, ζ, β))J dω dζ dβ

∣∣∣∣
� ‖F‖L2

∫
R

(∫∫
R2×R

∣∣f̂(ξ(ω, ζ, β))∣∣2∣∣ĝ(η(ω, ζ, β))∣∣2J2 dω dζ

) 1
2

dβ

� ‖F‖L2

(∫∫∫
R×R2×R

∣∣f̂(ξ(ω, ζ, β))∣∣2∣∣ĝ(η(ω, ζ, β))∣∣2J2 dω dζ dβ

) 1
2

� ‖F‖L2

(∫∫
R2×R2

∣∣f̂(ξ)∣∣2∣∣ĝ(η)∣∣2J dξ dη

) 1
2

� ‖F‖L2‖J‖1/2L∞‖f‖L2
x
‖g‖L2

x
.

The inequality now follows from duality and our bound on J . �

Corollary 4.6 (Tube decoupling). Given a dyadic N ≥ 1 and an f ∈ L2
x(R

2),

(4.3)
∥∥e−it〈∇〉PNf

∥∥4
L4

t,x
� N5/2 sup

T∈TN

∥∥e−it〈∇〉PT f
∥∥
L4

t,x

∥∥PNf
∥∥3
L2

x
,

where TN and PT are as in Definition 4.2.

Proof. By Hölder’s inequality, the fact that
∑

T∈TN
PT = PN , and then Lemma 4.5,∥∥e−it〈∇〉PNf

∥∥2
L4

t,x

�
∑
T,T ′

∥∥e−it〈∇〉PT f
∥∥1/4
L4

t,x

∥∥e−it〈∇〉PT ′f
∥∥1/4
L4

t,x

∥∥e−it〈∇〉PT fe
−it〈∇〉PT ′f

∥∥3/4
L2

t,x

� sup
T ′′∈TN

∥∥e−it〈∇〉PT ′′f
∥∥1/2
L4

t,x

∑
T,T ′

N3/4

〈dist(T, T ′)〉3/4 ‖PT f‖3/4L2
x
‖PT ′f‖3/4L2

x
.

Next, by applying the Hardy–Littlewood–Sobolev inequality in the sum and then
the orthogonality of all but adjacent fT , we get∥∥e−it〈∇〉PNf

∥∥2
L4

t,x
� N3/4 sup

T ′′∈TN

∥∥e−it〈∇〉PT ′′f
∥∥1/2
L4

t,x

(∑
T

‖PT f‖6/5L2
x

)5/4

� N5/4 sup
T ′′∈TN

∥∥e−it〈∇〉PT ′′f
∥∥1/2
L4

t,x

∥∥PNf
∥∥3/2
L2

x
,

which yields the claim. �

Theorem 4.7 (Bilinear restriction, [40]). Let f, g ∈ L2
x(R

2) have Fourier support
in the region |ξ| ≤ 4 and suppose that for some c > 0,

M := dist(supp f̂ , supp ĝ) ≥ cmax{diam(supp f̂), diam(supp ĝ)}.
Then for q > 5

3 , ∥∥[e−it〈∇〉f ][e−it〈∇〉g]
∥∥
Lq

t,x
�c M

2− 4
q ‖f‖L2

x
‖g‖L2

x
.

Proof. While the main result in [40] is stated for the Schrödinger propagator, the
discussion in Section 9 of that paper explains how it extends to compact surfaces
whose principal curvatures are strictly positive, in our case, {(〈ξ〉, ξ) : |ξ| ≤ 4}. �
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This bilinear estimate can be used to obtain a form of refined Strichartz inequal-
ity showing that if the free evolution is large, then the Fourier transform of the
initial data must concentrate on some cube. This idea was first developed in [29]
in the 2D Schrödinger setting. By modifying their arguments (and those of [3] for
higher dimensions) it was shown in [23, §4.4] that the free evolution of this bubble of
Fourier concentration must have nontrivial spacetime norm. These arguments ap-
ply equally well to the Klein–Gordon setting once one has the appropriate bilinear
estimate, Theorem 4.7. In this way, we obtain the following:

Corollary 4.8 (Cube decoupling). For f ∈ L2
x(R

2) with supp f̂ ⊆ {|ξ| ≤ 4},∥∥e−it〈∇〉f
∥∥
L4

t,x(R×R2)
� ‖f‖

3
4

L2
x(R

2)

(
sup
Q

|Q|− 3
22

∥∥e−it〈∇〉fQ
∥∥
L

11/2
t,x (R×R2)

) 1
4

.

Here the supremum is taken over all dyadic cubes Q and fQ = PQf denotes the
Fourier restriction of f to Q. Without loss of generality, we may require the cube
Q to have side-length no more than eight.

Theorem 4.9 (Inverse Strichartz). Let {fn} ⊆ H1
x(R

2) and suppose that

(4.4) lim
n→∞

‖fn‖H1
x(R

2) = A and lim
n→∞

‖e−it〈∇〉fn‖L4
t,x(R×R2) = ε > 0.

Then there exist a subsequence in n, φ ∈ L2
x(R

2), {λn} ⊆ [ 18 ,∞), {νn} ⊆ R2, and

{(tn, xn)} ⊆ R× R2 so that we have the following:

λn → λ∞ ∈ [ 18 ,∞] and νn → ν ∈ R2,(4.5)

λ∞ < ∞ =⇒ φ ∈ H1
x.(4.6)

The functions fn in the subsequence contain a nontrivial wave packet

(4.7) φn :=

{
Txn

eitn〈∇〉Lνn
Dλn

φ if λ∞ < ∞,

Txn
eitn〈∇〉Lνn

Dλn
P≤λθ

n
φ if λ∞ = ∞

(with power θ = 1
100 ) in the sense that

lim
n→∞

‖fn‖2H1
x
− ‖fn − φn‖2H1

x
− ‖φn‖2H1

x
= 0,(4.8)

lim inf
n→∞

‖φn‖H1
x
� ε

(
ε
A

) 397
3 ,(4.9)

lim sup
n→∞

∥∥e−it〈∇〉(fn − φn)
∥∥
L4

t,x(R×R2)
≤ ε

[
1− c

(
ε
A

)C]1/4
,(4.10)

and lastly,

D−1
λn

L−1
νn

T−1
xn

e−itn〈∇〉fn ⇀ φ weakly in L2
x(R

2).(4.11)

Here c and C are constants and all limits as n → ∞ are along the subsequence.

Proof. The final subsequence appearing in the conclusion of the theorem is the
result of passing to subsequences on several successive occasions. For the sake
of simplicity/clarity, we do not attempt to represent this with any notation; any
n → ∞ limit is understood to be along the subsequence extracted at that point.

By Lemma 4.1 there are dyadic Nn so that∥∥e−it〈∇〉PNn
fn
∥∥
L4

t,x
� ε2A−1.
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Further decomposing this frequency shell into tubes and applying Corollary 4.6 we
deduce the existence of tubes Tn ∈ TNn

so that

lim inf
n→∞

∥∥e−it〈∇〉PTn
fn
∥∥
L4

t,x
� ε8A−7N1/2

n � ε8A−7.

Incidentally, since the LHS here is � A by virtue of the Strichartz inequality, we
may infer that Nn � (A/ε)16.

Next, to bring ourselves into the setting of Corollary 4.8, we apply a Lorentz
boost with parameter ν̃n = c(Tn) to transport Tn to the origin. As Lorentz boosts
preserve the L4

t,x norm (they are spacetime volume-preserving) we have

lim inf
n→∞

∥∥e−it〈∇〉L−1
ν̃n

PTn
fn
∥∥
L4

t,x
� ε8A−7

and, as noted in Remark 4.3, the Fourier support of L−1
ν̃n

PTn
f is contained inside

the ball |ξ| ≤ 2. This remark allowed us to prove Lemma 4.4, which we now apply
to obtain

lim inf
n→∞

∥∥e−it〈∇〉P≤2L
−1
ν̃n

fn
∥∥
L4

t,x
� ε8A−7

and thence, via Corollary 4.8, the existence of a dyadic cube Qn, so that

(4.12)
∥∥e−it〈∇〉PQn

P≤2L
−1
ν̃n

fn
∥∥
L

11/2
t,x

� ε32A−31λ−3/11
n ,

where λ−1
n ≤ 8 denotes the side-length of Qn. We used Lemma 2.4 here to see that

(4.13)
∥∥P≤2L

−1
ν̃n

fn
∥∥
L2

x
≤
∥∥L−1

ν̃n
fn
∥∥
L2

x
≤
∥∥L−1

ν̃n
fn
∥∥
H

1/2
x

=
∥∥fn∥∥H1/2

x
� A.

As λ−1
n ∈ (0, 8] we may pass to a subsequence so that λn converges to some λ∞ ∈

[1/8,∞]. As we will need this later, we set ξn equal to the center of the cube Qn;
these form a bounded sequence and so passing to a further subsequence we may
assume that they converge to some ξ∞.

To continue from (4.12) we first use Lp-boundedness of P≤2 to discard this
operator. Then combining the result with Hölder’s inequality and the Strichartz
inequality we obtain

ε32A−31λ−3/11
n �

∥∥e−it〈∇〉PQn
L−1
ν̃n

fn
∥∥8/11
L4

t,x

∥∥e−it〈∇〉PQn
L−1
ν̃n

fn
∥∥3/11
L∞

t,x

� A8/11
∥∥e−it〈∇〉PQn

L−1
ν̃n

fn
∥∥3/11
L∞

t,x
,

which then implies the existence of t̃n ∈ R and x̃n ∈ R2 so that

(4.14)
∣∣PQn

e−it̃n〈∇〉L−1
ν̃n

fn
∣∣(x̃n) � λ−1

n ε
352
3 A− 349

3 .

We have now isolated all the parameters needed to find our bubble. At present,
some are adorned with a tilde because they will be replaced later when we reorder
the symmetries (which do not commute) and because Qn is not centered at the
origin which necessitates an additional Lorentz boost with parameter ξn. As in
(4.13), Lemma 2.4 implies that

(4.15) D−1
λn

L−1
ξn

T−1
x̃n

e−it̃n〈∇〉L−1
ν̃n

fn

form a bounded sequence in L2
x; indeed, since |ξn| � 1 and |ν̃n| � Nn � (A/ε)16, the

sequence will also be bounded in H1
x if λn is bounded, that is, if λ∞ < ∞. Hence,

after passing to a subsequence, we have a weak limit, say, φ̃ ∈ L2
x; moreover, φ̃ ∈ H1

x
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when λ∞ < ∞. That this limit has nontrivial norm follows from (4.14) as we will

now explain. Let ĥ be the characteristic function of [− 1
2 ,

1
2 ]

2 and define

(4.16) hn := D−1
λn

L−1
ξn

m0(∇)−1eiξnxDλn
h,

where m0(∇) = m0(∇, ξn) is as in Lemma 2.4. By Lemma 2.8 these functions
lie in a compact set in L2

x and so we may pass to a subsequence along which we
have strong (= norm) convergence, say hn → h∞. The lemma also implies that
‖hn‖L2

x
� 1, so

(4.17) ‖φ̃‖L2
x
� lim

n→∞

∣∣〈hn, φ̃〉L2
x

∣∣.
Next, using the definition of φ̃, Lemma 2.4, the unitarity of the other symmetries,
and finally (4.14), we have

lim
n→∞

〈hn, φ̃〉L2
x
= lim

n→∞

〈
hn, D−1

λn
L−1
ξn

T−1
x̃n

e−it̃n〈∇〉L−1
ν̃n

fn
〉
L2

x

= lim
n→∞

〈
Tx̃n

eiξnxDλn
h, e−it̃n〈∇〉L−1

ν̃n
fn
〉
L2

x

= lim
n→∞

λn

[
PQn

e−it̃n〈∇〉L−1
ν̃n

fn
]
(x̃n)

� ε
352
3 A− 349

3 .(4.18)

Combining this with (4.17) yields the nontriviality of φ̃:

(4.19) ‖φ̃‖L2
x
� ε

352
3 A− 349

3 = ε ( ε
A

) 349
3 .

Next we use (2.15) to reorder the symmetries on the sequence (4.15) that con-

verges (weakly) to φ̃:

(4.20) D−1
λn

L−1
ξn

T−1
x̃n

e−it̃n〈∇〉L−1
ν̃n

fn = D−1
λn

L−1
ξn

L−1
ν̃n

T−1
xn

e−itn〈∇〉fn,

where (−t̃n,−x̃n) = Lν̃n
(−tn,−xn). In general, the composition of Lorentz boosts

is not a pure boost but also includes a spatial rotation. We define νn so that
L−1
ξn

L−1
ν̃n

= RnL
−1
νn

for some rotation Rn ∈ SO(2). As this is a compact group, we

may pass to a subsequence so that Rn → R and then define φ = R−1φ̃. Rotations
commute with dilations and preserve the L2

x and H1
x norms. Thus

(4.21) D−1
λn

L−1
νn

T−1
xn

e−itn〈∇〉fn ⇀
n→∞

φ with ‖φ‖L2
x
� ε

352
3 A− 349

3 .

The weak convergence is in H1
x when λ∞ < ∞ and merely in L2

x when λ∞ = ∞.
Note that the new sequence of boost parameters νn inherits boundedness from ν̃n
and ξn; more precisely, |νn| � (A/ε)16. By passing to a further subsequence, we can
guarantee convergence of νn as stated in (4.5). In addition, (4.21) settles (4.11).

Let us now turn to proving decoupling of the H1
x norm. We begin with (4.9),

treating only the case λ∞ = ∞ since the case λ∞ < ∞ is similar but easier. By
Lemma 2.4,

‖φn‖H1
x
= ‖Lνn

Dλn
P≤λθ

n
φ‖H1

x
� 〈νn〉−1‖Dλn

P≤λθ
n
φ‖H1

x
� 〈νn〉−1‖P≤λθ

n
φ‖L2

x

and thence by λn → ∞, |νn| � (A/ε)16, and (4.21),

lim inf
n→∞

‖φn‖H1
x
� (ε/A)16‖φ‖L2

x
�
(
ε
A

) 397
3 ε.
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This yields (4.9) as promised. Next we consider (4.8), beginning with the basic
Hilbert space identity

‖fn‖2H1
x
− ‖fn − φn‖2H1

x
− ‖φn‖2H1

x
= 2〈fn − φn, φn〉H1

x
.

Again we confine our discussion to the more interesting λn → ∞ case, where

〈fn − φn, φn〉H1
x
=
〈
T−1
xn

e−itn〈∇〉fn − Lνn
Dλn

P≤λθ
n
φ, Lνn

Dλn
P≤λθ

n
φ
〉
H1

x

=
〈
L−1
νn

T−1
xn

e−itn〈∇〉fn −Dλn
P≤λθ

n
φ, m1(∇; νn)

−1Dλn
P≤λθ

n
φ
〉
H1

x

=
〈
D−1

λn
L−1
νn

T−1
xn

e−itn〈∇〉fn − P≤λθ
n
φ, 〈λ−1

n ∇〉2m1(λ
−1
n ∇; νn)

−1P≤λθ
n
φ
〉
L2

x

by Lemma 2.4 and (2.19). Thus, by (4.21),

P≤λθ
n
φ → φ, and 〈λ−1

n ∇〉2m1(λ
−1
n ∇; νn)

−1P≤λθ
n
φ → 〈ν∞〉−1φ in L2

x,

we deduce 〈fn − φn, φn〉H1
x
→ 0 and so (4.8) follows.

Finally, we turn to the proof of (4.10) which shows that the free evolution of φn

captures (at least as n → ∞) a positive proportion of the evolution of fn. Much
of the dirty work has been encapsulated for us in Lemma 2.9, as we will see. We
present the details in the case λn � 1 as adapting the argument to λn → ∞ just
involves minor modifications to the formulae that follow.

Using (2.19) and making the change of variables t = λ2
ns, x = λny, to account

for the fact that D−1
λn

is not an isometry on L4
x, we have∥∥e−it〈∇〉(fn − φn)

∥∥
L4

t,x
=
∥∥e−it〈∇〉(L−1

νn
e−itn〈∇〉T−1

xn
fn −Dλn

φ)
∥∥
L4

t,x

=
∥∥e−iλ2

ns〈λ−1
n ∇〉(D−1

λn
L−1
νn

e−itn〈∇〉T−1
xn

fn − φ)
∥∥
L4

s,y
,(4.22)

which throws us into the path of Lemma 2.9 with gn = D−1
λn

L−1
νn

e−itn〈∇〉T−1
xn

fn and

g = φ. This lemma allows us to apply Lemma 2.10, or more precisely (2.29), and
so obtain

lim sup
n→∞

∥∥e−iλ2
ns〈λ−1

n ∇〉(D−1
λn

L−1
νn

e−itn〈∇〉T−1
xn

fn − φ)
∥∥4
L4

s,y

≤ lim sup
n→∞

∥∥e−iλ2
ns〈λ−1

n ∇〉D−1
λn

L−1
νn

e−itn〈∇〉T−1
xn

fn
∥∥4
L4

s,y
−
∥∥e−iλ2

∞s〈λ−1
∞ ∇〉φ

∥∥4
L4

s,y
.

Reversing the computations in (4.22) this becomes

lim sup
n→∞

∥∥e−it〈∇〉(fn − φn)
∥∥4
L4

t,x
≤ lim sup

n→∞

∥∥e−it〈∇〉fn
∥∥4
L4

t,x
−
∥∥e−iλ2

∞s〈λ−1
∞ ∇〉φ

∥∥4
L4

s,y
.

This is very close to implying (4.10); in view of (4.4), all that is missing is a lower
bound of the form

(4.23)
∥∥e−iλ2

∞s〈λ−1
∞ ∇〉φ

∥∥
L4

s,y
� ε

(
ε
A

)C
.

We will not bother to determine the value of C appearing in (4.23). In accordance
with this, we will use the symbol C to denote a variety of powers which vary from
place to place as we develop the proof of (4.23).

From (4.18) we have

|〈R−1h∞, φ〉| � ε
(
ε
A

)C
,

where h∞ is the L2
x-limit of the functions hn defined in (4.16) and R is the limiting

rotation defined above; recall φ̃ = Rφ. Note that h∞ inherits the estimates (2.20)
enjoyed by hn. Together with ‖φ‖L2

x
� A (which follows from (4.4) and (4.11)) and
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|νn| � (A/ε)C , these estimates guarantee the existence of radii M, r ∼ (A/ε)C so
that ∣∣〈e−iλ2

∞s〈λ−1
∞ ∇〉h̃, e−iλ2

∞s〈λ−1
∞ ∇〉φ〉

∣∣ = ∣∣〈h̃, φ〉
∣∣ � ε

(
ε
A

)C
,

where h̃ = P≤M χR−1h∞ and χ is a smooth cutoff to {|x| ≤ r}.
To complete the proof of (4.23), we merely need to show

‖e−iλ2
∞s〈λ−1

∞ ∇〉h̃‖
L

4/3
x

�
(
A
ε

)C
uniformly in λ∞ and s ∈ [−1, 1]. First we note that ‖h̃‖

L
4/3
x

� (A/ε)C , by construc-

tion. To extend this to nonzero values of s we use the Mikhlin multiplier theorem.
The requisite input is ∣∣∂α

ξ sλ2〈λ−1ξ〉
∣∣ �α 1 when |α| ≥ 1

uniformly for s ∈ [−1, 1] and λ � 1. This suffices since h̃ has Fourier support inside
a bounded region, namely, |ξ| � (A/ε)C . �

Corollary 4.10. After passing to a further subsequence in n (and possibly changing
φ and xn), we may assume in addition that the parameters in the conclusion of
Theorem 4.9 satisfy the following: If λn does not converge to +∞, then λn ≡ 1
and νn ≡ 0. Moreover, irrespective of the behaviour of λn, we may assume that tn
obeys tn

λ2
n
→ ±∞ or tn ≡ 0.

Proof. Suppose λn → λ∞ ∈ [ 18 ,∞). Then Dλn
and D−1

λn
converge strongly to Dλ∞

and D−1
λ∞

, respectively, as operators both on L2
x(R

2) and H1
x(R

2). Thus we may
replace φ by Dλ∞φ and set λn ≡ 1, whilst retaining the conclusions of Theorem 4.9.
In the case of (4.10), we invoke the Strichartz inequality. By the same reasoning,
we may replace φ with Lνφ and set νn ≡ 0.

We turn now to the discussion of tn. By passing to a subsequence, we may
assume tn

〈νn〉λ2
n
→ t̃∞ ∈ [−∞,∞]; we just need to treat the case t̃∞ ∈ R. Invoking

(2.15), we have

Txn
eitn〈∇〉Lνn

= Txn− νn
〈νn〉 tn

Lνn
ei〈νn〉−1tn〈∇〉.

If λn ≡ 1 and νn ≡ 0, our assumption guarantees tn → t̃∞, and hence eitn〈∇〉φ →
eit̃∞〈∇〉φ in H1

x(R
2). In this case, we replace φ by eit̃∞〈∇〉φ and argue as above.

If λn → ∞, we pass to a subsequence so that ei〈νn〉−1tn → eit∞ for some t∞ ∈
[0, 2π). Thus by (2.24),

ei〈νn〉−1tnei〈νn〉−1tn(〈λ−1
n ∇〉−1)P≤λθ

n
φ− eit∞e−it̃∞Δ/2P≤λθ

n
φ → 0 in L2

x(R
2).

As Dλn
P≤λθ

n
is a bounded operator from L2

x(R
2) to H1

x(R
2), we may replace φ by

eit∞e−it̃∞Δ/2φ, set tn ≡ 0, and change xn to xn − νn

〈νn〉 tn. We can then argue as

above. �

5. Linear profile decomposition

From Theorem 4.9, we may deduce the existence of a linear profile decomposition.
We continue to work with the first-order Klein–Gordon equation (2.2).

Theorem 5.1 (Linear profile decomposition). Let {vn} be a bounded sequence of
H1

x(R
2) functions. Then, after passing to a subsequence, there exists J0 ∈ [1,∞]
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and for each integer 1 ≤ j < J0 there also exist
• a function 0 �= φj ∈ L2

x(R
2),

• a sequence {λj
n} ⊂ [1,∞) such that either λj

n → ∞ or λj
n ≡ 1,

• a sequence νjn → νj ∈ R2 which is identically 0 if λj
n ≡ 1,

• a sequence {(tjn, xj
n)} ⊂ R× R2 such that either tjn/(λ

j
n)

2 → ±∞ or tjn ≡ 0.
Let P j

n denote the projections defined by

P j
nφ

j :=

{
φj ∈ H1

x(R
2) if λj

n ≡ 1,

P≤(λj
n)θ

φj if λj
n → ∞,

with θ = 1
100 . Then for all 1 ≤ J < J0, we have a decomposition

(5.1) vn =
J∑

j=1

Txj
n
eit

j
n〈∇〉Lνj

n
Dλj

n
P j
nφ

j + wJ
n ,

satisfying

lim
J→∞

lim sup
n→∞

‖e−it〈∇〉wJ
n‖L4

t,x(R×R2) = 0,(5.2)

lim
n→∞

{
‖vn‖2H1

x
−

J∑
j=1

‖Txj
n
eit

j
n〈∇〉Lνj

n
Dλj

n
P j
nφ

j‖2H1
x
− ‖wJ

n‖2H1
x

}
= 0,(5.3)

D−1

λj
n
L−1

νj
n
T−1

xj
n
e−itjn〈∇〉wJ

n ⇀ 0, weakly in L2
x(R

2) for any j ≤ J .(5.4)

Finally, we have the following orthogonality condition: for any j �= j′,

lim
n→∞

{
λj
n

λj′
n

+
λj′

n

λj
n

+ λj
n|νjn − νj

′

n |+ |sjj′n |
(λj′

n )2
+

|yjj′n |
λj′
n

}
= ∞,(5.5)

where (−sjj
′

n , yjj
′

n ) := L
νj′
n
(tj

′

n − tjn, x
j′

n − xj
n).

Proof. Given a sequence vn as above, by passing to a subsequence we may assume
that for some A0, ε0 ≥ 0,

lim
n→∞

‖vn‖H1
x(R

2) = A0 and lim
n→∞

‖e−it〈∇〉vn‖L4
t,x(R×R2) = ε0.

(Note that the Strichartz inequality guarantees ε0 � A0.) If ε0 = 0, then we set
J0 = 1 and the claim follows; note that in this case there are no φj ’s. Otherwise, we
apply Theorem 4.9 as strengthened by Corollary 4.10 to find {ν1n}, {λ1

n}, {(t1n, x1
n)},

and φ1. We set

w1
n := vn − Tx1

n
eit

1
n〈∇〉Lν1

n
Dλ1

n
P 1
nφ

1.

Note that by (4.11),

D−1
λ1
n
L−1
ν1
n
T−1
x1
n
e−it1n〈∇〉w1

n ⇀ 0 weakly in L2
x(R

2),

which gives (5.4) when J = 1. Moreover, by (4.8),

(5.6) lim
n→∞

{
‖vn‖2H1

x(R
2) − ‖Tx1

n
eit

1
n〈∇〉Lν1

n
Dλ1

n
P 1
nφ

1‖2H1
x(R

2) − ‖w1
n‖2H1

x(R
2)

}
= 0,

which is (5.3) when J = 1.
By passing to a further subsequence if necessary, we may now assume that

lim
n→∞

‖w1
n‖H1

x(R
2) = A1 and lim

n→∞
‖e−it〈∇〉w1

n‖L4
t,x(R×R2) = ε1
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for some A1, ε1 ≥ 0. Furthermore, by (5.6) we have A1 ≤ A0, while by (4.10),

ε1 ≤ ε0
[
1− c( ε0

A0
)C
]1/4

.

If ε1 = 0, then we set J0 = 2 and stop. Otherwise, we apply Theorem 4.9 to w1
n to

obtain parameters ν2n, λ
2
n, (t

2
n, x

2
n), and a function φ2. We then set

w2
n := w1

n − Tx2
n
eit

2
n〈∇〉Lν2

n
Dλ2

n
P 2
nφ

2.

Arguing as above, we obtain (5.4) when j = J = 2, and also

(5.7) lim
n→∞

{
‖w1

n‖2H1
x(R

2) − ‖Tx2
n
eit

2
n〈∇〉Lν2

n
Dλ2

n
P 2
nφ

2‖2H1
x(R

2) − ‖w2
n‖2H1

x(R
2)

}
= 0.

Adding (5.6) and (5.7), we obtain (5.3) when J = 2.
Continuing in this fashion, one of two things occurs. Either we reach some finite

j so that εj = 0, in which case we set J0 = j + 1, or we obtain an infinite number
of sequences of parameters νjn, λ

j
n, (t

j
n, x

j
n), and an infinite collection of functions

φj , in which case we set J0 = ∞.
At this point, tracing back through the definition of the wJ

n , we have a decompo-
sition of the form (5.1). That (5.2) holds is a tautology if the algorithm terminates
and follows from (4.10) otherwise. The claim (5.3) may be established inductively,
arguing as for the case J = 2 above. As above, the weak limit in (5.4) is zero when
j = J , but to conclude (5.4) in the case 1 ≤ j < J , as well as the orthogonality
condition (5.5), we will have to do a little more work. In particular, we will make
use of the following:

Lemma 5.2 (Orthogonality). For j �= j′ we define a sequence of operators

(5.8) Ajj′

n := D−1

λj
n
L−1

νj
n
T−1

xj
n
e−itjn〈∇〉T

xj′
n
eit

j′
n 〈∇〉L

νj′
n
D

λj′
n
.

If the orthogonality condition (5.5) holds, then Ajj′

n converges to zero in the weak
operator topology on B(L2

x(R
2)). Conversely, if the orthogonality condition fails,

then after passing to a subsequence, both Ajj′

n and its adjoint converge to injective
operators in the strong operator topology on B(L2

x(R
2)).

The deduction of the remaining conclusions in the theorem from this lemma is
straightforward. Indeed, (5.4) for 1 ≤ j < J follows from (5.5) (which we have yet
to prove) and used Lemma 5.2.

To obtain (5.5), we argue by contradiction and use the crucial fact that, if defined,
φj �= 0. As an example, consider j = 2 and choose the minimal j′ for which (5.5)
fails. For the sake of this example, suppose j′ = 4. As the orthogonality condition
fails, Lemma 5.2 guarantees that

A2 4
n φ4 → ψ �= 0

strongly in L2
x. On the other hand, as φ4 = weak-limD−1

λ4
n
L−1
ν4
n
T−1
x4
n
e−it4n〈∇〉w3

n and

the adjoint of A2 4
n converges strongly,

ψ = weak-lim
n→∞

A2 4
n

[
D−1

λ4
n
L−1
ν4
n
T−1
x4
n
e−it4n〈∇〉(w2

n − Tx3
n
eit

3
n〈∇〉Lν3

n
Dλ3

n
φ3
)]

= 0,

which contradicts ψ �= 0. Note here that we used the previously proved j = J case
of (5.4) to treat the first term and used the minimality of j′ and Lemma 5.2 to
treat the second term. �
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We now move to the proof of the lemma.

Proof of Lemma 5.2. Let us first note that the adjoint of Ajj′

n is Aj′j
n ; this follows

from Lemma 2.4 and the fact that m0 appearing there commutes with translations
and free evolutions. Thus, strong convergence of the adjoint will follow by reversing
j and j′.

We begin by rewriting Ajj′

n in a more convenient form; more precisely, using
(2.15) we have

Ajj′

n = D−1

λj
n
L−1

νj
n
L
νj′
n
T
yjj′
n

e−isjj
′

n 〈∇〉D
λj′
n
.

Writing L−1

νj
n
L
νj′
n

= Rjj′

n L
νjj′
n

and using the fact that rotations and dilations com-

mute, we obtain

Ajj′

n = Rjj′

n D−1

λj
n
L
νjj′
n

T
yjj′
n

e−isjj
′

n 〈∇〉D
λj′
n
.

Note that |νjj′n | ∼ |νj′n − νjn|, with the implicit constant depending on the upper

bound for |νjn|+ |νj′n |. As rotations form a compact group of unitary operators, we

may neglect Rjj′

n in what follows.
On the Fourier side, a careful computation using (2.14) yields that for a function

f ∈ L2
x(R

2),

̂Ajj′
n f(ξ) =

λj′
n

λj
n

〈�
ν
jj′
n

(ξ/λj
n)〉

〈ξ/λj
n〉

e
−iyjj′

n �
ν
jj′
n

(ξ/λj
n)e

−isjj
′

n 〈�
ν
jj′
n

(ξ/λj
n)〉f̂

(
λj′

n 
νjj′
n

( ξ

λj
n
)
)
,

which we rewrite as

̂Ajj′
n f(ξ) = Bjj′

n Cjj′

n Ejj′

n F jj′

n Gjj′

n f̂(ξ)

with

Bjj′

n :=
〈�

ν
jj′
n

(ξ/λj
n)〉

〈ξ/λj
n〉

, Cjj′

n := D
λj
n/λ

j′
n
, Ejj′

n := (

λj′
n

νjj′
n

)∗,

F jj′

n := e−isjj
′

n 〈ξ/λj′
n 〉, Gjj′

n := e−iyjj′
n ξ/λj′

n .

Here, we used the notation


ν(ξ) := ξ⊥ + 〈ν〉ξ‖ − 〈ξ〉ν and 
λν (ξ) := λ
ν(λ
−1ξ) = ξ⊥ + 〈ν〉ξ‖ − 〈 ξλ 〉λν,

while ∗ is used to denote the pullback, that is, (
λν )
∗f̂ := f̂ ◦ 
λν .

To continue, by passing to a subsequence, we may assume the following:

(i) Either
λj′
n

λj
n
+

λj
n

λj′
n

→ ∞ or
λj′
n

λj
n
→ λ∞ ∈ (0,∞).

(ii) Either λj′

n |νjn − νj
′

n | → ∞ or there exists a diffeomorphism 
∞, whose Ja-

cobian is bounded both above and below, such that 

λj′
n

νjj′
n

→ 
∞, uniformly

on compact subsets of R2.
(iii) Either |sjj′n |/(λj′

n )
2 → ∞ or sjj

′

n /(λj′

n )
2 → s∞ ∈ R.

(iv) Either |yjj′n |/λj′

n → ∞ or yjj
′

n /λj′

n → y∞ ∈ R.

We start by addressing the second half of the lemma. Assume therefore that
(5.5) fails. In this case, it is easy to check that each of Bjj′

n through Gjj′

n converges
strongly to an injective operator and hence so does their product.
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It remains therefore to consider the case when (5.5) holds. Directly from the

definition, we see that Ajj′

n forms a uniformly bounded sequence of operators on
L2
x(R

2); thus it suffices to show that

lim
n→∞

〈Ajj′

n φ, ψ〉L2
x(R

2) = 0

for every pair of Schwartz functions φ and ψ with compact Fourier support.
The sequence of functions

ξ �→
〈


νjj′
n

(ξ/λj
n)
〉

〈ξ/λj
n〉

is uniformly bounded and converges uniformly on compact sets by virtue of our
assumption that the sequences νjn, ν

j′

n converge in R2 and that the sequence λj
n

converges in [1,∞]. Consequently, Bjj′

n and its adjoint converge in the strong

operator topology on B(L2
x(R

2)), and we may disregard Bjj′

n in what follows.

As Ejj′

n through Gjj′

n are isometries on L∞
ξ ,

∣∣〈Ajj′

n φ, ψ〉L2
x(R

2)

∣∣ � λj′

n

λj
n

‖φ̂‖L∞
ξ
‖ψ̂‖L1

ξ
;

indeed, the first factor on the right is the norm of Cjj′

n in L∞
ξ . This proves weak

convergence to zero in the case when λj′

n /λ
j
n → 0. The case when λj′

n /λ
j
n → ∞ can

be handled by reversing the roles of j and j′ and recalling that the adjoint of Ajj′

n

is Aj′j
n . This leaves the case when the ratio converges to a finite positive number; in

this scenario, Cjj′

n and its adjoint both converge strongly and so may be neglected
in what follows.

Looking back at the definition of 
λν , we see that if λj′

n |νjj
′

n | → ∞, then

Ejj′

n F jj′

n Gjj′

n φ̂ and ψ̂

have disjoint supports for large n, which proves weak convergence to zero. If on
the contrary λj′

n ν
jj′

n converges, then, by observation (ii) above, Ejj′

n and its adjoint
converge in the strong operator topology on B(L2

x(R
2)), and we may disregard it

in what follows.
It remains only to show that

(5.9) lim
n→∞

∫
R2

φ̂(ξ)ψ̂(ξ) exp
{
−isjj

′

n 〈ξ/λj′

n 〉 − iξyjj
′

n /λj′

n

}
dξ = 0

whenever (λj′

n )
−2|sjj′n | → ∞ or |yjj′n |/λj′

n → ∞. In the former case, this follows from
the van der Corput lemma after noting that Δξ 〈ξ/λ〉 ≥ λ−2〈ξ/λ〉−1. If only the
latter sequence of parameters diverges, then (5.9) reduces to the Riemann–Lebesgue
lemma.

This completes the proof of Lemma 5.2. �

We end this section with a few propositions that will be useful when we apply
the linear profile decomposition in Section 7 to extract a minimal blowup solution.

Proposition 5.3 (Energy decoupling). Suppose {vn} is a bounded sequence of H1
x

functions. Then after passing to a subsequence, the linear profile decomposition
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(5.1) satisfies the following: for each J < J0,

(5.10) lim
n→∞

{
E(vn)−

J∑
j=1

E(Txj
n
eit

j
n〈∇〉Lνj

n
Dλj

n
P j
nφ

j)− E(wJ
n)
}
= 0.

Proof. We will prove that the energy decouples in the inverse Strichartz theorem,
that is, in the case J = 1; the general case follows by induction. Furthermore, by
(5.3), it suffices to show that

(5.11) lim
n→0

{
‖Re vn‖4L4

x
− ‖Reφn‖4L4

x
− ‖Rewn‖4L4

x

}
= 0,

where

φn = Txn
eitn〈∇〉Lνn

Dλn
Pnφ,

with Pn = 1 if λn ≡ 1 and Pn = P≤λθ
n
if λn → ∞.

We start by considering the case when λn ≡ 1; recall that in this case we in fact
have φ ∈ H1

x,

φn = Txn
eitn〈∇〉φ

(because νn ≡ 0 and Pn is the identity), and either tn → ±∞ or tn ≡ 0. Approxi-
mating φ in H1

x by Schwartz functions and applying the dispersive estimate, we see
that

‖eitn〈∇〉φ‖L4
x
→ 0 when tn → ±∞.

Claim (5.11) now follows easily. Next we consider the case λn ≡ 1 and tn ≡
0. By (5.4), we have T−xn

wn ⇀ 0, weakly in H1
x. Thus, by Rellich’s theorem,

a subsequence of T−xn
wn converges a.e. to 0, and so (5.11) follows by applying

Lemma 2.10 with Fn = ReT−xn
vn and F = Reφ.

It remains to consider the case when λn → ∞, which we treat with the following
lemma.

Lemma 5.4. If λn → ∞, then

(5.12) lim
n→∞

‖φn‖L4
x
= 0.

Proof. We will use Bernstein’s inequality, which implies that

‖φn‖L4
x
�
[
diam(supp φ̂n)

]1/2‖φn‖L2
x
.(5.13)

We note that since |∂ξj 
νn
(ξ)| � 〈νn〉 for ξ ∈ R2, by (2.14) we have

diam(supp φ̂n) = diam(supp([Lνn
Dλn

Pnφ]̂ ))

� 〈νn〉 diam(supp([Dλn
Pnφ]̂ )) � 〈νn〉λθ−1

n .(5.14)

Furthermore, by Lemma 2.4, we have

‖φn‖L2
x
= ‖Lνn

Dλn
Pnφ‖L2

x
� 〈νn〉‖φ‖L2

x
.(5.15)

Using (5.14) and (5.15) to bound the right side of (5.13), and then using bound-
edness of the νn, we obtain

‖φn‖L4
x
� 〈νn〉λ

θ−1
2

n ‖φ‖L2
x
→ 0,

and the lemma is proved. �

By Lemma 5.4, we have ‖vn − wn‖L4
x
→ 0, and (5.11) follows. This completes

the proof of the proposition. �
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Proposition 5.5 (Decoupling of nonlinear profiles). Let ψj and ψj′ be functions

in C∞
c (R×R2). Given parameters νjn, ν

j′

n , (tjn, x
j
n), (t

j′

n , x
j′

n ), λ
j
n, λ

j′

n as above, we
define ψj

n by [
ψj
n(·+ tjn, ·+ xj

n) ◦ L−1

νj
n

]
(t, x) := e−it

λj
n
ψj
(

t
(λj

n)2
, x
λj
n

)
,(5.16)

and similarly for ψj′

n . Then under the orthogonality condition (5.5), we have

(5.17) lim
n→∞

‖ψj
nψ

j′

n ‖L2
t,x(R×R2) = 0.

Proof. Let
Lλ
ν (t, x) :=

(
〈ν〉t− ν

λ · x, x⊥ + 〈ν〉x‖ − λνt
)

and let λjj′

n = λj
n/λ

j′

n . Additionally, let Rjj′

n be spatial rotations and νjj
′

n be boost
parameters such that

L
νj′
n
◦ L−1

νj
n
(t, x) = L

νjj′
n

(t, Rjj′

n x)

(cf. the proof of Lemma 5.2). Recall that |νjj′n | ∼ |νjn − νj
′

n |.
With this notation (using the fact that spatial dilations and rotations commute),

we compute

∫
R×R2

|ψj
nψ

j′

n |2 dx dt

(5.18)

=

∫
R×R2

∣∣∣ 1

λjj′
n

ψj
(

t

(λjj′
n )2

,
(Rjj′

n )T x

λjj′
n

)
ψj′

(
· − sjj

′
n

(λj′
n )2

, · − yjj′
n

λj′
n

)
◦ Lλj′

n

νjj′
n

(t, x)
∣∣∣2 dx dt.

As before, by passing to a subsequence, we may assume that Rjj′

n converges. By
absorbing the limit into ψj and using continuity, it suffices to treat the case when
Rjj′

n is the identity.

If λjj′

n → 0, then by Hölder’s inequality and (5.18), we have∫
R×R2

|ψj
nψ

j′

n |2 dx dt ≤ (λjj′

n )2‖ψj‖2L2
t,x

‖ψj′‖2L∞
t,x

→ 0.

Similarly, if λjj′

n → ∞, we have∫
R×R2

|ψj
nψ

j′

n |2 dx dt ≤ (λjj′

n )−2‖ψj‖2L∞
t,x

‖ψj′‖2L2
t,x

→ 0;

here we have used the fact that Lλ
ν is volume-preserving. We may thus assume that

λjj′

n converges to some positive number, and arguing as above, it suffices to treat

the case when λjj′

n ≡ 1.
Let

Sjj′

n = supp(ψj) ∩ supp
(
ψj′

(
· − sjj

′
n

(λj′
n )2

, · − yjj′
n

λj′
n

)
◦ Lλj′

n

νjj′
n

)
.

If (t, x) ∈ Sjj′

n , then |t|+ |x| � 1 because suppψj is compact, and∣∣∣x⊥ + 〈νjj′n 〉x‖ − λj′

n ν
jj′

n t− yjj′
n

λj′
n

∣∣∣ � 1

because suppψj′ is compact. Thus if |λj′

n ν
jj′

n | → ∞, then by Hölder’s inequality
and (5.18) we have that∫

R×R2

|ψj
nψ

j′

n |2 dx dt ≤ |Sjj′

n |‖ψj‖2L∞
t,x

‖ψj′‖2L∞
t,x

� |λj′

n ν
jj′

n |−1 → 0.
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Finally, if λj′

n ν
jj′

n remains bounded while
∣∣∣( sjj

′
n

(λjj′
n )2

,
yj′
n

λj′
n

)∣∣∣→ ∞, then Sjj′

n is eventu-

ally empty. This completes the proof of the proposition. �

6. Isolating NLS inside nonlinear Klein–Gordon

In this section, we consider the mass-critical nonlinear Schrödinger equation in
the form

(6.1) (i∂t +
1
2Δ)w = μ 3

8 |w|
2w,

with μ = ±1 as in (1.1) and (2.2). This normalization of the nonlinear Schrödinger
equation appears naturally in connection to NLKG and can be reduced to (1.6) by
rescaling w and x. Correspondingly, the ground state solution associated to (6.1) is

wQ(t, x) := e−it
√

8
3Q(

√
2x), where Q is as in (1.4). Note that M(wQ) =

4
3M(Q).

Under this rescaling, Conjecture 1.3 takes the following form:

Conjecture 6.1 (Global well-posedness of NLS). Fix a value of μ = ±1. Let
w0 ∈ L2

x(R
2) and in the focusing case assume that M(w0) <

4
3M(Q). Then there

exists a unique global solution w to (6.1) with w(0) = w0. Furthermore, this solution
satisfies

‖w‖L4
t,x(R×R2) ≤ C(M(w0)),

for some continuous function C. As a consequence, the solution w scatters both
forward and backward in time, that is, there exist w± ∈ L2

x such that

‖w(t)− eitΔ/2w±‖L2
x
→ 0 as t → ±∞.

Conversely, for each w± there is a global solution w to (6.1) so that the above holds.

The goal of this section is to prove the following theorem:

Theorem 6.2. Assume that Conjecture 6.1 holds. Let the sequences νn → ν ∈ R2,
λn → ∞, and {tn} ∈ R be given. Assume that either tn ≡ 0 or tn/λ

2
n → ±∞.

Let φ ∈ L2
x(R

2), and in the focusing case assume also that M(φ) < 4
3M(Q). If we

define
φn := Txn

eitn〈∇〉Lνn
Dλn

P≤λθ
n
φ

for θ = 1
100 , then for each n sufficiently large, there exists a global solution vn to

(2.2) with initial data vn(0) = φn, which satisfies

SR(vn) �M(φ) 1.

Furthermore, for every ε > 0, there exist Nε and a function ψε ∈ C∞
c (R×R2) such

that for all n > Nε,

(6.2)
∥∥Re{vn ◦ L−1

νn
(t+ t̃n, x+ x̃n)− e−it

λn
ψε(

t
λ2
n
, x
λn

)
}∥∥

L4
t,x(R×R2)

< ε,

where (t̃n, x̃n) := Lνn
(tn, xn) is the center of the wave packet in boosted coordinates.

Remark 6.3. As we will see in due course, the proof of Theorem 1.4 in the focusing
case relies only on the consideration of those φ with M(φ) < M(Q). Thus, the full
Conjecture 1.3 (or equivalently, Conjecture 6.1) covers more cases than are needed
here. In a similar vein, a proof of Conjecture 1.3 in the focusing case up to some
intermediate mass threshold M∗ < M(Q) yields a corresponding result for NLKG.

We begin with the proof in the case νn ≡ 0, which adapts the ideas in [21, §4].
This result is then used to treat the general case.
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Proof in the case νn ≡ 0. As the first-order nonlinear Klein–Gordon equation is in-
variant under spatial translations, we may assume xn ≡ 0. Thus, (6.2) will follow
from

(6.3)
∥∥vn(t+ tn, x)− e−it

λn
ψε(

t
λ2
n
, x
λn

)
∥∥
L4

t,x(R×R2)
< ε.

We begin by defining solutions to (6.1); we will later modify these to produce
approximate solutions to (2.2).

In the case when tn ≡ 0, we let wn be the solution to (6.1) with initial data

wn(0) = P≤λθ
n
φ.

Similarly, we let w∞ be the solution to (6.1) with initial data

w∞(0) = φ.

In the case when tn/λ
2
n → −∞ (respectively tn/λ

2
n → +∞), we denote by

wn the solutions to (6.1) that scatter forward (respectively backward) in time to
eitΔ/2P≤λθ

n
φ. Correspondingly, we define w∞ to be the solution to (6.1) that scat-

ters forward (respectively backward) in time to eitΔ/2φ. (The signs here are correct
because if the bulk of the solution is living around time tn → −∞, then time 0 is
well inside the forward scattering regime.)

As we assume Conjecture 6.1 holds (and that M(φ) < 4
3M(Q) in the focusing

case), all the solutions to (6.1) defined above are global and moreover,

SR(wn) + SR(w∞) �M(φ) 1.

We begin with a few basic observations about the sequence wn, which will be
helpful in what follows.

Lemma 6.4. For s ≥ 0, the solutions wn defined above satisfy

(6.4) ‖|∇|swn‖L∞
t L2

x(R×R2) + ‖|∇|swn‖L4
t,x(R×R2) �M(φ) λ

sθ
n

and

(6.5) ‖〈∇〉s∂twn‖L4
t,x

�M(φ) λ
(2+s)θ
n .

Furthermore, we have the approximation

(6.6) lim
n→∞

{
‖wn−w∞‖L∞

t L2
x
+‖wn−w∞‖L4

t,x
+‖Dλn

(wn−P≤λθ
n
w∞)‖

L∞
t H

1
2
x

}
= 0.

Proof. The first inequality follows from persistence of regularity arguments (cf. [43,
Lemma 3.10]) and the fact that by Bernstein’s inequality,

‖|∇|sP≤λθ
n
φ‖L2

x(R
2) � λsθ

n ‖φ‖L2
x(R

2).

To prove inequality (6.5), we use the equation (6.1) together with (6.4), Hölder’s
inequality, and Sobolev embedding:

‖〈∇〉s∂twn‖L4
t,x

� ‖〈∇〉sΔwn‖L4
t,x(R×R2) + ‖〈∇〉swn‖L4

tL
12
x (R×R2)‖wn‖2L∞

t L12
x (R×R2)

�M(φ) λ
(2+s)θ
n + ‖〈∇〉1/3+swn‖L4

t,x(R×R2)‖|∇|5/6wn‖2L∞
t L2

x(R×R2)

�M(φ) λ
(2+s)θ
n .

That the first two terms in (6.6) tend to zero is a consequence of the stability
theory for the mass-critical NLS; this result may be found in [23] or [43].
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We turn now to the final term on the left side of (6.6); changing variables and
using the triangle inequality and (6.4), we obtain

‖Dλn
(wn − P≤λθ

n
w∞)‖

L∞
t H

1/2
x

= ‖〈λ−1
n ∇〉1/2(wn − P≤λθ

n
w∞)‖L∞

t L2
x

≤ ‖〈λ−1
n ∇〉1/2P≥λn

wn‖L∞
t L2

x
+ ‖〈λ−1

n ∇〉1/2P≤λn
(wn − w∞)‖L∞

t L2
x

+ ‖〈λ−1
n ∇〉1/2Pλθ

n≤·≤λn
w∞‖L∞

t L2
x

� λ−1/2
n ‖|∇|1/2wn‖L∞

t L2
x
+ ‖wn − w∞‖L∞

t L2
x
+ ‖P≥λθ

n
w∞‖L∞

t L2
x

�M(φ) λ
−1/2+θ/2
n + ‖wn − w∞‖L∞

t L2
x
+ ‖P≥λθ

n
w∞‖L∞

t L2
x
.

It is immediate that the first term on the right-hand side above converges to zero
as n → ∞, while the convergence to zero of the second term follows from (6.4). It
remains to consider the third term.

By our assumption that Conjecture 6.1 holds, w∞ scatters both forward and
backward in time; let w± ∈ L2

x be the scattering states. Then

‖P≥λθ
n
w∞‖L∞

t L2
x([T,∞)×R2) + ‖P≥λθ

n
w∞‖L∞

t L2
x((−∞,−T ]×R2)

� ‖w∞ − eitΔ/2w+‖L∞
t L2

x([T,∞)×R2) + ‖w∞ − eitΔ/2w−‖L∞
t L2

x((−∞,−T ]×R2)

+ ‖P≥λθ
n
w+‖L2

x(R
2) + ‖P≥λθ

n
w−‖L2

x(R
2),

which can be made arbitrarily small by choosing T and n sufficiently large. On the
other hand, for each fixed T > 0, the continuity of the mapping t �→ w∞(t) together
with the compactness of [−T, T ] and the fact that the sequence of operators P≥λθ

n

is uniformly bounded and converges to zero in the strong operator topology on
L2
x(R

2) yield

lim
n→∞

‖P≥λθ
n
w∞‖L∞

t L2
x([−T,T ]×R2) = 0.

This completes the proof of the lemma. �

We now use the solutions wn to NLS to construct approximate solutions to (2.2).
Let T be a large, positive real number, to be determined later. We define

ṽn(t) :=

⎧⎪⎨⎪⎩
e−itDλn

wn(t/λ
2
n) if |t| ≤ Tλ2

n,

e−i(t−Tλ2
n)〈∇〉ṽn(Tλ

2
n) if t > Tλ2

n,

e−i(t+Tλ2
n)〈∇〉ṽn(−Tλ2

n) if t < −Tλ2
n,

(6.7)

with the idea that vn(t)− ṽn(t− tn) will be small. Ultimately however, our approx-
imate solution will be a further modification of this. In particular, we will make

an adjustment on the middle interval which is small in L∞
t H

1/2
x (R×R2). This will

result in an analogous change on the outer intervals, but as we will show (using the
Strichartz inequality), the modification is negligible in this regime.

Forgetting the above-mentioned technical issues for now, we give an explanation
as to why ṽn might be an approximate solution to (2.2). On the middle interval, we
can use the estimate (2.24) to show that the above transformation takes solutions
to the linear Schrödinger equation to approximate solutions of the first-order linear
Klein–Gordon equation. The behaviour of the nonlinearities on this interval is
a bit more mysterious, but the specific factor 3

8 appearing in (6.1) will ensure
that certain resonant error terms cancel, while the nonresonant error terms will be
subdued via the use of Xs,b-type estimates. As t tends to infinity, the differences in
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the two dispersion relations become amplified and the approximation breaks down.
Fortunately, by this time the NLS solution is well dispersed and so resembles a
free evolution. This behaviour is inherited by the Klein–Gordon evolution as we
intimated in (6.7); see also Lemma 6.8.

We now set about supplying the details behind these heuristics. As each heuris-
tic introduces some small error, we will need to use the stability theory (Proposi-
tion 3.4) to construct the final solution vn. This eventuality dictates which estimates
we need to prove, beginning with the following: By the Strichartz inequality and
Lemma 6.4,

‖ṽn‖L∞
t H

1/2
x (R×R2)

+ ‖ṽn‖L4
t,x(R×R2) � ‖Dλn

wn‖L∞
t H

1/2
x

+ ‖Dλn
wn(t/λ

2
n)‖L4

t,x

�M(φ) 1 + λ−1/2
n ‖|∇|1/2wn‖L∞

t L2
x

�M(φ) 1 + λ−1/2+θ/2
n �M(φ) 1.(6.8)

Lemma 6.5 (Matching initial data). If ṽn is given by (6.7), then

lim
T→∞

lim sup
n→∞

‖ṽn(−tn)− φn‖H1/2
x (R2)

= 0.(6.9)

Proof. In the case when tn ≡ 0 (recall that φn = eitn〈∇〉Dλn
P≤λθ

n
φ, as we assume

xn ≡ νn ≡ 0) we have ṽn(−tn) = φn, so there is nothing more to prove.
Now consider the case when tn/λ

2
n → −∞; the case tn/λ

2
n → ∞ can be treated

similarly. In this case, for any finite choice of T , we eventually have that−tn > λ2
nT .

Thus, we can rewrite (6.9) as

lim
T→∞

lim sup
n→∞

‖e−iTλ2
nDλn

wn(T )− e−iλ2
nT 〈∇〉Dλn

P≤λθ
n
φ‖

H
1/2
x (R2)

= 0.(6.10)

By the triangle inequality,

‖e−iTλ2
nDλn

wn(T )− e−iλ2
nT 〈∇〉Dλn

P≤λθ
n
φ‖

H
1/2
x (R2)

�
∥∥Dλn

[
wn(T )− P≤λθ

n
w∞(T )

]∥∥
H

1/2
x (R2)

+
∥∥Dλn

P≤λθ
n

[
w∞(T )− eiλ

2
nT (1−〈λ−1

n ∇〉)φ
]∥∥

H
1/2
x (R2)

�
∥∥Dλn

[
wn(T )− P≤λθ

n
w∞(T )

]∥∥
H

1/2
x (R2)

+ ‖w∞(T )− eiλ
2
nT (1−〈λ−1

n ∇〉)φ‖L2
x(R

2)

�
∥∥Dλn

[
wn(T )− P≤λθ

n
w∞(T )

]∥∥
H

1/2
x (R2)

+ ‖w∞(T )− eiTΔ/2φ‖L2
x(R

2)

+
∥∥ [1− eiTλ2

n(1−〈λ−1
n ξ〉+ 1

2λ
−2
n |ξ|2)]φ̂∥∥

L2
ξ(R

2)
.

Now (6.10) follows from (6.6), the definition of w∞ (in the case tn/λ
2
n → −∞), and

the dominated convergence theorem, respectively. �

Next, we show that ṽn are approximate solutions to (2.2), starting with the large
time intervals. More precisely, we will prove

Proposition 6.6 (Large time intervals). With the notation above,

lim
T→∞

lim sup
n→∞

‖e−i(t−λ2
nT )〈∇〉ṽn(Tλ

2
n)‖L4

t,x((λ
2
nT,∞)×R2) = 0

and analogously on the time interval (−∞,−λ2
nT ).

This proposition is an immediate consequence of the two lemmas that follow;
indeed, one merely needs to combine them with the triangle inequality. The first
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lemma shows that for a large enough time, we can safely approximate the nonlinear
solutions wn by solutions to the free Schrödinger equation.

Lemma 6.7. Let w+ be the forward-in-time scattering state of the NLS solution
w∞ defined above. Then

lim
T→∞

lim sup
n→∞

∥∥e−i(t−λ2
nT )〈∇〉[ṽn(Tλ2

n)

− e−iTλ2
nDλn

eiTΔ/2P≤λθ
n
w+

]∥∥
L4

t,x((λ
2
nT,∞)×R2)

= 0.

A similar statement holds on the time interval (−∞,−λ2
nT ), but with w− in place

of w+.

Proof. We will give the argument for the forward-in-time statement only. By the
Strichartz inequality for the first-order Klein–Gordon propagator, it suffices to prove

lim
T→∞

lim sup
n→∞

‖ṽn(Tλ2
n)− e−iTλ2

nDλn
eiTΔ/2P≤λθ

n
w+‖H1/2

x (R2)
= 0.

By Lemma 6.4, it suffices to show that

lim
T→∞

lim sup
n→∞

∥∥Dλn
P≤λθ

n

[
w∞(T )− eiTΔ/2w+

]∥∥
H

1/2
x (R2)

= 0.

To see this, we note that∥∥Dλn
P≤λθ

n

[
w∞(T )− eiTΔ/2w+

]∥∥
H

1/2
x (R2)

� ‖w∞(T )− eiTΔ/2w+‖L2
x(R

2),

which converges to zero as T → ∞. �

From the previous lemma, we know that ṽn(Tλ
2
n) is well approximated by the

free Schrödinger evolution of a specific function w+. The second step in the proof
of Proposition 6.6 is to show that for T large, the free first-order Klein–Gordon
evolution of this function (into the future) is small. Colloquially, a solution that is
well-dispersed for Schrödinger is also well-dispersed for Klein–Gordon.

Lemma 6.8. Let ψ ∈ L2
x(R

2) and let λn → ∞ be a sequence of positive numbers.
Then

(6.11) lim
T→∞

lim sup
n→∞

‖e−i(t−λ2
nT )〈∇〉e−iTλ2

nDλn
eiTΔ/2P≤λθ

n
ψ‖L4

t,x((λ
2
nT,∞)×R2) = 0.

Proof. By the Strichartz inequality (2.5) together with the easy inequality

‖〈∇〉1/2Dλn
P≤λθ

n
(ψ − ψ̃)‖L2

x(R
2) � ‖ψ − ψ̃‖L2

x(R
2),

we may assume that ψ is a Schwartz function with compact frequency support.

Consequently, for n sufficiently large, supp ψ̂ ⊂ {|ξ| < λθ
n} and we can therefore

ignore the projection operator P≤λθ
n
in what follows.

Next, we set

fn(t) := e−it〈λ−1
n ∇〉eiTλ2

n[〈λ−1
n ∇〉−1+Δ/(2λ2

n)]ψ

and observe that with this notation, (6.11) becomes

lim
T→∞

lim sup
n→∞

λ−1/2
n ‖fn‖L4

t,x((λ
2
nT,∞)×R2) = 0.

The proof will be via a stationary phase argument. We write

fn(t, x) =

∫
R2

e−i(t/λ2
n)hn,x(ξ)ψ̂(ξ) dξ,
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where

hn,x(ξ) := −λ2
n

t

{
x · ξ − t〈λ−1

n ξ〉+ Tλ2
n

[
〈λ−1

n ξ〉 − 1− λ−2
n |ξ|2/2

]}
.

A computation yields

∂i∂jhn,x(ξ) =
[

δij
〈λ−1

n ξ〉 −
ξiξj

λ2
n〈λ

−1
n ξ〉3

](
1− λ2

nT
t

)
+ δij

λ2
nT
t ,

where δij denotes the Kronecker delta. Thus,

(6.12) ∂i∂jhn,x(ξ) = δij +O(λ−2(1−2θ)
n ),

uniformly for |ξ| � λ2θ
n and t ≥ λ2

nT . If ∇hn,x does not vanish in {|ξ| � λ2θ
n }, then

by (6.12), |∇hn,x| � 1 uniformly on supp ψ̂ ⊂ {|ξ| � λθ
n}. If ∇hn,x vanishes in

{|ξ| � λ2θ
n }, then by the Morse lemma (cf. [39, p. 346]) and (6.12), there exists ηn,x

which is a diffeomorphism (uniformly in n, x, ξ) on supp ψ̂ and such that hn,x(ξ) =
|ηn,x(ξ)|2 + cn,x. In either case, by the principle of stationary phase, we have for
t ≥ λ2

nT and x ∈ R2 that

|fn(t, x)| �ψ
λ2
n

t .

By interpolation with the trivial L2
x bound, we obtain

‖fn(t)‖L4
x(R

2) �ψ

(λ2
n

t

)1/2
.

Integrating this with respect to time we get

‖fn‖L4
t,x((λ

2
nT,∞)×R2) �ψ λ1/2

n T−1/4,

which completes the proof of the lemma. �

We now turn to showing that ṽn is an approximate solution to (2.2) on the
middle time interval. A computation shows that on this middle time interval, ṽn
satisfies the following approximate first-order Klein–Gordon equation:

(−i∂t + 〈∇〉)ṽn + μ〈∇〉−1
(Re ṽn)

3 = e1 + e2 + e3 + e4,(6.13)

where

e1 := e−itDλn

{[
〈λ−1

n ∇〉 − 1 + Δ
2λ2

n

]
wn

(
t
λ2
n

)}
,

e2 := μ
[
〈∇〉−1 − 1

]
(Re ṽn)

3,

e3 := 1
4μRe e−3it

[
Dλn

wn

(
t
λ2
n

)]3
,

e4 := 3
8μe

it
∣∣Dλn

wn

(
t
λ2
n

)∣∣2Dλn
wn

(
t
λ2
n

)
.

The error terms e1 and e2 can be estimated in spaces for which Proposition 3.4

applies. We will estimate e1 in L1
tH

1/2
x . As∣∣∣〈λ−1

n ξ〉 − 1− |ξ|2
2λ2

n

∣∣∣ ≤ 1
2
|ξ|4
λ4
n
,

by Hölder’s inequality and (6.4), we obtain

‖e1‖L1
tH

1/2
x ([−λ2

nT,λ2
nT ]×R2)

� Tλ−2
n

(
‖Δ2wn‖L∞

t L2
x(R×R2) + λ−1/2

n ‖〈∇〉9/2wn‖L∞
t L2

x(R×R2)

)
� Tλ−2+4θ

n → 0 as n → ∞.(6.14)
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Next we estimate e2 in L
4/3
t W

1,4/3
x . Noting that

〈∇〉[〈∇〉−1 − 1] = ∇ ∇
1 + 〈∇〉

and that by the Mikhlin multiplier theorem the second factor on the right is bounded

on L
4/3
t,x , we have

‖〈∇〉e2‖L4/3
t,x ([−λ2

nT,λ2
nT ]×R2)

� ‖∇(Re ṽn)
3‖

L
4/3
t,x ([−λ2

nT,λ2
nT ]×R2)

�
∥∥Dλn

∇
λn

wn

(
t
λ2
n

)∥∥
L4

t,x[−λ2
nT,λ2

nT ]×R2)

∥∥Dλn
wn

(
t
λ2
n

)∥∥2
L4

t,x(R×R2)

� λ−1+θ
n → 0 as n → ∞.(6.15)

In the last inequality, we used (6.4).
Unfortunately, the error terms e3 and e4 are not small in either of the spaces

L1
tH

1/2
x or L

4/3
t W

1,4/3
x for which Proposition 3.4 applies. However, they oscillate

in spacetime like e±3it and eit, respectively, and the frequencies ±(3, 0) and (1, 0)
are far from the surface {(−〈ξ〉, ξ)}. This allows us to use Xs,b-type arguments in
the manner of [8].

Lemma 6.9. For j = 3, 4, let fn,j solve the equation

(−i∂t + 〈∇〉)fn,j = ej , fn,j(0) = 0.

Then

‖fn,j‖L∞
t H

1/2
x ([−λ2

nT,λ2
nT ]×R2)

+ ‖fn,j‖L4
t,x([−λ2

nT,λ2
nT ]×R2) � λ−2+3θ

n .

Proof. We will prove the lemma for j = 4. The argument for j = 3 is almost
identical. We compute

(−i∂t + 〈∇〉)(fn,4 − 1
2e4) =

3
16μ

{ ieit
λ5
n

[
∂t(wnwn

2)
]
(λ−2

n t, λ−1
n x)

(6.16)

− eit

λ3
n

[
(〈λ−1

n ∇〉 − 1)(wnwn
2)
]
(λ−2

n t, λ−1
n x)

}
.

Thus by Lemma 2.3 and the triangle inequality, it suffices to bound e4 in L∞
t H

1/2
x

and L4
t,x and the right-hand side of the identity above in dual Strichartz spaces.

Estimating much as in (6.15), we obtain

‖e4‖L∞
t H

1/2
x ([−λ2

nT,λ2
nT ]×R2)

� ‖〈∇〉1/2Dλn
wn‖L∞

t L6
x(R×R2)‖Dλn

wn‖2L∞
t L6

x(R×R2)

� λ−2+2θ
n .

Similarly, using Sobolev embedding and (6.4), we have

‖e4‖L4
t,x([−λ2

nT,λ2
nT ]×R2) � λ−2

n ‖w3
n‖L4

t,x(R×R2)

� λ−2
n ‖wn‖L4

tL
12
x (R×R2)‖wn‖2L∞

t L12
x (R×R2)

� λ−2
n ‖|∇|1/3wn‖L4

t,x(R×R2)‖|∇|5/6wn‖2L∞
t L2

x(R×R2)

� λ−2+2θ
n .
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We now turn to estimating the right-hand side of (6.16). Noting that

〈∇〉[〈∇〉 − 1] = −Δ[1 + 〈∇〉−1]−1

and that by the Mikhlin multiplier theorem the second factor on the right is bounded

on L
4/3
t,x , we estimate∥∥∥〈∇〉
{eit

λ3
n

[
(〈λ−1

n ∇〉 − 1)(wnwn
2)
]
(λ−2

n t, λ−1
n x)

}∥∥∥
L

4/3
t,x ([−λ2

nT,λ2
nT ]×R2)

� λ−2
n

{
‖Δwn‖L4

t,x(R×R2)‖wn‖2L4
t,x(R×R2) + ‖∇wn‖2L4

t,x(R×R2)‖wn‖L4
t,x(R×R2)

}
� λ−2+2θ

n .

Note the application of (6.4) in the last step.
Finally, using (6.4) and (6.5),∥∥∥〈∇〉

{ ieit
λ5
n

[
∂t(wnwn

2)
]
(λ−2

n t, λ−1
n x)

}∥∥∥
L

4/3
t,x ([−λ2

nT,λ2
nT ]×R2)

� λ−2
n ‖〈∇〉∂t(wnwn

2)‖
L

4/3
t,x (R×R2)

� λ−2
n

{
‖〈∇〉∂twn‖L4

t,x(R×R2)‖wn‖2L4
t,x(R×R2)

+ ‖∂twn‖L4
t,x(R×R2)‖〈∇〉wn‖L4

t,x(R×R2)‖wn‖L4
t,x(R×R2)

}
� λ−2+3θ

n .

This completes the proof of the lemma. �

We now make the promised modification in ṽn and show that the modified se-
quence approximately solves (2.2). With fn,j as defined above, we consider the
sequence

(6.17) ˜̃vn(t) :=

⎧⎪⎨⎪⎩
ṽn(t)− fn,3(t)− fn,4(t) if |t| ≤ Tλ2

n,

e−i(t−Tλ2
n)〈∇〉 ˜̃vn(Tλ

2
n) if t > Tλ2

n,

e−i(t+Tλ2
n)〈∇〉 ˜̃vn(−Tλ2

n) if t < −Tλ2
n.

The key facts about ˜̃vn are that it is a good enough approximate solution to allow
us to invoke Proposition 3.4 and that it is close enough to ṽn to allow us to deduce
that the resulting solutions vn obey (6.2). We collect these together in the following
proposition:

Proposition 6.10. For each ε > 0 there exist T and N so that for each n ≥ N ,

(−i∂t + 〈∇〉)˜̃vn + μ〈∇〉−1(Re ˜̃vn)
3 = ẽ1 + ẽ2 + ẽ3,

with

‖ẽ1‖L1
tH

1/2
x (R×R2)

+ ‖〈∇〉(ẽ2 + ẽ3)‖L4/3
t,x (R×R2)

≤ ε.

Moreover, ∥∥˜̃vn − ṽn
∥∥
L∞

t H
1/2
x (R×R2)

+ ‖˜̃vn − ṽn‖L4
t,x(R×R2) ≤ ε.(6.18)

In particular, by (6.8) we have ‖˜̃vn‖L∞
t H

1/2
x (R×R2)

+ ‖˜̃vn‖L4
t,x(R×R2) �M(φ) 1.
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Proof. Let In := [−λ2
nT, λ

2
nT ]. On this interval, a direct computation reveals that

ẽ1 = e1, ẽ2 = e2, and ẽ3 = μ〈∇〉−1
[(
Re(ṽn − fn,3 − fn,4)

)3 − (Re ṽn)
3
]
.

By (6.14) and (6.15), we have

‖ẽ1‖L1
tH

1/2
x (In×R2)

+ ‖〈∇〉ẽ2‖L4/3
t,x (In×R2)

� Tλ−2+4θ
n + λ−1+θ

n .

On the other hand, by the triangle inequality, Hölder, (6.8), and Lemma 6.9,

‖〈∇〉ẽ3‖L4/3
t,x (In×R2)

�
[
‖ṽn‖2L4

t,x(In×R2) + ‖fn,3‖2L4
t,x(In×R2) + ‖fn,4‖2L4

t,x(In×R2)

]
×
[
‖fn,3‖L4

t,x(In×R2) + ‖fn,4‖L4
t,x(In×R2)

]
� λ−2+3θ

n .

These bounds show that for any T one may choose N sufficiently large so that for
n ≥ N ,

‖ẽ1‖L1
tH

1/2
x (In×R2)

+ ‖〈∇〉(ẽ2 + ẽ3)‖L4/3
t,x (In×R2)

≤ 1
2ε.

For the complementary time intervals, ẽ1 ≡ ẽ2 ≡ 0 and ẽ3 = μ〈∇〉−1(Re ˜̃vn)
3.

By Proposition 6.6, Lemma 6.9, and the Strichartz inequality, we have that for T
and n sufficiently large,∥∥〈∇〉ẽ3

∥∥
L

4/3
t,x (|t|≥Tλ2

n)
�
∥∥˜̃vn∥∥3L4

t,x(|t|≥Tλ2
n)

�
∥∥ṽn∥∥3L4

t,x(|t|≥Tλ2
n)

+
∥∥fn,3∥∥3L∞

t H
1/2
x

+
∥∥fn,4∥∥3L∞

t H
1/2
x

≤ 1
2ε.

We now turn our attention to (6.18). The contribution from In is controlled
by Lemma 6.9, while the contribution from the complementary time intervals is
controlled by combining this lemma with the Strichartz inequality.

This completes the proof of the proposition. �

We are now ready to complete the proof of Theorem 6.2 in the case νn ≡ 0.
Combining Lemma 6.5 and Proposition 6.10, we are in a position to apply the
stability result Proposition 3.4 with ˜̃vn as the approximate solution, and so obtain
(for n sufficiently large) a solution vn to (2.2) with initial data vn(0) = φn and
finite scattering size. Moreover, by (6.18),

lim
n→∞

{
‖vn(t)− ṽn(t− tn)‖L∞

t H
1/2
x (R×R2)

+ ‖vn(t)− ṽn(t− tn)‖L4
t,x(R×R2)

}
= 0.

(6.19)

Finally, we verify (6.3). By the density of C∞
c in L4

t,x, we may choose ψε so that∥∥e−itDλn

[
ψε(λ

−2
n t)− w∞(λ−2

n t)
]∥∥

L4
t,x

= ‖ψε − w∞‖L4
t,x

< 1
2ε.

Combining this with (6.19), we see that it suffices to show

‖ṽn − e−itDλn
w∞(λ−2

n t)‖L4
t,x(R×R2) <

1
2ε for n sufficiently large.

By the definition of ṽn and the triangle inequality,

‖ṽn − e−itDλn
w∞(λ−2

n t)‖L4
t,x(R×R2)

� ‖ṽn‖L4
t,x(|t|>Tλ2

n)
+ ‖wn − w∞‖L4

t,x(R×R2) + ‖w∞‖L4
t,x(|t|>T ).
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Each of these can be made arbitrarily small by first choosing T large and then n also
sufficiently large; specifically, we apply Proposition 6.6, (6.6), and the dominated
convergence theorem, respectively.

This completes the treatment of Theorem 6.2 in the case νn ≡ 0. �
We now turn to the general case, in which our only assumption on νn is that

νn → ν ∈ R2.

Proof in the general case. Recall that (t̃n, x̃n) := Lνn
(tn, xn) and hence, by the

commutation rule (2.15),

(6.20) φn = Txn
eitn〈∇〉Lνn

Dλn
P≤λθ

n
φ = Lνn

Tx̃n
eit̃n〈∇〉Dλn

P≤λθ
n
φ.

By spatial translation invariance, we may alter xn to whatever value is convenient
(previously, we set xn ≡ 0). For this part of the proof we choose xn = νntn/〈νn〉,
which has the effect that x̃n ≡ 0 and t̃n = tn/〈νn〉.

By our proof in the case νn ≡ 0, for n sufficiently large there is a global solution
v0n to (2.2) with initial data

(6.21) v0n(0) = Tx̃n
eit̃n〈∇〉Dλn

P≤λθ
n
φ.

Moreover, it obeys SR(v
0
n) �M(φ) 1 and for each ε > 0, there exists ψ0

ε ∈ C∞
c (R×R2)

and N0
ε such that

(6.22)
∥∥Re{v0n(t+ t̃n, x+ x̃n)− e−it

λn
ψ0
ε(

t
λ2
n
, x
λn

)
}∥∥

L4
t,x

< ε

whenever n ≥ N0
ε .

As v0n solves (2.2), so u0
n := Re v0n solves (1.1) and thus by Lorentz invariance,

u1
n := u0

n ◦ Lνn
also solves (1.1). Note that it is necessary to pass through real

solutions here since

(6.23) v1n := (1 + i〈∇〉−1∂t)u
1
n = (1 + i〈∇〉−1∂t) Re v

0
n ◦ Lνn

(cf. (2.1)) will not equal v0n ◦ Lνn
except in some exceptional circumstances. The

former solves (2.2), while the latter need not.
By the manner in which it is constructed, we expect v1n(t) to be a good approx-

imation to the sought-after vn(t). Both are solutions to (2.2); however, they have
different initial data because Lνn

only faithfully represents the action of Lorentz
boosts on solutions of the linear Klein–Gordon equation. Nevertheless, we will now
prove the discrepancy to be small, which will allow us to apply the stability result
in Proposition 3.4.

Proposition 6.11. For n sufficiently large, v1n is a global strong solution to (2.2).
Moreover, supn SR(v

1
n) �M(φ) 1 and

(6.24) lim
n→∞

‖v1n(0)− φn‖H1
x
= 0.

Proof. By Corollary 3.7, we have that u1
n is a strong solution to (1.1). This implies

that v1n is a strong solution to (2.2). As SR(v
1
n) = SR(v

0
n), the spacetime bound is

inherited directly from v0n.
We now turn to the initial data. As in the proof of Corollary 3.7, we decompose

u0
n = u0,lin

n + ũ0
n,

where u0,lin
n solves the linear Klein–Gordon equation with initial data

(1 + i〈∇〉−1∂t)u
0,lin
n (0) = vn(0) = L−1

νn
φn.
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Then by the action of Lν on linear solutions (cf. (2.13) or (3.8)), we have

(1 + i〈∇〉−1∂t)[u
0,lin
n ◦ Lνn

](0) = Lνn
vn(0) = φn,

from which we deduce that ‖v1n(0)− φn‖H1
x
= ‖ũ0

n ◦ Lνn
(0, ·)‖H1

x
.

By construction, ũ0
n(0, ·) ≡ 0. Thus, we need only estimate the contribution

from the nonlinearity in the spacetime region

Ωn =
{
(t, x) : 0 < 〈νn〉t < −νn · x

}
∪
{
(t, x) : −νn · x < 〈νn〉t < 0

}
.

To do this, we argue in much the same manner as in the proof of Corollary 3.7,
using ũ0

n in place of the ũ appearing there. As in (3.12),

lim sup
n→∞

1
2‖ũ

0
n ◦ Lνn

(0, ·)‖2H1
x
≤ lim sup

n→∞

∫∫
Ωn

|∇t,x · pn| dx dt

� lim sup
n→∞

∫∫
Ωn

|u0
n(t, x)|3|∇t,xũ

0
n(t, x)| dx dt

� lim sup
n→∞

‖u0
n‖3L4

t,x(Ωn)
‖∇t,xũ

0
n‖L4

t,x(R×R2).

Therefore, to complete the proof of the proposition, we merely need to verify the
following: For n sufficiently large,

(6.25) ‖∇t,xũ
0
n‖L4

t,x(R×R2) �M(φ) 1

and

(6.26) lim
n→∞

‖u0
n‖L4

t,x(Ωn) = 0.

We begin with (6.25). By the triangle inequality,

‖∇t,xũ
0
n‖L4

t,x
≤ ‖∇t,xu

0
n‖L4

t,x
+ ‖∇t,xu

0,lin
n ‖L4

t,x
.

Furthermore, by the Strichartz inequality, the linear term satisfies the bound

‖∇t,xu
0,lin
n ‖L4

t,x
� ‖v0n(0)‖H3/2

x
= ‖Dλn

P≤λθ
n
φ‖

H
3/2
x

�M(φ) 1.

To bound the contribution coming from u0
n, we use persistence of regularity (3.3)

and the fact that SR(u
0
n) �M(φ) 1 to see that

‖∇t,xu
0
n‖L4

t,x
�M(φ) ‖〈∇〉3/2Dλn

P≤λθ
n
φ‖L2

x
�M(φ) 1.

This completes the proof of (6.25); we turn now to (6.26).
By the approximation (6.22) and the triangle inequality, it suffices to show that

(6.27) lim
n→∞

∫
Ωn

λ−4
n

∣∣ψ( t−t̃n
λ2
n
, x−x̃n

λn

)∣∣4 dx dt = 0

for every ψ ∈ C∞
c (R× R2).

To do this, we consider the support of the integrand. As x̃n ≡ 0,(
t−t̃n
λ2
n
, x−x̃n

λn

)
∈ suppψ =⇒ |x| �ψ λn, while (t, x) ∈ Ωn =⇒ |t| < |x|.

Therefore, the support of the integrand has measure �ψ λ3
n and so

LHS(6.27) �ψ λ−4
n λ3

n‖ψ‖L∞
t,x

�ψ λ−1
n → 0.

This completes the proof of (6.26), and so the proof of Proposition 6.11. �
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We now return to the proof of Theorem 6.2 in the general case. Combining
Proposition 6.11 with Proposition 3.4, we deduce that for n sufficiently large there
exists a global solution vn to (2.2) with vn(0) = φn and SR(vn) �M(φ) 1. Moreover,

lim
n→∞

∥∥Re{vn − v1n
}∥∥

L4
t,x

= 0.

Combining this estimate with Re v0n = Re v1n ◦ L−1
νn

and (6.22) yields (6.2), thus
completing the proof of Theorem 6.2. �

7. Minimal-energy blowup solutions

The goal of this section is to prove Theorem 1.9, which asserts that failure of
of our main result, Theorem 1.4, would imply the existence and almost periodicity
(modulo translations) of minimal-energy counterexamples.

As described in the introduction, if Conjecture 1.2 were to fail, then there would
exist a critical energy Ec > 0 (also Ec < E(Q) in the focusing case), defined to
be the unique positive number possessing the following properties: First, if u is a
real-valued, global solution to (1.1) with E(u) < Ec (and M(u(0)) < M(Q) in the
focusing case), then SR(u) �E(u) 1; second, there exists a sequence un of global
solutions to (1.1) such that E(un) ≤ Ec (and M(un(0)) < M(Q) in the focusing
case), limn→∞ E(un) = Ec, and limn→∞ SR(un) = ∞.

We pause now for two remarks on the preceding discussion. First, the fact that
Ec > 0 is a consequence of the small-data theory presented in Proposition 3.1. In
the focusing case, we also invoke (2.34) to see that for M(u(0)) < M(Q), small
energy implies small H1

x norm.
Second, the solutions un used in the definition of Ec are stated to be global (in

time). This involves no loss of generality as can be seen in at least two ways: Either
(a) we choose E(un) to converge to Ec from below; thus, not only is un global but,
by the definition of Ec, even admits global spacetime bounds; or (b) we invoke
Corollary 3.3.

The main step in proving Theorem 1.9 is the following proposition.

Proposition 7.1 (Palais–Smale condition modulo translations). Fix μ = ±1, sup-
pose Conjecture 1.3 holds but Conjecture 1.2 fails for this value of μ, and let Ec

denote the critical energy. Accordingly, let un be a sequence of global solutions to
(1.1) such that the following hold:

E(un) ≤ Ec and Ec = lim
n→∞

E(un),(7.1)

M(un(0)) < M(Q) in the focusing case, and(7.2)

lim
n→∞

S≤0(un) = lim
n→∞

S≥0(un) = ∞.(7.3)

Then after passing to a subsequence, (un(0), ∂tun(0)) converges in H1
x×L2

x, modulo
translations.

Proof. We will continue to work with the first-order version of our equation, (2.2).
Correspondingly, let

vn := un + i〈∇〉−1∂tun.

Thus, our goal is to prove that, after passing to a subsequence, vn(0) converges
modulo translations in H1

x. Using Proposition 2.12 in conjunction with (7.2), we
observe that in the focusing case, vn satisfies

‖vn(0)‖2L2
x
=: M(vn(0)) ≤ 2Ec < M(Q),(7.4)
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and that in both the focusing and defocusing cases, we have

‖vn(0)‖2H1
x
� E(vn) ≤ Ec.(7.5)

As it is bounded in H1
x, we may apply Theorem 5.1 to the sequence vn(0) to

obtain a linear profile decomposition

(7.6) vn(0) =

J∑
j=1

φj
n + wJ

n , 1 ≤ J < J0,

where

(7.7) φj
n = Txj

n
eit

j
n〈∇〉Lνj

n
Dλj

n
P j
nφ

j .

Note that J0 > 1, for otherwise, (7.3) would be inconsistent with (5.2). Passing to
a further subsequence, we may assume that M(φj

n) and E(φj
n) converge for each

1 ≤ j < J0.
From Proposition 5.3, we also know that the energy decouples:

(7.8) lim
n→∞

J∑
j=1

E(φj
n) + E(wJ

n) = lim
n→∞

E(vn) = Ec,

for each 1 ≤ J < J0.

Lemma 7.2. After passing to a subsequence, one of the following scenarios occurs:
Case I. There is only a single profile and it satisfies

(7.9) lim
n→∞

E(φ1
n) = Ec.

Case II. There exists δ > 0 such that for every 1 ≤ j < J0,

(7.10) lim
n→∞

E(φj
n) < Ec − δ.

Irrespective of the above, in the focusing case we also have that for each j and J ,

M(φj
n) < M(Q) and M(wJ

n) < M(Q)(7.11)

when n is sufficiently large (possibly depending on j, J).

Proof. We begin with (7.11). By (5.4) and a simple inductive argument (as in the
proof of (5.3)), we see that the mass decouples, that is,

lim
n→∞

{
M(vn(0))−

J∑
j=1

M(φj
n)−M(wJ

n)
}
= 0 for each 1 ≤ J < J0.

As masses are nonnegative, this and (7.4) imply the validity of (7.11).
With (7.11) proved, (2.34) implies that the summands in (7.8) are positive for n

sufficiently large (depending on J) in the focusing case; in the defocusing case this
is manifestly true. This positivity allows us to deduce that if (7.9) fails, then (7.10)
must hold. For j = 1, this is obvious. For j ≥ 2 we may set δ = limn→∞ E(φ1

n),
which is positive since φ1 �= 0, by construction. �

Now we move to the consideration of the two scenarios described in Lemma 7.2.
Case I: Assume that (7.9) occurs. Then by (7.8), together with (2.34) invoked

for wJ
n , we have that

(7.12) vn − φ1
n = w1

n → 0 in H1
x.

Our analysis now breaks into three subcases.
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Case IA: Suppose that λ1
n → ∞. We will apply Theorem 6.2, but in the focusing

case we must first verify the following:

Lemma 7.3. Assume that we are in the focusing case. Let 1 ≤ j < J0 and assume
that limn→∞ λj

n = ∞. Then

M(φj) < M(Q).

Proof. By (7.8) and Lemma 2.4, we have

2Ec ≥ lim
n→∞

2E(φj
n) = lim

n→∞
‖Txj

n
eit

j
n〈∇〉Lνj

n
Dλj

n
P j
nφ

j‖2H1
x

= lim
n→∞

∫
〈ξ/λj

n〉
〈

−νj

n
(ξ/λj

n)
〉
|P≤(λj

n)θ
φ̂j(ξ)|2 dξ = 〈νj∞〉‖φj‖2L2

x
.

Since 2Ec < 2E(Q) = M(Q), the lemma is proved. �

Thus by Theorem 6.2, for n sufficiently large, the solution v1n to (2.2) with initial
data v1n(0) = φ1

n is global and satisfies SR(v
1
n) �Ec

1. We may now use (7.12) and
Proposition 3.4 to conclude that SR(vn) < ∞, a contradiction.

We must therefore have that λ1
n ≡ 1. This implies that φ1 ∈ H1

x,

φ1
n = Tx1

n
eit

1
n〈∇〉φ1,

and either t1n → ±∞ or t1n ≡ 0.
Case IB: Suppose that λ1

n ≡ 1 and t1n → ±∞. We treat the case t1n → −∞, the
other case being similar. By the Strichartz inequality, e−it〈∇〉φ1 ∈ L4

t,x(R × R2),
and so

‖e−i(t−t1n)〈∇〉φ1‖L4
t,x([0,∞)×R2) → 0 as n → ∞.

Hence by Proposition 3.1, if v1n is the solution to (2.2) with initial data v1n(0) =
φ1
n, then for n sufficiently large, S≥0(v

1
n) < ∞. As in Case IA, we can now use

Proposition 3.4 to conclude that for n large, S≥0(vn) < ∞, a contradiction.
Case IC: If λ1

n ≡ 1 and t1n ≡ 0, we have reduced the linear profile decomposition
(5.1) to

T−x1
n
vn(0) = φ1 + T−x1

n
w1

n.

Combining this with (7.12), we have proved the proposition when (7.9) holds.
Case II: We will show that this is inconsistent with (7.3) by using (7.6) to

produce a nonlinear profile decomposition of the vn and then applying the stability
theory. We begin by introducing nonlinear profiles vjn; their definition depends on
the behaviour of λj

n.
First assume that j is such that λj

n ≡ 1. Then φj ∈ H1
x and

φj
n = Txj

n
eit

j
n〈∇〉φj .

If, in addition, tjn ≡ 0, then we let vj be the maximal-lifespan solution to (2.2) with
vj(0) = φj . If tjn → −∞ (respectively tjn → ∞), then we let vj be the maximal-
lifespan solution to (2.2) which scatters forward (respectively backward) in time to
e−it〈∇〉φj .

Lemma 7.4. In Case II, if λj
n ≡ 1 for some j, then vj defined as above is global.

Proof. This follows from Corollary 3.3. In the focusing case, however, we must first
establish

M(Reφj) < M(Q) and E(φj) < E(Q).
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Since M(φj) = M(φj
n), the first inequality is immediate from (7.11). We turn to

the energy bound. If tjn ≡ 0, then E(φj) ≡ E(φj
n), and we are done. If tjn → ±∞,

then by using the dispersive estimate (2.4) and approximating φj inH1
x by Schwartz

functions, we see that

lim
n→∞

E(φj
n) = lim

n→∞
1
2‖φ

j
n‖2H1

x
= 1

2‖φ
j‖2H1

x
≥ E(φj),

and hence by Lemma 7.2, E(φj) < Ec < E(Q) in this case as well. �

Thus if λj
n ≡ 1, we may define nonlinear profiles by

vjn(t, x) := vj(t− tjn, x− xj
n).

Next, suppose that limn→∞ λj
n = ∞. Then by Theorem 6.2 (and Lemma 7.3 in

the focusing case), for n sufficiently large we may define vjn to be the solution to
(2.2) with initial data vjn(0) = φj

n.

Lemma 7.5. In Case II, for each j (regardless of the behaviour of the λj
n) we have

lim
n→∞

E(vjn) = lim
n→∞

E(φj
n),(7.13)

lim
n→∞

M(vjn(0)) < M(Q) in the focusing case, and(7.14)

lim
n→∞

SR(v
j
n) � lim

n→∞
E(vjn)

2.(7.15)

Furthermore, for each j and ε > 0, there exists ψ = ψε ∈ C∞
c (R × R2) and Nj,ε

such that if ψj
n is defined as in (5.16) and n > Nj,ε, then we have

(7.16) ‖Re(ψj
n − vjn)‖L4

t,x(R×R2) < ε.

Proof. Equality (7.13) is a tautology if λj
n → ∞ or λj

n ≡ 1 and tjn ≡ 0, since in
these cases vjn(0) = φj

n. If λj
n ≡ 1 and tjn → ±∞, then by the definition of vjn and

(3.2), we have

E(vjn) = E(vj) = 1
2‖φ

j‖2H1
x
= lim

n→∞
E(φj

n),

where for the last equality, we have used the dispersive estimate as in the proof of
Lemma 7.4.

Inequality (7.14) follows easily from (7.11) and the definition of vjn.
When limn→∞ E(φj

n) is below the small data threshold, (7.15) follows from
Proposition 3.1. Note that in the focusing case, (7.11) and (2.34) imply that the
energy controls the H1

x norm. On the other hand, by (7.8) the limiting energy can
only exceed this threshold for finitely many values of j. For these cases, we invoke
(7.10) and the definition of Ec. As we are invoking the contradiction hypothesis
here, there is no hope of being explicit about the constant in (7.15) other than that
it is independent of j.

As for (7.16), in the case λj
n ≡ 1, this follows from the fact that vjn is just a

translate of vj ∈ L4
t,x(R × R2). In the case λj

n → ∞, this approximation follows
from Theorem 6.2. �

For 1 ≤ J < J0, we let

V J
n (t) :=

J∑
j=1

vjn(t) + e−it〈∇〉wJ
n ,
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which is defined globally for n sufficiently large (depending on J). Our immediate
goal is to use Proposition 3.4 to show that V J

n (t) is a good approximation to vn(t)
when n and J are sufficiently large.

Lemma 7.6. We have the following spacetime bounds on V J
n :

(7.17) lim sup
J→∞

lim sup
n→∞

{
‖ReV J

n ‖L4
t,x

+ ‖V J
n ‖

L∞
t H

1/2
x

}
< ∞.

The V J
n are approximate solutions to (2.2) in the sense that

(−i∂t + 〈∇〉)V J
n + μ〈∇〉−1(ReV J

n )3 = EJ
n ,

where

(7.18) lim
J→∞

lim sup
n→∞

‖〈∇〉EJ
n‖L4/3

t,x
= 0.

Furthermore, for each J we have

(7.19) lim
n→∞

‖vn(0)− V J
n (0)‖H1

x(R
2) = 0.

Proof. We begin with (7.19). By the triangle inequality and the definitions,

lim
n→∞

‖vn(0)− V J
n (0)‖H1

x(R
2) ≤ lim

n→∞

J∑
j=1

‖vjn(0)− φj
n‖H1

x(R
2) = 0.

To see that the limit vanishes, we note that each of the summands is identically
zero, except in the case when λj

n ≡ 1 and |tjn| → ∞. However, even in this case,
the difference tends to zero in H1

x(R
2) by construction.

As a preliminary to the main part of the proof, we note that combining (7.15)
and (7.8) yields

(7.20) lim sup
J→∞

lim sup
n→∞

J∑
j=1

‖Re vjn‖2L4
t,x

� lim
J→∞

lim
n→∞

J∑
j=1

E(vjn) ≤ Ec.

We now bound the L4
t,x term in (7.17). By (7.16) and Proposition 5.5, the

nonlinear profiles decouple in the sense that whenever j �= j′, we have

(7.21) lim
n→∞

‖Re vjn Re vj
′

n ‖L2
t,x(R×R2) = 0.

Combining this with (5.2) and then using (7.20) shows

lim sup
J→∞

lim sup
n→∞

‖ReV J
n ‖4L4

t,x
= lim sup

J→∞
lim sup
n→∞

J∑
j=1

‖Re vjn‖4L4
t,x

� E2
c .(7.22)

Next, we prove (7.18). A simple computation shows that

EJ
n (t) = μ〈∇〉−1

{
Re

J∑
j=1

vjn(t) + Re e−it〈∇〉wJ
n

}3

− μ〈∇〉−1
J∑

j=1

(Re vjn)
3,

and so, by the triangle inequality it suffices to show

lim
J→∞

lim sup
n→∞

∥∥∥∥( J∑
j=1

Re vjn + e−it〈∇〉wJ
n

)3

−
( J∑

j=1

Re vjn

)3∥∥∥∥
L

4/3
t,x (R×R2)

= 0(7.23)
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and

lim
J→∞

lim sup
n→∞

∥∥∥∥( J∑
j=1

Re vjn

)3

−
J∑

j=1

(
Re vjn

)3∥∥∥∥
L

4/3
t,x (R×R2)

= 0.(7.24)

We observe that∣∣∣∣( J∑
j=1

Re vjn+e−it〈∇〉wJ
n

)3
−
( J∑

j=1

Re vjn

)3∣∣∣∣ � ∣∣e−it〈∇〉wJ
n

∣∣3+∣∣e−it〈∇〉wJ
n

∣∣∣∣∣∣ J∑
j=1

Re vjn

∣∣∣∣2,
and so (7.23) follows from Hölder’s inequality, (5.2), (7.20), and (7.21). As∣∣∣∣( J∑

j=1

Re vjn

)3

−
J∑

j=1

(
Re vjn

)3∣∣∣∣ � ∑
1≤j1,j2,j3≤J

j1 �=j3

∣∣Re vj1n Re vj2n Re vj3n
∣∣,

we can use Hölder’s inequality together with (7.21) and (7.15) to see that (7.24) is
true, even without sending J → ∞.

Finally, we complete the proof of (7.17) by bounding the L∞
t H

1/2
x norm. By the

Strichartz inequality, (7.19), and then (7.5), (7.22), and (7.18),

lim sup
J→∞

lim sup
n→∞

‖V J
n ‖

L∞
t H

1/2
x

� lim sup
J→∞

lim sup
n→∞

{
‖vn(0)‖H1

x
+ ‖ReV J

n ‖3L4
t,x

+ ‖〈∇〉EJ
n‖L4/3

t,x

}
< ∞.

This completes the proof of (7.17) and so also the lemma. �

By Lemma 7.6, we may apply Proposition 3.4 to conclude that in Case II, vn is
defined globally and SR(vn) �Ec

1 for n sufficiently large. This contradicts (7.3)
and so Case II cannot occur. Tracing back, we see that the only possibility is
Case IC, and so Proposition 7.1 is proved. �

Now we prove the existence of a minimal-energy, almost periodic blowup solution
to (1.1).

Proof of Theorem 1.9. By the definition of the critical energy and Corollary 3.3,
there exists a sequence un : R× R2 → R of global solutions to (1.1) with E(un) ≤
Ec (and M(un(0)) < M(Q) in the focusing case), limn→∞ E(un) = Ec, and
limn→∞ SR(un) = ∞. For each n, we choose tn so that S≤tn(un) = S≥tn(un).
By time-translation invariance, we may assume that tn ≡ 0. We thus have

lim
n→∞

S≤0(un) = lim
n→∞

S≥0(un) = ∞.

By Proposition 7.1, after passing to a subsequence, there exist a sequence {xn} ⊂
R2 and a pair of functions (u0, u1) so that

(7.25) (Txn
un(0), Txn

∂tun(0)) → (u0, u1), strongly in H1
x × L2

x.

The limit then satisfies E(u0, u1) = Ec (and M(u0) ≤ 2Ec < M(Q) in the focusing
case). By Corollary 3.3, there exists a global solution u : R×R2 → R to (1.1) with
initial data u(0) = u0 and ∂tu(0) = u1, satisfying

(7.26) ‖u‖L∞
t H1

x
� E(u0, u1).

We will show that this solution u satisfies the conclusions of the theorem; it
remains to be seen that u blows up forward and backward in time and is almost
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periodic modulo translations. If S≥0(u) < ∞, then by (7.25) and (7.26), we may
apply Proposition 3.4 to conclude that

lim
n→∞

S≥0(un) < ∞,

a contradiction. Therefore u must blow up forward in time, and by a similar
argument, u must blow up backward in time as well.

Finally, for almost periodicity modulo translations, we observe that if {t′n} ⊂ R

is any sequence, we have

S≥0(u(·+ t′n)) ≡ S≤0(u(·+ t′n)) ≡ ∞
and so by Proposition 7.1, a subsequence of (u(t′n), ∂tu(t

′
n)) converges in H1

x × L2
x

modulo translations. Thus, the orbit {(u(t), ∂tu(t)) : t ∈ R} is precompact modulo
translations. By the Arzelà–Ascoli Theorem, this is equivalent to u being almost
periodic modulo translations in the sense of Definition 1.7. This completes the
proof of the theorem. �

8. Death of a soliton

In this section, we will preclude the soliton-like solution, thus concluding the
proof of Theorem 1.4. More precisely, we will prove

Theorem 8.1 (No soliton). There are no minimal-energy blowup solutions to (1.1)
that are soliton-like in the sense of Theorem 1.9.

To prove this theorem, we will argue by contradiction. Let u : R × R2 → R

be a soliton-like solution, that is, a minimal-energy blowup solution that is almost
periodic modulo translations (and satisfies M(u(0)) < M(Q) in the focusing case).
Then, invoking (2.34) in the focusing case,

‖u‖2L∞
t H1

x
+ ‖ut‖2L∞

t L2
x
≤ 4E(u).(8.1)

By Corollary 3.9, Remark 3.10, and the minimality of u as a blowup solution, we
must have that the momentum of u is zero:

(8.2) P (u) = 0.

Our next step will be to use (8.2) to control the motion of x(t), which we do in
the manner of [13, 19, 24].

Lemma 8.2 (Controlling x(t)). The spatial center function of u satisfies |x(t)| =
o(t) as |t| → ∞.

Proof. By spatial-translation invariance, we may assume that x(0) = 0. We argue
by contradiction. If the conclusion of the lemma did not hold, then there would
exist δ > 0 and a sequence tn → ±∞ such that

|x(tn)| > δ|tn|.
Without loss of generality, we may assume that tn → ∞ and that

|x(t)| ≤ |x(tn)| for all 0 ≤ t ≤ tn.

Now let η > 0 be a small constant to be chosen later. By Remark 1.8, there
exists C(η) > 0 such that

sup
t∈R

∫
|x−x(t)|>C(η)

|u(t, x)|2 + |∇u(t, x)|2 + |ut(t, x)|2 + |u(t, x)|4 dx ≤ η.(8.3)
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We define
Rn := C(η) + |x(tn)|.

Finally, let φ be a smooth function with φ(r) = 1 for r ≤ 1 and φ(r) = 0 for r ≥ 2
and define an approximation to x(t) by

XRn
(t) :=

∫
R2

xφ( |x|
Rn

)eu(t, x) dx,

where eu denotes the energy density of u:

eu := 1
2 |u|

2 + 1
2 |∇u|2 + 1

2 |ut|2 + μ
4 |u|

4.

For each n, by the triangle inequality, (8.1), and (8.3),

|XRn
(0)| ≤

∫
|x|≤C(η)

|x||eu(0, x)| dx+

∫
C(η)≤|x|≤2Rn

|x||eu(0, x)| dx

� C(η)E(u) + ηRn.

On the other hand, by the triangle inequality followed by (8.3) we also have

|XRn
(tn)| ≥ |x(tn)|E(u)−

∫
|x−x(tn)|≤C(η)

|x− x(tn)|φ( |x|
Rn

)|eu(tn)| dx

−
∫
|x−x(tn)|≥C(η)

|x− x(tn)|φ( |x|
Rn

)|eu(tn)| dx

− |x(tn)|
∫
R2

[
1− φ( |x|

Rn
)
]
|eu(tn)| dx

≥ |x(tn)|
[
E(u)− 4η

]
− C(η)

[
2E(u) + 2η

]
.

Thus, taking η sufficiently small compared to E(u) we get

(8.4)
∣∣XRn

(tn)−XRn
(0)
∣∣ �E(u) |x(tn)| − C(η).

To derive a contradiction, we now seek an upper bound on the left-hand side of
(8.4). A computation using (8.2) shows that

∂tXRn
(t) =

∫
R2

[
1− φ( |x|

Rn
)
]
ut∇u dx−

∫
R2

x
|x|Rn

φ′( |x|
Rn

)utx · ∇u dx.

Thus by (8.3),

(8.5) |∂tXRn
(t)| � η.

Combining (8.4) with (8.5) and the fundamental theorem of calculus, we obtain

ηtn � |XRn
(tn)−XRn

(0)| �E(u) |x(tn)| − C(η) �E(u) δtn − C(η).

Choosing η sufficiently small (depending on δ and E(u)) and then choosing n suf-
ficiently large, we derive a contradiction. �

We are now in a position to complete the proof of Theorem 8.1. We will use a
virial-type argument.

Let η1 > 0 and η2 > 0 be small constants to be chosen later. By Lemma 8.2,
there exists T0 = T0(η1) > 0 such that

|x(t)| ≤ η1t for all t ≥ T0.(8.6)

By Remark 1.8, there exist C(η1) > 0 and C(η2) > 0 such that

sup
t∈R

∫
|x−x(t)|>C(η1)

|u(t, x)|2 + |∇u(t, x)|2 + |ut(t, x)|2 + |u(t, x)|4 dx ≤ η1(8.7)
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and

sup
t∈R

∫
|ξ|<1/C(η2)

|û(t, ξ)|2 dξ ≤ η2.(8.8)

Using Plancherel and (8.8), we find∫
R2

|u(t, x)|2 dx =

∫
|ξ|<1/C(η2)

|û(t, ξ)|2 dξ +
∫
|ξ|≥1/C(η2)

|û(t, ξ)|2 dξ

≤ η2 + C(η2)
2

∫
R2

|∇u(t, x)|2 dx.(8.9)

With φ as in the proof of Lemma 8.2 and 0 < ε < 1 < R to be specified later,
we define

ZR(t) = −
∫
R2

φ
( |x|

R

)
ut(t, x)x · ∇u(t, x) dx− (1− ε)

∫
R2

ut(t, x)u(t, x) dx.

Note that by Cauchy–Schwarz and (8.1),

(8.10) |ZR(t)| � RE(u) �u R.

On the other hand, a computation establishes

∂tZR(t) = ε
[
‖u(t)‖2H1

x
+ ‖ut‖2L2

x

]
+ (1− 2ε)

∫
R2

|∇u(t)|2 + μ
2 |u(t)|

4 dx

− 2ε

∫
R2

|u(t)|2 dx−
∫
R2

[
1− φ

( |x|
R

)][
|ut(t)|2 − |u(t)|2 − μ

2 |u(t)|
4
]
dx

+

∫
R2

|x|
2Rφ′( |x|

R

)[
|ut(t)|2 − |∇u(t)|2 − |u(t)|2 − μ

2 |u(t)|
4
]
dx

+

∫
R2

1
|x|Rφ′( |x|

R

)
[x · ∇u(t)]2 dx.

Invoking the sharp Gagliardo-Nirenberg inequality, (8.7), and (8.9), we find

∂tZR(t) ≥ ε
[
‖u(t)‖2H1

x
+ ‖ut‖2L2

x

]
− 2εη2 − 10η1

+
{
(1− 2ε)

[
1 + μM(u(t))

M(Q)

]
− 2εC(η2)

2
}∫

R2

|∇u(t)|2 dx

for all T0 ≤ t ≤ T1 and R = C(η1)+supt∈[T0,T1] |x(t)|. Choosing η2 small depending

on u, then ε sufficiently small depending on C(η2) (and recalling that in the focusing
case we have M(u(t)) < M(Q)), and finally η1 small enough depending on ε and
u, we derive

∂tZR(t) �u 1 for T0 ≤ t ≤ T1 and R = C(η1) + sup
t∈[T0,T1]

|x(t)|.(8.11)

Combining the fundamental theorem of calculus with (8.10) and (8.11), and then
invoking (8.6), we find

T1 − T0 �u C(η1) + η1T1 for all T1 > T0.

Choosing η1 small depending on u and T1 sufficiently large, we derive a contradic-
tion.

This completes the proof of Theorem 8.1. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE CUBIC KLEIN–GORDON EQUATION IN TWO SPACE DIMENSIONS 1629

9. Finite-time blowup

In this section we employ the method of Payne and Sattinger [34] to prove
Theorem 1.6, whose statement we now repeat:

Theorem 9.1 (Blowup). Let u be a maximal-lifespan solution to (1.1) in the fo-
cusing case with initial data obeying

E(u) < E(Q) and M(u(0)) > M(Q).

Then the solution u blows up in finite time in at least one time direction.

Proof. Let M(t) := M(u(t)) =
∫
|u(t, x)|2 dx. By part (ii) of Proposition 2.12, we

know that M(t) > M(Q) (and so nonvanishing) and also that

M ′′(t) > 6

∫
R2

|ut(t, x)|2 dx.

Combining this with the Cauchy–Schwarz inequality we obtain[
M ′(t)

]2 ≤ 4

(∫
R2

|u(t, x)|2 dx
)(∫

R2

|ut(t, x)|2 dx
)

< 2
3M(t)M ′′(t)

and hence,

∂tt M(t)−1/2 = −2M ′′(t)M(t)− 3M ′(t)2

4M(t)5/2
< 0.

This says that M(t)−1/2 is strictly concave, which is inconsistent with M(t)−1/2

being a positive function defined on the whole real line. In particular, if M ′(0) ≥ 0,
then the solution must blow up in finite time in the future, while if M ′(0) ≤ 0, it
must blow up in finite negative time. �
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