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Abstract: The search for a theory of the S-Matrix over the past five decades has re-

vealed surprising geometric structures underlying scattering amplitudes ranging from the

string worldsheet to the amplituhedron, but these are all geometries in auxiliary spaces as

opposed to the kinematical space where amplitudes actually live. Motivated by recent ad-

vances providing a reformulation of the amplituhedron and planar N = 4 SYM amplitudes

directly in kinematic space, we propose a novel geometric understanding of amplitudes in

more general theories. The key idea is to think of amplitudes not as functions, but rather

as differential forms on kinematic space. We explore the resulting picture for a wide range

of massless theories in general spacetime dimensions. For the bi-adjoint φ3 scalar theory,

we establish a direct connection between its “scattering form” and a classic polytope —

the associahedron — known to mathematicians since the 1960’s. We find an associahedron

living naturally in kinematic space, and the tree level amplitude is simply the “canonical

form” associated with this “positive geometry”. Fundamental physical properties such as

locality and unitarity, as well as novel “soft” limits, are fully determined by the combi-

natorial geometry of this polytope. Furthermore, the moduli space for the open string

worldsheet has also long been recognized as an associahedron. We show that the scattering

equations act as a diffeomorphism between the interior of this old “worldsheet associahe-

dron” and the new “kinematic associahedron”, providing a geometric interpretation and
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simple conceptual derivation of the bi-adjoint CHY formula. We also find “scattering

forms” on kinematic space for Yang-Mills theory and the Non-linear Sigma Model, which

are dual to the fully color-dressed amplitudes despite having no explicit color factors. This

is possible due to a remarkable fact—“Color is Kinematics”— whereby kinematic wedge

products in the scattering forms satisfy the same Jacobi relations as color factors. Finally,

all our scattering forms are well-defined on the projectivized kinematic space, a property

which can be seen to provide a geometric origin for color-kinematics duality.
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1 Introduction

Scattering amplitudes are arguably the most basic observables in fundamental physics.

Apart from their prominent role in the experimental exploration of the high energy frontier,

scattering amplitudes also have a privileged theoretical status as the only known observable

of quantum gravity in asymptotically flat space-time. As such it is natural to ask the

“holographic” questions we have become accustomed to asking (and beautifully answering)

in AdS spaces for two decades: given that the observables are anchored to the boundaries

at infinity, is there also a “theory at infinity” that directly computes the S-Matrix without

invoking a local picture of evolution in the interior of the spacetime?

Of course this question is famously harder in flat space than it is in AdS space. The

(exceedingly well-known) reason for this is the fundamental difference in the nature of

the boundaries of the two spaces. The boundary of AdS is an ordinary flat space with

completely standard notions of “time” and “locality”, thus we have perfectly natural can-

didates for what a “theory on the boundary” could be — just a local quantum field theory.

We do not have these luxuries in asymptotically flat space. We can certainly think of the

“asymptotics” concretely in any of a myriad of ways by specifying the asymptotic on-shell

particle momenta in the scattering process. But whether this is done with Mandelstam

invariants, or spinor-helicity variables, or twistors, or using the celestial sphere at infinity,

in no case is there an obvious notion of “locality” and/or “time” in these spaces, and we are

left with the fundamental mystery of what principles a putative “theory of the S-Matrix”

should be based on.

Indeed, the absence of a good answer to this question was the fundamental flaw that

doomed the 1960’s S-Matrix program. Many S-Matrix theorists hoped to find some sort

of first-principle “derivation” of fundamental analyticity properties encoding unitarity and

causality in the S-Matrix, and in this way to find the principles for a theory of the S-

Matrix. But to this day we do not know precisely what these “analyticity properties

– 1 –
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encoding causality” should be, even in perturbation theory, and so it is not surprising that

this “systematic” approach to the subject hit a dead end not long after it began.

Keenly wary of this history, and despite the same focus on the S-Matrix as a fundamen-

tal observable, much of the modern explosion in our understanding of scattering amplitudes

has adopted a fundamentally different and more intellectually adventurous philosophy to-

wards the subject. Instead of hoping to slavishly derive the needed properties of the

S-Matrix from the principles of unitarity and causality, there is now a different strategy:

to look for fundamentally new principles and new laws, very likely associated with new

mathematical structures, that produce the S-Matrix as the answer to entirely different

kinds of natural questions, and to only later discover space-time and quantum mechanics,

embodied in unitarity and (Lorentz-invariant) causality, as derived consequences rather

than foundational principles.

The past fifty years have seen the emergence of a few fascinating geometric structures

underlying scattering amplitudes in unexpected ways, encouraging this point of view. The

first and still in many ways most remarkable example is perturbative string theory [1, 2],

which computes scattering amplitudes by an auxiliary computation of correlation functions

in the worldsheet CFT. At the most fundamental level there is a basic geometric object —

the moduli space of marked points on Riemann surfaces [3] — which has a “factorizing”

boundary structure. This is the primitive origin of the factorization of scattering ampli-

tudes, which is needed for unitarity and locality in perturbation theory. More recently,

we have seen a new interpretation of the same worldsheet structure first in the context

of “twistor string theory” [4], and much more generally in the program of “scattering

equations” [5, 6], which directly computes the amplitudes for massless particles using a

worldsheet but with no stringy excitations [7, 8].

Over the past five years, we have also seen an apparently quite different set of mathe-

matical ideas [9–11] underlying scattering amplitudes in planar maximally supersymmetric

gauge theory — the amplituhedron [12]. This structure is more alien and unfamiliar than

the worldsheet, but its core mathematical ideas are even simpler, of a fundamentally com-

binatorial nature involving nothing more than grade-school algebra in its construction.

Moreover, the amplituhedron as a positive geometry [13] again produces a “factorizing”

boundary structure that gives rise to locality and unitarity in a geometric way and makes

manifest the hidden infinite-dimensional Yangian symmetry of the theory.

While the existence of these magical structures is strong encouragement for the ex-

istence of a master theory for the S-Matrix, all these ideas have a disquieting feature in

common. In all cases, the new geometric structures are not seen directly in the space where

the scattering amplitudes naturally live, but in some auxiliary spaces. These auxiliary

spaces are where all the action is, be it the worldsheet or the generalized Grassmannian

spaces of the amplituhedron. We are therefore still left to wonder: what sort of ques-

tions do we have to ask, directly in the space of “scattering kinematics”, to generate local,

unitary dynamics? Clearly we should not be writing down Lagrangians and computing

path integrals, but what should we do instead? What mathematical structures breathe

scattering-physics-life into the “on-shell kinematic space”? And is there any avatar of the

geometric structures of the worldsheet, or amplituhedra, in this kinematic space?

– 2 –
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s+t=c>0

Figure 1. The one-dimensional associahedron (red line segment) as the intersection of the positive

region and the subspace s+ t = c where c > 0 is a constant.

Recent advances in giving a more intrinsic definition of the amplituhedron [14] suggest

the beginning of an answer to this question. A key observation is that, instead of thinking

about scattering amplitudes merely as functions on kinematic space, they are to be thought

of more fundamentally as differential forms on kinematic space. In the context of the am-

plituhedron and planar N = 4 SYM, kinematic space is simply the space of momentum

twistors Zi for the particles i = 1, . . . , n [10]. And on this space the differential form has

a natural purpose in life — it literally “bosonizes” the super-amplitude by treating the

on-shell Grassmann variables ηi for the ith particle as the momentum twistor differential

ηi → dZi. This seemingly innocuous move has dramatic geometric consequences: given

a differential form, we can compute residues around singularities, and by now this is well

known to reveal the underlying positive geometry. Indeed, [14] provides a novel description

of the amplituhedron purely in the standard momentum twistor kinematic space, whereby

the geometry arises as the intersection of a top-dimensional “positive region” in the kine-

matic space with a certain family of lower-dimensional subspaces with further “positivity”

properties. The scattering form is defined everywhere in kinematic space, and is completely

specified by its behavior when “pulled back” to the subspace on which the amplituhedron

is revealed, whereby it becomes the canonical form [13] with logarithmic singularities on

the boundaries of this positive geometry.

In this paper, we will see a virtually identical structure emerge remarkably in a setting

very far removed from special theories with maximal supersymmetry in the planar limit.

We will consider a wide variety of theories of massless particles in a general number of

dimensions, beginning with one of the simplest possible scalar field theories — a theory

of bi-adjoint scalars with cubic interactions [15]. The words connecting amplitudes to

positive geometry are identical, but the cast of characters — the kinematic space, the

precise definitions of the top-dimensional “positive region” and the “family of subspaces”

— differ in important ways. Happily all the objects involved are simpler and more familiar

— the kinematic space is simply the space of Mandelstam invariants, the positive region is

imposed by inequalities that demand positivity of physical poles, and the subspaces are cut

out by linear equations in kinematic space — so that the resulting positive geometries are

ordinary polytopes (as opposed to the generalization of polytopes into the Grassmannian
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Figure 2. Pictures for n=5 (left) and n=6 (right) associahedra, where we have labeled every facet

by the corresponding vanishing planar variable.

seen in the amplituhedron). When the dust settles, what emerges is the famous and

beautiful associahedron polytope [16, 17]. In fact, the “kinematic associahedron” we have

discovered is in a precise sense the “amplituhedron” for the bi-adjoint φ3 theory.

By way of a broad-brush invitation to the rest of the paper, let us illustrate the key

ideas in some simple examples. Consider an amplitude for massless scalar particles whose

Feynman diagram expansion is simply given by the sum over planar cubic tree graphs.

For n=4 particles, the amplitude would simply be 1
s + 1

t . However, we consider instead a

one-form Ω
(1)
n=4 given by

Ω
(1)
n=4 =

ds

s
−

dt

t
(1.1)

The structure of the form is of course very natural; we are simply replacing “1/propagator”

with d log of the propagator. The relative minus sign is more intriguing and is demanded

by an interesting requirement — the differential form must be well-defined, not only on the

two-dimensional (s, t) space, but also on the projectivized version of the space; in other

words, the form must be invariant under local GL(1) transformations (s, t) → Λ(s, t)(s, t);

or said another way, it must only depend on the ratio (s/t). Indeed, the minus sign allows

us to rewrite the form as d log(s/t) which is manifestly projective. At n points, we have an

(n−3)-form obtained by wedging together the d log of propagators for every planar cubic

graph, and summing over all graphs with relative signs fixed by projectivity.

Returning to four points, we have a one-form defined on the two-dimensional (s, t)

space. But how can we extract the “actual amplitude” 1
s + 1

t from this form, and how

is it related to any sort of positive geometry? Both questions are answered at once by

identifying some natural regions in kinematic space. First, if the poles of the amplitude are

to correspond to boundaries of a geometry, it is clear that we should impose a positivity

constraint on all the planar poles, which at four points are simply the conditions that

s, t ≥ 0. This brings us to the upper quadrant of the (s, t) plane. But this alone can

not correspond to the positive geometry we are seeking — for one thing, the space is two-

dimensional while our scattering form is a one-form! This suggests that in addition to

imposing these positivity constraints, we should also identify a one-dimensional subspace

– 4 –
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Figure 3. The scattering equations provide a diffeomorphism from the worldsheet associahedron

to the kinematic associahedron.

on which to pull back our form. Again it is trivial to identify a natural subspace in our

four-particle example: we simply impose that s+ t = c, where c > 0 is a positive constant.

Note that the intersection of this line with the positive region s, t > 0 is a line segment

with two boundaries at s = 0 and t = 0, which is a one-dimensional positive geometry

(See figure 1). Furthermore, quite beautifully, pulling back our scattering one-form to this

one-dimensional subspace accomplishes two things: (1) this pulled-back form is also the

canonical form of the positive geometry of the interval; (2) given that −u = s + t = c,

we have ds + dt = 0 on the line, and so the pullback of the form can be written as e.g.

ds/s − dt/t = ds(1/s + 1/t), whereby factoring out the top form ds on the line segment

leaves us with the amplitude!

This geometry generalizes to all n in a simple way. The full kinematic space of Man-

delstam invariants is n(n− 3)/2-dimensional. A nice basis for this space is provided by all

planar propagators sa,a+1,...,b−1, and there is a natural “positive region” in which all these

variables are forced to be positive. There is also a natural (n−3)-dimensional subspace

that is cut out by the equations −sij = cij for all non-adjacent i, j excluding the index n,

where the cij > 0 are positive constants. These equalities pick out an (n− 3)-dimensional

hyperplane in kinematic space whose intersection with the positive region is the associahe-

dron polytope. A picture of n=5, 6 associahedra can be seen in figure 2. As we saw for four

points, when the scattering form is pulled back to this subspace, it is revealed to be the

canonical form with logarithmic singularities on all the boundaries of this associahedron!

The computation of scattering amplitudes then reduces to triangulating the associa-

hedron. Quite nicely one natural choice of triangulation directly reproduces the Feynman

diagram expansion, but other triangulations are of course also possible. As a concrete ex-

ample, for n=5 the Feynman diagrams express the amplitude as the sum over 5 cyclically

rotated terms:
1

s12s123
+

1

s23s234
+

1

s34s345
+

1

s45s451
+

1

s51s512
(1.2)

But there is another triangulation of the n=5 associahedron that yields a surprising 3-term

expression:
s12 + s234
s12s34s234

+
s12 + s234
s12s234s23

+
s12 − s123 + s23

s12s23s123
(1.3)

which can not be obtained by any recombination of the Feynman diagram terms. Indeed,

we will see that the form enjoys a symmetry that is destroyed by individual terms in

the Feynman diagram triangulation and restored only in the full sum. In contrast, this

– 5 –
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fa1a2b f ba3c f ca4a5

fa1a2bf ba3cf ca4a5 ↔

1

2 3 4

5
s12 s45

ds12 ∧ ds45

Figure 4. An example of the duality between color factors and differential forms

new representation comes from a simple triangulation that keeps this symmetry manifest,

much as “BCFW triangulations” of the amplituhedron [10, 11] make manifest the dual

conformal/Yangian symmetries of planar N = 4 SYM that are not seen in the usual

Feynman diagram expansion.

Beyond these parallels to the story of the amplituhedron, the picture of scattering forms

on kinematic space appears to have a fundamental role to play in the physics of scattering

amplitudes in more general settings. For instance, string theorists have long known of an

important associahedron, associated with the open string worldsheet; this raises a natural

question: is there a natural diffeomorphism from the (old) worldsheet associahedron to

the (new) kinematic space associahedron? The answer is yes, and the map is precisely

provided by the scattering equations! This correspondence gives a one-line conceptual

proof of the CHY formulas for bi-adjoint amplitudes [15] as a “pushforward” from the

worldsheet “Parke-Taylor form” to the kinematic space scattering form.

The scattering forms also give a strikingly simple and direct connection between kine-

matics and color! This is seen at two levels. First, we can define very general scattering

forms as a sum over all possible cubic graphs g in a “big kinematic space”, with each graph

given by the wedge of the d log of all its propagator factors weighted with “kinematic co-

efficients” N(g). The first important observation is that the projectivity of the form on

this big kinematic space forces the kinematic coefficients N(g) to satisfy the same Jacobi

relations as color factors; in other words, projectivity of the scattering form provides a

deep geometric origin for and interpretation of the BCJ color-kinematics duality [18, 19]

But there is a second, more startling connection to color made apparent by the scatter-

ing forms—“Color is Kinematics”. More precisely, as a simple consequence of momentum

conservation and on-shell conditions, the wedge product of the d(propagator) factors as-

sociated with any cubic graph satisfies exactly the same algebraic identities as the color

factors associated with the same graph, as indicated in figure 4 for a n = 5 example. This

“Color is Kinematics” connection allows us to speak of the scattering forms for Yang-Mills

theory and the Non-linear Sigma Model in a fascinating new way. Instead of thinking

about partial amplitudes, or of objects dressed with color factors, we deal with fully per-

mutation invariant differential forms on kinematic space with no color factors in sight!

The usual colored amplitudes can be obtained from these forms by replacing the wedges

of the d of propagators with color factors in a completely unambiguous way. These forms

are furthermore rigid, god-given objects, entirely fixed (at least at tree level) simply by

standard dimensional power-counting, gauge-invariance (for YM) or the Adler zero (for

the NLSM) [20], and the requirement of projectivity. And of course, these forms are again

– 6 –
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obtained as the “pushforward” via the scattering equations from the familiar differential

forms on the worldsheet [15, 21], in parallel to the bi-adjoint theory.

We now proceed to describe all the ideas sketched above in much more detail before

concluding with remarks on avenues for further work in this direction.

2 The planar scattering form on kinematic space

We introduce the planar scattering form, which is a differential form on the space of kine-

matic variables that encodes information about on-shell tree-level scattering amplitudes of

the bi-adjoint scalar. We emphasize the importance of “upgrading” amplitudes to forms,

which reveals deep and unexpected connections between physics and geometry that are

not seen in the Feynman diagram expansion, leading amongst other things to novel (and

in some cases more compact) representations of the amplitudes. We also find connec-

tions to scattering equations and color-kinematics duality as discussed in sections 6 and 8,

respectively. We generalize to Yang-Mills and Non-linear Sigma Model in section 9.

2.1 Kinematic space

We begin by defining the kinematic space Kn for n massless momenta pi for i = 1, . . . , n as

the space spanned by linearly independent Mandelstam variables in spacetime dimension

D ≥ n−1:

sij := (pi + pj)
2 = 2pi · pj (2.1)

For D < n−1 there are further constraints on Mandelstam variables — Gram determinant

conditions — so the number of independent variables is lower. Due to the massless on-shell

conditions and momentum conservation, we have n linearly independent constraints

n
∑

j=1; j 6=i

sij = 0 for i = 1, 2, . . . , n (2.2)

The dimensionality of kinematic space is therefore

dimKn =

(

n

2

)

− n =
n(n−3)

2
(2.3)

More generally, for any set of particle labels I ⊂ {1, . . . , n}, we define the Mandelstam

variable

sI :=

(

∑

i∈I

pi

)2

=
∑

i,j∈I; i<j

sij (2.4)

It follows from momentum conservation that sI = sĪ , where Ī is the complement of I. For

mutually disjoint index sets I1, . . . , Id, we define sI1···Id := sI1∪···∪Id . We also define, for

any pair of index sets I, J :

sI|J := 2

(

∑

i∈I

pi

)

·





∑

j∈J

pj



 =
∑

i∈I,j∈J

sij (2.5)
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Figure 5. Correspondence between a 3-diagonal partial triangulation and a triple cut. Note that

the vertices are numbered on the left while the edges/particles are numbered on the right.

2.2 Planar kinematic variables

We now focus on kinematic variables that are particularly useful for cyclically ordered

particles. For the standard ordering (1, 2, . . . , n), we define planar variables with manifest

cyclic symmetry:

Xi,j := si,i+1,...,j−1 (2.6)

for any pair of indices 1 ≤ i < j ≤ n. Note that Xi,i+1 and X1,n vanish. Given a convex

n-gon with cyclically ordered vertices, the variable Xi,j can be visualized as the diagonal

between vertices i and j, as in figure 5 (left).

The Mandelstam variables in particular can be expanded in terms of these variables,

by the easily verified identity:

sij = Xi,j+1 +Xi+1,j −Xi,j −Xi+1,j+1 (2.7)

It follows that the non-vanishing planar variables form a spanning set of kinematic space.

However, they also form a basis, since there are exactly dimKn = n(n−3)/2 of them. It is

rather curious that the number of planar variables is precisely the dimension of kinematic

space. Examples of the basis include {s := X1,3, t := X2,4} for n=4 particles and {s12 =

X1,3, s23 = X2,4, s34 = X3,5, s123 = X1,4, s234 = X2,5} for n=5.

More generally, for an ordering α := (α(1), . . . , α(n)) of the external particles, we

define α-planar variables

Xα(i),α(j) := sα(i),α(i+1),...,α(j−1) (2.8)

for any pair i < j modulo n. As before, Xα(i),α(i+1) and Xα(1),α(n) vanish, and the non-

vanishing variables form a basis of kinematic space. Also, each variable can be visualized

as a diagonal of a convex n-gon whose vertices are cyclically ordered by α.

2.3 The planar scattering form

We now move on to our main task of defining the planar scattering form. Let g denote

a (tree) cubic graph with propagators Xia,ja for a = 1, . . . , n−3. For each ordering of

– 8 –
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Xi,j = X1,4
Xi′,j′

= X2,6

Figure 6. Two planar graphs related by a mutation given by an exchange of channel Xi,j → Xi′,j′

in a four point subgraph

these propagators, we assign a value sign(g) ∈ {±1} to the graph with the property that

swapping two propagators flips the sign. Then, we assign to the graph a d log form:

sign(g)

n−3
∧

a=1

d logXia,ja (2.9)

where the sign(g) is evaluated on the ordering in which the propagators appear in the

wedge product. There are of course two sign choices for each graph.

Finally, we introduce the planar scattering form of rank (n−3):

Ω(n−3)
n :=

∑

planar g

sign(g)

n−3
∧

a=1

d logXia,ja (2.10)

where we sum over a d log form for every planar cubic graph g. Note that a particle ordering

is implicitly assumed by the construction, so we also denote the form as Ω(n−3)[1, . . . , n]

when we wish to emphasize the ordering. For n=3, we define Ω
(0)
n=3 := ±1.

Since there are two sign choices for each graph, this amounts to many different scat-

tering forms. However, there is a natural choice (unique up to overall sign) obtained by

making the following requirement:

The planar scattering form is projective.

In other words, we require the form to be invariant under local GL(1) transformations

Xi,j → Λ(X)Xi,j for any index pair (i, j), or equivalently sI → Λ(s)sI for any index set I.

This fixes the scattering form up to an overall sign which we ignore.

Moreover, this gives a simple sign-flip rule which we now describe. We say that two

planar graphs g, g′ are related by a mutation if one can be obtained from the other by

an exchange of channel in a four-point sub-graph (See figure 6). Let Xi,j , Xi′,j′ denote

the mutated propagators, respectively, and let Xib,jb for b = 1, . . . , n−4 denote the shared

propagators. Under a local GL(1) transformation, the Λ-dependence of the scattering form
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becomes:
(

sign(g) + sign(g′)
)

d log Λ ∧

(

n−4
∧

b=1

d logXib,jb

)

+ · · · (2.11)

where we have only written the terms involving the d log of all shared propagators of g

and g′. Here sign(g′) is evaluated on the same propagator ordering as sign(g) but with

Xi,j replaced by Xi′,j′ . The form is projective if the Λ-dependence disappears, i.e. when

we have

sign(g) = −sign(g′) (2.12)

for each mutation.

The sign flip rule has several immediate consequences. For instance, it ensures that

the form is cyclically invariant up to a sign:

i → i+1 ⇒ Ω(n−3)
n → (−1)n−3 Ω(n−3)

n (2.13)

since it takes (n−3) mutations (mod 2) to achieve the cyclic shift. The sign flip rule

also ensures that the form factorizes correctly. Indeed, it suffices to consider the channel

X1,m → 0 for any m = 3, . . . , n−1 for which

Ω(n−3)(1, 2, . . . , n)
X1,m→0
−−−−−→ Ω(m−3)(1, 2, . . . ,m−1, I) ∧

dX1,m

X1,m
∧ Ω(n−m−1)(I−,m, . . . , n) ,

(2.14)

where pI = −
∑m−1

i=1 pi is the on-shell internal particle. General channels can be obtained

via cyclic shift.

Projectivity is equivalent to the natural statement that the form only depends on ratios

of Mandelstam variables, as we can explicitly see in some simple examples for n=4, 5:

Ω(1)(1, 2, 3, 4) = d log s− d log t =
ds

s
−

dt

t
= d log

(s

t

)

= d log

(

X1,3

X2,4

)

(2.15)

Ω(2)(1, 2, 3, 4, 5) = d logX1,4 ∧ d logX1,3 + d logX1,3 ∧ d logX3,5 + d logX3,5 ∧ d logX2,5

+ d logX2,5 ∧ d logX2,4 + d logX2,4 ∧ d logX1,4

= d log
X1,3

X2,4
∧ d log

X1,3

X1,4
+ d log

X1,3

X2,5
∧ d log

X3,5

X2,4
(2.16)

where we have written on the last expression for each example the form in terms of ratios

of X’s only. For n=6, the form is given by summing over 14 planar graphs which can be

expressed as ratios in the following way:

Ω
(3)
n=6 = d log

X2,4

X1,3
∧ d log

X1,4

X4,6
∧ d log

X1,5

X4,6
+ d log

X2,6

X1,3
∧ d log

X3,6

X1,3
∧ d log

X4,6

X3,5

− d log
X2,6

X1,5
∧ d log

X2,5

X3,5
∧ d log

X2,4

X3,5
− d log

X2,4

X1,3
∧ d log

X4,6

X3,5
∧ d log

X2,6

X1,5
.

Finally, for a general ordering α of the external particles, we define the scattering

form Ω(n−3)[α] by making index replacements i → α(i) on Ω
(n−3)
n , which is equivalent to
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replacing eq. (2.10) with a sum over α-planar graphs. Recall that a cubic graph is called

α-planar if it is planar when external legs are ordered by α; alternatively, we say that the

graph is compatible with the order. Furthermore, the form is projective.

We emphasize that projectivity is a rather remarkable property of the scattering form

which is not true for each Feynman diagram separately. Indeed, no proper subset of Feyn-

man diagrams provides a projective form — only the sum over all the diagrams (satisfying

the sign flip rule) is projective. This foreshadows something we will see much more ex-

plicitly later on in connection to the positive geometry of the associahedron: the Feynman

diagram expansion provides just one type of triangulation of the geometry, which intro-

duces a spurious “pole at infinity” that cancels only in the sum over all terms. But other

triangulations that are manifestly projective term-by-term are also possible, and often lead

to even shorter expressions.

3 The kinematic associahedron

We introduce the associahedron polytope [16, 17, 22] and discuss its connection to the

bi-adjoint scalar theory. We begin by reviewing the combinatorial structure of the associa-

hedron before providing a novel construction of the associahedron in kinematic space. We

then argue that the tree level amplitude is a geometric invariant of the kinematic associahe-

dron called its canonical form as review in appendix A, thus establishing the associahedron

as the “amplituhedron” of the (tree) bi-adjoint theory.

3.1 The associahedron from planar cubic diagrams

There exist many beautiful, combinatorial ways of constructing associahedra; an excellent

survey of the subject, together with comprehensive references to the literaure, is given

by [23]. In this section, we discuss one of the most fundamental descriptions of the associa-

hedron which is also most closely related to scattering amplitudes. We begin by clarifying

some terminology regarding polytopes.

A boundary of a polytope refers to a boundary of any codimension. A k-boundary is

a boundary of dimension k. A facet is a codimension 1 boundary. Given a convex n-gon,

a diagonal is a straight line between any two non-adjacent vertices. A partial triangula-

tion is a collection of mutually non-crossing diagonals. A full triangulation or simply a

triangulation is a partial triangulation with maximal number of diagonals, namely (n−3).

For any n≥3, consider a convex polytope of dimension (n−3) with the following

properties:

1. For every d = 0, 1, . . . , n−3, there exists a one-to-one correspondence between the

codimension d boundaries and the d-diagonal partial triangulations of a convex n-gon.

2. A codimension d boundary F1 and a codimension d+k boundary F2 are adjacent if

and only if the partial triangulation of F2 can be obtained by addition of k diagonals

to the partial triangulation of F1.

In particular, the triangulation with no diagonals corresponds to the polytope’s inte-

rior, and:

The vertices correspond to the full triangulations. (3.1)
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Figure 7. Combinatorial structure of the n=5 associahedron (left) and the n=6 associahedron

(right). For simplicity, only vertices are labeled for the latter.

A classic result in combinatorics says that the number of full triangulations, and hence the

number of vertices of our polytope, is the Catalan number Cn−2 [24]. Any polytope An

satisfying these properties is an associahedron. See figure 7 for examples.

Before establishing a precise connection to scattering amplitudes, we make a few ob-

servations that provide some of the guiding principles. Let us order the edges of the n-gon

cyclically with 1, . . . , n, and recall that:

d-diagonal partial triangulations of the n-gon are in one-to-one correspondence

with d-cuts on n-particle planar cubic diagrams. (See figure 5) (3.2)

The edges of the n-gon correspond to external particles, while the diagonals correspond

to cuts.

Furthermore, the associahedron factorizes combinatorially. That is, consider a facet F

corresponding to some diagonal that subdivides the n-gon into a m-gon and a (n−m+2)-

gon (See figure 15). The two lower polygons provide the combinatorial properties for two

lower associahedra Am and An−m+2, respectively, and the facet is combinatorially identical

to their direct product:

F ∼= Am ×An−m+2 (3.3)

We show in section 4.1 that this implies the factorization properties of amplitudes.

Finally, we observe that the associahedron is a simple polytope, meaning that each ver-

tex is adjacent to precisely dimAn = (n−3) facets. Indeed, given any associahedron vertex

and its corresponding triangulation, the adjacent facets correspond to the (n−3) diagonals.

3.2 The kinematic associahedron

We now show that there is an associahedron naturally living in the kinematic space for n

particles. The construction depends on an ordering for the particles which we take to be

the standard ordering for simplicity.

We first define a region ∆n in kinematic space by imposing the inequalities

Xi,j ≥ 0 for all 1 ≤ i < j ≤ n (3.4)
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X1,4

X1,3

X3,5

X2,5

X2,4

X1,3

X1,4

X4,6

X1,5

X3,5

X2,5

X2,6

X3,6

X2,4

Figure 8. Kinematic associahedra for n=4 (top left), n=5 (top right) and n=6 (bottom).

Recall that Xi,i+1 and X1n are trivially zero and therefore do not provide conditions. Since

the number of non-vanishing planar variables is exactly the dimension of kinematic space,

it follows that ∆n is a simplex with a facet at infinity. This leads to an obvious problem.

The associahedron An should have dimension (n−3), which for n > 3 is lower than the

kinematic space dimension. We resolve this by restricting to a (n−3)-subspace Hn ⊂ Kn

defined by a set of constants:

Let cij := Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j be a positive constant

for every pair of non-adjacent indices 1 ≤ i < j ≤ n−1 (3.5)

Note that we have deliberately omitted n from the index range. Also, eq. (2.7) implies the

following simple identity:

cij = −sij (3.6)

The condition eq. (3.5) is therefore equivalent to requiring sij to be a negative constant for

the same index range. Counting the number of constraints, we find the desired dimension:

dimHn = dimKn −
(n− 2)(n− 3)

2
= n− 3 (3.7)

Finally, we let An := Hn ∩ ∆n be a polytope. We claim that An is an associahedron of

dimension (n−3). See figure 8 for examples. Recall from section 3.1 that the associahedron
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Not allowed!

Figure 9. Planar variables Xi,j corresponding to crossing diagonals cannot be simultaneously set

to zero.

factorizes combinatorially, meaning that each facet is combinatorially the direct product

of two lower associahedra as in eq. (3.3). In section 4.1, we show that the same property

holds for the kinematic polytope An, thereby implying our claim.

Here we highlight the key observation needed for showing factorization and hence the

associahedron structure. Note that the boundaries are enforced by the positivity conditions

Xi,j ≥ 0, so that we can reach any codimension 1 boundary by setting some particular

Xi,j → 0. But then, to reach a lower dimensional boundary, we cannot set Xk,l → 0 for

any diagonal (k, l) that crosses (i, j) (See figure 9). Indeed, if we begin with the basic

identity eq. (3.5) with (i, j) replaced by (a, b) and sum a, b over the range i ≤ a < j and

k ≤ b < l, the sums telescope and we find

Xj,k +Xi,l = Xi,k +Xj,l −
∑

i≤a<j
k≤b<l

cab (3.8)

for any 1 ≤ i < j < k < l ≤ n. Now consider a situation like figure 10 (top) where the

diagonals Xi,k = 0 and Xj,l = 0 cross, then

Xj,k +Xi,l = −
∑

i≤a<j
k≤b<l

cab (3.9)

which is a contradiction since the left side is nonnegative while the right side is strictly

negative. Geometrically, this means that every boundary of An is labeled by a set of

non-crossing diagonals (i.e. a partial triangulation), as expected for the associahedron.

Let us do some quick examples. For n=4, the kinematic space with variables (s, t, u)

satisfies the constraint s+ t+ u = 0 and is 2-dimensional. However, the kinematic associ-

ahedron is given by the line segment 0 < s < −u where u < 0 is a constant, as shown in

figure 8 (top left). For n=5, the kinematic space is 5-dimensional, but the subspace Hn=5

is 2-dimensional defined by three constants c13, c14, c24. If we parameterize the subspace in

the basis (X1,3, X1,4), then the associahedron An=5 is a pentagon with edges given by:

X1,3 ≥ 0 (3.10)

X3,5 = −X1,4 + c14 + c24 ≥ 0 (3.11)

X2,5 = −X1,3 + c13 + c14 ≥ 0 (3.12)

X2,4 = X1,4 −X1,3 + c13 ≥ 0 (3.13)

X1,4 ≥ 0 (3.14)
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where the edges are given in clockwise order (See figure 8 (top right)). The n=6 example

is given in figure 8 (bottom).

The associahedron An in kinematic space is only one step away from scattering am-

plitudes, as we now show.

3.3 Bi-adjoint φ3 amplitudes

We now show the connection between the kinematic associahedron An and scattering am-

plitudes in bi-adjoint scalar theory. The discussion here applies to tree amplitudes with

a pair of standard ordering, which we denote by mn. We generalize to arbitrary ordering

pairs m[α|β] in section 3.4. This section relies on the concept of positive geometries and

canonical forms, for which a quick review is given in appendix A. For readers unfamiliar

with the subject, appendices A.1, A.4 and A.5 suffice for the discussion in this section. A

much more detailed discussion is given in [13].

We make two claims in this section:

1. The pullback of the cyclic scattering form Ω
(n−3)
n to the subspace Hn is the canonical

form of the associahedron An.

2. The canonical form of the associahedron An determines the tree amplitude of the

bi-adjoint theory with identical ordering.

Recall that the associahedron is a simple polytope (See end of section 3.1), and the

canonical form of a simple polytope (See eq. (A.23)) is a sum over its vertices. For each

vertex Z, let Xia,ja = 0 denote its adjacent facets for a = 1, . . . , n−3. Furthermore, for each

ordering of the facets, let sign(Z) ∈ {±1} denote its orientation relative to the inherited

orientation. The canonical form is therefore

Ω(An) =
∑

vertex Z

sign(Z)

n−3
∧

a=1

d logXia,ja (3.15)

where sign(Z) is evaluated on the ordering of the facets in the wedge product. Since the

form is defined on the subspace Hn, it may be helpful to express the Xi,j variables in terms

of a basis of (n−3) variables like eq. (5.4).

We argue that eq. (3.15) is equivalently the pullback of the scattering form eq. (2.10)

to the subspace Hn. Since there is a one-to-one correspondence between vertices Z and

planar cubic graphs g, it suffices to show that the pullback of the g term is the Z term. This

is true by inspection since g and its corresponding Z have the same propagators Xia,ja .

The only subtlety is that the sign(Z) appearing in eq. (3.15) is defined geometrically, while

the sign(g) appearing in eq. (2.10) is defined by local GL(1) invariance. We now argue

equivalence of the two by showing that sign(Z) satisfies the sign flip rule.

Suppose Z,Z ′ are vertices whose triangulations are related by a mutation. While

mutations are defined as relations between planar cubic graphs (See figure 6), they can

equivalently be interpreted from the triangulation point of view. Indeed, two triangulations

are related by a mutation if one can be obtained from the other by exchanging exactly one

diagonal. For example, the two triangulations of a quadrilateral are related by mutation.
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i j

k

l

i j

k

l

Z Z ′

Xi,k

Xj,l
=⇒

Z Z ′

I

J

K

L

sIJ

sJK

I

J

K

L
=⇒

Figure 10. Two triangulations related by a mutation Xi,k → Xj,l (top) or equivalently sIJ → sJK
(bottom).

For a generic triangulation of the n-gon, every mutation can be obtained by identifying a

quadrilateral in the triangulation and exchanging its diagonal. In figure 10 (top), we show

an example where a mutation is applied to the quadrilateral (i, j, k, l) with the diagonal

(i, k) in Z exchanged for the diagonal (j, l) in Z ′. Note that we have implicitly assumed

1 ≤ i < j < k < l ≤ n. Furthermore, taking the exterior derivative of the kinematic

identity eq. (3.8) gives us

dXj,k + dXi,l = dXi,k + dXj,l . (3.16)

Note that the two propagators on the left appear in both diagrams, while the two propa-

gators on the right are related by mutation. It follows that

n−3
∧

a=1

dXia,ja = −
n−3
∧

a=1

dXi′a,j
′

a
(3.17)

The crucial part is the minus sign, which implies the sign flip rule:

sign(Z) = −sign(Z ′) (3.18)

We can therefore identify sign(Z) = sign(g). Furthermore, an important consequence

of (3.17) is that the following quantity is independent of g on the pullback:

dn−3X := sign(g)
n−3
∧

a=1

dXia,ja (3.19)
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Substituting into eq. (3.15) gives

Ω(An) =





∑

planar g

1
∏n−3

a=1 Xia,ja



 dn−3X = mnd
n−3X (3.20)

which gives the expected amplitude mn, thus completing the argument for our second

claim. For convenience we sometimes denote the item in parentheses as Ω(An), called the

canonical rational function. Thus,

Ω(An) = mn (3.21)

Let us do a quick and informative example for n=4. We use the usual Mandelstam

variables (s, t, u) := (X1,3, X2,4,−X1,3 −X2,4 = −c13). Here u is a negative constant, and

the associahedron is simply the line segment 0 ≤ s ≤ −u in figure 8 (top left), whose

canonical form is

Ω(An=4) =

(

1

s
−

1

s+ u

)

ds =

(

1

s
+

1

t

)

ds (3.22)

which of course is also the desired amplitude up to the ds factor. Now consider pulling

back the planar scattering form eq. (2.15). Since u is a constant on Hn=4 and s+ t+u = 0,

hence ds = −dt on the pullback. It follows that

Ω
(1)
n=4|Hn=4

=

(

1

s
+

1

t

)

ds (3.23)

which is equal to eq. (3.22). We also demonstrate an example for n = 5 where the associahe-

dron is a pentagon as shown in figure 8 (top right). We argue that the pullback of eq. (2.16)

determines the 5-point amplitude by showing that the numerators have the expected sign on

the pullback, namely dX1,4dX1,3 = dX1,3dX3,5 = dX3,5dX2,5 = dX2,5dX2,4 = dX2,4dX1,4.

For instance, the identity X3,5 = −X1,4 + c14 + c24 implies ∂(X1,4, X1,3)/∂(X1,3, X3,5) = 1,

leading to the first equality. We leave the rest as an exercise for the reader. It follows that

the pullback determines the corresponding amplitude.

Ω
(2)
n=5|Hn=5

=

(

1

X1,3X1,4
+

1

X3,5X1,3
+

1

X1,4X2,4
+

1

X2,5X3,5
+

1

X2,4X2,5

)

d2X (3.24)

Of course, this is also the canonical form of the pentagon.

3.4 All ordering pairs of bi-adjoint φ3 amplitudes

We now generalize our results to every ordering pair of the bi-adjoint theory. Given an

ordering pair α, β, the amplitude is given by the sum of all cubic diagrams compatible with

both orderings, with an overall sign from the trace decomposition [15] that we postpone

to section 8.2 and more specifically eq. (8.26). Here we ignore the overall sign and simply

define m[α|β] to be the sum over the cubic graphs.

We first review a simple diagrammatic procedure [15] for obtaining all the graphs

appearing in m[α|β] as illustrated in figure 11:
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Figure 11. Step-by-step procedure for obtaining the mutual cuts (3rd picture) and the mutual

partial triangulation (4th) for (α, β) = (12345678|81267354). The first three pictures are found

in [15].

1. Draw n points on the boundary of a disk ordered cyclically by α.

2. Draw a closed path of line segments connecting the points in order β. These line

segments enclose a set of polygons, forming a polygon decomposition.

3. The internal vertices of the decomposition correspond to cuts on cubic graphs called

mutual cuts.

4. The cuts correspond to diagonals of the α-ordered n-gon, forming a mutual partial

triangulation.

The cubic graphs compatible with both orderings are precisely those that admit all the

mutual cuts. Equivalently, they correspond to all triangulations of the α-ordered n-gon

containing the mutual partial triangulation. Conversely, given a graph of mutual cuts or

equivalently a mutual partial triangulation, we can reverse engineer the ordering β up to

dihedral transformation as follows:

1. Color each vertex of the graph white or black like figure 12 so that no two adjacent

vertices have the same color.

2. Draw a closed path that winds around white vertices clockwise and black vertices

counterclockwise.

3. The path gives the ordering β up to cyclic shift. Changing the coloring corresponds

to a reflection.

The path gives the β up to cyclic shift. Swapping the colors reverses the particle ordering.

It follows that β can be obtained up to dihedral transformations.

We are now ready to construct the kinematic polytope for an arbitrary ordering pair.

We break the symmetry between the two orderings by using planar variables Xα(i),α(j)

discussed at the end of section 2.2. In analogy with eq. (3.4), we define a simplex ∆[α] in

kinematic space by requiring that:

Xα(i),α(j) ≥ 0 for all 1 ≤ i < j ≤ n. (3.25)

Similar to before, Xα(i),α(i+1) and Xα(1),α(n) vanish and therefore do not provide conditions.

We can visualize the variable Xα(i),α(j) as the diagonal (α(i), α(j)) of a regular n-gon whose
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2

7
6

5

4

3

Figure 12. This mutual cut diagram gives rise to (α, β) = (12345678, 81267354) by the de-

scribed rules.

vertices are labeled by α. Furthermore, we construct a (n−3)-subspace H[α|β] of kinematic

space by making the following requirements:

1. For each diagonal (α(i), α(j)) that crosses at least one diagonal in the mutual partial

triangulation, we require bα(i),α(j) := Xα(i),α(j) > 0 to be a positive constant.

2. The mutual triangulation (assuming d diagonals) subdivides the n-gon into (d+1)

sub-polygons, and we impose the non-adjacent constant conditions eq. (3.5) to each

sub-polygon.

For the last step, it is necessary to omit an edge from each sub-polygon when imposing

the non-adjacent constants. By convention, we omit edges corresponding to the diagonals

of the mutual triangulation as well as edge n of the n-gon so that no two sub-polygons

omit the same element. A moment’s thought reveals that there is only one way to do this.

Finally, we define the kinematic polytope A[α|β] := H[α|β] ∩∆[α]. In particular, for the

standard ordering α = β = (1, . . . , n), we recover (∆[α], H[α|β],A[α|β]) = (∆n, Hn,An).

Let us get some intuition for the shape of the kinematic polytope. Clearly A[α|α] is

just the associahedron with boundaries relabeled by α. For general α, β, we can think of

the mutual partial triangulation (with d diagonals) as a partial triangulation corresponding

to some codimension d boundary of the associahedron A[α|α]. Now imagine “zooming in”

on the boundary by pushing all non-adjacent boundaries to infinity. The non-adjacent

boundaries precisely correspond to partial triangulations of the α-ordered n-gon that cross

at least one diagonal of the mutual partial triangulation. This provides the correct intuition

for the “shape” of the kinematic polytope A[α|β]. Said in another way, the polytope A[α|β]

is again an associahedron but with incompatible boundaries pushed to infinity.

For n=4, the three distinct kinematic polytopes are shown in figure 13. For n=5,

consider the case (α, β) = (12345, 13245). The mutual partial triangulation consists of the

regular pentagon with the single diagonal (2, 4) (See figure 14 (left)) with two compatible

cubic graphs corresponding to the channels (X2,4, X2,5) and (X2,4, X1,4). The constants

are given by

b1,3 := X1,3 > 0 (3.26)

b3,5 := X3,5 > 0 (3.27)

c14 := X1,4 +X2,5 −X2,4 > 0 (3.28)
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(a) (1234)

u < 0 const.

d log(s/t).

(b) (1324)

s > 0 const.

d log t.

(c) (2134)

t > 0 const.

d log s.

Figure 13. Three orderings for the n=4 kinematic polytopes. We assume the same α = (1234)

but different β (displayed above). Furthermore, we present the constant and canonical form for

each geometry.

1

2

3

4

5

X2,4

X2,4

X1,4

X2,5

Figure 14. The mutual partial triangulation for (α, β) = (12345, 13245) (left) and its kinematic

polytope (right). The faded area corresponds to the boundary at infinity. The two vertices corre-

spond to the two cubic graphs compatible with both orderings.

and the inequalities are given by

X2,4 ≥ 0 (3.29)

X2,5 ≥ 0 (3.30)

X1,4 ≥ 0 (3.31)

Finally we plot this region in the basis (X2,4, X2,5) as shown in figure 14 where the first two

inequalities simply give the positive quadrant while the last inequality gives the diagonal

boundary X1,4 = c14 −X2,5 +X2,4 ≥ 0.

Having constructed the kinematic polytope A[α|β], we now discuss its connection to

bi-adjoint tree amplitude m[α|β] (omitting the overall sign). We make the following two

claims in analogy to the two claims made near the beginning of section 3.3:

1. The pullback of the cyclic scattering form Ω(n−3)[α] to the subspace H[α|β] is the

canonical form of the kinematic polytope A[α|β]. That is,

Ω(n−3)[α]|H[α|β] = Ω(A[α|β]) (3.32)
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2. The canonical form of the kinematic polytope A[α|β] determines the amplitude

m[α|β]. That is,

Ω(A[α|β]) = m[α|β] (3.33)

The derivation is not substantially different than what we have seen before, so we simply

highlight a few subtleties. For the first claim, recall that the scattering form is a sum over

all α-planar graphs:

Ω(n−3)[α] =
∑

α-planar g

sign(g)
n−3
∧

a=1

d logXα(ia),α(ja) (3.34)

We claim that on the pullback to the subspace H[α|β], the numerator is identical and

non-zero for every (α, β)-planar graph g and zero otherwise:

sign(g)

n−3
∧

a=1

dXα(ia),α(ja) =

{

dn−3X if g is β-planar

0 otherwise
(3.35)

The pullback therefore sums all the β-planar diagrams and destroys all other diagrams,

thus giving the desired amplitude m[α|β]:

Ω(n−3)[α]|H[α|β] =





∑

(α,β)-planar g

1
∏n−3

a=1 Xα(ia),α(ja)



 dn−3X = m[α|β]dn−3X (3.36)

As before, it can be shown that this is also the canonical form of the kinematic polytope

A[α|β]. The canonical forms for the n=4 examples are given in figure 13. The canonical

form for the n=5 example in figure 14 is

Ω(A[12345|13245]) = d logX2,5d logX2,4 + d logX2,4d logX1,4

=

(

1

X2,5X2,4
+

1

X2,4X1,4

)

d2X (3.37)

where we used the fact that dX2,5dX2,4 = dX2,4dX1,4 on the pullback, which follows from

the identity X1,4 = c14 −X2,5 +X2,4.

3.5 The associahedron is the amplituhedron for bi-adjoint φ3 theory

Let us summarize the story so far for the bi-adjoint φ3 theory. We have an obvious kine-

matic space Kn parametrized by the Xi,j which is n(n − 3)/2-dimensional. We also have

a scattering form Ω
(n−3)
n of rank (n−3) defined on this space, which for n > 3 is of lower

than top rank. This scattering form is fully determined by its association with a positive

geometry living in the kinematic space defined in the following way. First, there is a top-

dimensional “positive region” in the kinematic space given by Xi,j ≥ 0 whose boundaries

are associated with all the poles of the planar graphs. Next, there is a family of (n−3)-

dimensional linear subspaces defined by Xi,j + Xi+1,j+1 − Xi,j+1 − Xi+1,j = cij . With

appropriate positivity constraints on the constants cij > 0, this subspace intersects the

“positive region” in a positive geometry — the kinematic associahedron An. Furthermore,
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the scattering form Ω
(n−3)
n on the full kinematic space is fully determined by the property of

pulling back to the canonical form of the associahedron on this family of subspaces. Hence,

the physics of on-shell tree-level bi-adjoint φ3 amplitudes are completely determined by the

positive geometry not in any auxiliary space but directly in kinematic space.

Furthermore, there is a striking similarity between this description of bi-adjoint φ3

scattering amplitudes and the description of planar N = 4 super Yang-Mills (SYM) with

the amplituhedron as the positive geometry [14]. Indeed the general structure is identi-

cal. There is once again a kinematic space, which for planar N = 4 SYM is given by the

momentum-twistor variables Zi ∈ P
3(R) for i = 1, . . . , n, and a differential form Ω

(4k)
n of

rank 4×k (for NkMHV) on kinematic space that is fully determined by its association with

a positive geometry. We again begin with a “positive region” in the kinematic space which

enforces positivity of all the poles of planar graphs via 〈ZiZi+1ZjZj+1〉 ≥ 0; however, also

required is a set of topological “winding number” conditions enforced by a particular “bi-

nary code” of sign-flip patterns for the momentum-twistor data. This is a top-dimensional

subspace of the full kinematic space. There is also a canonical 4× k dimensional subspace

of the kinematic space, corresponding to an affine translation of a given set of external data

Z∗ in the direction of a fixed k-plane ∆ in n dimensions; this subspace is thus specified by

a (4+k)×n matrix Z := (Z∗,∆)T . Provided the condition that all ordered (4+k)× (4+k)

minors of Z are positive, this subspace intersects the “positive region” in a positive ge-

ometry — the (tree) amplituhedron. The form Ω
(4k)
n on the full space is fully determined

by the property of pulling back to the canonical form of the amplituhedron found on this

family of subspaces. Once again this connection between scattering forms and positive

geometry is seen directly in ordinary momentum-twistor space, without any reference to

the auxiliary Grassmannian spaces where amplituhedra were originally defined to live.

The nature of the relationship between “kinematic space”, “positive region”, “positive

family of subspaces” and “scattering form” is literally identical in the two stories. We say

therefore that “the associahedron is the amplituhedron for bi-adjoint φ3 theory”.

Of course there are some clear differences as well. Most notably, the scattering form

Ω
(4k)
n is directly the super-amplitude with the differentials dZI

i interpreted as Grassmann

variables ηIi , whereas for the bi-adjoint φ
3 theory we have forms on the space of Mandelstam

variables with no supersymmetric interpretation. While the planar N = 4 scattering

forms are unifying different helicities into a single natural object, what are the forms in

Mandelstam space doing? As we have already seen in the bi-adjoint example, and with more

to come in later sections, these forms are instead geometrizing color factors, as established

in section 8.

4 Factorization and “soft” limit

We now derive two important properties of amplitudes by exploiting geometric properties

of the associahedron:

1. The amplitude factorizes on physical poles.

2. The amplitude vanishes in a “soft” limit.
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We emphasize that both properties follow from geometric arguments. While amplitude

factorization is familiar, here it emerges from the “geometry factorization” of the associa-

hedron; and the vanishing in the “soft limit” is a property of the amplitude that is made

more manifest by the geometry than Feynman diagrams.

4.1 Factorization

Recall from section 3.1 that the associahedron factorizes combinatorially, i.e. each facet is

combinatorially identical to a product of two lower associahedra (See eq. (3.3)). We now

demonstrate this explicitly for the kinematic polytope An, thus giving a simple derivation

of the fact that An is indeed an associahedron. While eq. (3.3) is a purely combinatorial

statement, we go further in this section and find explicit geometric constructions for the

two lower associahedra. We therefore say that An factorizes geometrically. Furthermore,

we argue that geometrical factorization of An directly implies amplitude factorization, so

that locality and unitarity of the amplitude are emergent properties of the geometry.

We rewrite the kinematic associahedron An as A(1, 2, . . . , n̄) to emphasize the par-

ticle labels and their ordering; we put a bar over index n to emphasize that the sub-

space Hn is defined with non-adjacent indices omitting n (See eq. (3.5)). We make the

following observations:

1. Geometric factorization : the facet Xi,j = 0 is equivalent to a product polytope

An|Xi,j=0
∼= AL ×AR (4.1)

where

AL := A(i, i+1, . . . , j−1, Ī)

AR := A(1, . . . , i−1, I, j, j+1, . . . , n̄) (4.2)

and I denotes the intermediate particle. The cut can be visualized as the diagonal

(i, j) on the convex n-gon (See figure 15).

2. Amplitude factorization : the residue of the canonical form along the facet Xi,j = 0

factors:

ResXi,j=0Ω(An) = Ω(AL) ∧ Ω(AR) (4.3)

This implies factorization of the amplitude.

We first construct the “left associahedron” AL and the “right associahedron” AR by

eq. (4.2) as independent associahedra living in independent kinematic spaces. The in-

dices appearing in the construction are nothing more than well-chosen labels at this point.

To emphasize this, we use independent planar variables for AL and AR:

AL : La,b for i ≤ a < b < j (4.4)

AR : Ra,b for 1 ≤ a < b < n except i ≤ a < b < j (4.5)

The index ranges can be visualized as figure 15 where the “left” planar variables La,b

correspond to diagonals of the “left” subpolygon, and likewise for the “right”. Furthermore,
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the two associahedra come with positive non-adjacent constants lab, rab, respectively. For

lab the indices consist of all non-adjacent pairs a, b in the range i ≤ a < b < j. For rab they

consist of all non-adjacent pairs a, b in the range (1, . . . , i−1, I, j, j+1, . . . , n−1).

We now argue that there exists a one-to-one correspondence:

AL ×AR
∼= An|Xi,j=0 (4.6)

We begin by picking a kinematic basis for AL consisting of La,b variables corresponding to

some triangulation of the left subpolygon in figure 15, and similarly for the Ra,b variables.

The two triangulations combine to form a partial triangulation of the n-gon with the

diagonal (i, j) omitted. Each diagonal corresponds to a planar variable, thus providing a

basis for the subspace Hn|Xi,j=0. Furthermore, we assume that the non-adjacent constants

match so that cab = lab for all lab. As for rab, we assume that cab = rab for all rab where

a, b 6= I. Furthermore, raI =
∑

k∈I cak for all raI .

We then write down the most obvious map AL ×AR → Hn|Xi,j=0 given by:

Xa,b = La,b for all left basis variables La,b (4.7)

Xa,b = Ra,b for all right basis variables Ra,b (4.8)

Since the Xa,b variables in the image form a basis for An|Xi,j=0, this completely defines

the map. We observe that Xa,b = La,b holds not just for left basis variables, but for

all left variables La,b. The idea is to rewrite La,b in terms of basis variables and non-

adjacent constants. Since the same formula holds for Xa,b, and the constants match by

assumption, therefore the desired result must follow. Similarly, Xa,b = Ra,b holds for all

right variables Ra,b.

Now we argue that the image of the embedding lies in the facet An|Xi,j=0, which

requires showing that all planar propagators Xa,b are positive under the embedding except

for Xi,j = 0. This is trivially true for propagators whose diagonals do not cross (i, j),

since either Xa,b = La,b or Xa,b = Ra,b. Now consider a crossing diagonal (k, l) satisfying

1 ≤ i < k < j < l ≤ n. Applying eq. (3.8) with indices j, k swapped and setting

Xi,j = 0 gives

Xk,l = Xk,j +Xi,l +
∑

i≤a<k
j≤b<l

cab (4.9)

Since Xk,j is a diagonal of the left subpolygon and Xi,l is a diagonal of the right, they

are both positive. It follows that the right hand side is term-by-term positive, hence our

crossing term Xk,l must also be positive, as claimed. We emphasize that Xk,l is actually

strictly positive, implying that it cannot be cut. This is important because cutting crossing

propagators simultaneously would violate the planar graph structure of the associahedron.

Finally, it is easy to see that this is a one-to-one map, thus completing our argument for

the first assertion eq. (4.1).

As an example, consider the n=6 kinematic associahedron shown in figure 8 (bottom).

Let us consider the facet X2,5 = 0 which by geometric factorization is a product of 4-point

associahedra (i.e. a product of line segments) and must therefore be a quadrilateral. This
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X4,7

Figure 15. The diagonal (4, 7) subdivides the 8-gon into a 4-gon (on the “left”) and a 6-gon

(on the “right”), suggesting that the facet X4,7 = 0 of the associahedron An=8 is combinatorially

identical to An=4 ×An=6.

agrees with figure 8 (bottom) by inspection. The same is true for the facets X1,4 = 0

and X3,6 = 0. In contrast, the facet X3,5 = 0 is given by the product of a point with a

pentagon, and is therefore also a pentagon. The same holds for the remaining 5 facets.

The second assertion eq. (4.3) follows immediately from the first:

ResXi,j=0Ω(An) = Ω(An|Xi,j=0) = Ω(AL ×AR) = Ω(AL) ∧ Ω(AR) (4.10)

where the first equality follows from the residue property eq. (A.1), the second from the

first assertion eq. (4.1) and the third from the product property eq. (A.2). This provides a

geometric explanation for the factorization of the amplitude first discussed in eq. (2.14).

4.2 “Soft” limit

The associahedron geometry suggests a natural “soft limit” where the polytope is

“squashed” to a lower dimensional one, whereby the amplitude obviously vanishes.

Consider the associahedron An which lives in the subspace Hn defined by non-adjacent

constants cij . Let us consider the “soft” limit where the non-adjacent constants c1i → 0

go to zero for i = 3, . . . , n−1. It follows from kinematic constraints that

X1,3 +X2,n = s12 + s1n = −
n−1
∑

i=3

s1i =
n−1
∑

i=3

c1i → 0 (4.11)

But since both terms on the left are nonnegativeX1,3, X2,n ≥ 0 inside the associahedron, the

limit “squashes” the geometry to a lower dimension where X1,3 = X2,n = 0. The canonical

form must therefore vanish everywhere on Hn, implying that the amplitude is identically

zero. Note that if we restrict kinematic variables to the interior of the associahedron, then

p1 · pi → 0 for every i, yielding the true soft limit p1 → 0. A similar argument can be given

to show that the canonical form vanishes in the “soft” limit where ci,n−1 → 0 for every

i = 1, . . . , n−3. And by cyclic symmetry, the amplitude must vanish under every “soft”

limit given by sij → 0 for some fixed index i and every index j 6= i−1, i+1.

Furthermore, given any triangulation of the associahedron An of the kind discussed in

section 5.4, every piece of the triangulation is squashed by the “soft” limit. It follows that

the canonical form of each piece must vanish individually.
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The fact that the amplitude mn vanishes in this limit is rather non-trivial from a

physical point of view. While the geometric argument we provided is straightforward,

there does not appear to be any obvious physical reason for it. It is another feature of the

amplitude made obvious by the associahedron geometry.

As an example, the n=5 amplitude eq. (3.24) vanishes in the limit c13, c14 → 0, which

can be seen by substituting the equivalent limits X1,3 → X1,4−X2,4 and X2,5 → X2,4−X1,4

directly into the amplitude eq. (3.24).

5 Triangulations and recursion relations

Since the scattering forms pull back to the canonical form on our associahedra, it is natu-

ral to expect that concrete expressions for the scattering amplitudes correspond to natural

triangulations of the associahedron. This connection between triangulations of a positive

geometry and various physical representations of amplitudes has been vigorously explored

in the context of the positive Grassmannian/amplituhedron, with various triangulations

of spaces and their duals corresponding to BCFW and “local” forms for scattering am-

plitudes. In the present case of study for bi-adjoint φ3 theories, we encounter a lovely

surprise: one of the canonical triangulations of the associahedron literally reproduced the

Feynman diagram expansion! Ironically this representation also introduces spurious poles

(at infinity!) that only cancel in the full sum over all diagrams; also, other properties of the

amplitude, such as the vanishing in the “soft” limit discussed in section 4.2, are also not

manifest term-by-term in this triangulation. We also explore a number of other natural

triangulations of the geometry that make manifest the features hidden by the Feynman

diagram triangulation. Quite surprisingly, some triangulations lead to even more compact

expressions for these familiar and already very simple amplitudes! Finally, we introduce a

novel recursion relation for amplitudes based on the factorization properties discussed in

section 4.1.

5.1 The dual associahedron and its volume as the bi-adjoint amplitude

Recall that every convex polytope A has a dual polytope A∗ which we review in ap-

pendix A.4 where some notation is established. An important fact also explained in ap-

pendix A.4 says that the canonical form of any polytope A is determined by the volume of

its dual A∗:

Ω(A) = Vol(A∗) (5.1)

This identity has many implications for both physics and geometry. We refer the reader

to [13] for a more thorough discussion.

Applying eq. (5.1) to our discussion implies that the canonical form of the associahe-

hdron An is determined by the volume of the dual associahedron A∗
n:

Ω(An) = Vol(A∗
n) (5.2)

But in the same way, the canonical form is determined by the amplitude mn via eq. (3.21),

thus suggesting that the amplitude is the volume of the dual:

mn = Vol(A∗
n) (5.3)
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This leads to yet another geometric interpretation of the bi-adjoint amplitude. For the

remainder of this section, we describe the construction of the dual associahedron in more

detail, and provide the example for n=5.

Following the discussion in appendix A.4, we embed the subspace Hn in projective

space P
n−3(R), and we choose a basis Xi′

1
,j′
1
, . . . , Xi′n−3

,j′n−3
of Mandelstam variables to

denote coordinates on the subspace:

Y = (1, Xi′
1
,j′
1
, . . . , Xi′n−3

,j′n−3
) ∈ P

n−3(R) (5.4)

Here we have introduced a zeroth component “1” since the coordinates are embedded

projectively. Any other basis can be obtained via a GL(n−2) transformation.

Furthermore, we denote the facets of the associahedron in projective coordinates. Re-

call that every facet of An is of the formXi,j = 0. We rewrite this in the form Wi,j ·Y = 0 for

some dual vector Wi,j . For example, consider n = 5 in the basis Y = (1, X1,3, X1,4). Then

Y ·W2,5 = X2,5 = c13 + c14 −X1,3 = (c13 + c14,−1, 0) · Y (5.5)

which implies that W2,5 = (c13 + c14,−1, 0). More generally, the components of any Wi,j

can be read off from the expansion of Xi,j in terms of basis variables Xi′a,j
′

a
and non-

adjacent constants. Here we present all the dual vectors for the n = 5 pentagon in figure 8

(top right):

W1,3 = (0, 1, 0)

W3,5 = (c14 + c24, 0,−1)

W2,5 = (c13 + c14,−1, 0)

W2,4 = (c13,−1, 1)

W1,4 = (0, 0, 1) (5.6)

Once the coordinates for the dual vectors Wi,j are computed, they can be thought of as

vertices of the dual associahedron A∗
n in the dual projective space. For n=5, the dual

associahedron is a pentagon whose vertices are eq. (5.6) (See figure 16).

5.2 Feynman diagrams as a triangulation of the dual associahedron volume

We now compute the volume of A∗ by triangulation and summing over the volume of each

piece. We make use of the fact that A∗
n is a simplicial polytope, meaning that each facet is

a simplex. This is equivalent to An being a simple polytope. In this case the dual is easily

triangulated by the following method:

1. Take a reference point W∗ on the interior of the dual polytope.

2. For each facet of the dual, take the convex hull of the facet with W∗ which gives a

simplex.

3. The union of all such simplices forms a triangulation of the dual.
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W∗

W1,3

W3,5

W2,5

W2,4

W1,4

W1,3

W3,5

W2,5

W2,4

W1,4

Figure 16. Two triangulations of the dual associahedron A∗

n=5

Let Z denote a facet of the dual A∗
n. Then Z is adjacent to some vertices Wi1,j1 , . . . ,

Win−3,jn−3
corresponding to propagators Xi1,j1 , . . . , Xin−3,jn−3

, respectively. By taking the

convex hull of the facet Z with W∗, and taking the union over all facets, we get a triangu-

lation of the dual associahedron whose volume is the sum over the volume of each simplex.

Recalling the formula for the volume of a simplex eq. (A.20), we find

Vol(A∗
n) =

∑

vertex Z

Vol(W∗,Wi1,j1 , . . . ,Win−3,jn−3
)

=
∑

vertex Z

sign(Z)
〈

W∗Wi1,j1 · · ·Win−3,jn−3

〉

(Y ·W∗)
∏n−3

a=1(Y ·Wia,ja)
(5.7)

where sign(Z) is the orientation of the adjacent vertices Wi1,j1 , . . . ,Win−3,jn−3
(in that

order) relative to the inherited orientation. Note that the antisymmetry of sign(Z) is

compensated by the antisymmetry of the determinant 〈· · · 〉 in the numerator, and the

sum is independent of the choice of reference point W∗. Furthermore, the sign(Z) here

is equivalent to the sign(Z) appearing in eq. (3.15) where Z denotes the corresponding

vertex of An. In fact, we now argue that for an appropriate choice of reference point W∗,

the Feynman diagram expansion eq. (3.20) is term-by-term equivalent to the expression

eq. (5.7), where each Z is associated with its corresponding planar cubic graph g.

With the benefit of hindsight, we set the reference point to W∗ = (1, 0 . . . , 0), which

is particularly convenient because the numerators in eq. (5.7) are now equivalent for all Z.

Indeed, since Xia,ja = Y ·Wia,ja , we have

〈

W∗Wi1,i1 · · ·Win−3,jn−3

〉

=
∂(Xi1,j1 , . . . , Xin−3,jn−3

)

∂(Xi′
1
,j′
1
, . . . , Xi′n−3

,j′n−3
)
= sign(Z)/sign(Z ′) (5.8)

where the primed variables form the basis we chose back in eq. (5.4), and the second equality

follows from eq. (3.17). This shows that all the numerators in eq. (5.7) are equivalent to

sign(Z ′), which we set to one. Finally, substituting (Y ·W∗) = 1 and (Y ·Wia,ja) = Xia,ja
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into eq. (5.7) and replacing Z by g gives

Vol(A∗
n) =

∑

planar g

1
∏n−3

a=1 Xia,ja

(5.9)

which is precisely the Feynman diagram expansion eq. (3.20) for the amplitude. It follows

that the amplitude is the volume of the dual associahedron

Vol(A∗
n) = Ω(An) = mn (5.10)

of which the Feynman diagram expansion is a particular triangulation.

We point out that the Feynman diagram expansion introduces a spurious vertex W∗,

which term-by-term gives rise to a pole at infinity that cancels in the sum. From the point

of view of the original associahedron, this corresponds to a “signed” triangulation of An

with overlapping simplices, whereby every simplex consists of all the facets that meet at

a vertex together with the boundary at infinity. The presence of bad poles at infinity in

individual Feynman diagrams that only cancel in the sum over all diagrams bears striking

resemblance to the behavior of Feynman diagrams under BCFW shifts in gauge theories

and gravity. There too, individual Feynman diagrams have poles at infinity, even though

the final amplitude does not, and this surprising vanishing at infinity is critically related

to the magical properties of amplitudes in these theories. Indeed, the absence of poles

at infinity in Yang-Mills theory finds a deeper explanation in terms of the symmetry of

dual conformal invariance. It is thus particularly amusing to see an analog of this hidden

symmetry even for something as innocent-seeming as bi-adjoint φ3 theory! Furthermore,

the scattering form in the full kinematic space is projectively invariant, a symmetry invisible

in individual diagrams. And the pullback of the forms to the associahedron subspaces

are also projectively invariant, with no pole at infinity. In Yang-Mills theories, we have

discovered representations (such as those based on BCFW recursion relations) that make

the dual conformal symmetry manifest term-by-term, and these were much later seen to

be associated with triangulations of the amplituhedron. Similarly, we now turn to other

natural triangulations of the associahedron which do not introduce new vertices and thus

have no spurious poles at infinity, thus making manifest term-by-term the analogous feature

of bi-adjoint φ3 amplitudes that is hidden in Feynman diagrams.

5.3 More triangulations of the dual associahedron

Returning to eq. (5.7), a different choice of W∗ would have led to alternative triangulations,

and hence novel formulas for the amplitude. For instance, for n=5, we can take the limit

W∗ → W13. This kills two volume terms and gives a three-term triangulation as shown in

figure 16 (right):

mn=5 =
X1,3 +X2,5

X1,3X3,5X2,5
+

X1,3 +X2,5

X1,3X2,5X2,4
+

X1,3 −X1,4 +X2,4

X1,3X2,4X1,4
(5.11)

Note that we have re-written the non-adjacent constants cij in terms of planar variables via

eq. (3.5). The sum of these three volumes gives the volume of the dual associahedron, and
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hence the amplitude. Furthermore, since no spurious vertices are introduced, the result

makes manifest term-by-term the absence of poles at infinity. This contrasts the Feynman

diagram expansion where spurious poles appear term-by-term. Finally, this method of

setting W∗ to one of the vertices can be repeated for arbitrary n, and in general produces

fewer terms than with Feynman diagrams.

5.4 Direct triangulations of the kinematic associahedron

Recall that canonical forms are triangulation independent, hence the canonical form of

a polytope can be obtained by triangulation and summation over the canonical form of

each piece. A brief review is given in appendix A.2. We now exploit this property to

compute the canonical form of the associahedron, thus establishing another method for

computing amplitudes.

We wish to compute the n=5 amplitude for which the associahedron is a pentagon.

We choose the basis Y = (1, X13, X14), and triangulate the associahedron as the union of

three triangles ABC, ACD and ADE (See figure 17). It follows that

Ω(An=5) = Ω(ABC) + Ω(ACD) + Ω(ADE) (5.12)

Note that the triangles must be oriented in the same way as the associahedron (clockwise

in this case). Getting the wrong orientation would cause a sign error. The boundaries of

the triangles are given by W · Y = 0 for:

WAB = (0, 1, 0) WBC = (c14 + c24, 0,−1)

WCD = (c13 + c14,−1, 0) WDE = (c13,−1, 1) WAE = (0, 0, 1)

WAC = (0,−c14 − c24, c13 + c14) WAD = (0,−c14, c13 + c14) (5.13)

Recalling the canonical form for a simplex eq. (A.21), we get

Ω(ABC) =
(X1,3 +X2,5)(X1,4 +X3,5)d

2X

X1,3X3,5(X1,4X2,5 −X1,3X3,5)

Ω(ACD) =
(X1,3 +X2,5)

2(X2,4 −X2,5 +X3,5)d
2X

X2,5(−X1,4X2,5 −X1,3X2,4 +X1,3X2,5)(X1,4X2,5 −X1,3X3,5)

Ω(ADE) =
(X1,3 −X1,4 +X2,4)(−X2,4 +X1,4 +X2,5)d

2X

X1,4X2,4(−X1,4X2,5 −X1,3X2,4 +X1,3X2,5)

Ω(An=5) = Ω(ABC) + Ω(ACD) + Ω(ADE)

where again we have rewritten the non-adjacent constants cij in terms of planar variables

via eq. (3.5). The sum of these three quantities determines the amplitude. This expansion

is fundamentally different in character from the Feynman diagram expansion due to the

appearance of (non-linear) spurious poles that occur in the presence of spurious boundaries

AC and AD.

This approach can be extended to all n provided that a triangulation is known. Two

important properties of the bi-adjoint amplitude, which are obscured by individual Feyn-

man diagrams, become manifest in this triangulation. First, unlike that for each Feyn-

man diagram, the form for each piece of the triangulation is projective, which means it
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Figure 17. A triangulation of the associahedron An=5

only depends on the ratio of X variables. Moreover, geometrically it is obvious that the

vanishing “soft” limit also works term-by-term, which is certainly not the case for each

Feynman diagram.

5.5 Recursion relations for bi-adjoint φ3 amplitudes

We propose a simple recursion relation for computing the amplitude Ω(An) as a form.

Our derivation applies the recursion relations from appendix A.6 and the factorization

properties from section 4.1. The result is reminiscent of BCFW triangulation for the

amplituhedron [12, 25]. While it is not obvious from the field theory point of view, the

recursion follows naturally from the geometric picture.

We begin by picking a kinematic basis

Y = (1, Xi1,j1 , . . . , Xin−3,jn−3
) (5.14)

For simplicity let Z∗ = (1, 0, . . . , 0) denote the reference point appearing in eq. (A.25).

Furthermore, for any facet given by Xi,j = Wi,j · Y = 0 corresponding to some dual vector

Wi,j , we let

X0
i,j := Wi,j · Z∗ X ′

i,j := Wi,j · Y −Wi,j · Z∗ (5.15)

Equivalently, we can expand the propagator Xi,j by

Xi,j = X0
i,j +X ′

i,j (5.16)

where X0
i,j is a linear combination of non-adjacent constants while X ′

i,j is a linear combi-

nation of the basis variables. This expansion is basis-dependent, but unique for each basis.
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Furthermore, the deformation eq. (A.25) Y → Ŷ is given by

Ŷ = Y −

(

Wi,j · Y

Wi,j · Z∗

)

Z∗ (5.17)

=

(

X ′
i,j

−X0
i,j

, Xi1,j1 , . . . , Xin−3,jn−3

)

(5.18)

=

(

1,

(

−X0
i,j

X ′
i,j

)

Xi1,j1 , . . . ,

(

−X0
i,j

X ′
i,j

)

Xin−3,jn−3

)

(5.19)

where in the last step we rescaled the vector by an overall factor to put it in the same form as

eq. (5.14), which is possible since the vector is projective. This gives us the deformations

X̂ia,ja =
(

−X0
i,j/X

′
i,j

)

Xia,jb for every basis variable. We caution the reader that this

deformation is only applied on the basis variables, not on all kinematic variables Xk,l. The

non-adjacent constants are invariant under the deformation ĉkl = ckl, and the deformation

for any other kinematic variable can be obtained by expanding it in terms of basis variables

and non-adjacent constants. In particular, the deformation for Xi,j vanishes:

X̂i,j = X̂ ′
i,j + X̂0

i,j =

(

−X0
i,j

X ′
i,j

)

X ′
i,j +X0

i,j = 0 (5.20)

which is expected since the deformation is a projection onto the cut.

From eq. (A.31) we propose that the canonical form of the associahedron can be

obtained from the canonical form of each facet:

Ω(An) =
∑

facet Fi,j

Di,jΩ̂(Fi,j) (5.21)

where Fi,j denotes the facet along Xi,j = 0, and we sum over all facets. The hat operator

denotes a pullback via the deformation Xkl → X̂kl, and the Di,j operator denotes the

“numerator replacement” rule (See eq. (A.26)):

〈

Xdn−4X
〉

→

(

X0
i,j

Xi,j

)

dn−3X (5.22)

where X denotes the vector Y with the initial component chopped off, and the angle

brackets denote the determinant
〈

Xdn−4X
〉

:= det(X, dX, . . . , dX). Finally, recall from

section 4.1 that each Fi,j factorizes into a product of lower associahedra like Fi,j
∼= AL×AR.

It follows that

Ω(An) =
∑

facet Fi,j

Di,j

(

Ω̂(AL) ∧ Ω̂(AR)
)

(5.23)

This provides a recursion relation for the amplitude because Ω(AL) and Ω(AR) are deter-

mined by lower point amplitudes. The existence of such a recursion for bi-adjoint ampli-

tudes is not expected from the usual field-theory point of view, but here we have seen that

it follows directly from the geometry.
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We now do an example for n=5 (See figure 17). We pick the basis Y = (1, X1,3, X1,4),

and we consider the contribution from the facet X2,5 = c13 + c14 − X1,3 which implies

X0
2,5 = c13 + c14 and X ′

2,5 = −X1,3. The deformations are given by

X̂1,3 = c13 + c14 (5.24)

X̂1,4 =
c13 + c14
X1,3

X1,4 (5.25)

X̂3,5 = −
c13 + c14
X1,3

X1,4 + c14 + c24 (5.26)

X̂2,5 = 0 (5.27)

X̂2,4 =
c13 + c14
X1,3

X1,4 − c1,4 (5.28)

And the required numerator replacement is given by

〈XdX〉 →

(

c13 + c14
X2,5

)

d2X (5.29)

On the cut X2,5 = 0, the associahedron factorizes into the product AL ×AR given by

AL = A(2, 3, 4, Ī) (5.30)

AR = A(1, I, 5̄) (5.31)

where I is the intermediate particle. See the discussion around eq. (4.2) for more details.

Recalling the 4- and 3-point amplitudes, we have

Ω(AL) = d logX2,4 − d logX3,5 (5.32)

Ω(AR) = 1 (5.33)

Then the pullback Ω̂(AL) ∧ Ω̂(AR) gives

d log X̂2,4 − d log X̂3,5 (5.34)

=
(c13 + c14)c24 〈XdX〉

(c14X1,3 − c13X1,4 − c14X1,4)(c14X1,3 + c24X1,3 − c13X1,4 − c14X1,4)

Applying the numerator replacement eq. (5.29) and rewriting the non-adjacent variables

in terms of planar variables via eq. (3.5) gives

(X1,3 +X2,5)
2(X2,4 −X2,5 +X3,5)d

2X

X2,5(−X1,4X2,5 −X1,3X2,4 +X1,3X2,5)(X1,4X2,5 −X1,3X3,5)
(5.35)

But this is precisely the Ω(ACD) term appearing in eq. (5.12), which is the canonical form

of the triangle ACD in figure 17. This confirms the discussion in appendix A.6 where we

expected to find the canonical form of the triangle given by the convex hull of Z∗ = A and

the facet CD, which is precisely ACD.

Similarly, the contribution fromX3,5 andX2,4 give Ω(ABC) and Ω(ADE), respectively.

The contributions from the remaining cuts X1,3 and X1,4 vanish because they intersect the
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reference point Z∗ and hence the geometry is degenerate. It follows that the recursion

provides a triangulation of the associahedron with reference point Z∗ = (1, 0, 0) identical

to eq. (5.12).

More generally, given a choice of basis and reference point Z∗, the recursion gives

a triangulation of the associahedron with a reference point. Again, we emphasize that

this “BCFW-like” representation of bi-adjoint amplitudes is very different from Feynman

diagrams, and it is not obvious how to derive it from a field-theory argument.

6 The worldsheet associahedron

We have seen that scattering amplitudes are better thought of as differential forms on

the space of kinematic variables that pullback to the canonical forms of associahedra in

kinematic space. This is a deeply satisfying connection. After all, the associahedron is

perhaps the most fundamental and primitive object whose boundary structure embodies

“factorization” as a combinatorial and geometric property.

Furthermore, string theorists have long known of the fundamental role of the associ-

ahedron for the open string. After all, the boundary structure of the open string moduli

space — the moduli space of n ordered points on the boundary of a disk — also famously

“factorizes” in the same way. In fact, it is well-known that the Deligne-Mumford compacti-

fication [3, 26] of this space has precisely the same boundary structure as the associahedron.

The implications of this “worldsheet associahedron” for aspects of stringy physics have also

been explored in e.g. [27, 28].

Moreover, from general considerations of positive geometries we know that there should

also be a “worldsheet canonical form” associated with this worldsheet associahedron, which

turns out to be the famous “worldsheet Parke-Taylor form” [29] (for related discussions see

e.g. [28, 30]), an object whose importance has been highlighted in Nair’s observation [31]

and Witten’s twistor string [4], and especially in the story of scattering equations and the

CHY formulas for scattering amplitudes [5, 6, 15, 32].

But how is the worldsheet associahedron related to the kinematic associahedron? This

simple question has a striking answer: the scattering equations act as a diffeomorphism

from the worldsheet associahedron to the kinematic associahedron! From general grounds,

it follows that the kinematic scattering form is the pushforward of the worldsheet Parke-

Taylor form under the scattering equation map. This gives a beautiful raison d’etre to the

scattering equations, and a quick geometric derivation of the bi-adjoint CHY formulas. We

now explain these ideas in more detail.

6.1 Associahedron from the open string moduli space

Recall that the moduli space of genus zero M0,n is the space of configurations of n distinct

punctures on the Riemann sphere CP
1 modulo SL(2,C). The real part M0,n(R) is the

open-string moduli space consisting of all distinct points σi (i = 1, . . . , n) on the real line

(and infinity) modulo SL(2,R). While there are n! ways of ordering the σi variables, any

pair of orderings related by dihedral transformation are SL(2,R) equivalent. It follows that

the real part is tiled by (n−1)!/2 distinct regions given by inequivalent orderings of the σi
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Figure 18. A blowup of the n=5 worldsheet associahedron showing all boundaries.

variables [26]. The region given by the standard ordering is called the positive part of the

open string moduli space or more simply the positive moduli space

M+
0,n := {σ1 < σ2 < · · · < σn}/SL(2,R) (6.1)

where the SL(2,R) redundancy can be “gauge fixed” in the standard way by setting fixing

three variables (σ1, σn−1, σn) = (0, 1,∞) in which case M+
0,n = {0 < σ2 < · · · < σn−2 < 1}.

Sometimes we also denote the space by M+
0,n(1, 2, . . . , n) to emphasize the ordering. Fur-

thermore, recall that M+
0,n can also be constructed as the (strictly) positive Grassmannian

G>0(2, n) modded out by the torus action R
n
>0. More precisely, we consider the set of all

2 × n matrices (C1, . . . , Cn) with positive Plücker coordinates (ab) := det(Ca, Cb) > 0 for

1 ≤ a < b ≤ n, modded out by GL(2) action and column rescaling.

In analogy to what we did for the kinematic polytope, we make two claims for the

positive moduli space:

1. The (compactified) positive moduli space is an associahedron which we call the world-

sheet associahedron.

2. The canonical form of the worldsheet associahedron is the Parke-Taylor form,

ωWS
n :=

1

vol [SL(2)]

n
∏

a=1

dσa
σa − σa+1

=
1

vol [SL(2)×GL(1)n]

n
∏

a=1

d2Ca

(a a+1)
(6.2)

where in the last expression we rewrote the form in Plücker coordinates.

More precisely, the process of compactification provides the positive moduli space M+
0,n

with boundaries of all codimensions, and here we present a natural compactification called

the u-space compactification that produces the boundary structure of the associahedron.

Of course, the associahedron structure of the positive moduli space is well-known [3, 26],

but the discussion we present here is instructive for later sections.

The compactification is very subtle in σi variables because our naive gauge choice fails

to make all boundaries manifest. Nonetheless, all the boundaries can be visualized via a

“blowup” procedure. Consider the case n=5 where only three of the five boundaries are

manifest in the standard gauge as shown in figure 18. The two “hidden” boundaries can
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be recovered by introducing a blowup at the vertices (σ2, σ3) = (0, 0) and (1, 1) as shown

in figure 18. A similar procedure applies for all n. We will come back to this picture when

we discuss the canonical form, but now we provide an explicit compactification that makes

manifest all the boundaries.

We introduce the variables ui,j for 1 ≤ i < j−1 < n which are constrained to the

region 0 ≤ ui,j ≤ 1. The ui,j is analogous to the planar kinematic variable Xi,j introduced

in eq. (2.6), and can therefore be visualized as the diagonal (i, j) of a convex n-gon with

cyclically ordered labels like figure 5 (left). There are of course n(n−3)/2 of these variables.

Furthermore, we impose the non-crossing identity

ui,j = 1−
∏

(k,l)∈(i,j)c

uk,l (6.3)

for each diagonal (i, j), where (i, j)c denotes the set of all diagonals that cross (i, j). Only

(n−2)(n−3)/2 of these n(n−3)/2 constraints are independent, so the space is of dimension

(n−3). See [33] for a generalization of these identities.

Let us consider some examples. For n=4 we have two variables with one constraint

u1,3 = 1− u2,4 (6.4)

For n=5 we have five variables satisfying the constraint

u1,3 = 1− u2,4 u2,5 , (6.5)

and four others related by cyclic shift; but only three constraints are independent, thus giv-

ing a 2-dimensional surface shown in figure 19. For n=6, there are two types of constraints

corresponding to two types of diagonals of the hexagon. Here we present the constraints

for the diagonals (1, 3) and (1, 4), and the rest are related via cyclic shift.

u1,3 = 1− u2,4 u2,5 u2,6 u1,4 = 1− u2,5 u2,6 u3,5 u3,6 , (6.6)

This gives 6 + 3 = 9 constraints, but only six are independent.

The u-space provides an explicit compactification of the positive moduli space. To see

this, we begin by constructing a map from the positive moduli space M+
0,n to the interior

of u-space via the following cross ratio formula:

ui,j =
(σi − σj−1)(σi−1 − σj)

(σi − σj)(σi−1 − σj−1)
=

(i j−1)(i−1 j)

(i j)(i−1 j−1)
(6.7)

which has already been studied extensively in the original dual resonance model (cf. [34]

and more recently in [35]). The map provides a diffeomorphism between the positive moduli

space and the u-space interior. Taking the closure in u-space thereby provides the required

compactification. Henceforth we denote u-space by M
+
0,n.

We now argue that the compactification M
+
0,n is an associahedron. We begin by

showing that there are exactly n(n−3)/2 codimension 1 boundaries given individually by

ui,j = 0 for every diagonal (i, j). We then show that every codimension 1 boundary

“factors” like eq. (3.3), from which the desired conclusion follows.
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Clearly the boundaries of the space are given by ui,j = 0 or 1. However, if ui,j = 1

then by the non-crossing identity eq. (6.3) we must have uk,l = 0 for at least one diagonal

(k, l) ∈ (i, j)c. It therefore suffices to only consider ui,j = 0. We claim that every boundary

ui,j = 0 “factors” geometrically into a product of lower-dimensional worldsheets:

∂(i,j)M
+
0,n

∼= M
+
0,nL

×M
+
0,nR

(6.8)

where

M
+
0,nL

:= M
+
0,nL

(i, . . . , j−1, I) (6.9)

M
+
0,nR

:= M
+
0,nR

(1, . . . , i−1, I, j, . . . , n) (6.10)

with I denoting an auxiliary label and (nL, nR) = (j−i+1, n+i−j+1). Similar to the

geometric factorization of the kinematic polytope discussed in section 4.1, we visualize the

geometric factorization of the compactification as the diagonal (i, j) that subdivides the

convex n-gon into a “left” subpolygon and a “right” subpolygon as shown in figure 15.

Furthermore, note that eq. (6.8) immediately implies that the boundary is of dimension

(n − 4) and hence codimension 1. From the σ-space point of view, the limit ui,j = 0

corresponds to the usual degeneration where the σa for all a = i, . . . , j−1 pinch together

on the left subpolygon, and similarly the σa for all a = j, . . . , n, 1, . . . , i−1 pinch together

on the right subpolygon.

To derive eq. (6.8), let L,R denote the set of diagonals of the left and right subpolygons,

respectively. Then in the limit ui,j = 0, we get uk,l = 1 for every diagonal (k, l) that crosses

(i, j). It follows that the constraints eq. (6.3) split into two independent sets of constraints,

one for each subpolygon:

Left:

{

uk,l = 1−
∏

(p,q)∈(k,l)c∩L

up,q

∣

∣

∣

∣

∣

(k, l) ∈ L

}

(6.11)

Right:

{

uk,l = 1−
∏

(p,q)∈(k,l)c∩R

up,q

∣

∣

∣

∣

∣

(k, l) ∈ R

}

(6.12)

These provide precisely the constraints for the left and right factors M
+
0,nL

and M
+
0,nR

,

thereby implying eq. (6.8). We conclude therefore that the compactified space M
+
0,n is an

associahedron. As an example, the n=5 worldsheet associahedron is shown in figure 19.

We now compute the canonical form. Since the worldsheet associahedron has the same

boundary structure as the kinematic associahedron, therefore its canonical form should take

on a similar form as eq. (3.15). Indeed, let us work in the standard gauge (σ1, σn−1, σn) =

(0, 1,∞) where the moduli space interior is the simplex 0 < σ2 < σ3 < · · · < σn−2 < 1.

We now blow up the boundaries of the simplex to form an associahedron polytope, in the

manner discussed earlier. We assume that our blowup is small of order ǫ, with boundaries

given by Bi,j(ǫ;σ) ≥ 0 corresponding to the diagonals (i, j) of the n-gon. The exact

expression for Bi,j is not unique; however, since the boundary (i, j) corresponds to the

limit where σi, σi+1, . . . , σj−1 pinch, it is thereby necessary that limǫ→0Bi,j(ǫ, σ) = σi,j−1.
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u1,3

u3,5

u2,5

u1,3 u2,5

u3,5

u1,4 u2,4

Figure 19. The worldsheet associahedron for n=5 presented in a coordinate chart where all

boundaries are manifest. We caution the reader that some coordinate charts do not make manifest

all the boundaries.

Now, we compute the canonical form by substituting Xi,j → Bi,j into eq. (3.15), then

removing the blowup by taking the limit ǫ → 0:

Ω
(

M
+
0,n

)

= lim
ǫ→0

∑

planar g

sign(g)

n−3
∧

a=1

d logBia,ja(ǫ;σ) (6.13)

=
∑

planar g

sign(g)
n−3
∧

a=1

d log σia,ja−1 (6.14)

where we sum over all planar cubic graphs g, and for every g the (ia, ja) for a = 1, . . . , n−3

are the diagonals of the corresponding triangulation. The sign(g) is defined by the sign

flip rule eq. (2.12) as before. We caution the reader that the naive substitution Xi,j → ui,j
is incorrect; since the ui,j variables are constrained by non-linear equations (i.e. the non-

crossing identities eq. (6.3)), hence there is no known dual polytope with boundaries ui,j ≥ 0

whose volume takes the form eq. (3.15).

Furthermore, since the ǫ → 0 limit reduces to a simplex, the canonical form must also

reduce to the form for that simplex, which we recognize as the Parke-Taylor form eq. (6.2)

given below. The particular way in which the simplex is blown up does not matter, since

they all reduce to the same geometry in this limit.

Ω
(

M
+
0,n

)

= −
dn−3σ

σ2(σ2−σ3) · · · (σn−2 − 1)
(6.15)

While eq. (6.13) and eq. (6.15) look very different, their equivalence is guaranteed by the

geometric argument provided. In fact, the former can be thought of as a triangulation

(with overlapping pieces that “cancel”) of the latter.

Finally, we present eq. (6.13) in a SL(2) invariant way:

Ω
(

M
+
0,n

)

=
∑

planar g

sign(g)
n−3
∧

a=1

d log

(

σia,ja−1 σ1,n σn−1,n

σ1,n−1 σia,n σja−1,n

)

(6.16)
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6.2 Scattering equations as a diffeomorphism between associahedra

We have now seen two associahedra: the kinematic associahedron An in kinematic space

Kn and the worldsheet associahedron M
+
0,n in moduli space M0,n. Furthermore, recall that

the scattering equations [5] relate points in moduli space to points in kinematic space. It is

therefore natural to expect that the same equations should relate the two associahedra. We

begin by reinterpreting the scattering equations as a map from moduli space to kinematic

space, giving the scattering equation map. We then make the striking observation that the

scattering equation map acts as a diffeomorphim between the two associahedra.

M0,n
scattering equations
−−−−−−−−−−−−→

as a map
Kn (6.17)

M
+
0,n

scattering equations
−−−−−−−−−−−−→
as a diffeomorphism

An (6.18)

This has immediate consequences for amplitudes, including a novel derivation of the CHY

formula for bi-adjoint scalars and much more. But before jumping ahead, let us establish

the map.

Recall that the scattering equations [5] read

Ei :=

n
∑

j=1;j 6=i

sij
σi,j

= 0 for i = 1, . . . , n (6.19)

where σi,j := σi−σj , and only (n−3) equations are independent due to SL(2) redundancy.

It is convenient to first send σn → ∞ so that by adding all E1, E2, . . . , Ec together we find

sc,c+1 = −
∑

1≤i≤c
c+1≤j≤n−1
(i,j) 6=(c,c+1)

σc,c+1
sij
σi,j

. (6.20)

for the range 1 ≤ c ≤ n−2. Combining variables sc,c+1 that have adjacent indices and

variables sij that have non-adjacent indices (i.e. j−i > 1) gives us a formula for every

planar variable Xa,b:

Xa,b = −
∑

1≤i<a
a<j<b

σa,j
sij
σi,j

−
∑

a≤i<b
b≤j<n

σi,b−1
sij
σi,j

−
∑

1≤i<a
b≤j<n

σa,b−1
sij
σi,j

, (6.21)

whereby every index pair i, j on the right hand side is non-adjacent with i, j 6= n. This

provides a remarkable rewriting of the scattering equations because every Mandelstam

variable on the right is a constant sij = −cij . Substituting the constants and recovering

the SL(2) invariance by rewriting the σ variables as cross-ratios of Plücker coordinates gives

Xa,b =
∑

1≤i<a
a<j<b

(a j)(i n)

(i j)(an)
cij +

∑

a≤i<b−1
b≤j<n

(j n)(i b−1)

(i j)(b−1n)
cij +

∑

1≤i<a
b≤j<n

(i n)(j n)(a b−1)

(i j)(an)(b−1n)
cij . (6.22)

Since the right hand side consists only of constants and σ variables, this provides a map

σ → X from moduli space to kinematic space (more specifically to the subspace Hn when

the σi variables are real), thus providing the scattering equation map that we are after.
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0 < σ2 < σ3 < 1

=⇒

X1,4

X1,3

X3,5

X2,5

X2,4

Figure 20. Graphical evidence demonstrating that for n=5, the interior of the worldsheet associa-

hedron is mapped diffeomorphically to the interior of the kinematic associahedron by the scattering

equation map. Each contour line denotes a locus where one of σ2, σ3 is constant.

Let us look at the map more closely. First and foremost, every point Xa,b on the

image is manifestly positive when the σi variables are ordered since the constants cij > 0

are positive. It follows that eq. (6.22) maps the worldsheet associahedron M
+
0,n into the

kinematic associahedron An.

Moreover, every boundary of the worldsheet associahedron (of any codimension) is

mapped to the corresponding boundary of the kinematic associahedron. Indeed, consider

a codimension 1 boundary ua,b → 0. In this limit, the variables σa, . . . , σb−1 all pinch to

a point so that σi,j → 0 for all a ≤ i < j < b. By direct inspection of eq. (6.22) we

find that Xa,b → 0 in this limit. It follows therefore that every boundary ua,b = 0 of

the worldsheet associahedron is mapped to the corresponding boundary Xa,b = 0 of the

kinematic associahedron. An extended statement holds for boundaries of all codimensions.

We say therefore that the scattering equation map preserves the associahedron boundary

structure. Furthermore, this suggests that every point on the kinematic associahedron is

reached by the map.

Finally, we make a numerical observation. For every point on the interior of the

kinematic polytope, exactly one of the (n−3)! solutions of the scattering equations lies

on the interior of the worldsheet associahedron. In other words, provided that planar

propagators sa···b−1 > 0 are positive and the non-adjacent constants sij < 0 are negative,

then there exists exactly one real ordered solution σ1 < · · · < σn. We have checked

this thoroughly up to n=10 for a substantial amount of data. Note that our kinematic

inequalities are different from the ones introduced in [36] where all solutions are real.

We conjecture therefore that the scattering equation map is a diffeomorphism from the

worldsheet associahedron to the kinematic associahedron. For n=5, the scattering equation

map is given by

X1,3 =
σ2
σ3

(c13 + σ3c14) (6.23)

X1,4 =
1

1− σ2
((σ3 − σ2)c24 + σ3(1− σ2)c14) (6.24)
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In figure 20, we present graphical evidence showing that these equations provide a diffeo-

morphism.

Diffeomorphisms play an important role in the theory of positive geometries and canon-

ical forms. Recall from appendix A.3 and more specifically eq. (A.7) that provided a dif-

feomorphism φ : A → B between two positive geometries, the map pushes the canonical

form of one to the other:

A
diffeomorphism φ
−−−−−−−−−−→ B (6.25)

Ω(A)
pushforward by φ
−−−−−−−−−−−→ Ω(B) (6.26)

Applying this to our scenario, we find that the scattering equation map pushes the canonical

form of the worldsheet associahedron to that of the kinematic associahedron.

M
+
0,n

scattering equations
−−−−−−−−−−−−→
as diffeomorphism

An (6.27)

Ω
(

M
+
0,n

)

pushforward by
−−−−−−−−−−−−→
scattering equations

Ω(An) (6.28)

But eq. (6.15) and eq. (3.20) imply

ωWS
n

pushforward by
−−−−−−−−−−−−→
scattering equations

mnd
n−3X (6.29)

It follows that the amplitude mn can be obtained by pushing forward the Parke-Taylor form

via the scattering equations. Recalling the definition of the pushforward from eq. (A.5),

we obtain the amplitude form by taking the Parke-Taylor form, substituting all roots of

the scattering equations and summing over all roots.
∑

sol. σ

ωWS
n = mnd

n−3X (6.30)

For a general ordering pair α, β, this generalizes to the following statement
∑

sol. σ

ωWS
n [α] = m[α|β]dn−3X (6.31)

where ωWS
n [α] denotes the Parke-Taylor form for the ordering α, and the scattering

equations are reinterpreted as a map M0,n → Kn that restricts to a diffeomorphism

M
+
0,n[α] → A[α|β], where M

+
0,n[α] denotes the (compactified) α-ordered part of the open

string moduli space.

We caution the reader that the pullback of the right hand side in eq. (6.30) does

not produce the left hand side. Indeed, pulling back a canonical form does not necessarily

produce another canonical form. For instance, pulling back d log y via y = x2 gives 2d log x,

which does not even have unit residue.

We observe that eq. (6.31) is reminiscent of the CHY formula for the bi-adjoint scalar.

Indeed they are equivalent, as we now show. We begin by rewriting our pushforward in

delta function form:

mn =

∫

ωn(σ)

[

n−3
∏

a=1

δ(Xia,ja − φa(σ))

]

(6.32)
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where the variables Xia,ja form a planar basis (corresponding to the diagonals of a trian-

gulation), and Xia,ja = φa(σ) is the scattering equation map eq. (6.22). It is necessary

that the basis variables appear with unit Jacobian in the delta functions, because mn is

obtained from Ω(An) by stripping away
∏n−3

a=1 dsIa . In other words, the delta functions

must be normalized in the basis in which mn is obtained from Ω(An).

Now we claim that eq. (6.32) is equivalent to the corresponding CHY formula:

mn,CHY :=

∫

ωWS
n [σ]





1
∏n

a=1(σa − σa+1)

∏

a

′
δ





∑

b 6=a

sab
σa − σb







 (6.33)

Here we have deliberately isolated the Parke-Taylor form and grouped the other Parke-

Taylor factor with the delta function. With a little bit of work, it can be shown that the

square bracket expressions in eq. (6.33) and eq. (6.32) are equivalent. Thus, the second

Parke-Taylor factor acts as a Jacobian factor for pushing forward onto the subspace Hn.

More generally, a delta function dressed with an α-ordered Parke-Taylor factor provides the

pushforward onto the subspace H[α] defined in eq. (8.22) or equivalently H[α|α] defined

in section 3.4. It follows that

mn = mn,CHY (6.34)

We have thus provided a novel derivation of the CHY formula for the bi-adjoint scalar.

This derivation is purely geometric, and does not rely on the usual arguments involving

factorization.

Finally, we make a brief comment about all ordering pairs. In section 3.4, we obtained

the partial amplitude m[α|β] from the pullback of the planar scattering form Ω(n−3)[α]

to the subspace H[α|β]. However, around eq. (8.26) we argue that the same amplitude

can also be obtained by pulling back the same form to a different subspace H[β]. Hence,

the amplitude can be expressed as the integral of the α-ordered Parke-Taylor form over

the delta function dressed with β-ordered Parke-Taylor factor, which is precisely the CHY

formula. It follows that

m[α|β] = mCHY[α|β] (6.35)

for every ordering pair.

7 “Big kinematic” space and scattering forms

So far we have considered scattering forms for amplitudes where there is some natural

notion of an ordering, and with it, an associahedron geometry where an ordering is also

important. In this section, we lay the groundwork for discussing scattering forms and

positive geometries in much more general theories with no notion of ordering at all. Re-

markably, this will be associated with a new “projective” understanding of color-kinematics

relations, and as we will see in section 8, even a geometrization of color itself!

In order to do this, we retrace our steps to the beginning, and think of kinematic space

in a more fundamental way. Most treatments of the space of independent Mandelstam

invariants simply posit that the natural variables are the sij subject to the constraint
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∑

i sij = 0. Already in the case where we had a natural ordering, we found that this was

not useful, and that a better set of independent variables — the planar variables Xa,b —

was needed to expose the connection between physics and geometry. But why was this

important? And how can we generalize to situations where we do not have an ordering?

A key realization is that there was never anything canonical about choosing sij as co-

ordinates for kinematic space — apart from being constrained, they are just a particular

random collection of momentum dot products. On the other hand, something physical

was gained by working with Xi,j variables: the kinematic space is described by physical

propagators associated with cubic graphs that directly encode all possible singularities of a

local theory.

This motivates a new way of thinking about the kinematic space where the fundamental

variables are all collections of possible propagators associated with cubic graphs. Of course

as we will see this is a highly redundant set, and these objects satisfy certain relations.

Nonetheless, we find an especially simple way of characterizing this space that makes the

fundamental link between kinematics and color transparent.

We begin by constructing a higher dimensional big kinematic space K∗
n before reducing

to the usual kinematic space Kn of Mandelstam variables which we henceforth refer to as

small kinematic space. We find that the big space is important in its own right with

connections to Jacobi relations. Furthermore, in section 7.2, we discuss a large class of

scattering forms beyond the planar scattering form of section 2.3, some of which have

polytope interpretations and some have additional symmetries like permutation invariance.

7.1 The big kinematic space

We begin by constructing the big kinematic space K∗
n. Consider a set of abstract variables

SI indexed by all subsets I ⊂ {1, 2, . . . , n} subject to two conditions,

• SI = SĪ where Ī is the complement of I

• SI = 0 for |I| = 0, 1, n−1, n

For example, K∗
n=4 is a 3-dimensional space spanned by the variables

{S12 = S34, S13 = S24, S14 = S23} (7.1)

while K∗
n=5 is a 10-dimensional space spanned by Sij ’s, and K∗

n=6 is a 25-dimensional space

spanned by 15 Sij ’s and 10 Sijk’s. The dimension for general n is given by

dimK∗
n = 2n−1−n−1 (7.2)

which for n > 3 is higher than the dimension n(n−3)/2 of the small kinematic space

Kn. Nonetheless, the latter can be recovered by imposing a 7-term identity which we

now describe.

For every partition of n particles into four subsets

I1 ⊔ I2 ⊔ I3 ⊔ I4 = {1, 2, · · · , n} (7.3)
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I1 I2

I3I4

I1 I4

I2I3

I1 I3

I4I2

SI1I2 SI2I3 SI1I3

gs gt gu

Figure 21. A four set partition I1 ⊔ I2 ⊔ I3 ⊔ I4 of the external labels and the three corresponding

channels. The three graphs gs, gt, gu are identical except for a 4-point subgraph.

we impose the following identity consisting of 7 terms (See figure 21):

SI1I2 + SI2I3 + SI1I3 = SI1 + SI2 + SI3 + SI4 (7.4)

where SIJ := SI∪J . We can visualize this identity as a triplet of cubic graphs which are

identical except for a four point subgraph, with the propagators on the left corresponding

to the three channels of the subgraph, and the propagators on the right corresponding to

the four legs of the subgraph. See figure 21 for an illustration. Moreover, recall that while

eq. (7.4) is usually presented as a derived property of 4-point kinematics, here we take a

different point of view whereby the small kinematic space Kn is constructed by requiring

eq. (7.4) as an “axiomatic identity” from which the usual kinematic identities follow:

SI =
∑

i<j; i,j∈I

Sij for all I;

n
∑

j=1;j 6=i

Sij = 0 for all i (7.5)

We derive the first identity by induction on m = |I|, which is trivial for m ≤ 2. Now

assume that the assertion has been proven for m < k, and |I| = k for some index set I.

We first isolate two elements a, b ∈ I and define K := I\{a, b}. Applying eq. (7.4) to the

partition Ī ⊔K ⊔ {a} ⊔ {b} gives

Sab + SaK + SbK = SK + SĪ (7.6)

where we used Sa = Sb = 0. It follows that

SI = SĪ = Sab + SaK + SbK − SK =
∑

i<j; i,j∈I

Sij (7.7)

where for the last equality we applied the induction hypothesis to each of the four terms

on the left hand side. This completes the derivation.

For the second identity in eq. (7.5), we apply the first identity to Ī for I := {i}

which gives
∑

a<b; a,b 6=i

Sab = SĪ = SI = 0 (7.8)
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Applying the first identity again to the full index set gives

∑

a<b

Sab = 0 (7.9)

Subtracting eq. (7.8) from eq. (7.9) gives the desired result.

It follows therefore that the 7-term identity reduces the big kinematic space K∗
n to

the small kinematic space Kn, in which case the abstract variables can be identified with

Mandelstam variables:

SI = sI for each I (7.10)

For some purposes, we find it useful to study geometries and differential forms directly in

the big kinematic space prior to imposing the 7-term identity.

7.2 Scattering forms and projectivity

We introduce scattering forms as a generalization of the planar scattering forms from sec-

tion 2.3 to all cubic graphs. We then explore the implications of projectivity in this general

framework and discover Jacobi identities for kinematic numerators as a direct consequence.

Before defining the scattering forms, we establish the properties of cubic graphs from

the point of view of the big space. Recall that a cubic graph g consists of (n−3) Mandelstam

variables sIa corresponding to the propagators of the graph. Then the corresponding big

SIa variables form a mutually compatible set, whereby any pair of variables SI and SJ are

said to be compatible if the index sets are either disjoint I∩J = ∅ or one is contained in the

other. Furthermore, we define an ordered cubic graph as a pair (g|α) consisting of a cubic

graph g and an ordering α for the external legs, assuming that g is compatible with α.

For every ordered cubic graph (g|α) with propagators SIa , we define a d log form

Ω(n−3)(g|α) := sign(g|α)
n−3
∧

a=1

d logSIa (7.11)

where sign(g|αg) ∈ {±1} depends not only on the ordered graph but also on the ordering of

the propagators so that swapping two propagators changes the sign. The antisymmetry of

the sign is of course compensated by the antisymmetry of the wedge product. Furthermore,

we impose relations between the sign of different ordered cubic graphs via a sign flip rule.

Recall that two graphs g, g′ with the same ordering α are related by a mutation if one can

be obtained from the other by an exchange of channel in a 4-point subgraph like figure 6.

We assume that planarity in the ordering α is preserved by the mutation, so that only one

mutation is possible in every 4-point subgraph of any cubic graph. Furthermore, we say

that two orderings α, α′ for the same graph g are related by a vertex flip if (g|α′) can be

obtained from (g|α) by exchanging two legs of a vertex (See figure 22). Finally, we define

the sign flip rule by requiring a sign change for every mutation and every vertex flip.

Mutation: sign(g|α) = −sign(g′|α) (7.12)

Vertex flip: sign(g|α) = −sign(g|α′) (7.13)
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Figure 22. A vertex flip at the red vertex.

For a generic pair of ordered graphs (g|α), (g|β) related by a sequence of sign flips, let

flip(α, β) denote the number of flips involved (modulo 2) so that

sign(g|α) = (−1)flip(α,β)sign(g|β) (7.14)

If we restrict α to the standard ordering, then the vertex flip is irrelevant and we reduce

to the sign flip rule for the planar scattering form eq. (2.12). More generally, we require

the sign rule under vertex flip for any quantity Q(g|α) labeled by ordered cubic graphs.

It follows that a product like Q(g|α)Q′(g|α) of two such quantities is independent of the

ordering and can therefore be written in a condensed form Q(g)Q′(g).

We now define the scattering form for n particles as a rank (n−3) form on K∗
n of the

following form

Ω(n−3)[N ] =
∑

cubic g

N(g|αg)Ω
(n−3)(g|αg) (7.15)

where we sum over all cubic graphs g, and to every cubic graph we assign an ordering αg

and a kinematic numerator N(g|αg) which we assume to be independent of big S variables.

However, since every term is independent of the ordering αg, we can condense our notation

as follows:

Ω(n−3)[N ] =
∑

cubic g

N(g)Ω(n−3)(g) (7.16)

Furthermore, we consider projective scattering forms, which are scattering forms that

are invariant under local GL(1) transformations SI → Λ(S)SI . This imposes constraints on

the kinematic numerators which we now explain. Consider a triplet of cubic graphs gs, gt, gu
like figure 21. Under the transformation, the Λ-dependence of the scattering form becomes

(N(gs|I1I2I3I4)+N(gt|I1I4I2I3)+N(gu|I1I3I4I2)) d log Λ ∧

(

n−4
∧

b=1

d logSJb

)

+ · · · (7.17)

where the SJb denote the (n−4) propagators shared by the triplet, and the · · · denotes

similar expressions for all other triplets. Now, since the non-vanishing propagators are

independent in the big kinematic space, therefore the Λ-dependence vanishes precisely if

the coefficient of every triplet vanishes. This gives us (2n−5)!!(n−3)/3 identities (not all

independent), one for each triplet, of the following form:

N(gs|I1I2I3I4)+N(gt|I1I4I2I3)+N(gu|I1I3I4I2) = 0 (7.18)
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Note that we have explicitly written out the ordering for each graph which is important

for making sure that the three terms add. We refer to eq. (7.18) as a Jacobi identity due

to its similarity to the Jacobi identity for structure constants of Lie groups. It follows that

the scattering form is projective if and only if its numerators satisfy Jacobi identities.

We make a few comments before providing examples. Note that eq. (7.18) is derived

without imposing the 7-term identity eq. (7.4). This is crucial, as imposing the identity

would reduce us to the small kinematic space Kn where the set of all propagators no longer

forms a basis (although the set of all planar propagators does), in which case we cannot

require the coefficient of every triplet in eq. (7.17) to vanish. Furthermore, the GL(1)

transformation does not act on the kinematic numerators, which may depend on usual

kinematic quantities like (pi ·pj), (ǫi ·pj) and (ǫi ·ǫj) that we assume to be independent of big

S variables. Nonetheless, we can define a similar local GL(1) transformation acting directly

on the small space via pi →
√

Λ(p) pi. It is straightforward then to show that GL(1)

invariance in the big space directly implies GL(1) covariance in the small space, meaning

Ω[N ](n−3)(s) → ΛD/2Ω(n−3)[N ](s) where D is the mass dimension of the numerators.

Let us consider some examples of projective scattering forms. The simplest case is the

α-planar scattering form

Ω
(n−3)
φ3 [α] =

∑

α-planar g

sign(g|α)
n−3
∧

a=1

d logSIa (7.19)

where we sum over all cubic graphs g compatible with the ordering α. For the standard

ordering this reduces to eq. (2.10) in the small kinematic space. In this case, the kinematic

numerator N(g|α) vanishes for any graph incompatible with α, and is ±1 otherwise. More

specifically, for every triplet, either none of the three graphs is compatible, or exactly two

are. For instance, if the first two of the triplet gs, gt, gu are compatible, then

N(gs|I1I2I3I4) = ±1 N(gt|I1I4I2I3) = ∓1 N(gu|I1I3I4I2) = 0 (7.20)

One way to generalize the planar scattering form without introducing any additional

structures such as spin or color is to drop the planarity requirement and consider all projec-

tive scattering forms whose numerators are 0,±1. This provides a large class of scattering

forms called d log scattering forms of which the planar case is only one. Furthermore, as the

planar form is closely tied to the geometry of the associahedron, many of these other forms

are also closely tied to polytopes of their own such as the permutohedron. We provide

more details on this topic in the Outlook.

Furthermore, we point out that while planar forms have cyclic symmetry, it is also

possible to construct projective forms with permutation symmetry. As will be discussed

in the next section, such scattering forms can be obtained from color-dressed amplitudes

that are permutation invariant, via an important connection between differential forms and

color. These include scattering forms for theories like Yang-Mills and Non-linear Sigma

Model, which we discuss in more detail in section 9.

Last but not least, we state an important property for any projective scattering form.

Since planar scattering forms are projective, it follows that every linear combination of
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Figure 23. An example of the duality between color factors and differential forms

them is also projective:

Ω(n−3)[C] =
∑

α∈Sn/Zn

C(α)Ω
(n−3)
φ3 [α] (7.21)

where the C(α) coefficients are independent of big S variables. Remarkably, the converse

is also true, i.e. every projective scattering form is a linear combination of planar scattering

forms. We give a detailed derivation in appendix C, and the upshot is that any projective

scattering form can be expanded in terms of a basis of (n−2)! planar forms,

Ω(n−3)[C ′] =
∑

π∈Sn−2

C ′(π) Ω
(n−3)
φ3 [1, π(2), . . . , π(n−1), n] . (7.22)

8 Color is kinematics

In the last section we have seen a striking relationship between projective scattering forms

in the big kinematic space, and the color-kinematics connection for numerator factors. But

this is just half of the story. In this section we see another related but distinct relationship

between color and kinematics. Indeed we have become accustomed to speaking of “color-

kinematics duality”, but this relationship is even more basic from the scattering form

point of view so that in a precise sense, “Color is Kinematics!” Temporarily ignoring

the correct assignment of signs, the basic observation is extremely simple: any scattering

form involves a sum over cubic graphs in kinematic space, and these all have a factor

that is the wedge product of all the ds’s associated with the propagators. But quite

beautifully, as a consequence of the 7-term identity eq. (7.4), these wedge-product factors

associated with any cubic graph satisfy exactly the same Jacobi identities as the color

factors associated with the same graphs! This leads naturally to a duality between color

factors and differential forms, as suggested by figure 23. We will see that this “Color is

Kinematics” relation goes even deeper, with the trace decomposition of color factors directly

equivalent to subspace pullbacks of the form. This connection allows us to geometrize color,

and makes it possible to speak of colored theories, such as Yang-Mills theories and the Non-

linear sigma model, purely in terms of scattering forms which can be freely exchanged for

explicit color factors.

8.1 Duality between color and form

We establish the duality between color factors and differential forms on kinematic space

Kn by showing that the latter satisfy Jacobi relations similar to the usual Jacobi relations

– 48 –



J
H
E
P
0
5
(
2
0
1
8
)
0
9
6

for structure constants. This leads naturally to a duality between color-dressed amplitudes

and scattering forms.

We begin by reviewing the algebra of color. Given an ordered graph we define a color

factor C(g|α) by first drawing g as a planar graph whose external legs are ordered clockwise

by α (See figure 23 (left)). Then, for each internal and external line we assign an index,

and for each vertex v we assign a structure constant favbvcv , where the indices av, bv, cv
correspond to the three adjacent lines in clockwise order. Finally, we obtain the color factor

by multiplying the structure constants and contracting repeated indices (which occur along

internal lines). Hence,

C(g|α) =
∏

v

favbvcv (8.1)

where index contraction is implicitly assumed. The antisymmetry of the structure constants

implies the vertex flip sign rule eq. (8.2) while the usual Jacobi identities for the structure

constants imply Jacobi identities for the color factors eq. (8.3) for any triple like figure 21:

C(g|α) = (−1)flip(α,β)C(g|β) (8.2)

C(gs|I1I2I3I4)+C(gt|I1I4I2I3)+C(gu|I1I3I4I2) = 0 (8.3)

We now argue that a similar set of identities hold for differential forms on the kinematic

space Kn. For every ordered graph (g|α) with propagators sIa for a = 1, . . . , n−3, we define

the (n−3)-form

W (g|α) = sign(g|α)
n−3
∧

a=1

dsIa (8.4)

We claim that the form satisfies the vertex flip sign rule eq. (8.5) and the Jacobi identity

eq. (8.6) in perfect analogy with color factors.

W (g|α) = (−1)flip(α|β)W (g|β) (8.5)

W (gs|I1I2I3I4)+W (gt|I1I4I2I3)+W (gu|I1I3I4I2) = 0 (8.6)

The former follows from the sign(g|α) factor in eq. (8.4). The latter follows from applying

the 7-term identity eq. (7.4) to the triplet gs, gt, gu from figure 21:

dsI1I2 + dsI2I3 + dsI1I3 = dsI1 + dsI2 + dsI3 + dsI4 (8.7)

Note that on the left the propagators correspond to the three channels of the triplet, while

on the right the propagators correspond to the legs of the 4-point subgraph. Moreover, let

sJb for b = 1, . . . , n−4 denote the propagators shared by the triplet. It follows that

(dsI1I2 + dsI2I3 + dsI1I3) ∧
n−4
∧

b=1

dsJb = 0 (8.8)

where every term on the right hand side has vanished. In particular, external legs vanish

by on-shell condition while internal legs vanish since they already appear in the product

∧n−4
b=1 dsJb . The result is precisely the sought after Jacobi relation.
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This implies a duality between color factors and differential forms on kinematic

space Kn:

C(g|α) ↔ W (g|α) (8.9)

Hence “Color is Kinematics”. We emphasize that the 7-term identity is absolutely crucial

for this property to hold, thus providing one of the motivations for constructing kinematic

space Kn by the 7-term identity directly.

We provide some examples for low n. For n=4, there are three color factors dual to

1-forms:

Cs = fa1a2bf ba3a4 ↔ ds

Ct = fa1a4bf ba2a3 ↔ dt

Cu = fa1a3bf ba4a2 ↔ du

For n=5, color factors are dual to 2-forms. Here we provide one example as illustrated in

figure 23.

Furthermore, the duality eq. (8.9) leads naturally to a duality between color-dressed

amplitudes and scattering forms. Consider a colored-dressed amplitude Mn[N ] with kine-

matic numerators N :

Mn[N ] =
∑

cubic g

N(g|αg)C(g|αg)
∏

I∈g

1

sI
(8.10)

where we sum over all cubic graphs g, and sI for I ∈ g denote the propagators in the graph.

We now map this amplitude to a form on kinematic space by applying eq. (8.9) to each

color factor individually, giving

Ω(n−3)[N ] =
∑

cubic g

N(g|αg)W (g|αg)
∏

I∈g

1

sI
(8.11)

which we recognize as a scattering form eq. (7.15) with SI → sI . Likewise, we can return

to the amplitude eq. (8.10) by applying eq. (8.9) backwards. Thus, the duality eq. (8.9)

implies the duality eq. (8.12)

Mn[N ] ↔ Ω(n−3)[N ] (8.12)

We henceforth refer to both dualities as color-form duality. Note that for any permutation-

invariant color-dressed amplitude, eq. (8.12) gives a scattering form that is nicely permu-

tation invariant. Furthermore, we comment on the role of projectivity. Recall that the

numerators N(g) satisfy Jacobi relations provided that the scattering form Ω(n−3)[N ](s)

is derived from a projective form in the big kinematic space. The dual amplitude Mn[N ]

therefore admits an expansion with N(g) as BCJ numerators, first proposed by Bern,

Carrasco and Johansson in [18].

For the special case of bi-adjoint scalar with double color group SU(N)×SU(N). The

scattering form is obtained by simply choosing N(g) = C(g) for every graph g:

Ω
(n−3)
φ3 =

∑

cubic g

C(g|αg) sign(g|αg)
n−3
∧

a=1

d log sIa (8.13)
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which is both permutation invariant and projective. The corresponding double color-

dressed amplitude is given by

Mφ3,n =
∑

cubic g

C(g)C̃(g)
∏

I∈g sI
(8.14)

8.2 Trace decomposition as pullback of scattering forms

We explore color-form duality further by examining partial amplitudes and their inter-

pretation from the differential form point of view. We find that trace decomposition of

color-dressed amplitudes are dual to pullbacks of the scattering form to appropriate sub-

spaces of dimension (n−3).

Recall that for the color groups U(N) and SU(N), the color factors can be decomposed

as traces from which partial amplitudes are obtained. More precisely, we have

C(g|α) =
∑

β∈O(g)/Zn

(−1)flip(α,β)Tr(β(1), . . . , β(n)) (8.15)

where O(g)/Zn denotes all 2n−2 orderings compatible with the graph g modulo cyclic

transformations. In other words, out of all (n−1)! distinct trace terms, the color factor

C(g|α) is expanded precisely in terms of those traces whose ordering is compatible with

the graph.

Substituting eq. (8.15) into eq. (8.10) for every graph g gives us the trace decomposition

for the amplitude:

Mn[N ] =
∑

β∈Sn/Zn

Tr(β(1), . . . , β(n))Mn[N ;β] (8.16)

where the partial amplitude Mn[N ;β] is given by a sum over β-planar graphs:

Mn[N ;β] =
∑

β−planar g

N(g|β)
∏

I∈g

1

sI
(8.17)

As an example, for n=4, the color factors decompose as

Cs=Tr(1234)− Tr(2134)− Tr(1243) + Tr(2143) (8.18)

Ct=Tr(1423)− Tr(4123)− Tr(1432) + Tr(4132) (8.19)

Cu=Tr(1342)− Tr(3142)− Tr(1324) + Tr(3124) (8.20)

where both the s and t channels contribute to the ordering β = (1234), thus giving

M4[N ; 1234] =
N(s|1234)

s
+

N(t|1234)

t
(8.21)

We now argue that the partial amplitude eq. (8.17) can be obtained by pulling back

the scattering form eq. (8.11) to an (n−3)-dimensional subspace H[β] which we define by

imposing (n−2)(n−3)/2 independent conditions:

H[β] :=
{

sβ(i)β(j) is constant | 1 ≤ i < j−1 ≤ n−2
}

(8.22)
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This coincides with the subspace Hn define in eq. (3.5) if β is the standard ordering and

the constants sβ(i)β(j) are negative. Now for any graph g compatible with β, we define

the pullback

dV [β] := W (g|β)|H[β] (8.23)

which is independent of the graph as shown around eq. (3.19) for the standard ordering.

More generally, for a pair of orderings α, β, we have

W (g|α)|H[β] =

{

(−1)flips(α,β)dV [β] if g is compatible with β

0 otherwise
(8.24)

where the first line follows immediately from the definition eq. (8.23), while the second line

requires a proof for which we provide a sketch. Our strategy is to argue by induction on

the number of particles, beginning with n=4 which can be verified directly. For higher n,

suppose g is a cubic graph that is compatible with α but not with β, and for simplicity let

us assume that β is the standard ordering. We observe that the graph must consist of at

least one propagator of the form sij where i < j and i, j 6= n. If i, j are non-adjacent, then

dsij = 0 on the pullback, and we are done. Otherwise, the propagator must be si,i+1, giving

W (g) = dsi,i+1 ∧W ′(g) for some form W ′(g). Since factors of dsi,i+1 within W ′(g) do not

contribute, we can therefore think of W ′(g) as the form for a reduced graph g′ obtained

from g by collapsing particles i and i+1 into a single particle. But W ′(g) vanishes by

induction, thus completing the argument. One subtlety of the last step is that the particle

(i, i+1) is generically off-shell with mass-squared given by si,i+1, which appears to violate

the induction hypothesis. But since factors of dsi,i+1 are effectively zero, the induction still

holds. It follows that the pullback of the scattering form Ω(n−3)[N ] to the subspace H[β]

gives the partial amplitude Mn[N ;β]:

Ω(n−3)[N ]|H[β] =





∑

β-planar g

N(g|β)
∏

I∈g

1

sI



 dV [β] = Mn[N ;β]dV [β] (8.25)

Applying this to the planar scattering form Ω
(n−3)
φ3 [α] for the bi-adjoint scalar gives us

the double partial amplitude m[α|β]:

Ωφ3 [α]|H[β] = (−1)flip(α,β)m[α|β]dV [β] (8.26)

This is very different from eq. (3.32) where the same amplitude was obtained by pulling

back to a different subspace H[α|β]. The advantage of the latter is that it provides a geo-

metric interpretation for the amplitude (form) as the canonical form of a positive geometry

as in eq. (3.33). The former, however, can be applied to trace decompose any colored

tree amplitude.

Finally, we discuss the role of some well-known amplitude relations. Recall the de-

composition a la Del Duca, Dixon and Maltoni (DDM) [37] given in eq. (8.27), where gπ
denotes the multi-peripheral graph with respect to 1 and n for the ordering π ∈ Sn−2 as

shown in figure 24.

Mn[N ] =
∑

π∈Sn−2

C(gπ|π) Mn[N ; 1, π(2), . . . , π(n−1), n] (8.27)
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1 n

π(2) π(3) π(n− 1)

Figure 24. Multi-peripheral graph with respect to 1 and n for the ordering π ∈ Sn−2.

It follows that the color-dressed amplitude can be expanded in terms of only (n−2)! partial

amplitudes of the form given in eq. (8.27), which is more efficient than the (n−1)!-term

expansion of the standard trace decomposition. This also follows from the Kleiss-Kuijf

(KK) [38] relations. Furthermore, applying the color-form duality to eq. (8.27) gives an

analogous identity for the scattering form

Ω(n−3)[N ] =
∑

π∈Sn−2

W (gπ|π) Mn[N ; 1, π(2), . . . , π(n−1), n] (8.28)

Note that the expansion is unique both for the color-dressed amplitude and for the form,

since the multi-peripheral graphs gπ form a basis. Furthermore, we find that Bern-Carrasco-

Johansson (BCJ) relations [18] follow from requiring the scattering form to be projective,

as shown in appendix C.

Last but not least, as we have discussed around eq. (7.22), every projective form can

be expanded in a basis of (n−1)! planar scattering forms labeled by the orderings π ∈ Sn−2,

and now we can spell out the coefficients. As shown in appendix C, the coefficient for the

π term is nothing but the kinematic numerator N(gπ|π):

Ω(n−3)[N ] =
∑

π∈Sn−2

N(gπ|π) Ω
(n−3)
φ3 (1, π(2), · · · , π(n−1), n) . (8.29)

Note that eq. (8.28) and eq. (8.29) are complementary to each other. By the color-form

duality, the latter is equivalent to the well-known dual-basis expansion [39] of the color-

dressed amplitude:

Mn[N ] =
∑

π∈Sn−2

N(gπ|π)M
φ3

n [1, π(2), . . . , π(n−1), n] (8.30)

9 Scattering forms for gluons and pions

There are two prime examples of permutation invariant forms on kinematic space: the

scattering forms associated with the scattering of gluons in Yang-Mills theory, and of pions

in the Non-linear Sigma Model. Let us stress again the central novelty of this claim: there is

a differential form on the kinematic space, with coefficients that depend on either momenta

and polarization vectors (for Yang-Mills) or Mandelstam variables (for the NLSM), which

are fully permutation invariant with no fabc factors anywhere in sight. Nonetheless, the

geometrization of color discussed in the previous sections tells us that these forms contain

all the information about color-dressed amplitudes.
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In fact more is true: the scattering forms for gluons and pions are remarkably rigid

objects. For gluons, we find that there is a unique differential form with the usual minimal

power-counting in momenta that is both gauge invariant and projectively invariant. In

particular, the permutation invariance need not be stipulated but is derived. Similarly, the

form for pions is the unique form where the requirement of gauge invariance for each leg

is replaced with that of the Adler zero in the soft limit. Such “uniqueness theorems” have

recently been established in [20], for partial amplitudes from which the uniqueness of the

full scattering form follows, provided the crucial extra requirement of projectivity. We also

show that these forms have a natural pushforward origin from the worldsheet.

9.1 Gauge invariance, Adler zero, and uniqueness of YM and NLSM forms

We establish general conditions under which scattering forms for gluons and (two-

derivative-couple, massless) pions are unique. Consider general scattering forms Ω
(n−3)
gluon

and Ω
(n−3)
pion for pure gluons and pure pions, respectively. For the gluons, we require the

kinematic numerators to consist of contractions in momenta pµi and polarizations ǫµi with

each polarization appearing exactly once; moreover we require the expected power count-

ing, which suggests in particular that there can be no more than (n−2) contractions like

(ǫi · pj) in any term; finally, we require gauge invariance (i.e. invariance under the shift

ǫµi → ǫµi + αpµi ). For the pions, we require the numerators to be polynomials of Mandel-

stam variables with the right power counting (i.e. with degree (n−2) in Mandelstams), and

the Adler zero condition (i.e. vanishing under every soft limit pµi → 0). Finally, we assume

that the forms are projective. We claim that in both cases, the scattering form is unique

up to an overall constant.

To derive these two claims, we decompose the scattering forms a la DDM eq. (8.28),

and denote the partial amplitudes for the ordering π ∈ Sn−2 as Mgluon
n (π) and Mpion

n (π),

respectively, which are given by eq. (8.17) with appropriate numerators. Given the linear-

independence of the W (gπ|π) factors, it is clear that each gluon partial amplitude inherits

gauge invariance from Ω
(n−3)
gluon while each pion partial amplitude inherits Adler zero from

Ω
(n−3)
pion . However, the main result of [20] states that any expression satisfying the assump-

tions of Mgluon
n (π) must be the Yang-Mills partial amplitude MYM

n (π) up to a constant,

and similarly any expression satisfying the assumptions of Mpion
n (π) must be the Non-linear

Sigma Model partial amplitude MNLSM
n (π). Hence, there exist constants απ, α

′
π for every

π so that

Mgluon
n (π) = απM

YM
n (π) Mpion

n (π) = α′
πM

NLSM
n (π) (9.1)

Finally, recall that the partial amplitudes satisfy BCJ relations due to projectivity of the

form. It follows that the constants α := απ are identical for all π and likewise for α′ := α′
π

so that the scattering forms are unique up to a constant:

Ω
(n−3)
gluon = α Ω

(n−3)
YM Ω

(n−3)
pion = α′ Ω

(n−3)
NLSM (9.2)

Note that projectivity plays a crucial role without which we could have put arbitrary

constants on the right hand side of eq. (8.28), thus leading to a (n−2)!-parameter family of
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solutions. Furthermore, permutation symmetry, unitarity and factorization all emerge as

natural consequences of gauge invariance/Adler’s zero and projectivity (and some technical

constraints on the numerators), even though none was assumed.

For all n, these forms can be obtained from the color-dressed amplitude by directly

applying the relation eq. (8.9), thus establishing their existence. Here we give explicit

examples for n=4. The NLSM form reads:

Ω
(1)
NLSM = s t d log

(s

t

)

= t d s− s d t (9.3)

which also equals (u dt − t du) = (s du − u ds) and is thus permutation invariant up to a

sign. We can express the YM form as a combination of two φ3 forms:

Ω
(1)
YM = Ns d log

(s

t

)

+Nu d log
(u

t

)

(9.4)

where Ns, Nu are BCJ numerators for the s and u channels (see e.g. [40]).

9.2 YM and NLSM from the worldsheet

We now discuss the worldsheet origin of projective scattering forms with YM and NLSM

as the primary examples. First we show that every projective scattering form Ω(n−3)[N ]

on Kn can be obtained as the pushforward of an equivalence class of forms ωn[N ] on the

moduli space M0,n. In particular, the planar scattering form Ω
(n−3)
φ3 [α] is obtained by

pushing forward the Parke-Taylor form ωWS
n [α].

Recall that given any form ωn(σ) on moduli space, its pushforward is given by substi-

tuting and summing over all solutions of the scattering equations

ω(σ) →
∑

sol. σ

ωn(σ) (9.5)

Note that two forms ωn and ω′
n are pushed to the same forward if and only if they are

equivalent on the support of the scattering equations. We therefore “equate” moduli space

forms ωn(σ), ω
′
n(σ) that are equivalent on the support of the scattering equations for which

ωn(σ) ≃ ω′
n(σ) =⇒

∑

sol. σ

ωn(σ) =
∑

sol. σ

ω′
n(σ) (9.6)

We now wish to classify all forms on moduli space that pushforward to projective

scattering forms. Recall from appendix C that every projective form can be expanded in

a basis of (n−2)! planar scattering forms with coefficients given by kinematic numerators

for multi-peripheral graphs:

Ω(n−3[N ] =
∑

π∈Sn−2

N(gπ|π)Ω
(n−3)
φ3 [1, π(2), . . . , π(n−1), n] (9.7)

which can obviously be obtained by pushing forward the following form on moduli space:

ωn[N ] =
∑

π∈Sn−2

N(gπ|π)ω
WS
φ3 (π) (9.8)
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In this way, we can construct a worldsheet form that gives any projective form as a linear

combination of Parke-Taylor forms with different orderings.

Two important worldsheet forms are the YM and NLSM forms, which are determined

by the corresponding CHY half-integrand. More precisely, we claim that

Ω
(n−3)
YM =

∑

sol. σ

dµn Pf ′Ψn Ω
(n−3)
NLSM =

∑

sol. σ

dµn det′An (9.9)

where dµn := dnσ/vol [SL(2)] and Pf ′Ψn and det′An are the reduced Pfaffian and deter-

minant (both permutation invariant), respectively, as defined in [6].

Pf ′Ψn := (−1)i+j
Pf|Ψn|

i,j
i,j

σi,j
det′An :=

det |An|
i,j
i,j

σ2
i,j

for any 1 ≤ i < j ≤ n (9.10)

Here Ψn(σ, ǫ, p) is the 2n× 2n matrix built from polarizations and momenta

Ψn :=

(

A −CT

C B

)

(9.11)

where Aa,b, Ba,b, Ca,b are n× n block matrices given by:

Aa,b :=







pa·pb
σa,b

a 6= b

0 a = b
Ba,b :=







ǫa·ǫb
σa,b

a 6= b

0 a = b

Ca,b :=







ǫa·pb
σa,b

a 6= b

−
∑

c 6=aCa,c a = b

(9.12)

An important property of these worldsheet forms is that, on the support of scattering

equations, Pf ′Ψn is manifestly gauge invariant [6] and det′An has the Adler zero [21]:

Pf ′Ψn(ǫ
µ
i → ǫµi + αpµi ) = Pf ′Ψn(ǫ

µ
i ) lim

pµi →0
det ′An = 0 (9.13)

The uniqueness of the YM and NLSM forms under the conditions discussed above implies

that there is a unique equivalence class of worldsheet forms for each theory, which by (9.13)

must be given by Pf ′Ψn and det′An, respectively. Finally, it is well known that both Pf ′Ψn

and det′An can be expanded in terms of Parke-Taylor forms with coefficients given by BCJ

numerators [15], which reaffirms the result already found in eq. (9.8). For example, the

n=4 forms are

det ′A4dµ4 =
s2dµ4

σ2
12σ

2
34

→ s t
(

ωWS
φ3 (1234) + ωWS

φ3 (1324)
)

= s t ωWS
φ3 (1423)

Pf ′Ψ4dµ4 → Ns ωWS
φ3 (1234)−Nu ωWS

φ3 (1324)

9.3 Extended positive geometry for gluons and pions?

It is clear that the gluon and pion scattering forms are fundamental objects, with a canoni-

cal purpose in life directly in kinematic space as well as on the worldsheet. What we are still
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missing is the complete connection of these scattering forms with positive geometries. The

obstacle is the most obvious one: while the forms are dictated by god-given properties of

gauge-invariance/Adler zero and projective invariance, they are not canonical forms which

must have not only logarithmic singularities but also unit leading residues. This may be

taken as an invitation to e.g. further “geometrize” the polarization vectors — something

we have already seen as a critical part of the amplituhedron story in four dimensions —

or there may be other ways to more naturally tie the “prefactors” in both YM and the

NLSM to the underlying (associahedron) geometry universally associated with the poles of

(planar) cubic graphs.

10 Summary and outlook

Let us quickly recap the main ideas we have discussed in this paper.

• Scattering amplitudes are better thought of as “scattering forms” — differential forms

on kinematic space.

• The kinematic associahedron is the analog of the amplituhedron for bi-adjoint φ3

theory at tree level, and the tree amplitude is the canonical form of this associahedron.

• The associahedron geometry makes manifest properties of bi-adjoint φ3 amplitudes

such as factorization and “soft” limit. It also provides new representations of the

amplitudes from triangulations of the geometry, with the Feynman diagram expansion

being one particular triangulation.

• The tree-level open string moduli space is an associahedron, and scattering equa-

tions provide a diffeomorphism between the worldsheet and kinematic associahedra.

Furthermore, the pushforward of the Parke-Taylor form — the canonical form of the

worldsheet associahedron — gives the tree scattering form for the bi-adjoint scalar

theory.

• “Color is Kinematics”: the differential forms for cubic graphs satisfy Jacobi relations

identical to color factors, thus a color-dressed amplitude is dual to a scattering form

and partial amplitudes are obtained as pullbacks of the form to appropriate subspaces.

• It is natural to study scattering forms in the big kinematic space, and for a form

to be projectively well defined, kinematic numerators must satisfy the same Jacobi

identities as color factors.

• Two primary examples are the scattering forms for Yang-Mills and the Non-Linear

Sigma Model. These forms are uniquely fixed by standard power-counting, gauge

invariance/Adler zero conditions, and projectivity.

There are many obvious unanswered questions and open avenues of investigation sug-

gested by our results. For instance: is there a complete geometrization of scattering forms

for YM and the NLSM that brings the polarization vectors into the geometry? This ques-

tion is of course also relevant to the search for geometries connected to gravity amplitudes.
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While we do not have any natural scattering forms due to the absence of color, the ampli-

tudes can be obtained using the double-copy construction a la BCJ [18, 19]. More precisely,

for a double copy of the form L⊗R between theories L and R, the amplitude for the prod-

uct theory can be obtained directly from either Ω
(n−3)
L for the L theory or Ω

(n−3)
R for the

R theory by replacing the wedge products W (g) with appropriate kinematic numerators:

ML⊗R
n =

∑

cubic g

NL(g) NR(g)
∏

I∈g sI
= Ω

(n−3)
L |W (g)→NR(g) = Ω

(n−3)
R |W (g)→NL(g) , (10.1)

For example, we obtain gravity from the product YM ⊗ YM, Born-Infeld theory from the

product YM ⊗ NLSM and the so-called special Galileon theory from NLSM ⊗ NLSM [21].

Along this line, it is very tempting to connect our worldsheet picture for the open string to

the ambitwistor string [8, 41–43], and related worldsheet methods using scattering equa-

tions [44, 45] which are exclusively for the closed string. Furthermore, could we understand

the double-copy construction, and possible geometries for gravity amplitudes in a way simi-

lar to the Kawai-Lewellen-Tye relations connecting open- and closed-string amplitudes [46]

(See [47, 48] for related ideas)?

We have seen the YM scattering form as pushforward of the Pfaffian form on the

worldsheet, which is unique gauge invariant under the assumptions provided. What is even

more remarkable is that the full-fledged open string amplitude can be obtained by directly

integrating the Pfaffian on the worldsheet associahedron (with Koba-Nielsen factor [34]

as a natural regulator for logarithmic divergences)! While this can be shown by string

theory calculation (cf. [35]), there must be deep conceptual reasons why the gauge-invariant

object for gluon scattering in YM theory completely dictates the infinite series of higher-

dimensional corrections from superstrings! It would be highly desirable to understand this

fact better and to see in general how integrals and pushforwards of worldsheet forms are

related to each other [29].

Let us end with a few suggestions for immediate avenues of progress which are more

continuously connected to the themes introduced in this paper.

General d log projective forms: permutohedra and beyond. Recall that a scat-

tering form eq. (10.2) is called d log scattering form if it is projective and every kinematic

numerator is either 0 or ±1. A classification of all such forms is then equivalent to solving

the Jacobi relations (7.18) provided N(g|αg) ∈ {0,±1}.

Ω
(n−3)
d log (S) =

∑

cubic g

N(g) Ω(n−3)(g)(S) (10.2)

While we do not have a complete classification, we can discuss some general properties.

To every d log scattering form, we assign a connected graph Υ consisting of a vertex for

every cubic graph g whose numerator N(g) is non-zero, with a line between any two

vertices related by mutation. Furthermore, projectivity is satisfied precisely if every vertex

is adjacent to exactly (n−3) lines (i.e. the graph is “simple”), and a sign flip occurs between

any two vertices related by mutation. In particular, walking along any closed path in the

graph Υ should return us back to the same sign. Note that this does not imply that the
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path must be of even length, since the sign at the initial vertex depends on its propagators

which may have been reordered by the sequence of mutations.

The simplest example of d log scattering forms is of course the planar scattering form

Ω
(n−3)
φ3 [α] whose connected graph Υ is given by the skeleton of the α-ordered associahedron,

also known as the Tamari lattice [49]. In fact, for every n, the Tamari lattice provides the

smallest number of vertices possible. However, the Tamari lattice is only the beginning of

a large class of examples. For n=4, there is only one possible topology for the graph (i.e. a

line segment). For n=5, we have seen possible topologies are pentagon, hexagon, octagon

and nonagon.

For all n, a large class of possible connected graphs are given by the skeleton of the

“Cayley polytopes” discussed in [50] whose d log scattering forms were obtained by push-

ing forward Cayley functions (expressed as a form on moduli space) via the scattering

equations. The Cayley polytopes are polytopes constructed directly in kinematic space, of

which the kinematic associahedron is one example. Furthermore, much of our associahe-

dron discussion generalizes word-for-word to the Cayley polytopes, a summary of which is

provided below.

• The Cayley polytope (whose skeleton is the connected graph Υ) is constructed directly

in kinematic space Kn by intersecting a (n−3)-dimensional subspace with the positive

region defined by setting sI ≥ 0 for every propagator appearing in the cubic graphs.

• The pullback of the d log scattering form to the subspace gives the canonical form of

the Cayley polytope.

• The scattering form can be obtained as the pushforward of a form on moduli

space M0,n.

Here we present the construction for one example: permutohedron Pn [51], which is

the Cayley polytope with largest number of vertices for any n, where each of the (n−2)!

vertices corresponding to a multi-peripheral cubic graph with respect to 1 and n as shown

in figure 24.

We begin by defining the top-dimensional “positive region” where all possible poles of

the multi-peripheral graphs are positive:

s1a1···am for m = 1, . . . , n−3 and 2 ≤ a1 < · · · < am ≤ n−1 (10.3)

where every cut corresponds one of the (2n−2−2) facets of the permutohedron. Further-

more, the subspace is given by the following (n−2)(n−3)/2 conditions:

sij is a negative constant for 2 ≤ i < j ≤ n−1 , (10.4)

which are the analog of non-adjacent constants for the associahedron case. One can prove

that the intersection of the positive region with the subspace gives the permutohedron by

showing geometric factorization on all possible boundaries. Note that Pn=4 is a line seg-

ment; and Pn=5 is a hexagon while Pn=6 is a truncated octahedron, as shown in figure (25).
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Figure 25. Permutohedra for n=5 (top) and n=6 (bottom)

Similar to that for associahedron, the (projective) scattering form for Pn is given by

Ω
(n−3)
Pn

=
∑

π∈Sn−2

sgn(π)
n−2
∧

a=2

d log s1π(2)···π(a) (10.5)

where sgn(π) is the signum of permutation π. Furthermore, the pullback of the scattering

form to the subspace (denoted Qn) gives the canonical form of the permutohedron:

Ω
(n−3)
Pn

|Qn =





∑

π∈Sn−2

1
∏n−2

a=1 s1π(2)···π(a)



 dn−3s (10.6)

Finally, the scattering form can be obtained as a pushforward of the following form on
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moduli space:

ωPn :=
∑

π∈Sn−2

sgn(π)ωWS
n (π) (10.7)

as suggested by eq. (9.8).

The discussion provided above can be generalized to all Cayley polytpes studied in [50].

which belong in the much larger class of generalized permutohedra studied by Postnikov [52,

53]. In on-going discussions with Postnikov we have learned that our construction for

these polytopes are equivalent to his under a natural change of variables. It is likely that

a corresponding d log scattering form exists for generalized permutohedra. Moreover, for

recent studies of worldsheet forms that are relevant to our construction, see [54, 55].

Massive scalar amplitudes, non-logarithmic forms. While we have ostensibly fo-

cused on amplitudes for massless particles, for the bi-adjoint φ3 theory in particular it is

clear that there is no obstruction to dealing with the scattering of massive particles. One

interesting point about doing this is the following: we know that we can generate e.g. φ4

couplings from a cubic theory once massive particles are integrated out. Now, suppose we

started with a φ4 theory; there are already small subtleties on how to geometrize the scat-

tering form in this case related to the fact that the form simply does not have logarithmic

singularities, and have singularities at infinity. The addiction to “forms with logarithmic

singularities” is perhaps the central obstacle to seeing connections to positive geometries.

But if we generate the quartic coupling by integrating out massive scalars in a cubic theory,

the full theory does have logarithmic singularities, and so we can “sneak up” on the hard

problem of dealing with non-logarithmic singularities by regulating them as logarithmic

ones which are then sent to infinity. Furthermore, the scattering forms for the NLSM have

non-trivial residues on all the poles as well as poles at infinity; it would again be fascinating

to find a purely geometrical characterization of these residues.

Loops. Furthermore, we can immediately start to explore scattering forms and possible

positive geometries associated with the loop integrand for e.g. the bi-adjoint scalar theory.

We can attempt to mimic the steps needed to “upgrade” the amplitude to a differential

form at loop level. An early and obvious source of annoyance is what to do about bubble

topologies, since naively including them would give double and higher poles, thus ruining

the logarithmic singularities of the form. It is perhaps reasonable to then sum over all

diagrams excluding these bubbles. At four points and one loop, this leaves us with a sum

over five d log forms. Can these forms be made to be projective, and is there a positive

geometry in the extended kinematic space of loop and Mandelstam variables attached to

the loop scattering forms?

Going beyond the bi-adjoint scalar case, one can consider scattering forms for loop

integrands in gauge theories and more general theories with color. In particular, it should

be straightforward to write down forms for one-loop maximally supersymmetric Yang-Mills

amplitudes in general dimensions, since there is no contribution from bubbles. Similarly

we expect these forms for loop integrands to have a worldsheet origin that may be related

to scattering equations and ambitwistor strings at loop level [41, 56–64].
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Scattering Forms, Amplituhedron and Twistor Strings in Four Dimensions We

have now seen two notions of scattering forms. In the story of the amplituhedron the forms

play the role of combining different helicity amplitudes (as does the super-amplitude) into

a single object, while in this paper the differential forms are tied to the geometrization

of color. How are these pictures related to each other? There must be a connection,

not only for moral reasons, but for more pragmatic and technical ones. We know that

the scattering equations and the CHY formula for gluon amplitudes transition smoothly

in four-dimensional spacetime to the Roiban-Spradlin-Volovich (RSV) equations and the

twistor-string formulas for N = 4 SYM scattering amplitudes [65]. The latter is deeply

connected to the geometry of the positive Grassmannian and the amplituhedron, while

we have exposed the connection of the former to the worldsheet associahedron. Making

progress on these particular questions will undoubtedly need some conceptually new ideas.

On the other hand, first steps have been taken in identifying scattering forms for

(tree-level) super-amplitudes in N = 4 SYM and the “amplituhedron” in ordinary, four-

dimensional momentum space; these are (2n−4)-forms Ω
(2n−4)
n encoding all helicity ampli-

tudes in the space of {λa, λ̃a | a = 1, 2, · · · , n} subject to momentum conservation, and the

(2n−4)-dimensional “amplituhedron” lives in a “positive region” in the space with correct

“winding numbers” [29, 66]. In close analogy with our associahedron story, there is strong

evidence that the four-dimensional scattering equations (RSV) provide a diffeomorphism

from G>0(2, n) (the twistor-string worldsheet) to the “amplituhedron” in momentum space;

its canonical form, or the pullback of Ω
(2n−4)
n to the subspace where it lives, is then given

by the pushforward of the cyclic form of G>0(2, n) [29, 66]. We leave the study of these

exciting questions for future investigations.
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A A quick review of positive geometries and canonical forms

In this section, we provide a quick review of positive geometries and canonical forms, which

were introduced in [13] by two of the authors of the present paper and Thomas Lam.
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A.1 Definitions

Loosely speaking, a positive geometry A is a real, oriented, closed geometry with boundaries

of all codimensions. In particular, each boundary of a positive geometry is again a positive

geometry. For instance, polytopes are positive geometries with linear boundaries. More

generally, a positive geometry can have curved boundaries defined by polynomials of higher

order. A more rigorous definition of positive geometry was introduced in [13] as a semi-

algebraic variety with some topological assumptions.

The crucial point is that every positive geometry has a unique differential form Ω(A)

defined on its ambient space called its canonical form, satisfying the following properties:

1. It is meromorphic, with simple poles precisely along the boundaries of the geometry.

2. For any hyper-surface H containing a boundary B of A, the residue along H is

given by

ResHΩ(A) = Ω(B) (A.1)

3. If A is a point, then Ω(A) = ±1 depending on the orientation.

Assuming that the ambient space does not admit any non-zero holomorphic top forms,

the canonical form is unique for each positive geometry. For this reason, the positive

geometry is usually embedded in (real) projective space PN (R) rather than (real) Euclidean

space RN where holomorphic top forms exist in abundance. But since RN can be embedded

in P
N (R) via x → (1, x), it is convenient to visualize projective space as Euclidean space

with a hyperplane at infinity.

One trivial property of canonical forms is that for any pair of positive geometries A

and B, we have

Ω(A× B) = Ω(A) ∧ Ω(B) (A.2)

In addition, canonical forms have two important properties which we now discuss: trian-

gulation and pushforward.

A.2 Triangulations

Given a subdivision of a positive geometry A by finitely many pieces Aa, the canonical

form satisfies

Ω(A) =
∑

a

Ω(Aa) (A.3)

We often refer to a subdivision as a triangulation even if the pieces Aa are not simplices.

Since the right hand side is independent of the choice of triangulation, we say that:

The canonical form is triangulation independent. (A.4)

The intuition behind eq. (A.3) is that the spurious poles appearing on the right hand side

cancel while the physical poles are identical on both sides. This is not as obvious as it

may seem. Naively it is tempting to think that spurious poles cancel in pairs along the

boundary between any two adjacent pieces of the triangulation, but this is generically false

as multiple pieces may be needed to cancel a spurious pole. See section 3 of [13] for a

careful derivation.
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A.3 Pushforwards

Consider a map φ : A → B between positive geometries of the same dimension. Given a

form ω on the ambient space of A, we can push it to a form η on the ambient space of B

via the map φ:

ω(a)
φ
−→ η(b) :=

∑

roots a

ω(a) (A.5)

where for any b ∈ B we sum over all complex roots a of b = φ(a), where φ is analytically

continued. This is called a pushforward, also denoted by

φ∗(ω) := η (A.6)

Suppose, furthermore, that φ is a diffeomorphism between the interior of the two

positive geometries, but possibly finitely-many-to-one when analytically continued. We

claim that the map pushes the canonical form of the domain to the canonical form of the

image:

Ω(A)
φ
−→ Ω(B) (A.7)

We therefore say that:

The pushforward preserves canonical forms. (A.8)

This claim has been proven in certain examples where the boundary structures of A and B

are well understood [13]. However, it remains an outstanding challenge to prove it in the

most general case. Some ideas for doing so is discussed in section 4 of [13], which involves

a “blowup” procedure.

For computational purposes, the pushforward can be expressed in a more useful way.

Let ai denote coordinates on A and bi coordinates on B for i = 1, . . . , D. Also let

ω := f(a)dDa η := g(b)dDb (A.9)

denote the top forms. Then

g(b) =

∫

dDaf(a) δD(b− φ(a)) (A.10)

where the integral sign is simply an instruction to sum over all roots on the support of the

delta function. This is the delta function expression of the pushforward. It is important

that the bi variables appear with unit Jacobian in the delta functions.

Before ending this section, we generalize the pushforward to the case where dim B ≥

dimA. Consider a set of scalar equations Φi(a, b) = 0 with a ∈ A and b ∈ B. Here Φ

acts as an implicit function between the positive geometries, rather than a direct map.

We assume that there are dimA independent equations, and that for any b ∈ B, there are

finitely many complex roots a ∈ A. Now, given a form ω on the ambient space of A, we

can push it to a form η on the ambient space of B via Φ:

ω(a)
Φ
−→ η(b) :=

∑

roots a

ω(a) (A.11)

– 64 –



J
H
E
P
0
5
(
2
0
1
8
)
0
9
6

As before, we can denote the pushforward as:

Φ∗(ω) := η (A.12)

If dimA = dimB and Φi(a, b) = bi − φi(a), then we recover (A.8).

A.4 Projective polytopes and dual polytopes

We discuss the properties of convex polytopes as positive geometries. While polytopes

are most easily visualized in Euclidean space R
m, for the present discussion it is more

convenient to embed the polytope in projective space P
m(R) via x → (1, x). Let Y =

(1, x) denote a point in projective space with components Y A indexed by A = 0, . . . ,m.

Furthermore, let W denote points in the dual space with components WA, and we define

the contraction Y ·W := Y AWA where the repeated index A is implicitly summed.

Now consider a convex polytope A with vertices Zi = (1, Z ′
i). Then the interior of A

is given by all positive linear combinations of the vertices in projective space:

A =

{

∑

i

CiZi | Ci > 0

}

(A.13)

Note of course that the coefficients generically form a redundant representation of the

interior. Furthermore, the polytope can be cut out by linear equations of the form Y ·Wj ≥ 0

for some collection of dual vectors Wj . The facets of the polytope are therefore given by

Y ·Wj = 0.

Furthermore, we construct the dual polytope A∗ as the convex polytope in the dual

projective space whose vertices are given by the dual vectors Wj . It follows that the interior

of A∗ is the set of all positive linear combinations of the dual vectors:

A∗ =







∑

j

CjWj | Cj > 0







(A.14)

It can be shown that A∗ is precisely the set of all points W cut out by the inequalities

W · Zi ≥ 0, implying that the facets of the dual polytope are given by W · Zi = 0. This

leads us to an important fact about the duality of polytopes:

The facets of A are dual to the vertices of A∗, and vice versa. (A.15)

More generally, we have:

1. The codim-d boundaries of A correspond to the (d−1)-boundaries of the dual A∗.

2. Any two boundaries of A differing by one dimension are adjacent precisely if

their duals are adjacent.

It follows that the dual of every simple polytope is simplicial, and vice versa. Recall that

a polytope of dimension m is called simple if every vertex is adjacent to exactly m facets
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(or equivalently m edges); and a polytope is called simplicial if every facet is a simplex.

We leave the derivation as an exercise for the reader.

Having established the dual polytope A∗, we find a direct connection to the canonical

form of the original polytope A — the canonical form is determined by the volume of the

dual. For any Y on the interior of A, we define a Y -dependent measure on the dual space:

dVol :=
〈WdmW 〉

(Y ·W )m+1
(A.16)

where the angle brackets denote the determinant 〈WdmW 〉 := det (W,dW, . . . , dW ). The

(Y -dependent) volume of the dual A∗ is therefore

Vol(A∗) :=

∫

W∈A∗

dVol (A.17)

Then, as shown in section 7 of [13], the canonical form of the polytope A is determined by

the volume of the dual polytope A∗:

Ω(A) = Vol(A∗) 〈Y dmY 〉 /m! (A.18)

which we also write as

Ω(A) = Vol(A∗) (A.19)

where Ω(A) is called the canonical rational function and is the coefficient of the universal

factor 〈Y dmY 〉 /m! appearing in the canonical form Ω(A). For convenience, the canonical

rational function defined here is normalized differently from the one defined in the original

reference [13]. In particular, the volume of a dual simplex ∆∗ with vertices W1, . . . ,Wm+1

is given by

Vol(∆∗) =
〈W1 · · ·Wm+1〉
∏m+1

j=1 (Y ·Wj)
(A.20)

which can be computed by integrating eq. (A.16) over all Y = C1W1+ · · ·+CmWm+Wm+1

parameterized by C1, . . . , Cm > 0. In order for the integral to converge, it suffices to put

Y inside the simplex by requiring Y ·Wj > 0 for every j. The canonical form is therefore

Ω(∆) =
〈W1 · · ·Wm+1〉

m!
∏m+1

j=1 (Y ·Wj)
〈Y dmY 〉 =

m
∧

j=1

d log

(

Y ·Wj

Y ·Wm+1

)

(A.21)

where the equivalence of the last two expressions can be seen by applying a GL(m+1)

transformation to fix the Wj ’s to the identity matrix. The last expression is antisymmetric

in the Wj ’s for all j even though the appearance of Wm+1 appears to break this symmetry.

Alternatively, the canonical form can be expressed in terms of the vertices Z1, . . . , Zm+1 of

the simplex as follows:

Ω(∆) =
〈Z1 · · ·Zm+1〉

m

m!
∏m=1

i=1

〈

Y Z1 · · · Ẑi · · ·Zm+1

〉 〈Y dmY 〉 (A.22)

where the hat denotes omission. This formula can be derived by substituting (Wj)A =

ǫAA1···AmZ
A1

j+1Z
A2

j+2 · · ·Z
Am

j+m into eq. (A.21), whereby the facet Y ·Wj = 0 is assumed to be
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adjacent to the vertices Zj+1, . . . , Zj+m. Note that the index on the vertices are labeled

modulo (m+1). More generally, the volume of a dual polytope A∗ can be obtained by

triangulation into simplices and summing over the volume of each simplex.

We summarize the key points as follows:

1. Every convex polytope A has a dual polytope A∗.

2. The canonical form of the polytope Ω(A) is determined by the volume of the dual

polytope Vol(A∗).

A.5 Simple polytopes

We now compute the canonical form of simple polytopes for which a simple formula exists.

Let A denote a convex simple polytope of dimension m. We claim that the canonical form

can be expressed as a sum over all vertices:

Ω(A) =
∑

vertexZ

sign(Z)

m
∧

a=1

d log (Y ·Wa) (A.23)

where for every vertex Z the dual vectors Wa correspond to the m adjacent facets. Fur-

thermore, the sign(Z) ∈ {±1} denotes the orientation of the facets W1, . . . ,Wn−3, which

of course is antisymmetric. It is important that the polytope be simple, for otherwise the

expression would be ill-defined.

We derive eq. (A.23) by induction on dimension m. For m = 0, A is an isolated

point and the canonical form is simply ±1 depending on its orientation. Now suppose

m > 0, and our claim has been proven for all dimensions less than m. It suffices to

argue that (A.23) has the correct first order poles and residues, since the canonical form is

uniquely defined by such properties. Clearly, it has poles on the facets of the polytope, as

required. Furthermore, for any facet F given by Y ·W = 0, the residue of eq. (A.23) along

Y ·W = 0 is
∑

Z′

sign(Z ′)

m−1
∧

a=1

d log(Y ·Wa) (A.24)

where we sum over all vertices Z ′ adjacent to the facet F . But by the induction hypothesis

this is the required canonical form Ω(F ), thus completing the derivation.

A.6 Recursion relations

We argue that the canonical form of a convex polytope A of dimension m can be obtained

from the canonical forms of its facets. This provides a recursion relation for the canonical

forms of polytopes. Combined with the factorization properties of the kinematic associa-

hedron as discussed in section 4.1, this provides recursion relations for the amplitude as

shown in section 5.5.

However, there is an obvious difficulty. The canonical form of a facet is only defined

on the hyperplane containing that facet, while the canonical form of A is defined on the

whole space. We resolve this issue by pulling back the facet canonical form via a projection

map. For each facet F of A, let WF · Y = 0 denote the hyperplane containing F for some
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dual vector WF . We pick a reference point Z∗ on the interior of A, and we establish a

deformation Y → Ŷ given by

Ŷ = Y −
(Y ·WF )

(WF · Z∗)
Z∗ (A.25)

which can be visualized by drawing the straight line crossing Y and Z∗, and recognizing Ŷ as

the intersection between the line with the hyperplane Y ·W = 0. Hence, the deformation

projects points onto the hyperplane along the direction of the reference point. We can

therefore pullback the canonical form Ω(F ) of the facet, thus giving us a form on the whole

space which we denote by Ω̂(F ).

We now argue that the canonical form Ω(A) can be obtained from the Ω̂(F ) forms by

employing a little “trick”, which instructs us to factor out the universal factor
〈

∗Y dm−1Y
〉

from Ω̂(F ) and replace it by a different form:

〈

∗Y dm−1Y
〉

→
(Z∗ ·W )

(Y ·W )
〈Y dmY 〉 /m (A.26)

We denote this “replacement procedure” as an operator DW giving Ω̂(F ) → DW Ω̂(F ).

While this is not a differential operator, it increases the rank of the form by one.

The DW operator may seem unfamiliar, but it has a simple geometric interpretation.

For any facet F , the DW Ω̂(F ) is nothing more than the canonical form of the polytope

given by the convex hull of F with Z∗ which we denote by A(Z∗, F ):

DW Ω̂(F ) = Ω(A(Z∗, F )) (A.27)

We show this in the case where F is a simplex with vertices Z1, . . . , Zm whose canonical

form (See eq. (A.22)) is given by

Ω(F ) =
〈XZ1 · · ·Zm〉m−1 〈XY dm−1Y

〉

(m−1)!
∏m

a=1

〈

Y XZ1 · · · Ẑa · · ·Zm

〉 (A.28)

where the hat denotes omission and X is an arbitrary vector for which W ·X 6= 0. Also,

the point Y is restricted to the hyperplane where the facet lives. It can be shown that

Ω(F ) is independent of X. The pull back via the deformation Y → Ŷ is therefore

Ω̂(F ) =
〈Z∗Z1 · · ·Zm〉m−1 〈Z∗Y dm−1Y

〉

(m−1)!
∏m

a=1

〈

Y Z∗Z1 · · · Ẑa · · ·Zm

〉 (A.29)

which is most easily obtained by setting X = Z∗ in eq. (A.28) and realizing that the

deformation term in Ŷ is absorbed in the brackets by the Z∗ so that Ŷ can be replaced by

Y wherever it appears. Applying the replacement operator DW then gives

DW Ω̂(F ) =
〈Z∗Z1 · · ·Zm〉m 〈Y dmY 〉

m! 〈Y Z1 · · ·Zm〉
∏m

a=1

〈

Y Z∗Z1 · · · Ẑa · · ·Zm

〉 (A.30)

where we have substituted WA = ǫAA1···AmZ
A1

1 · · ·ZAm
m because the hyperplane Y ·W = 0

is spanned by the vertices Z1, . . . , Zm. But in light of eq. (A.22), we find that eq. (A.30)
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is precisely the canonical form of A(Z∗, F ) as claimed. For the more general case where

F is a generic polytope, we derive eq. (A.27) by triangulating F in terms of simplices and

applying the preceding argument to each simplex.

Finally, we propose that the canonical form A is given by

Ω(A) =
∑

facet F

DW Ω̂(F ) (A.31)

which follows directly from the fact that A is triangulated by the polytopes A(Z∗, F ).

B Vertex coordinates of the kinematic associahedron

We now provide a recursive algorithm for deriving the vertices of the associahedron An.

Consider a vertex Z0 corresponding to a triangulation of the n-gon. Our goal is to work

out all planar components Xi,j of Z0 in terms of the non-adjacent constants ckl. Our

strategy is to compute the components one planar basis (i.e. a basis of planar variables

given by the diagonals of any triangulation) at a time by starting with the Z0 basis where

all components vanish, and applying a sequence of mutations. Since every planar basis

can be reached by such a sequence, this establishes a recursive procedure for computing all

planar components. It suffices then to discuss how the components are related by mutation.

Consider a mutation Z → Z ′ like the one shown in figure 10 (top) where Xi,k mutates to

Xj,l. From eq. (3.8) we find

Xj,l = Xj,k +Xi,l −Xi,k +
∑

i≤a<j
k≤b<l

cab (B.1)

which computes Xj,l from the basis of Z, thus completing the algorithm.

Here we present the vertex coordinates for the kinematic associahedron An=5 from

figure 8 (top right) in the basis Y = (1, X13, X14):

ZA = (1, 0, 0) (B.2)

ZB = (1, 0, c14 + c24) (B.3)

ZC = (1, c13 + c14, c14 + c24) (B.4)

ZD = (1, c13 + c14, c14) (B.5)

ZE = (1, c13, 0) (B.6)

C BCJ relations and dual-basis expansion from projectivity

We argue that the requirement of projectivity has two important consequences for scatter-

ing forms.

• The partial amplitudes satisfy BCJ relations.

• Every projective scattering form can be written as a linear combination of planar

scattering forms Ω
(n−3)
φ3 [α] like eq. (8.29).
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We derive the first claim by directly applying a local GL(1) transformation sI → ΛsI
to the DDM form eq. (8.28). Invariance under the transformation implies

∑

π∈Sn−2

sgn(π)Mn(π)
n−2
∑

i=2

(−1)iz(π, i)
n−2
∧

j=2; j 6=i

dz(π, j) = 0 (C.1)

where sgn(π) is the signum of the permutation and

Mn(π) := Mn(1, π(2), . . . , π(n−1), n) (C.2)

z(π, i) := s1,π(i) + sπ(2),π(i) + · · ·+ sπ(i−1),π(i) (C.3)

Furthermore, we pull back to a subspace where

{dsij = 0 for 1 ≤ i < j−1 < n−1} ∩ {dsn−2,n−1 = 0} (C.4)

We find that the only permutations π that contribute are πi for k = 2, . . . , n−1. For

2 ≤ k ≤ n−2 we have

πk = (1, 2, . . . , k−1, n−1, k, k+1, . . . , n−2, n) (C.5)

and for k = n−1 we have πn−1 = (1, 2, . . . , n). Moreover, for 2 ≤ k ≤ n−2 only the i = k

term in eq. (C.1) contributes, giving

Mn(πk)z(πk, k)

{

(−1)n−1
n−2
∧

j=2; j 6=k

dz(πk, j)

}

(C.6)

where we applied sgn(πk) = (−1)n−k−1. For k = n−1, however, all values of i contribute

in eq. (C.1), giving

Mn(πn−1)

[

−
n−2
∑

i=2

z(πn−1, i)

]{

(−1)i−1
n−2
∧

j=2; j 6=i

dz(πn−1, j)

}

(C.7)

We leave it as an exercise for the reader to show that the expressions in curly braces

appearing in eq. (C.6) and eq. (C.7) are identical on the pullback. Furthermore, the square

bracket expression in eq. (C.7) is equivalently

[· · · ] = z(πn−1, n−1) (C.8)

which follows from the kinematic identity
∑

1≤i<j≤n sij = 0. Finally, combining the con-

tributions for all k gives
n−1
∑

k=2

Mn(πk)z(πk, k) = 0 (C.9)

Or equivalently

n−1
∑

k=2

(s1,n−1+s2,n−1+ · · ·+sk−1,n−1)Mn(1, . . . , k−1, n−1, k, . . . , n−2, n) = 0 (C.10)
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which we recognize as one of the fundamental BCJ relations. By pulling back to other

subspaces, we can derive all BCJ relations. It follows that partial amplitudes of projective

scattering forms satisfy BCJ relations.

We now move on to derive the second claim. Recall that the Jacobi identities im-

pose linear relations for the kinematic numerators, leaving a basis of (n−2)! independent

elements. In particular, every numerator can be expanded in a basis of numerators corre-

sponding to all multi-peripheral graphs with respect to 1 and n (See figure 24):

N(π) := N(gπ|1, π(2), . . . , π(n−1), n) for π ∈ Sn−2 (C.11)

Thus, every numerator has an expansion of the form

N(g|αg) =
∑

π∈Sn−2

M(g|αg;π)N(π) (C.12)

for some coefficients M(g|α;π) ∈ {0,±1}. By the color-kinematics duality, the color factors

must then obey the same expansion:

C(g|αg) =
∑

π∈Sn−2

M(g|αg;π)C(π) (C.13)

where

C(π) := C(gπ|1, π(2), . . . , π(n−1), n) for π ∈ Sn−2 (C.14)

Substituting this into the (color-dressed) bi-adjoint scattering form eq. (8.13) and extract-

ing the coefficient of C(π) (i.e. the only term contributing to the ordering π in the standard

trace decomposition) gives the following expansion for the planar scattering form:

Ω
(n−3)
φ3 [π] =

∑

cubic g

M(g|αg;π)Ω
(n−3)(g|αg) (C.15)

It follows that for an arbitrary (projective) scattering form, we have

Ω(n−3)[N ] =
∑

cubic g

N(g|αg)Ω
(n−3)(g|αg) (C.16)

=
∑

cubic g

∑

π∈Sn−2

N(π)M(g|αg;π)Ω
(n−3)(g|αg) (C.17)

=
∑

π∈Sn−2

N(π)Ω
(n−3)
φ3 [π] (C.18)

which is a linear combination of planar scattering forms, as promised.
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