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We argue that a finite iteration of any surface fractal can be composed of mass-fractal iterations of the same

fractal dimension. Within this assertion, the scattering amplitude of surface fractal is shown to be a sum of the

amplitudes of composing mass fractals. Various approximations for the scattering intensity of surface fractal

are considered. It is shown that small-angle scattering (SAS) from a surface fractal can be explained in terms of

power-law distribution of sizes of objects composing the fractal (internal polydispersity), provided the distance

between objects is much larger than their size for each composing mass fractal. The power-law decay of the

scattering intensity I(q) ∝ qDs−6, where 2 < Ds < 3 is the surface fractal dimension of the system, is realized

as a non-coherent sum of scattering amplitudes of three-dimensional objects composing the fractal and obeying

a power-law distribution dN(r) ∝ r−τdr, with Ds = τ − 1. The distribution is continuous for random fractals

and discrete for deterministic fractals. We suggest a model of surface deterministic fractal, the surface Cantor-

like fractal, which is a sum of three-dimensional Cantor dusts at various iterations, and study its scattering

properties. The present analysis allows us to extract additional information from SAS data, such us the edges of

the fractal region, the fractal iteration number and the scaling factor.
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I. INTRODUCTION

The small-angle scattering (SAS) of waves (neutrons, X-

rays, light) has been proved to be an important non-destructive

method of determining the structural properties at nano and

microscales [1–4]. These properties are usually obtained from

the curve of the elastic cross section per unit volume of the

sample (scattering intensity) I(q) ≡ (1/V
′

)dσ/dΩ versus the

scattering wave vector (momentum) q = (4π/λ) sin θ (θ is

half the scattering angle and λ is the wavelength of the inci-

dent radiation). The scattering intensity is related to the spa-

tial density-density correlations in the sample by the Fourier

transform.

A main indicator of the fractal structure is the power-law

dependence of the scattering intensity [5–9]

I(q) ∝ q−τ , (1)

appearing as a linear dependence on the double logarithm plot

within some range in momentum space called the fractal re-

gion. This is due to the Hausdorff (fractal) dimension of frac-

tal structures, which is their essential characteristic [10–13].

One can adopt a simple descriptive definition of the Haus-

dorff dimension D of a set as the exponent in the relation

N ∝ (L/a)D for a → 0, where N is the minimum num-

ber of open sets of diameter a needed to cover the set, and L
is the total length of the set. For a ‘usual’ object like ball, the

Hausdorff dimensions of volume and surface are equal to 3

and 2, respectively.

∗ e-mail: cherny@theor.jinr.ru

Sometimes a succession of simple power-law decays with

different exponents can be observed in SAS data, which can

be explained by the presence of a few fractal structures at dif-

ferent scales [9, 14, 15].

In SAS scattering, one distinguishes between “mass” and

“surface” fractals [5, 7]. The difference can be shown in a sim-

ple two-phase geometric configuration, where one phase is a

set of dimension Dm (“mass”), embedded into d-dimensional

real space, and the other phase is its complement set of di-

mension Dp (“pores”). In addition, the boundary between the

phases also forms a set of dimension Ds (“surface”). Then for

a mass fractal, we have Ds = Dm < d and Dp = d, while

for a surface fractal Dm = Dp = d and d − 1 < Ds < d.

Experimentally, the difference between “mass” and “surface”

fractals [5, 7] is revealed through the value of the power-law

scattering exponent

τ =

{

Dm, for mass fractals,

2d−Ds, for surface fractals.
(2)

For three-dimensional space (d = 3), this leads to a simple

interpretation of SAS experimental data: if the power-law ex-

ponent τ < 3, the measured sample is a mass fractal, while if

3 < τ < 4 then the sample is a surface fractal.

It should be emphasized that the above interpretation of a

power-law scattering curve is not rigorous, because the power-

law dependence (2) in some region of q can be “casual”. This

is a general problem of SAS, since unambiguous interpreta-

tion of scattering intensity is hardly possible. Mathematically,

in order to restore the spatial dependence of a function, one

should know its Fourier transform for arbitrary Fourier com-

ponent q. If only a finite range of wave vector is available then

this is an ill-posed problem in general. According to a rule of

http://arxiv.org/abs/1507.07376v2
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thumb accepted among experimentalists, if a range, where the

power-law dependence is observed, is “sufficiently large” then

the structure is interpreted as a fractal.

For random (statistically self-similar) fractals, one can ob-

tain from SAS data the fractal dimension and, at best, the bor-

ders of fractal regions, which give some information about the

characteristic lengths of the fractal under investigation (see

Sec. II below for details). Due to substantial progress in nano-

technologies, many deterministic (exactly self-similar) frac-

tal structures were synthesized artificially [16–24]. As was

shown recently [25–27], the scattering intensity of monodis-

perse deterministic mass fractals shows a generalized power-

law decay (maxima and minima superimposed on a simple

power-law decay) and contains additional information about

the fractals such as the scaling factor, the number of fractal it-

erations, and the total number of structural units of which the

fractal is composed.

Deterministic fractals usually allow analytic solutions for

the scattering amplitude and thus give us “exactly solvable

models” for studying the fractal scattering properties. In this

paper, we build a model of Cantor-like deterministic surface

fractal and investigate its properties. The surface fractal is

constructed as a sum of the Cantor dusts with controllable

fractal dimension [25–27] at various iterations. The construc-

tion suggests that in general, any surface fractal can be rep-

resented as a sum of mass fractals. This is because for mass

fractals, the mass and surface dimensions coincide. There-

fore, the infinite series of non-overlapping iterations of a mass

fractal has the mass dimension d, while the surface dimension

of the constructed set is equal to the mass fractal dimension.

A specific model of such surface fractal is given in Sec. IV A.

We emphasize a few important issues here. First, a sur-

face fractal can be constructed with subsequent removal of

mass-fractal iterations from an initial set. For instance, adding

mass-fractal iterations to a set is equivalent to subtracting the

same iterations from its complement set. However, this does

not lead to any problem, because one can always exchange the

fractal “mass” and “pores” density, thus transforming subtrac-

tion into addition. We recall that two complementary sets give

the same diffraction pattern (Babinet’s principle). Second, the

notion of mass fractal should be used here with caution, be-

cause the limit of infinite iterations might not exist in the rigor-

ous mathematical sense thus giving the empty set in this limit.

However, this problem has nothing to do with possible real-

izations of fractal structures in real materials, because such

structures are always finite, and, hence, cannot be empty. This

means that for a finite iteration of mass fractal, all the scaling

fractal properties are confined to a finite range in real space,

whether the limit of infinite iterations exists or not. The bigger

the iteration number, the longer the fractal range in real space,

but the fractal scaling properties within this range would be

the same as if the limit of infinite iterations existed.

The construction of a deterministic surface fractal with

mass fractals enables us to write down the scattering ampli-

tude of the surface fractal as a sum of the corresponding am-

plitudes of composing mass fractals. By using this represen-

tation, we derive the exponent for the surface fractal intensity

[I(q) ∝ qDs−2d] from the the scattering intensity for mass

fractals [I(q) ∝ V 2q−Dm ] in various approximations. It is

shown that when the distance between objects is much larger

than their size for each composing mass fractal, the power-law

decay of the scattering intensity of surface fractals is realized

as a non-coherent superposition of three-dimensional objects

obeying the discrete power-law distribution with the exponent

τ , which is shown to be equal τ = Ds + 1 with Ds being

the surface fractal dimension. The SAS intensity from globu-

lar objects obeying the continuous power-law distribution was

considered in the paper [28]. It is shown that the SAS intensity

of the discrete distribution has a close analogy to that of the

continuous distribution and obeys the generalized power-law

decay with the exponent Ds − 2d.

The paper is organized as follows: in Sec. II some important

issues concerning SAS are discussed. The section III is impor-

tant for understanding the main ideas of this paper. It shows

how the SAS from a surface fractal can be treated in terms of

the composing mass fractals within various approximations.

The section IV describes the construction of the generalized

Cantor surface fractal with controllable dimension, governed

by the scaling factor, and the fractal scattering properties are

studied. The internal polydispersity of discrete and continu-

ous types and its role in SAS is considered in Sec. V, where

we prove that the total surface of objects obeying the power-

law distribution with 3 < τ < 4 has the fractal dimension

Ds = τ − 1. In Conclusion we summarize and discuss the

obtained results.

II. THEORETICAL BACKGROUND

In a very good approximation, the differential cross sec-

tion of a sample exposed to a beam of neutrons, X-rays or

light is given by [1, 2] dσ/dΩ = |A(q)|2, where A(q) ≡
∫

V ′
ρs(r)e

iq·rd3r is the total scattering amplitude, V ′ is the

total volume irradiated by the incident beam, and the scatter-

ing length density ρs(r) is defined with the help of Dirac’s δ
function: ρs(r) =

∑

j bjδ(r − rj). Here, rj are the positions

of microscopic objects like atoms or nuclei with the scattering

lengths bj .

Let us consider a sample consisting of rigid macroscopic

objects of the density ρm, which are immersed into a solid

matrix of density ρp, and suppose that spatial positions and

orientations are uncorrelated (this assumes that the concentra-

tion of the objects in the solid matrix is low enough). Then the

scattering intensity (differential cross section per unit volume

of the sample) can be written as

I(q) ≡ 1

V ′

dσ

dΩ
= V 2

〈

|F (q)|2
〉

, (3)

where n is the concentration of the macroscopic objects in the

irradiated volume, ∆ρ = ρm − ρp is the scattering contrast,

V is the volume of each object and F (q) is the normalized

scattering amplitude (form factor) of the object

F (q) =
1

V

∫

V

e−iq·rdr, (4)
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obeying the condition F (0) = 1. Here, the symbol 〈· · · 〉
stands for the ensemble averaging over all orientations of the

objects. If the probability of any orientation is the same, then

it can be calculated by integrating over all directions of the

scattering vector q [29].

It is easy to derive a few useful properties of the form factor

(4), which are valid for a particle of arbitrary shape.

i) Scaling: if we scale all the lengths of the particle as l → βl
then F (q) → F (βq).
ii) Translation: if the particle is translated r → r + a then

F (q) → F (q) exp(−iq · a).
iii) Rotation: if the particle is rotated with an orthogonal ma-

trix r → Ôr then F (q) → F (ÔT
q). Recall that the in-

verse of an orthogonal matrix is equal to the transpose of it

Ô−1 = ÔT, where (ÔT)ij = Ôji.

iv) Additivity of the nonnormalized scattering amplitude: if a

particle consists of two not overlapping subsets I and II, then

F (q) =
(

VIFI(q) + VIIFII(q)
)

/(VI + VII).
The average over all directions of the scattering vector q in

Eq. (3) is analogous to diffraction with an uncollimated beam

in optics [27]: the interference patterns of plane waves, com-

ing from different directions, superimpose upon each other.

This results in strong spatial incoherence: for the subsets I
and II , the correlator 〈FI(q)FII (q)〉 decays when q ≫ 2π/r,

where r is of order of the distance between their centers

[27]. This indicates the border between the coherent regime

(where the scattering amplitudes VIFI and VIIFII should be

added) and incoherent regime (where the scattering intensi-

ties 〈|VIFI |2〉 and 〈|VIIFII |2〉 should be added). This can

be illustrated by a simple example of the SAS intensity from

two point-like objects, placed rigidly the distance l apart. If

each of them has the unit amplitude, the intensity is written as

I(q) = 〈|eiq·r1 + eiq·r2 |2〉, which yields after averaging over

the solid angle

I(q) = 2

(

1 +
sin ql

ql

)

. (5)

A fast decay of the coherence can be seen from Fig. 1 when

ql ≫ 2π.

For a “primary” object like a ball or cube of total size l,
the intensity 〈|F (q)|2〉 is of order one in the Guinier range

q . 2π/l and decays as 1/q4 in the Porod range q & 2π/l
[1].

Almost all scattering properties of a complex object can be

understood by means of the above simple properties of com-

posing “primary” objects and transitions from coherent to in-

coherent scattering regimes. In the next section, we outline

and explain some basic properties of mass and surface frac-

tals.

III. GENERAL REMARKS ABOUT SMALL-ANGLE
SCATTERING FROM MASS AND SURFACE FRACTALS

A. A mass fractal with a single scale

The scattering properties of mass fractals with a single scale

were studied in detail in the previous publications [26, 27].

1 10
1

2

3
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I(q)

ql

FIG. 1. (Color online) The SAS intensity (5) from an ensemble of

two point-like objects with unit amplitude, placed rigidly the dis-

tance l apart but randomly oriented. One can see the transition from

the coherent regime [I(q) = 4] to the incoherent regime [I(q) = 2]

when q ≫ 2π/l: only a very few minima and maxima with decay-

ing amplitudes are quite pronounced. The fast decay of the correlator

〈eiq·(r2−r1)〉 is due to the average over all directions of the scatter-

ing vector q, which is analogous to diffraction with an uncollimated

beam in optics [27]: the interference patterns of plane waves, coming

from different directions, superimpose upon each other. This results

is the same as if the strong spatial incoherence of the incident beam

is realized.

For a mass fractal of the total lengthL, composed of p small

“primary” structural units of size l separated by distances d
(l . d ≪ L), the normalized form factor can be estimated

qualitatively by the formula

〈

|F (m)(q)|2
〉

≃























1, q . 2π/L,

(qL/2π)−Dm , 2π/L . q . 2π/d,

(d/L)Dm , 2π/d . q . 2π/l,

(d/L)Dm(ql/2π)−4, 2π/l . q,
(6)

(see Fig. 2). Here p is of the order of (L/d)Dm in accordance

with the definition of the fractal dimension.

Such a fractal can be constructed with a simple iteration

rule (an example is the Cantor dust considered in Sec. IV A

below): a “primary” object like a ball or cube or another sim-

ple shape generates k objects of the same shape but of the size

scaled by the factor βs, which is smaller than one in general.

The initial single object (zero iteration) has the size of order

r0. Then after n iterations, the total number of the objects is

equal to p = kn, and they all are put somehow inside a form

of the total size L. The distances between the objects and their

sizes are of order d = βn
s L and l = βn

s r0, respectively. The

mass fractal has the Hausdorff dimension Dm obeying the re-

lation [13] kβDm
s = 1.

Equation (6) explicitly shows that the SAS intensity of mass

fractal is characterized by the four main regions: Guinier at

q . 2π/L, fractal at 2π/L . q . 2π/d, a plateau at 2π/d .
q . 2π/l, and Porod regime at q & 2π/l.

We make a few remarks here. First, the intensity in the

Guinier range is actually parabolic: I(q) ≃ I(0)(1−R2
gq

2/3),
where Rg is the radius of gyration. This parabolic behavior of
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FIG. 2. (Color online) Generic normalized SAS intensity from mass

fractals with a single scale (solid black line). The intensity shows

the presence of the four main regimes: Guinier (at small q), fractal

(at intermediate q), plateau (at larger q), and Porod (at high q). The

characteristic lengths L, d, and l are explained in the text. The blue

dashed line shows the approximation of completely uncorrelated pri-

mary objects, composing the mass fractal. The scattering intensity

of the object (like cube or ball) consists of the Guinier and Porod

regions only. Note that a typical experimental SAS tool has the dy-

namic Q-range qmax/qmin about two or three orders, so only a part

of the shown curve can be observed in practice.

the intensity is ignored in the above estimations for the sake

of simplicity. Second, the mass fractal region appears due to

spatial correlations between the composing “primary” units

[26, 27]. For this reason, the fractal region of the mass frac-

tal is determined by the maximal and minimal distances be-

tween the centers of the structural units. Third, the plateau at

2π/d . q . 2π/l in the scattering intensity can be consid-

ered as a Guinier region for the primary unit (which is of the

same size l), because the spatial correlations between differ-

ent units are not important in this region, and thus the total

intensity is equal to p times the intensity of the primary unit

(see the discussion in Sec. II). For the normalized intensity of

primary globular unit of size l, one can adopt the Porod-law

relation

〈

|F0(q)|2
〉

≃
{

1, q . 2π/l,

(ql/2π)−4, 2π/l . q.
(7)

As discussed above, it coincides with the last two rows in

Eq. (6) up to the factor (d/L)Dm = 1/p, which appears due to

the chosen normalization of the total intensity of mass fractal

at zero momentum. The latter is equal to p2 times the intensity

of the primary unit (the coherent regime). Then neglecting all

the spatial correlations between the primary objects (units),

composing the fractal, yields the scattering intensity shown

by the dashed (blue) line in Fig. 2. Fourth, the “pure” power-

law functions with different exponents, given by Eq. (6) and

shown in Fig. 2, is a simplification of an actual behaviour of

the intensity. Actually, there is a complex pattern of maxima

and minima superimposed on the power-law decays. How-

ever, this pattern is smeared and can disappear completely

when the polydispersity is developed [26, 27].

B. A surface fractal with a single scale

In accordance with the statement formulated in the Intro-

duction, any surface fractal can be constructed as a sum of

appropriate mass fractals. A specific example is given in

Sec. IV A below, see Fig. 5.

Let us consider the contribution of different mass fractal

amplitudes to the total scattering intensity of a surface frac-

tal for a finite iteration m. Recall that the non-normalized

scattering amplitude is nothing but V F (q). Because of its

additivity [see the property iv) in Sec. II], one can write the

surface fractal amplitude Am(q) as a sum of the mass fractal

amplitudes Mm(q)

Am(q) =

m
∑

n=0

Mn(q). (8)

For simplicity, below in this section we omit the factor

n |∆ρ|2 in Eq. (3) and denote the surface fractal intensity as

I
(s)
m (q) ≡ 〈|Am(q)|2〉. It follows from Eq. (8) that the in-

tensity I
(s)
m (q) contains not only the mass fractal intensities

〈|Mn(q)|2〉 but the correlators between the mass-fractal am-

plitudes

I(s)m (q) =

m
∑

n=0

〈|Mn(q)|2〉

+
∑

06n<p6m

〈M∗

n(q)Mp(q) +Mn(q)M
∗

p (q)〉. (9)

1. The approximation of incoherent mass-fractal amplitudes

One can neglect completely the non-diagonal (interference)

terms in this equation and thus consider the incoherent sum of

the mass-fractal amplitudes

I(s)m (q) ≃
m
∑

n=0

〈|Mn(q)|2〉. (10)

The behaviour of each term in the sum is known from the pre-

vious section and shown in Fig. 2. Let us show analytically

that the surface fractal intensity (10) obeys approximately the

power-law decay with the exponent 6−Ds, where Ds = Dm.

For simplicity, we put d ≃ l ≃ βn
s L in Eq. (6) thus neglecting

the plateau region. We have 〈|Mn(q)|2〉 = V 2
n 〈|F

(m)
n (q)|2〉

with the volume of the nth mass fractal iteration given by

Vn = V0β
3n
s kn = V0β

n(3−Dm)
s . Here V0 is the volume of

the “primary” object at zero iteration. If the object is a ball of

radius r0 then V0 = 4πr30/3, while for a cube of size r0 it is

given by r30 . With substituting 〈|Mn(q)|2〉 into Eq. (10), we

obtain

I(s)m (q) =

m
∑

n=0

V 2
0 β

2n(3−Dm)
s 〈|F (m)

n (q)|2〉, (11)



5

which, in conjunction with Eq. (6), yields at q = 2π/L

I
(s)
m (q)

V 2
0

=
1− β

2(m+1)(3−Dm)
s

1− β
2(3−Dm)
s

.

In a similar manner, we obtain at q = 2π/(βsL)

I
(s)
m (q)

V 2
0

= β4
s + β6−Dm

s

1− β
(2m+1)(3−Dm)
s

1− β
2(3−Dm)
s

,

and at q = 2π/(β2
sL)

I
(s)
m (q)

V 2
0

= β8
s + β10−Dm

s + β2(6−Dm)
s

1− β
(2m−1)(3−Dm)
s

1− β
2(3−Dm)
s

.

The above intensities tend to 1/[1 − β
2(3−Dm)
s ], β4

s +

β6−Dm
s /[1−β

2(3−Dm)
s ], and β8

s + β10−Dm
s + β

2(6−Dm)
s /[1−

β
2(3−Dm)
s ], respectively, for m ≫ 1. Since βs < 1 and

2 < Dm = Ds < 3, one can neglect the terms β4
s and

β8
s + β10−Dm

s in these expressions. This gives us

I
(s)
m

(

2π
L

)

I
(s)
m

(

2π
βsL

) ) ≃
I
(s)
m

(

2π
βsL

)

I
(s)
m

(

2π
β2
sL

) ) ≃ βDs−6
s ,

that is, the appropriate value of the slope Ds − 6 on a double

logarithmic scale. Similarly, one can consider the intensity at

arbitrary wave vectors q = 2π/(βn
s L) for n 6 m.

2. The approximation of incoherent amplitudes of the primary

objects

One can simplify the above analysis by neglecting the spa-

tial correlations between composing units. We call this ap-

proximation the approximation of incoherent amplitudes of

the primary objects and discuss its applicability below. Then,

as discussed in Sec. III A, one should use the approximation

〈|F (m)
n (q)|2〉 ≃ k−n〈|F0(q)|2〉 with l = βn

s r0 in Eq. (7).

We denote the intensity of unit at zero iteration as I0(q) ≡
V 2
0 〈|F0(q)|2〉 with l = r0 and derive from Eq. (11)

I(s)m (q) =

m
∑

n=0

βn(6−Dm)
s I0(β

n
s q). (12)

This equation is essential for simple understanding the frac-

tal power-law behaviour of the scattering intensity. The inten-

sity of the unit at zero iteration I0(q) obeys the Porod law,

i.e., I0(q) ≃ I0(0) when q . 2π/r0 and starts decreas-

ing as 1/q4 when q & 2π/r0. Since β6−Ds
s ≪ 1, the first

term in the sum dominates for q . 2π/r0. However, at the

point q ≃ 2π/(βsr0) its contribution becomes about 1/β4
s

times smaller due to the 1/q4 decay, while the second terms

is still remains the same. Thus the second term dominates

at this point if the surface dimension obeys the inequality

6−Ds < 4. Using the same arguments, we arrive at the con-

clusion that the nth term in Eq. (12) dominates at the point

q ≃ 2π/(βn−1
s r0). Therefore, increasing q by 1/βs times

leads to decreasing the intensity by 1/β6−Ds
s times, and the

slope of the scattering intensity on a double logarithm scale

is τ ≡ log
(

1/βDs−6
s

)

/ log (1/βs) = Ds − 6. We arrive at

the power-law behaviour (1), (2) of surface fractal. Note that

the inequality 6 − Ds < 4 (which follows from Ds > 2) is

crucial in the above consideration. In the case of usual surface

dimension Ds = 2, all the terms in Eq. (12) decreases as 1/q4

and we cannot observe the fractal behaviour of the intensity.

The numerical results are shown in Fig. 3a and 3b.

The approximation of incoherent amplitudes of the primary

objects assumes that the spatial correlations between the pri-

mary objects are not important. It happens when d/l ≫ 1,

that is, the distance between objects is much larger than their

size for each mass fractal composing the surface fractal. The

reason is that the correlations between objects’ amplitudes de-

cay very fast with growing the distances between their centers

(see the discussion in Sec. II). Then the surface fractal region

lies where the correlations within one mass-fractal iteration

have decayed or the contribution of the other mass-fractal in-

tensities are negligibly small.

One can prove this analytically with Eqs. (6) and (11) in

general case (when the plateau presents) by analogy with the

derivations in Sec. III B 1. However, one can understand the

main features of SAS from the surface fractal directly from

Fig. 4, which shows contributions of different mass fractals’

intensities into the total intensity of the surface fractal.

Indeed, the scattering intensities from mass-fractal itera-

tions [by definition, 〈|Mn(q)|2〉 ≡ V 2
n 〈|F

(m)
n (q)|2〉] always

obey the inequalities 〈|M0(0)|2〉 < 〈|M1(0)|2〉 < . . . <
〈|Mm(0)|2〉. This is because the volume of mass-fractal itera-

tions decreases with its number n: Vn = V0β
n(3−Dm)
s (see the

discussion in Sec. III B 1), and 〈|F (m)
n (0)|2〉 = 1. The con-

tribution of the zero iteration dominates in its Guinier range

q . 2π/r0 because of its largest volume, but for q & 2π/r0
its intensity decays as 1/q4 and can fall off faster than the

intensity of the first iteration, which contains the mass frac-

tal range obeying 1/qDm with Dm < 3, see Fig. 4a. Then

below the crossover point, the first mass-fractal range con-

tributes substantially to the total surface fractal intensity. In

the mass fractal ranges, the correlations between composing

units are important, and the approximation of incoherent am-

plitudes of the primary objects breaks down. On the other

hand, if d/l = r0/L ≫ 1, the plateau is pronounced in each

mass fractal region, and we have no intersections between

Porod and mass fractal regions of consecutive mass fractal it-

erations, as one can see from Fig. 4b. This means that only

the Porod regions contribute to the total intensity of surface

fractal, which implies the applicability of the approximation

of incoherent amplitudes of the primary objects.

3. The surface fractal intensity in terms of the consecutive

mass-fractal iterations

So far, we consider approximation of incoherent mass-

fractal amplitudes (11). However, it might be possible that

the spatial distances between different mass fractal iterations
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FIG. 3. (Color online) (a,b) SAS intensity from surface fractal

(in units n|∆ρ|2V 2
0 ) versus momentum transfer. Solid (black) line

shows the approximations of incoherent mass-fractal amplitudes

(11), and dotted (blue) line shows the approximations of incoher-

ent amplitudes of the primary objects (12) at different values of the

control parameters. The intensity represents the three main regimes:

Guinier (at small q), fractal (at intermediate q), and Porod (at high q).

The bigger the ratio of the distance between primary units d to the

their size l, the better the approximations of incoherent amplitudes

of the primary objects works. (c) Generic normalized SAS intensity

from a surface fractal with a single scale. The characteristic lengths

r0 and l are of the order of the largest and smallest sizes of the units,

respectively.

and between composing units within one mass fractal itera-

tion can be of order of their sizes, and we have to take into

account the interference terms in Eq. (9). This fact does not

change the main conclusions of our paper that the SAS inten-

sity of a surface fractal can always be represented as a sum

of intensities of composing mass fractals. Indeed, considering

the correlations between two consecutive mass fractal itera-
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 qL

n=1

FIG. 4. (Color online) SAS intensity from surface fractal [solid

(black) line, in units n|∆ρ|2V 2
0 ) and the SAS intensities of compos-

ing mass-fractal iterations [solid (red) lines in the same units] versus

momentum transfer. When the ratio d/l increases, only the Porod

regions of the mass fractals contribute to the total intensity of the

surface fractal, which means that the approximation of incoherent

amplitudes of the primary objects is applicable (see the detailed ex-

planation in the text). The ratio d/l is the same for all mass fractal

iterations, and d/l = L/r0.

tions like 〈M∗

0M1〉, 〈M∗

1M2〉, and so on, and neglecting the

other correlations, we obtain from Eq. (9)

I
(s)
m+1(q) ≃

m
∑

n=0

〈|Mn(q) +Mn+1(q)|2〉 −
m
∑

n=1

〈|Mn(q)|2〉.

(13)

The first sum in the approximation (13) is incoherent sum

of intensities of pairs of consecutive amplitudes. Formally,

the sum of two consecutive mass-fractal iterations is nothing

else but a mass fractal with the same single scale. It can be

considered as a mass fractal with complex composing units.

Then, in accordance with the above discussions, its SAS in-

tensity behaves like a mass fractal with the power-law de-

cay I
(m)
n (q) ∼ q−Dm . Applying the same arguments as in

Sec. III B 1 yields the power-law decay of the intensity (13):

I
(s)
m (q) ∼ qDs−6 at Dm = Ds. In the same manner as in

Sec. III B 2, we obtain that Eq. (13) leads to the approximation

of incoherent amplitudes of the primary objects when d ≫ l.
By analogy with the pair consecutive amplitudes, one can

further improve the approximation (13) for the SAS intensity
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by including the triple consecutive amplitudes 〈|Mn+Mn+1+
Mn+2|2〉.

The approximations for the surface fractal amplitude are

considered in Sec. IV D below.

4. The generic scattering intensity from a surface fractal with a

single scale

For a surface fractal composed of “primary” units, the qual-

itative formula for the normalized SAS intensity takes the

form

〈

|F (s)(q)|2
〉

≃











1, q . 2π/r0,

(qr0/2π)
Ds−6, 2π/r0 . q . 2π/l,

(r0/l)
Ds−6(ql/2π)−4, q & 2π/l,

(14)

(see Fig. 3c), and in this case r0 and l are of the order of

the largest and smallest sizes of the units, respectively. This

approximation always reproduce correctly the borders of the

fractal region for a surface fractal and the rough structure of

the scattering intensity.

IV. DETERMINISTIC SURFACE FRACTALS

A. Construction and properties

The Cantor-like surface fractal is constructed as a sum of

mass generalized Cantor fractals (GCF), which are suggested

and discussed in detail in Refs. [25–27]. The GCF is also

called Cantor dust. Let us recall the construction algorithm for

the GCF. We start with a cube of edge L and choose a Carte-

sian system of coordinates with the origin in the cube center,

and the axes parallel to the cube edges. The zeroth iteration

(called initiator) is a ball of radius r0 in the origin. The itera-

tion rule (generator) is to replace the ball with k smaller balls

(k = 8) of radius r1 = βsr0, where the parameter βs, called

scaling factor, obeys the condition 0 < βs < 1/2. The centers

of the eight balls of radius r1 are shifted from the origin by

the eight vectors

aj =
1− βs

2
L {±1,±1,±1} (15)

with all the combinations of the signs. The next iterations are

obtained by performing an analogous operation to each of k
balls of radius r1, and so on (see Fig. 5). The fractal dimension

of the Cantor dust (mass Cantor fractal) is given by [26]

Dm = − lnk/ lnβs (16)

with k = 8 for the Cantor dust in three dimensions. It lies

within 0 < Dm < 3. We emphasis that the Hausdorff (fractal)

dimension of the total volume of the balls coincides with that

of the total surface of the spheres in the limit m → ∞. This is

a seemingly paradoxical conclusion resulted from the infinite

mathematical procedure m → ∞. The coincidence of the

volume dimension and surface dimensions in the GCF is a

generic characteristic of mass fractal (see Introduction).

Them-th iteration of the three-dimensional Cantor-like sur-

face fractal is built as a sum of the Cantor dusts of iterations

from zero to m, see Fig. 5. In order to avoid the overlapping

between the different iterations of the Cantor dust, the initial

radius should be restricted: r0 6 L(1 − 2βs)/2. By the con-

struction, the initial length L is nothing else but the size of the

surface fractal if m is big enough. The essential difference be-

tween the Cantor mass and surface fractals is that, at a given

iteration, the mass fractal consists of subunits with the same

size, while the surface fractal consists of subunits with dif-

ferent sizes, obeying the discrete power-law distribution. The

difference is apparent from Fig. 5.

At the m-th iteration, the three-dimensional Cantor-like

surface fractal is composed of Nm = 1 + k + k2 + · · ·+ km

balls

Nm = (km+1 − 1)/(k − 1) (17)

(with k = 8), whose radii and volumes are distributed in the

following way. One ball of radius r0 has volume 4πr30/3, k
balls of radius r1 = βsr0 have the volume k4πr31/3, k2 balls

of radius r2 = β2
s r0 have the volume k24πr32/3), and so on.

Then, the total volume of surface fractal at m-th iteration is

given by

Vm = V0
1− (kβ3

s )
m+1

1− kβ3
s

(18)

with the volume of zero iteration V0 = 4πr30/3. Because of

the inequality kβ3
s < 1, the total volume (18) is finite in the

limit m → ∞, and then the Hausdorff dimension of the fractal

volume is equal to 3.

The contribution of the initiator (m = 0) to the Hausdorff

dimension of the total surface of the Cantor-like fractal is ob-

viously equal to 2, which yields the lower limit for the surface

dimension, while the contribution of the m-th mass iteration

for m → ∞ is given by the fractal dimension (16). Then

we arrive at the the Hausdorff (fractal) dimension of the total

surface of the Cantor-like fractal

Ds =

{

2, for 0 < βs 6 1/
√
k,

− lnk/ lnβs, for 1/
√
k 6 βs < 1/2.

(19)

The threshold value βs = 1/
√
k corresponds to Dm = 2 in

Eq. (16), which yields βs = 1/(2
√
2) = 0.353 . . . for k = 8.

When the scaling factor βs is smaller than this value, the total

surface of the fractal is finite even in the limit m → ∞. As

expected [5, 6, 8], the surface Hausdorff dimension satisfies

the condition 2 6 Ds < 3.

B. Monodisperse fractal form factor

At n-th iteration the mass GCF is composed of balls of

the same size βn
s r0. The normalized scattering amplitude is

known analytically [25, 26]

F (m)
n (q) = F0(β

n
s qr0)G1(q)G1(βsq) · · ·G1(β

n−1
s q), (20)
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FIG. 5. (Color online) Upper panel: The initiator (m=0) and first

three iterations of the mass generalized Cantor fractal (Cantor dust).

Each ball of radius rm generates k = 8 balls of radius rm+1 = βsrm
at each subsequent iteration; Lower panel: the second iteration of the

Cantor-like surface fractal that is a sum of the mass fractals of zeroth,

first, and second iterations.

where G1(q) ≡ cos(uqx) cos(uqy) cos(uqz) is the generative

function depending on the relative positions of the balls inside

the first iteration of the fractal. Here

F0(z) = 3(sin z − z cos z)/z3, (21)

is the form factor of ball of unit radius, and u ≡ L(1− βs)/2.

One can put by definition for the zeroth iteration F
(m)
0 (q) =

F0(qr0).
The surface fractal, by its intrinsic construction (see the pre-

vious section), is the sum of mass GCF at various iterations,

and, hence, we should add the amplitudes of the mass fractal

iterations V0(kβ
3
s )

nF
(m)
n (q) and normalize the result to one

at q = 0

F (s)
m (q) =

1− kβ3
s

1− (kβ3
s )

m+1

m
∑

n=0

(kβ3
s )

nF (m)
n (q), (22)

where the normalization condition F
(s)
m (0) = 1 is satisfied.

Then the scattering intensity is calculated with Eq. (3)

I(s)m (q) = I(s)m (0)
〈

∣

∣F (s)
m (q)

∣

∣

2
〉

(23)

with I
(s)
m (0) = n |∆ρ|2 V 2

m, where Vm is given by Eq. (18).

The radius of gyration Rg is related to the expansion of the

scattering intensity for q → 0 [2]

I(q) = I(0)(1− q2R2
g/d+ · · · ) (24)

with d = 3 for three-dimensional space. The calculations

of the fractal radius of gyration can be simplified, since the

expansion of form factor (20) is radially symmetric up to

quadratic terms in q due to the cube rotational symmetry. This

implies that the total form factor of the surface fractal (22)

has the same symmetry as well, which leads to F
(s)
m (q) =

1 − q2R2
g/6 + · · · . Expanding Eq. (20), substituting the re-

sult into Eq. (22), and combining the terms proportional to q2

yield

Rg =

(

3

5
r20µ+ 3

1− βs

1 + βs
L2ν

)1/2

, (25)

where the dimensionless parameters µ and ν are given by

µ ≡ 1− x

1− y

1− ym+1

1− xm+1
, ν ≡ x

1− xm

1− xm+1
−y

1− x

1− y

1− ym

1− xm+1

with x ≡ kβ3
s and y ≡ kβ5

s . The radius of gyration of the

Cantor surface fractal takes a simple form when m → ∞

Rg =

(

3

5

1− kβ3
s

1− kβ5
s

r20 + 3
(1− βs)

2

1− kβ5
s

kβ3
sL

2

)1/2

. (26)

C. Polydisperse fractal form factor

In most cases, a real system consists of fractals of various

sizes and forms (polydispersity). We can model polydispersity

by considering an ensemble of GCF with different lengths l of

the initial cube taken at random (that is, l is here the length of

the initial cube and the ratio l/r0 is held constant over the en-

semble, see Sec. IV A). Note that in the previous sections, we

denote the length of the initial cube L, while in the presence

of polydispersity, L is the mean value of the cube length over

the ensemble.



9

The distribution function DN (l) of the fractal sizes is de-

fined in such a way that DN(l)dl gives the probability of find-

ing a fractal whose size falls within the range (l, l + dl). We

consider here quite common log-normal distribution

DN(l) =
1

σl(2π)1/2
exp

(

− [log(l/L) + σ2/2]2

2σ2

)

, (27)

where σ = [log(1 + σ2
r )]

1/2. The quantities L and σr are the

mean length and its coefficient of variation (that is, the ratio of

the standard deviation of the length to the mean length), called

also relative variance

L ≡ 〈l〉D , σr ≡ (
〈

l2
〉

D
− L2)1/2/L, (28)

where 〈· · · 〉D ≡
∫

∞

0 · · ·DN (l)dl. Therefore, by using

Eqs. (3) and (27) the polydisperse intensity becomes

I(s)m (q) = n |∆ρ|2
∫

∞

0

〈

∣

∣

∣
F (s)
m (q)

∣

∣

∣

2
〉

V 2
m(l)DN (l)dl, (29)

where the amplitude is given by Eq. (22).

D. Analysis of the main regions in the scattering intensity

The numerical results for the SAS intensities of the first

three iterations of the surface Cantor fractal are shown in

Fig. 6. One can clearly distinguish four main subsequent re-

gions: the Guinier, intermediate, surface fractal, and Porod

regions.

1. The Guinier and intermediate regions

In the Guinier region q . 2π/L, we deal with completely

coherent scattering of all structural units with zero phase dif-

ference. Thus, the spatial correlations at the distance of order

of the overall fractal size L are important.

In the intermediate region, we observe a quite complicated

interference (23) of the scattering amplitudes of mass Cantor

fractals (20) composing the surface Cantor fractal. The scat-

tering from Cantor-like mass fractals was studied in detail in

Refs. [25–27].

The correlations of amplitudes of structural fractal units de-

cay subsequently with increasing q. Thus, the correlations be-

tween the amplitudes of different mass fractal iterations decay

(that is 〈F (m)
n (q)F

(m)
j (q)〉 ≃ 0 for n 6= j) when q & 2π/rnj

with rnj being a typical distance between balls in the nth and

jth mass fractal iterations. Then we derive from Eqs. (22) and

(23)

I(s)m (q)/I(s)m (0) = 〈|F (s)
m (q)|2〉

≃ (1− kβ3
s )

2

(

1− (kβ3
s )

m+1
)2

m
∑

n=0

(kβ3
s )

2n〈|F (m)
n (q)|2〉, (30)

where k = 8.

Further, for nth mass fractal iteration, the spatial correla-

tions between the ball positions become immaterial at the up-

per border of mass fractal range q ≃ 4π/[(1 − βs)β
n−1
s L]

and higher due to transition from to the incoherent scatter-

ing regime, where we have 〈|F (m)
n (q)|2〉 ≃ F 2

0 (β
n
s q)/k

n, see

Refs. [26, 27]. Therefore, when the correlations between the

amplitudes of all balls composing the surface fractal are neg-

ligible, we obtain from Eq. (30)

I(s)m (q)/I(s)m (0) = 〈|F (s)
m (q)|2〉

≃ (1− kβ3
s )

2

(

1− (kβ3
s )

m+1
)2

m
∑

n=0

knβ6n
s F 2

0 (β
n
s qr0). (31)

Besides, each ball of radius r0β
n
s behaves as a point-like

object with F (q) ≃ 1 unless the wave vector gets larger than

about π/(r0β
n
s ), see the discussion in Sec. II. This means that

we observe an interference pattern of the point-like objects

with the amplitudes proportional to their volumes V0β
3n
s (here

V0 = 4πr30/3) up to qL . 2πL/r0 = 100π at the chosen

values of control parameters in Fig. 6.

We clearly see the second plateau where all the correlations

between the ball amplitudes have decayed but the balls still

scatter as point-like objects. Replacing F0 by one and sum-

ming the remaining terms in Eq. (31) yield the asymptotic

value Iasm of the second plateau

Iasm/I(s)m (0) ≃ (1− kβ3
s )

2

(

1− (kβ3
s )

m+1
)2

1− (kβ6
s )

m+1

1− kβ6
s

. (32)

Note that the second plateau can be considered as the Guinier

region for a surface fractal composed of spatially uncorrelated

objects, see Eq. (14).

We emphasize the following point. The surface fractal is

composed of the mass fractals. In spite of this fact, only the

scattering pattern from the first mass-fractal iteration mani-

fests itself in the intermediate region shown in Fig 6 at the

chosen values of the control parameters. If, however, the Can-

tor surface fractal construction starts from the nth Cantor mass

fractal with n ≫ 1, one can observe a clearly pronounced

mass fractal regime. This is a specific feature of the surface

fractal construction, which is not related to the surface fractal

region, and we will discuss this property elsewhere [30]. In-

stead, in this paper we focus on the next surface fractal region

with a complex pattern of maxima and minima superimposed

on a power-law decay I(q) ∼ 1/q6−Ds (generalized power-

law decay).

2. The surface fractal and Porod regions

If the ratio d/l = L/r0 is chosen to be large enough, the

fractal region of a surface fractal arises as a result of inco-

herent diffraction of all units composing the fractal (see the

discussion in Sec. III B 2). This means that we should add

up intensities of the fractal units together but not their ampli-

tudes. Then the scattering intensity can be easily calculated in

the fractal region, once the fractal structure is known. For the



10

10-1 100 101 102 103 104
10-5

10-2

101

104

107

100 101 102 103
10-5

10-3

10-1

L/r0=100

m = 3

m = 2

m = 1

~ q- 4

qL

I m
(q
)/I

m
(0
)

 

 

 s=0.49 (Ds=2.91)

~ q- 3.09

m = 0

L/r0=100

(b)

 
(a)

m
 =

 0

m
 =

 3

m
 =

 2

qL

I m
(q
)/I

m
(0
)

 

 s=0.49 (Ds=2.91)

m
 =

 1

FIG. 6. (Color online) Scattering intensity (23), normalized to one

at q = 0, for the first three iterations of the monodisperse surface

fractal versus the wave vector (in units of the inverse total fractal

size). (a) Scattering curve for the mth iteration is scaled up for clarity

by the factor 102m. The Guinier, intermediate, fractal, and Porod

regions are shown in black, red, green, and blue, respectively. (b)

Asymptotes of the plateau (32) are indicated in ash-dot cyan.

Cantor surface fractal (see Sec. IV A), we have, first, the con-

tribution of the central ball (the first mass fractal iteration),

see Sec. II, I0(q) ≡ n|∆ρ|2V 2
0 F

2
0 (qr0) with V0 = 4πr30/3

and F0 being the ball volume and its form factor (21), re-

spectively. Second, the contribution of the first mass fractal

iteration is kβ6
s I0(βsq) (because it consists of k = 8 balls

with radii βsr0), and so on. Repeating all the arguments of

Sec. III B 2, we explain the exponent Ds − 6 in the fractal

region of the surface fractal.

For high wave vectors q & π/rm, we have the Porod re-

gion, which is determined by the size of the smallest fractal

subunits, balls of radius rm = βm
s r0. In the Porod region, the

scattering intensity resembles the intensity of the initiator (a
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10-12

10-9

10-6

10-3

100

100 101 102 103
10-9

10-6

10-3

100

L/r0=20

~ q- 2.6

 / rm / r0
2  / lin

~ q- 4  

 

 

 

s = 0.45
 (Ds = 2.6 )

~ q- 3.4

I m
 /I

m
(0
)

qL

Surface fractal at m = 3
Mass fractal at m = 1

Mass
fractal 
at m = 2

Mass
fractal 
at m = 3

L/r0=20

~ q- 2.6

Mass fractal at m = 1
Surface fractal at m = 3I  (as)

m

~ q- 4

~ q- 3.4

s = 0.45
(Ds = 2.6 )

qL

I m
 /I

m
(0
)

 

 

Mass
fractal 
at m = 2

Mass
fractal 
at m = 3

(a)

(b)

FIG. 7. (Color online) Scattering from entire surface fractal

[Eq. (23)] and the separate contributions of the mass fractal itera-

tions composing the surface fractal. Here rm = βm

s r0 is radius of

the balls for the mth iteration. (a) Monodisperse scattering. (b) Poly-

disperse scattering with relative variance σr = 0.4 (compare with the

model curves shown in Fig. 4b)

ball in our case), obeying the Porod law 1/q4.

Figures 7 and 8a illustrates that the scattering intensity of

a surface fractal in the fractal range is actually realized as a

non-coherent sum of intensities of a system of balls. One can

see from Fig. 8a that in the fractal region π/r0 . q . π/rm,

we have a very good coincidence between exact formula (23),

the approximation (30) neglecting the correlations between

mass fractal amplitudes, and completely incoherent sum of

intensities of the balls (31), which are discussed in detail in

Sec. IV D 1.

In order to observe deviations form the surface fractal

power-law 1/q6−Ds , one can scale out it and thus depict

q6−DsI(q) as a function of q in a log-scale, see Fig. 8b. The

minima and maxima exhibit an approximate log-periodicity

with the scale factor 1/βs. This result has analogy with

deterministic mass fractals [27], but its nature is different.
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Indeed, the log-periodicity in mass fractals arises from the

self-similarity of distances between the structural units, while

the log-periodicity in surface fractals arises from the self-

similarity of sizes of the structural units. As usual, polydis-

persity smoothes the minima and maxima spreading, which

can can have a dramatic effect on possible experimental ob-

servations. Nevertheless, the effect still appears when poly-

dispersity is not high, and the log-periodicity allows us to ex-

tract information about the scale factor 1/βs of deterministic

surface fractals from SAS intensity obtained experimentally.

It is clear that the more correlators in the total amplitude are

taken into accounts, the better the approximation works. And

conversely, the more correlators are neglected, the more in-

terference minima and maxima disappear from the scattering

intensity. The figure 9 shows how the different approxima-

tions, discussed in Secs. III B 1, III B 2, and III B 3, work. The

most precise is Eq. (13), perfectly reproducing the interfer-

ence minima and maxima. We emphasize, however, that such

an accuracy for the scattering intensity is not needed, because

it is not observable in possible SAS experiments. For the given

ratio d/l = L/r0 = 20 ≫ 1, even the approximation of spa-

tially uncorrelated units works fairly well, reproducing fairly

well the “fine” structure of the SAS curve.

V. POLYDISPERSE COMPONENTS WITHIN RANDOM
AND DETERMINISTIC SURFACE FRACTALS

A deterministic surface fractal can be seen as a system of

balls whose radii follow a discrete power-law distribution.

Moreover, as discussed in Sec. IV D, positions of the balls

are not important in the fractal region for the rough structure

of the scattering curve. Then one can expect that the only

quantity, which is significant for the behavior of scattering in-

tensity in the fractal region, is the exponent of power-low dis-

tribution. To show this, let us compare the discrete power-law

distribution with continuous one having the same exponent.

It is important to make here a clear distinction between two

types of polydispersities (log-normal vs. power-law) used in

this paper: the log-normal polydispersity are related to the

overall sizes of different Cantor surface fractals, which are

assumed to be taken at random, while the power-law polydis-

persity is used here for describing the distribution of the ball

radii inside one surface fractal.

We consider further a system of non-overlapping balls in

three-dimensional space (see Fig. 10) with continuously dis-

tributed radii r, satisfying the condition a 6 r 6 R, where a
and R are the smallest and largest radius of the balls, respec-

tively. The number of balls dN(r) whose radii falls within the

range (r, r+dr) is proportional to dr/rτ with 3 < τ < 4. An

analog of finite iteration is the cutoff length a, for which only

the balls of radii larger than a are considered.

The exponent τ can easily be related to the fractal dimen-

sion of the combined surface area of the balls (see Ref. [11]

and Appendix A in Ref. [27]). Let us prove that the total area

of the sphere surfaces has the fractal dimension Ds = τ − 1.

According to the definition of Hausdorff (fractal) dimension,

we should estimate the minimal number of balls of radius a
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FIG. 8. (Color online) Scattering intensity from surface fractals. (a)

Exact total scattering intensity (23), the approximation (30) neglect-

ing the correlations between mass fractal amplitudes, and completely

incoherent sum of intensities of the balls (31) are shown in black, red,

and green, respectively. The fine structure of the intensity is approx-

imated fairly well by the incoherent sum of intensities of the balls in

the fractal region, since the ratio L/r0 = d/l is large. (b) The scaled

scattering intensity (qL)6−DsI(q), shown in black, is a log-periodic

function with the factor 1/βs. Polydispersity (red curve, scaled up by

the factor 3 to facilitate visualization) smoothes the minima and max-

ima spreading. The relative variance of polydispersity σr is equal to

0.05.

needed to cover the set of spheres when a → 0. The minimal

number of balls of radius a needed to cover a sphere of radius

r is proportional to r2/a2. Then the minimal number of balls

for covering the system with a finite cutoff length a is is given

by the integral

N(a) ∝ 1

a2

∫ R

a

dr r2−τ ∝ 1

aτ−1
, (33)

when a → 0. Comparing this equation with the definition of

Hausdorff dimension N(a) ∝ a−Ds yields Ds = τ − 1 with
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FIG. 9. (Color online) The scaled scattering intensity (qL)6−DsI(q)
of Fig. 8a, but in a large scale to compare different approximations.

The relative variance of polydispersity σr is equal to 0.01. The ap-

proximation, taking into accounts the correlations between consec-

utive MF amplitudes (13) [dashed (blue) line], perfectly reproduces

the total scattering intensity [solid (black) line].

2 < Ds < 3.

Let us show how the above method of obtaining Hausdorff

dimension works in some specific cases. If we consider the

total volume of the balls, their Hausdorff dimension is obvi-

ously equal to D = 3. Indeed, the minimal number of balls of

radius a needed to cover a ball of radius r is proportional to

r3/a3, and we obtain in the same manner

N(a) ∝ 1

a3

∫ R

a

dr r3−τ ∝ a−3, (34)

because this integral converges at the lower limit of integration

when a → 0 for τ < 4. Note that if τ > 4, the total volume

of the balls diverges when a → 0, which means that such

system of balls cannot be realized without overlaps between

them at sufficiently low a. If τ < 3, the integral in Eq. (33)

converges for a → 0, which implies N(a) ∝ a−2, and Ds =
2. This is in complete analogy with the Cantor surface fractal,

whose surface dimension cannot be lower than 2 (see the last

paragraph of Sec. IV A).

Note that the positions of the balls in real space are sup-

posed to be spatially uncorrelated. In spite of this, the spatial

correlations are still present in the system, because they are

present in each ball composing this fractal. The power-law

distribution of radii makes the resulting correlations to be of

the fractal type.

In order to compare the discrete and continuous distribu-

tions, it is convenient to involve number of balls within a cer-

tain range, which is not supposed to be small. It follows from

the construction of the mth iteration of deterministic surface

Cantor fractal (see Sec. IV A) that number of balls with radii

r′ lying within r′ 6 r is given by the equation

Ndiscr(r′ 6 r) =

m
∑

n=0

knΘ(r − βn
s r0), (35)

where k = 8 and Θ(x) is the Heaviside step function, that is,

Θ(x) = 1 for x > 0 and Θ(x) = 0 otherwise.

For the continuous distribution considered above [dN(r) ∝
r−τdr], we put first, the exponent τ = Ds + 1 with the

fractal dimension Ds being equal to the surface dimension

of the Cantor surface fractal, Ds = − lnk/ lnβs, and sec-

ond, the total number of balls being equal to that of the

mth Cantor fractal iteration Nm [see Eq. (17)]. We obvi-

ously have N cont(r′ 6 r) = C1r
−Ds + C2, where the un-

known constants C1 and C2 can be found from the conditions

N cont(r′ 6 a) = 0 and N cont(r′ 6 R) = Nm. We derive

N cont(r′ 6 r) =
km+1 − 1

k − 1

(R/a)Ds − (R/r)Ds

(R/a)Ds − 1
. (36)

This equation is valid for arbitrary r lying between a and R,

otherwise N cont is zero for r 6 a and equal to Nm = km+1
−1

k−1
when r > R. The parameters R and a should be chosen to

ensure that the continuous distribution (36) coincides with the

discrete one (35) at the points rn = βn
s r0 for n = 0, . . . ,m.

Then they are given by

R = r0, a = βm+1
s r0. (37)

Substituting the parameters (37) into Eq. (36) and using the

relation kβDs
s = 1 finally yield

N cont(r′ 6 r) =
km+1 − (r0/r)

Ds

k − 1
. (38)

Because of the dominant contribution of small radii in the

“cumulative” distributions (35) and (38), it is more instructive

to draw N(r′ > r) = Nm−N(r′ 6 r) (that is, the number of

balls with radii r′ obeying the condition r′ > r) as a function

of 1/r. The double logarithm plot is shown in Fig. 11. One

can see that the polydispersity distributions are alike in the

power-law exponent and coincide at the “corner” points.

Once N(r′ 6 r) is known explicitly as a function of r,

the normalized distribution can be obtained by the relation

DN(r) = (1/Nm)dN/dr. We obtain from Eqs. (35) and (38),

respectively,

Ddiscr
N (r) =

k − 1

km+1 − 1

m
∑

j=0

kjδ(r − βj
sr0), (39)

Dcont
N (r) =

Ds

km+1 − 1

rDs

0

rDs+1
. (40)

Here the well-known formula dΘ(x)/dx = δ(x) is used.

As expected, the discrete distribution function (39) is given

by a sum of appropriately weighted Dirac’s delta-functions.

Equation (40) is applicable for βm+1
s r0 6 r 6 r0, otherwise

Dcont
N (r) = 0.

As is shown in Sec. IV D, the scattering intensity of a

surface fractal in the fractal region is a result of incoherent

diffraction of the units composing the fractal, namely, balls

for the Cantor surface fractal or the random fractal with the

power-low distribution. This means that the resulting inten-

sity is a sum of the intensities of all balls composing the frac-

tal. For a continuous distribution, the sum should be replaced
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FIG. 10. (Color online) A distribution of balls whose radii follow a

power-law continuous distribution.
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FIG. 11. (Color online) Distribution of balls composing the random

(red) and deterministic (black) fractal of the fourth iteration on a dou-

ble logarithm scale. Here N(r′ > r) is the number of balls with radii

r′ obeying the condition r′ > r. It is shown as a function of 1/r.

The step-like function indicates discreteness of the ball distribution

within the deterministic fractal.

by the corresponding integral. By analogy with Eq. (29), we

derive

Im(q) = n |∆ρ|2
∫

∞

0

drF 2
0 (qr)V

2
b (r)DN (r), (41)

where F0 is the form factor (21) of ball of unit radius, Vb(r) =
4πr3/3 is the volume of ball, and DN (r) is the normalized

distribution given by Eq. (39) or (40). Certainly, for the dis-

crete distributions, Eq. (41) coincides with Eq. (12) consid-

ered above up to a constant factor.

The scattering intensities are shown in Fig. 12. As ex-

pected, the intensity curve is smoothed for the continuum

power-low distribution (40), but the scattering exponent 6 −
Ds is not changed, as well as the positions of the upper and

lower edges of the fractal region.

It should be emphasized that the centers of the continuously

distributed balls are assumed to be uncorrelated. The question

arises whether the long-range correlations between the ball
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FIG. 12. (Color online) The intensity of monodisperse scattering

(41) from surface fractals with a discrete (black) [Eq. (39)] and con-

tinuous (red) [Eq. (40)] power-law distribution of balls composing

the fractals. The intensities are normalized to Im(0) of the discrete

distribution, and the momentum transfer q is represented in units of

the largest ball radius 1/r0. The scattering from a surface fractal can

be roughly explained in terms of power-law distribution of sizes of

objects composing the fractal. The distribution can be discrete (for

deterministic fractals) or continuous (for random fractals).

positions could contribute somehow into the fractal region or

not. The deep analogy between the continuous and discreet

power-law distributions can help us to answer the question.

To this end, we consider the Cantor surface fractal with the

same dimension Ds = τ − 1. So, the both systems (the Can-

tor surface fractal and the continuously distributed balls) have

the same fractal dimension. Hence, according to the paper by

Bale and Schmidt [5], the both fractals have to have the frac-

tal region with the exponent 6 − Ds. The figure 6a gives us

the full range of correlations for the Cantor surface fractal in-

cluding long- and short-ranged correlations. Only the range

in green has the proper slope with the factor of 6 − Ds, and

it is the fractal range that corresponds to the fractal range in

Fig. 12. Black and red ranges (describing the long-ranged cor-

relations, because small momenta are related to big distances

in real space) do not show anything that vaguely resembles a

fractal region, and this means that the long-range correlations

hardly play a role in explaining the exponent 6−Ds (see also

the arguments in Sec. III).

VI. CONCLUSIONS

We construct a deterministic surface fractal as a sum of

three-dimensional mass Cantor sets at various iterations. We

study its structural properties in momentum space and de-

rive analytical expressions for monodisperse and polydisperse

form factor, radius of gyration, and edges of the fractal re-

gions.

We conclude that in general (with minor reservations dis-

cussed in the Introduction), any surface fractal can be repre-
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sented as a sum of non-overlapping mass fractals. This im-

plies that the scattering amplitude of surface fractal can be

written down as a sum of the amplitudes of composing mass

fractals, see Eq. (8). This representation enables us to con-

struct various approximations taking into account different

correlations between the scattering amplitude of the objects

that compose the surface fractal.

The roughest approximation is to consider the amplitudes

of the composing primary objects being incoherent, which as-

sumes that the spatial correlations between the primary ob-

jects are not important. This approximation always repro-

duces correctly the borders of the fractal region for a sur-

face fractal (see Sec. III B 4) and the rough structure of the

scattering intensity. However, its fine structure, including tiny

minima and maxima, is described well by this approximation

only when d/l ≫ 1 (that is, the distance between objects is

much larger than their size for each mass fractal composing

the surface fractal), otherwise more precise approximations

are needed. One of them is Eq. (11), which takes into consid-

eration the correlations of the objects within each mass fractal,

or Eq. (13), which includes the correlations between pairs of

consecutive amplitudes of composing mass fractals. In this

manner, one can always specify the fine structure of the scat-

tering intensity of the surface fractal.

It is shown that when the spatial correlations between the

primary objects are not important, small-angle scattering from

a surface fractal can be described in the roughest approxima-

tion in terms of power-law distribution of sizes of objects com-

posing the fractal (internal polydispersity). As is shown, the

distribution of sizes r of composing units obeys the power-law

dN(r) ∝ r−τdr, with Ds = τ−1; it is continuous for random

surface fractals and discrete for deterministic surface fractals.

Thus, the SAS from surface fractals can be roughly under-

stood in terms of power-law type polydispersity. This could

explain the physical nature of the exponent Ds − 6, found

in Ref. [5] and solve the longstanding question whether the

small-angle scattering from surface fractals can be explained

in terms of polydispersity. The answer is “yes”, provided the

polydispersity is of power-law type and the fine structure of

the scattering intensity of the surface fractal is neglected.

The present analysis could also be helpful for extracting

additional information from SAS data, such us the edges of

the fractal region, the fractal iteration number and the scaling

factor.

Modern SAS devices are able to measure the range of in-

tensities within 5 or 6 orders of magnitude, while the measur-

able range of scattering vectors q is limited to 3 orders. These

limitations do not allow us to observe with a single experi-

mental device all the properties obtained theoretically in this

paper. In particular, one can measure only the initial part of

the scattering intensity shown in Fig. 6a and miss the fractal

and Porod regions. One can hope that rapid progress in exper-

imental technics (see, e.g., Ref. [31]) will enhance our ability

to observe the structure of matter at different scales.

ACKNOWLEDGMENTS

The authors are grateful to Sergej Flach for useful re-

marks. The authors acknowledge financial support from

JINR–IFIN-HH projects. A.I.K. acknowledges Russian pro-

gram “5Top100” of the Ministry of Education and Science of

the Russian Federation.

[1] A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays

(John Wiley & Sons, Inc., New York, 1955).

[2] L. A. Feigin and D. I. Svergun, Structure Analysis by Small-

Angle X-Ray and Neutron Scattering (Plenum, New York,

1987).

[3] H. Brumberger, Modern Aspects of Small-Angle Scattering

(Kluwer Academic Publishers, Dordrecht, 1995).

[4] P. Lindner and T. Zemb, Neutrons, X-Rays and Light: Scatter-

ing Methods Applied to Soft Condensed Matter (Elsevier, Am-

sterdam, 2002).

[5] H. D. Bale and P. W. Schmidt, Phys. Rev. Lett 53, 596 (1984).

[6] J. E. Martin and A. J. Hurd, J. Apply. Cryst 20, 61 (1987).

[7] J. Teixeira, J. Appl. Cryst. 21, 781 (1988).

[8] P. W. Schmidt, J. Appl. Cryst. 24, 414 (1991).

[9] G. Beaucage, J. Appl. Cryst. 29, 134 (1996).

[10] B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Free-

man, 1983).

[11] P. Pfeifer and D. Avnir, J. Chem. Phys. 79, 3558 (1983).

[12] M. F. Barnsley, Fractals Everywhere: The First Course in De-

terministic Fractal Geometry (Academic, London, 1988).

[13] J. F. Gouyet, Physics and Fractal Structures (Springer, 1996).

[14] A. Yu. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin,

J. Appl. Cryst. 47, 198 (2014).

[15] E. M. Anitas, Eur. Phys. J. B 87, 139 (2014).

[16] H. Mayama and K. Tsuji, J. Chem. Phys. 125, 124706 (2006).

[17] G. R. Newkome, P. Wang, C. N. Moorefield, T. J. Cho,

P. P. Mohapatra, S. Li, S. H. Hwang, O. Lukoyanova,

L. Echegoyen, J. A. Palagallo, V. Iancu, and S. W. Hla,

Science 312, 1782 (2006).

[18] J. V. Barth, Ann. Rev. Phys. Chem. 58, 375 (2007).

[19] G. F. Cerofolini, D. Narducci, P. Amato, and E. Romano,

Nanoscale Res. Lett. 3, 381 (2008).

[20] V. Polshettiwar, B. Baruwati, and R. S. Varma,

ACS Nano 3, 728 (2009).

[21] E. J. W. Berenschot, H. V. Jansen, and N. R. Tas,

J. Micromech. Microeng. 23, 055024 (2013).

[22] E. Miloskovska, M. R. Hansen, C. Friederich, D. H. Bogaerds,

M. V. Duin, and G. With, Macromolecules 47, 5174 (2014).

[23] S. Kajita, Y. Tsuji, and N. Ohno,

Physics Letters A 378, 2533 (2014).

[24] V. Palmieri, D. Lucchetti, A. Maiorana, M. Papi, G. Maulucci,

G. Ciasca, M. Svelto, M. D. Spirito, and A. Sgambato,

Appl. Phys. Lett. 105, 123701 (2014).

[25] A. Yu. Cherny, E. M. Anitas, A. I. Kuklin, M. Balasoiu, and

V. A. Osipov, J. Surf. Invest. 4, 903 (2010).

[26] A. Yu. Cherny, E. M. Anitas, A. I. Kuklin, M. Balasoiu, and

V. A. Osipov, J. Appl. Cryst. 43, 790 (2010).

[27] A. Yu. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin,

Phys. Rev. E 84, 036203 (2011).

[28] P. W. Schmidt, J. Appl. Cryst. 15, 567 (1982).

http://dx.doi.org/10.1103/PhysRevLett.53.596
http://dx.doi.org/10.1107/S0021889887087107
http://dx.doi.org/10.1107/S0021889888000263
http://dx.doi.org/10.1107/S0021889891003400
http://dx.doi.org/10.1107/S0021889895011605
http://dx.doi.org/10.1063/1.446210
http://dx.doi.org/10.1107/S1600576713029956
http://dx.doi.org/10.1140/epjb/e2014-41066-9
http://dx.doi.org/10.1063/1.2336200
http://dx.doi.org/10.1126/science.1125894
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141259
http://dx.doi.org/10.1007/s11671-008-9170-0
http://dx.doi.org/10.1021/nn800903p
http://dx.doi.org/10.1088/0960-1317/23/5/055024
http://dx.doi.org/ 10.1021/ma500594a
http://dx.doi.org/10.1016/j.physleta.2014.06.033
http://dx.doi.org/10.1063/1.4896161
http://dx.doi.org/10.1134/S1027451010060054
http://dx.doi.org/10.1107/S0021889810014184
http://dx.doi.org/10.1103/PhysRevE.84.036203
http://dx.doi.org/10.1107/S002188988201259X


15

[29] A. Rogachev, A. Cherny, A. Ozerin, V. Gordeliy, and A. Kuk-

lin, Crystallogr. Rep. 52, 500 (2007).

[30] To be published.

[31] N. D. Loh et al., Nature 486, 513 (2012).

http://dx.doi.org/ 10.1134/S1063774507030303
http://dx.doi.org/10.1038/nature11222

