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Scattering-matrix treatment of patterned multilayer photonic structures
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We present calculations of surface reflectivity and emission spectra for multilayer dielectric waveguides with
a two-dimensional patterning of deep holes. The spectra are obtained using a scattering-matrix treatment to
propagate electromagnetic waves through the structure. This treatment incorporates, in a natural way, the
extended boundary conditions necessary to describe external reflection and emission processes. The calculated
spectra demonstrate how such measurements can be used to obtain experimental information about the wave-
guide photonic band structure, the coupling of scattering modes to external fields, and the field distribution
within the waveguide.@S0163-1829~99!15327-X#
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I. INTRODUCTION

Patterning a semiconductor waveguide with a lattice
holes is an important way of realizing the concept of a tw
dimensional photonic band structure.1 However, the realiza-
tion is only approximate, as the waveguide provides ad
tional optical confinement in the third dimensio
perpendicular to the plane of the patterning. For a reali
semiconductor waveguide structure, which consists o
number of layers with different dielectric constants, the
sulting electromagnetic modes are more complicated tha
a simple two-dimensional lattice. Moreover, many, a
sometimes all, the waveguide modes are actually scatte
states, in that they can leak either out of the surface or
the substrate. This complicates the theoretical analysis
such structures, as the external coupling has to be taken
account.

The methods described in this paper provide a mean
solve Maxwell’s equations for a realistic patterned multilay
structure with external coupling, and so for calculating
flectivity and emission spectra. The motivation for develo
ing this treatment was an experimental study of angu
dependent surface reflectivity measurements by Astra
et al.2 These experiments provided much more detailed
formation about the photonic band structure than the in-pl
propagation measurements of Ref. 1. Illuminating at a p
ticular angle of incidence picks out a definite value of t
in-plane photon wave vector; the various photonic bands
this wave vector then appear as sharp resonances in th
flectivity spectra. Thus, angular-dependent measurem
can be used to map out the waveguide band structure o
scattering modes, and determine the strength of their exte
coupling. Comparisons between these experiments and
present theory are discussed in Ref. 2; the main purpos
this paper is to describe the theoretical treatment.

There have been many studies of two-dimensional b
structures,3 including the reflectivity of surfaces perpendic
lar to the plane of propagation.4 Treatments of waveguide
are much fewer: Atkinet al.5 and Charltonet al.6 have dis-
cussed the conditions for the formation of true guided~that
PRB 600163-1829/99/60~4!/2610~9!/$15.00
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is, not scattering! modes. However, it is the scatterin
modes, and how they couple to external fields, that are
interest here. Fanet al.7 have tackled aspects of this proble
by calculating the total extraction efficiency for an emitt
within a finite size patterned slab. Also relevant is the lite
ture on reflectivity properties of shallow patterne
waveguides,8,9 though many of the methods used are n
applicable to the deeply patterned two-dimensional str
tures considered in this paper.

The aim of the present treatment is to take an arbitr
patterned multilayer structure and calculate reflectivity
transmission spectra for light incident from the outside,
emission spectra from an internal dipole source. The
proach adopted is based on the transfer-matrix~T-matrix!
method, which is widely used to calculate the reflectiv
properties of unpatterned multilayer structures.10 For unpat-
terned structures, theT-matrix is calculated independentl
for different values of the in-plane wave vectork, by ex-
panding the fields in each layer in terms of plane waves w
the corresponding perpendicular wave vectorq and applying,
electromagnetic boundary conditions at the interfaces. A
ing periodic patterning couplesk values, which differ by
reciprocal lattice vectorsG. Thus, theT-matrix, in principle,
transfers an infinite set of amplitudes across the struct
giving the Fourier components of the fields at wave vect
k1G. The field in each layer has to be expanded in terms
the corresponding infinite set of plane waves, obtained
solving the photonic band structure in the layer. Of course
a real numerical calculation, the set of reciprocal lattice v
tors is truncated at largeG values.

In practice, theT-matrix is numerically badly behaved i
this application: waves with large in-planek1G exhibit
strongly evanescent behavior in the perpendicularz direc-
tion. The rapidly growing amplitudes that this implies so
lead to numerical overflow. Rather than dealing directly w
the T-matrix, a better computational approach is to calcul
the related scattering matrix~S-matrix!, introduced by Ko
and Inkson.11 While the T-matrix gives the amplitudes o
both incoming and outgoing waves at the surface in term
those in the substrate, theS-matrix relates the amplitudes o
2610 ©1999 The American Physical Society
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PRB 60 2611SCATTERING-MATRIX TREATMENT OF PATTERNED . . .
the outgoing waves at the surface and in the substrate
those of the incoming waves on either side of the structu
The original development of theS-matrix method, in Ref. 11,
was in the context of electron tunneling through multilay
semiconductor structures; the tunneling problem, when
full band structure in individual layers is properly taken in
account, has obvious analogies to that of photon transmis
through a patterned dielectric structure.

The outline of the remainder of the paper is as follows:
Sec. II, Maxwell’s equations are cast in an in-plane mom
tum representation. Then in Sec. III, the band structure
solved in each layer, ignoring its boundaries, to obtain a
of states that propagate in thez direction as simple plane
waves exp(iqz). In Sec. IV, these are used to form an expa
sion of the field in terms of forward and backward propag
ing plane waves. Section V describes how theS-matrix is
calculated, using this plane wave representation. Section
and VII show how theS-matrix is used to calculate reflec
tivity and emission. A brief account of some important n
merical considerations is given in Sec. VIII, with particul
emphasis on the convergence properties. Finally, in Sec.
numerical reflectivity and emission spectra are presented
discussed.

II. MAXWELL’S EQUATIONS

Assuming a harmonic time dependence exp(2ivt) for all
fields, Maxwell’s equations in a dielectric medium a
“•«0«E50, “•H50, “3H52 iv«0«E, and “3E
5 ivm0H. Note that for harmonic fields the first equation
automatically implied by the third. The second can be sa
fied by expanding theH field in basis states with zero dive
gence. Rescalingv«0E˜E andAm0«0v5v/c˜v, the fi-
nal pair of equations become

“3H52 i«E ~2.1a!

“3E5 iv2H. ~2.1b!

Within each layer of the structure,« is independent ofz,
so it can be written« l(r ), where the indexl labels the layer.
Suchl labels will be suppressed in Secs. II to IV, where on
a single layer is considered.«~r ! depends periodically onr ,
which makes it convenient to work in a momentum rep
sentation for the in-plane coordinate, and, for a given Blo
wave vectork, expand the fields as a sum over recipro
lattice vectorsG:

H~r ,z!5(
G

H̃k~G,z!ei ~k1G!•r. ~2.2!

For compactness of notation, it is useful to define the Fou
space vectorh(z)5@H̃k(G1 ,z),H̃k(G2 ,z)...#T. Note that, al-
thoughH̃k(G,z) depends onk, the whole calculation is car
ried out for a fixed value ofk, so such labels will be sup
pressed in other symbols. The momentum representation
E, Ẽk(G,z)ande(z), are defined in an equivalent way.

It is also necessary to introduce the Fourier expansion
the dielectric function for the layer,
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«̃~G!5
1

SE
cell
unitdr «~r !eiG•r, ~2.3!

and the matrix«̂ such that«̂GG85 «̃(G2G8). S is the area of
the in-plane unit cell. Using equivalent definitions, the rec
rocal of the dielectric functionh(r )5«21(r ) has a Fourier
expansionh̃(G) and matrix representationĥ. Note that the
matrix product«̂ĥ51, provided there is no high-momentum
cutoff in the set of reciprocal lattice vectors.

With this Fourier vector notation, the momentum repr
sentation of a product such as«E becomes«̂e. Thus, the
final pair of Maxwell’s equations, Eqs.~2.1a! and~2.1b!, can
be written, in component form, as

i k̂yhz~z!2hy8~z!52 i «̂ex~z! ~2.4a!

hx8~z!2 i k̂xhz~z!52 i «̂ey~z! ~2.4b!

i k̂xhy~z!2 i k̂yhx~z!52 i «̂ez~z! ~2.4c!

and

i k̂yez~z!2ey8~z!5 iv2hx~z! ~2.5a!

ex8~z!2 i k̂xez~z!5 iv2hy~z! ~2.5b!

i k̂xey~z!2 i k̂yex~z!5 iv2hz~z!, ~2.5c!

where k̂x,k̂y are diagonal matrices with (k̂x)GG5(kx1Gx)
and (k̂y)GG5(ky1Gy), and the primes denote differentia
tion with respect toz.

The notation introduced in this section to distinguish va
ous types of vector and matrix is adopted in the remainde
the paper: Bold faces denote three vectors~E,H!, while
lower case italics are used for Fourier space vectors~e,h!.
For a finite system withNG reciprocal lattice vectors, the
matrices that occur are mostly of dimensionNG3NG , indi-
cated by hatted lower case («̂,ĥ), or 2NG32NG , for which
various upper case symbols will be used~E, H, F!.

III. SOLVING THE LAYER BAND STRUCTURE

This section is concerned with solving the band struct
for an unbounded patterned layer to obtain states which
in their z dependence, simple plane waves exp(iqz). The H
field is expanded in basis states with zero divergence, t
guaranteeing“•H50, and the coefficients in this expansio
determined by substituting into Maxwell’s equations.

Choosing a symmetric pair of basis states, thez propagat-
ing plane wave is expanded as

H~r ,z!5(
G

S fx~G!F x̂2
1

q
~kx1Gx!ẑG

1fy~G!F ŷ2
1

q
~ky1Gy!ẑG Dei ~k1G!•r1 iqz,

~3.1!

wherex̂, ŷ, and ẑ are the conventional unit vectors definin
the coordinate axes andfx(G), fy(G) are expansion coef
ficients. It is easily shown that this form satisfies“•H50.
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Translating into the momentum representatio
we define vectorsfx5@fx(G1),fx(G2),...#T and fy
5@fy(G1),fy(G2),...#T, to obtain

h~z!5eiqzH fxx̂1fyŷ2
1

q
~ k̂xfx1 k̂yfy!ẑJ , ~3.2!

wherek̂x and k̂y are the diagonal matrices defined in Sec.
Substituting Eq.~3.2! in Eq. ~2.4!, and multiplying through
by i ĥ, gives the momentum representation ofE:

e~z!5
1

q
eiqzĥ$@ k̂yk̂xfx1~q21 k̂yk̂y!fy# x̂

2@ k̂xk̂yfy1~q21 k̂xk̂x!fx# ŷ1q@ k̂yfx2 k̂xfy# ẑ%.

~3.3!

Finally, substituting these expressions fore and h into the
last Maxwell equation, Eq.~2.5!, produces three identities
one for each ofx̂, ŷ, and ẑ. The first two are:

v2fx5@ k̂yĥ k̂y1ĥ~q21 k̂xk̂x!#fx1@ĥ k̂xk̂y2 k̂yĥ k̂x#fy

v2fy5@ k̂xĥ k̂x1ĥ~q21 k̂yk̂y!#fy1@ĥ k̂yk̂x2 k̂xĥ k̂y#fx .

~3.4!
It is straightforward to show that the third identity, obtain
from theẑ component, is linearly dependent on the other t
and so is automatically satisfied.

In matrix notation, Eq.~3.4! becomes

H S ĥ 0

0 ĥ D Fq21S k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y
D G1S k̂yĥ k̂y 2 k̂yĥ k̂x

2 k̂xĥ k̂y k̂xĥ k̂x
D J

3S fx

fy
D5v2S fx

fy
D . ~3.5!

Writing the three 232 block matrices which appear in Eq
~3.5! asH, K, andK, and defining a vectorf5(fx ,fy)

T,
gives the more compact form

@H~q21K !1K#f5v2f. ~3.6!

This is the eigenvalue equation forv.
To obtain an eigenvalue equation forq, Eq. ~3.6! needs to

be multiplied by the inverse ofH. This is the matrixE, with
block diagonals«̂, constructed in the same way asH is from
ĥ. Thus, theq eigenvalue equation is

@E~v22K!2K#f5q2f. ~3.7!

Equation~3.7! is an asymmetric matrix eigenproblem, whic
may be complex if« has an imaginary part. A useful or
thogonality property, exploited in Sec. IV, can be obtain
by multiplying through byv22K and using the fact that
from their definitions,KK50. Then, Eq.~3.7! becomes

@~v22K!E~v22K!2v2K#f5q2~v22K!f, ~3.8!

which has the form of a generalized symmetric eigenpr
lem. It follows that the eigenvectorsfn , fn8 corresponding
to eigenvalues qn , qn8 satisfy the orthogonality
relationship12
,

.

o

d

-

fn
T~v22K!fn85dnn8 . ~3.9!

Note that as the matrixv22K is not positive definite, it is no
easier to solve the generalized symmetric problem than
asymmetric problem. It also means that complexq2 eigen-
values can occur even for real«.

IV. ELECTRIC AND MAGNETIC FIELDS

The next stage of the solution consists of using the pro
gating wave eigenstates defined in Sec. III as basis state
construct the fields in each layer of the structure. The fie
can be expressed as a combination of forward and backw
propagating waves with wave numbersqn , and complex am-
plitudesan andbn, respectively. These amplitudes are to
determined by applying the boundary conditions at the in
faces and surfaces of the structure. This section shows
to go between a description of the field in terms of amp
tudes to one in terms of the field componentsex , ey , hx ,
andhy . This is a necessary part of the solution, as the e
tromagnetic boundary conditions at the interfaces are
pressed in terms of the continuity of these in-plane fi
components.

From the momentum representation ofH defined in Eq.
~3.2!, the in-plane components ofh are expanded in terms o
the propagating waves as

S hx~z!

hy~z! D5(
n

S fxn

fyn
D ~eiqnzan1eiqn~d2z!bn!, ~4.1!

where d is the thickness of the layer. Note thatan is the
coefficient of the forward going wave at thez50 interface,
andbn that of the backward going wave atz5d. Thus, if the
arbitrary sign inqn is chosen to make Im$qn%.0, the defined
coefficient is the maximum amplitude of each wave in t
layer.

Looking again for a more compact notation, we define
matrix F whose columns are the vectorsfn , a diagonal
matrix f̂(z), such that fˆ(z)nn5eiqnz, and vectorshi(z)
5@hx(z),hy(z)#T, a5(a1 ,a2 ...)T and b5(b1 ,b2 ...)T. In
terms of these quantities, the in-plane magnetic-field com
nents become

hi~z!5F@ f̂~z!a1 f̂~d2z!b#. ~4.2!

Similarly, using the momentum representation ofE from
Eq. ~3.3!, the in-plane components of the electric field are

S 2ey~z!

ex~z! D5(
n

S ĥ 0

0 ĥ D Fqn
21S k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y
D G

3S fxn

fyn
D 1

qn
~eiqnzan2eiqn~d2z!bn!. ~4.3!

Identifying the block matricesH andK of Sec. III, and de-
fining ei(z)5@2ey(z),ex(z)#T ~note the skew!, this be-
comes

ei~z!5(
n
H~K1qn

2!fn

1

qn
~eiqnzan2eiqn~d2z!bn!.

~4.4!
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Equation~4.4! can be put in the same notation as Eq.~4.2! by
defining a diagonal matrixq̂ such thatq̂nn5qn , and using
the eigenvalue equation forv, Eq. ~3.6!, to replaceH(K
1qn

2)fn by (v22K)fn

ei~z!5~v22K!Fq̂21@ f̂~z!a2 f̂~d2z!b#. ~4.5!

Equations~4.2! and ~4.5! combined give

S ei~z!

hi~z! D5S ~v22K!Fq̂21 2~v22K!Fq̂21

F F
D S f̂~z!a

f̂~d2z!b
D

5M S f̂~z!a

f̂~d2z!b
D . ~4.6!

Using the orthogonality relationship Eq.~3.9!, which in ma-
trix form is FT(v22K)F51, it is easily verified that the
inverse ofM is

M 215 1
2 S q̂FT FT~v22K!

2q̂FT FT~v22K!
D . ~4.7!

V. THE SCATTERING MATRIX

This section describes how theS-matrix for the structure
is constructed from the solutions to theq eigenvalue prob-
lem. The solutions for the different layers are combined, sl
labels need to be added to the various matrices and ve
defined for the individual layers.

The S-matrix relates the vectors of the amplitudes of fo
ward and backward going waves,al and bl , in different
layers of the structure:

S al

bl 8
D5S~ l 8,l !S al 8

bl
D5S S11 S12

S21 S22
D S al 8

bl
D . ~5.1!

Note again that the definition is skewed: theS-matrix relates
al andbl 8 to al 8 andbl . This is in contrast to theT-matrix,
which relates pairs of waves in the same layers. It is t
difference which makes theS-matrix numerically more
stable than theT-matrix when evanescent waves are
volved.

The amplitudes in each layer are related by the interf
matrix I ( l ,l 11) defined by

S f̂ lal

bl
D 5I ~ l ,l 11!S al 11

f̂ l 11bl 11
D 5S I 11 I 12

I 21 I 22
D S al 11

f̂ l 11bl 11
D ,

~5.2!

where f̂ l5 f̂ l(dl). The interface matrix is obtained by requi
ing that the fields on either side of the interface satisfy
electromagnetic boundary conditions, that is continuity
the in-plane componentsEx , Ey , Hx , Hy , and thus the vec-
tors ei andhi . Using Eq.~4.6! with z5dl in layer l, andz
50 in layer l 11, these boundary conditions give
rs

is

e

e
f

I ~ l ,l 11!5Ml
21Ml 11

5 1
2 q̂lF l

T~v22Kl 11!F l 11q̂l 11
21 S 1 21

21 1 D
1 1

2 F l
T~v22Kl !F l 11S 1 1

1 1D . ~5.3!

The S-matrix is built up a layer at a time, withS( l 8,l
11) calculated fromS( l 8,l ) using the definition ofS( l 8,l )
in Eq. ~5.1! and the interface matrixI ( l ,l 11). Eliminating
al and bl gives relationships betweenal 8 , bl 8 and al 11 ,
bl 11 , from whichS( l 8,l 11) can be constructed. This lead
to the following recipe:

S11~ l 8,l 11!5~ I 112 f̂ lS12~ l 8,l !I 21!
21 f̂ lS11~ l 8,l !

S12~ l 8,l 11!5~ I 112 f̂ lS12~ l 8,l !I 21!
21

3~ f̂ lS12~ l 8,l !I 222I 12! f̂ l 11

S21~ l 8,l 11!5S22~ l 8,l !I 21S11~ l 8,l 11!1S21~ l 8,l !

S22~ l 8,l 11!5S22~ l 8,l !I 21S12~ l 8,l 11!1S22~ l 8,l !I 22f̂ l 11 .

~5.4!

Starting fromS( l 8,l 8)51, Eq. ~5.4! is applied a layer at a
time to build upS( l 8,l ). The mathematical reason for th
stability of the S-matrix is apparent from Eq.~5.4!: with
Im$qn%.0, all the elements off̂ have absolute value less tha
unity, and sincef̂ is never inverted directly, the evanesce
waves do not cause the exponential growth which gi
problems in a transfer-matrix calculation. This argument
not affected by the matrix inversion in the first two equ
tions, which is dominated by the nonsingularI 11.

Labeling the surfacel 50 and the substratel 5N ~see Fig.
1!, reflectivity and transmission coefficients are obtain
from S(0,N). The details of this procedure are explained
Sec. VI. Emission calculations require the twoS matrices
coupling the source location to the surface and substrate
described in Sec. VII. It can also be useful to be able
calculate the fields within the structure, which requires
knowledge ofal and bl . These are obtained by calculatin
S(0,l ) andS( l ,N), and using Eq.~5.1! to get

al5@12S12~0,l !S21~ l ,N!#21

3@S11~0,l !a01S12~0,l !S22~ l ,N!bN#

bl5@12S21~ l ,N!S12~0,l !#21

3@S21~ l ,N!S11~0,l !a01S22~ l ,N!bN#. ~5.5!

FIG. 1. Labeling scheme for forward and backward going wa
in different layers of the structure.l 50 is the surface,l 5N the
substrate.
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VI. REFLECTIVITY

Once theS-matrix has been calculated according to S
V, reflectivity, and transmission, spectra are easily obtain
For an experiment in which light is incident on the surfac
a0 is determined by the incident geometry andbN50. Then,
the reflected wave has amplitudeb05S21(0,N)a0 , and the
transmitted wave in the substrateaN5S11(0,N)a0 . It is thus
only necessary to translate the amplitudesa0 , b0 , and aN
into experimental angle and polarization-dependent exte
plane waves. This is best done by using Eq.~4.6! to pass
between amplitude and electromagnetic-field representati
and expressing the external plane waves in terms of th
fields.

An external plane wave is specified by its polarization a
direction of propagation, defined by polar coordinates~u,f!
relative to the surface normal~see Fig. 3!. Writing k0

5A«v/c, where« is the dielectric constant of the extern
medium, the in-plane wave vector is

k5k0 sinu~cosf x̂1sinf ŷ!. ~6.1!

Then TE- and TM-polarized plane waves are given by fi
components

ETE5«0vcZ1/2~sinf x̂2cosf ŷ!ei ~k•r1qz!

HTE5Z21/2~cosu cosf x̂1cosu sinf ŷ2sinu ẑ!ei ~k•r1qz!

ETM5«0vcZ1/2~cosu cosf x̂1cosu sinf ŷ2sinu ẑ!

3ei ~k•r1qz!

HTM5Z21/2~2sinf x̂1cosf ŷ!ei ~k•r1qz!, ~6.2!

whereZ5Am0 /(«0«) is the intrinsic impedance of the ex
ternal medium. Note that theE fields here are scaled~see
Sec. II!: the normalization is chosen so that the true Poynt
vector, («0vc)21E3H, has unit magnitude.

Consider first a lattice with a period sufficiently short th
all the scattering states~for which k,k0) on either side of
the structure lie within the first Brillouin zone. For the inc
dent wave, theG50 components of thee and h fields are
then given by Eq.~6.2!, and allGÞ0 components are zero
Thus, the incident amplitudea0 is obtained directly from
Eqs.~6.2! and~4.6!. The reflected and transmitted waves a
found by taking theG50 components of the fields whic
correspond to the calculatedb0 and aN and resolving them
into TE and TM contributions using Eq.~6.2!. In this case,
the GÞ0 components are all evanescent waves outside
structure, and so do not contribute to the far field.

The situation is more complicated when the lattice per
is large enough to give scattering states outside the first B
louin zone, so that diffraction can occur. Then, conventio
ally, k is brought into the first zone by subtracting the app
priate reciprocal lattice vectorG, and the incidente and h
fields have only the corresponding finiteG component. The
reflected and transmitted fields generally have a numbe
finite G components, which are propagating waves, and
lead to diffracted features in the far field. The directions
which diffraction occurs are found by adding theseG values
to k and inverting Eq.~6.1! to obtainu andf.
.
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VII. EMISSION

This section addresses the problem of calculating
emission from an oscillating point dipole placed inside t
structure. The boundary conditions in an emission probl
are different from reflectivity and transmission: there is
incoming wave, but instead an additional internal conditio
that of a field discontinuity at the position of the dipole. Th
internal boundary condition is first derived, and then inc
porated into theS-matrix formalism to obtain the externa
emission.

The source to be treated is an oscillating point dipo
with harmonic time dependence, at position (r0 ,z0). In this
paper, we consider only the weak coupling limit, so the a
plitude of the dipoleJ0 is independent of the the local fields
The spatial dependence of the current densityJ is

J~r ,z!5J0d~r2r0!d~z2z0!5(
k,G

J̃k~G!ei ~k1G!•rd~z2z0!,

~7.1!

whereJ̃k(G)5J0e2 i (k1G)•r0. Although the expansion in Eq
~7.1! contains all values ofk, J̃k(G) fully determines the
emission into modes with wave vectork. Hence, the calcu-
lation can be performed independently for each value ok,
and againk labels will be suppressed.

With a source term added, Maxwell’s equations are mo
fied, so Eq.~2.1a! becomes“3H5J2 i«E. Defining the
vector j5@ J̃k(G1),J̃k(G2)...#T, in the momentum represen
tation this is written

i k̂yhz~z!2hy8~z!5 j xd~z2z0!2 i «̂ex~z! ~7.2a!

hx8~z!2 i k̂xhz~z!5 j yd~z2z0!2 i «̂ey~z! ~7.2b!

i k̂xhy~z!2 i k̂yhx~z!5 j zd~z2z0!2 i «̂ez~z!. ~7.2c!

The in-plane and perpendicular components ofJ are best
treated separately. Consider first the in-plane compon
putting j z50. In order to cancel the singular term due to t
source in Eqs.~7.2a! and~7.2b!, there must be discontinuitie
in hy andhx at z5z0 of 2 j x and j y respectively.hz , ex , and
ey are all continuous, but there is a discontinuity inez by Eq.
~7.2c!, of ĥ( k̂xj x1 k̂y j y). It is easily shown that with these
discontinuities, and obtaining the charge densityr using
“•J5 ivr, all of Maxwell’s equations are satisfied. Thu
writing pi5( j y ,2 j x)

T, the required boundary conditions o
the in-plane components of the fields are

ei~z0
1!2ei~z0

2!50

hi~z0
1!2hi~z0

2!5pi . ~7.3!

Turning to the perpendicular component ofJ, put j x5 j y
50. Then the singular term in Eq.~7.2c! is cancelled by a
similar singularity in ez , that is ez(z)52 i ĥ j zd(z2z0)1
nonsingular parts. This introduces singular terms into
left-hand side of the Maxwell Eqs.~2.5a! and ~2.5b!, which
are cancelled by discontinuities inex and ey of k̂xĥ j z and
k̂ĥ j z respectively.13 Again, these are the only discontinuitie
hx , hy, and hz are all continuous. Defining pz
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5(2k̂yĥjz,k̂xĥjz)
T, the boundary conditions on the in-plan

components of the fields are thus

ei~z0
1!2ei~z0

2!5pz

hi~z0
1!2hi~z0

2!50. ~7.4!

The discontinuity condition can now be combined w
the S-matrix treatment to calculate the emission from t
structure. Consider an arbitrarily oriented dipole placed
the interface between layersl andl 11, so the boundary con
ditions become

S ei l 11
~0!

hi l 11
~0!D 2S ei l

~dl !

hi l
~dl !

D 5S pz

pi
D . ~7.5!

Using Eq.~4.6! this condition is expressed in terms of th
propagating wave amplitudes as

Ml 11S al 11

f̂ l 11bl 11
D 2Ml S f̂ lal

bl
D 5S pz

pi
D . ~7.6!
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The external boundary condition for an emission probl
is that there should be only outgoing waves, that isa05bN
50. Taking the definitions of theS-matricesS(0,l ) andS( l
11,N) from Eq. ~5.1!, it follows that

al5S12~0,l !bl ~7.7a!

b05S22~0,l !bl ~7.7b!

aN5S11~ l 11,N!al 11 ~7.7c!

bl 115S21~ l 11,N!al 11 . ~7.7d!

Substituting foral andbl 11 from Eqs.~7.7a! and~7.7d! in
Eq. ~7.6!:

Ml 11S al 11

f̂ l 11S21~ l 11,N!al 11
D 2Ml S f̂ lS12~0,l !bl

bl
D 5S pz

pi
D .

~7.8!
Finally, putting in the explicit form forMl , Ml 11 , expand-
ing and rearranging, gives
S ~v22Kl 11!F l 11q̂l 11
21 @12 f̂ l 11S21~ l 11,N!# ~v22Kl !F l q̂l

21@12 f̂ lS12~0,l !#

F l 11@11 f̂ l 11S21~ l 11,N!# 2F l@11 f̂ lS12~0,l !#
D S al 11

bl
D5S pz

pi
D . ~7.9!
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The emission is thus calculated by solving Eq.~7.9! for al 11
and bl , and using Eqs.~7.7b! and ~7.7c! to obtainb0 and
aN , the outgoing waves at the surface and in the substr
These are then translated into TE and TM intensities us
Eqs.~6.2! and~4.6!, as in the reflectivity calculations of Se
VI.

VIII. NUMERICAL METHODS AND CONVERGENCE

Most of the numerical work in the treatment developed
the preceding sections can be carried out using standard
tines available in most linear algebra packages.14 The rou-
tines required are a nonsymmetric matrix solver to obt
eigenvalues and eigenvectors for the layer band struc
from Eq. ~3.7!, a complex matrix inverter for constructin
the S-matrix using Eq.~5.4!, and a complex simultaneou
equation solver for Eq.~7.9! in the emission problem. The
matrix eigenvalue solver has to cope with complex matri
if there is absorption in the structure and the refractive in
ces are not entirely real. For nondegenerateq eigenvalues,
the orthogonality condition Eq.~3.9! is a property of the
eigenvectors, so is automatically satisfied. However,
usual normalization has to be corrected to include the ma
v22K. Similarly, for degenerate sets of eigenvalues, st
dard linear algebra routines typically, but arbitrarily, produ
mutually orthogonal eigenvectors. In order to satisfy E
~3.9! these have to be re-orthogonalized. The meth
adopted here is a generalized version of the modified Gr
Schmidt process,15 in which v22K is inserted into all inner
products. For unpatterned layers, where the eigenvalue
ways come in degenerate pairs, it is better to generate s
te.
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with the correct orthogonality property ‘‘by hand.’’
The calculated fields are only exact solutions to Ma

well’s equations in the limit where a complete, infinite set
reciprocal lattice vectors is used. In a real calculation, th
are inaccuracies when this is truncated to a finite set ofNG
vectors by applying a high-momentum cutoff. One effect
this cutoff is that the matrices«̂ andĥ, defined in Sec. II, are
no longer mutual inverses. There are various ways in wh
this can be handled:«̂ and ĥ can be calculated according t
their definitions, in which case«̂ĥÞ1, or one or other matrix
can be calculated directly, and the other obtained by ma
inversion. For band-structure calculations, it is known16 that
the best convergence is obtained when«̂ is calculated di-
rectly and inverted to obtainĥ. The same rule seems t
apply to the present calculations, and indeed for lattices w
simple unit cells, very rapid convergence is obtained in t
way. The convergence is illustrated in Fig. 2, where spec
are plotted with increasingNG for the same set of physica
parameters. Though theNG59 spectrum differs qualitatively
from the rest, forNG525 and higher only small quantitativ
changes occur. The differences in energy of the sharp
tures forNG5121 andNG5169 are, at most,;0.5 meV. If,
on the other hand,ĥ is calculated directly and«̂ obtained by
inversion~not shown!, even forNG5169 the spectra are stil
a long way from convergence.

The NG5121 calculations are very practical, taking on
about 30 s for each point on the spectrum~for a structure
consisting of four layers, two of which are patterned! using
an average work station. The nature of the calculation me
that this time increases only linearly with the number
layers. However, the time taken for the main matrix ope
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tions scales as;NG
3 , so problems with complicated lattice

such as supercell defect calculations, would be much m
demanding.

IX. NUMERICAL RESULTS

The waveguide structure we have used for the calc
tions in this paper is shown schematically in Fig. 3. It co
sists of a 400-nm Al0.12Ga0.88As guide layer, on top of a
1100-nm Al0.35Ga0.65As cladding layer. The substrate
GaAs. The waveguide is patterned with a triangular lattice
circular holes of radius 95 nm and depth 1000 nm. The
tice constant is 360 nm. This structure is similar to the o
used in the experiments of Ref. 2. The main difference
tween that paper and the present calculations is that her
have not included the oxide skin round the holes, which
required to obtain good agreement with experiment. The
ergy dependent AlxGa12xAs dielectric constant used in th
calculations comes from an approximate formula due
Boyd.17

With circular holes, the Fourier expansion of the diele
tric function, Eq.~2.3!, is easily obtained analytically.18 For

FIG. 2. Calculated reflectivity spectra, showing convergence
the number of reciprocal lattice vectors,NG, is increased. The spec
tra are for TE-polarizedG2K reflectivity atu560°, as plotted in
Fig. 4.
re
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holes of radiusr and dielectric constant«5«a in a material
with «5«b ,

«~G!5H 2~«a2«b!bJ1~Gr!/~Gr! GÞ0

«ab1«b~12b! G50,
~9.1!

whereb is the fraction of the area taken up by holes, andJ1
is a Bessel function. For a triangular lattice, with lattice co
stantL, b5 2

3)pr2/L2.
Figure 4 shows reflectivity spectra calculated for TE a

TM polarized incident light. TheG2K lattice direction is
chosen, and spectra plotted for angles of incidence rang
from 0.1° to 60°. The reflectivity spectra consist of a smoo
background variation, upon which sharp resonance feat
are apparent. These resonances occur at energies for w
the external light couples to scattering modes in the wa
guide. Just as for shallow gratings,9 the resonance feature
can take the form of maxima, minima, or inflections in t
reflectivity spectra. Also like shallow gratings, there is
coupling to the waveguide modes at normal incidence,
for a small offset from normal (u50.1°), extremely sharp
resonance features emerge. As the angle of incidence
creases, this feature shifts in energy and broadens, and
resonances appear. Due to the relationship between the
dence geometry and the wave vectork, expressed in Eq
~6.1!, the energy variation of the resonances in such ang
dependent reflectivity spectra can be used to plot out

FIG. 3. Schematic views of the structure used in numerical c
culations: ~a! Cross section, showing a hole passing through
waveguide core into the cladding.~b! Plan view, showing the lattice
of holes and examples of the high-symmetryG2K andG2M di-
rections. The3 indicates the position of the source in the emissi
calculations.
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FIG. 4. Calculated reflectivity spectra fo
various angles of incidence, with TE- and TM
polarized light in theG2K lattice direction~see
Fig. 3!. 121 reciprocal lattice vectors were use
in the calculations. The marked features in t
higher angle spectra correspond to a wavegu
mode which is visible in both polarizations.
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photonic band structure of the waveguide. It was shown
Ref. 2 that the band structure obtained in this way has s
larities to the ideal two-dimensional case, but is significan
modified by the waveguide. Unlike the case for shallow gr
ings, the deeply etched holes in the present structures lea
very significant changes in the band structure, including
formation of large band gaps at the critical points in t
Brillouin zone.

As well as revealing the waveguide band structure,
resonances in reflectivity spectra provide information ab
the strength of the external coupling of the scattering mo
for each polarization. Clearly, the most significant features
the spectra must correspond to the modes that couple
strongly. In a structure without absorption, the only damp
of the modes is due to this coupling, so the homogene
linewidth of the resonance features also gives a measur
the total loss rate. This includes both polarizations, and s
tering into the substrate as well as through the surface, so
relationship between the strength and linewidths is

FIG. 5. Calculated reflectivity spectra foru560° in the low-
symmetryf520° direction. Three types of reflection are show
the usual measurements where both incident and reflected ligh
polarized the same way~TE and TM on the figure!, and the much
weaker conversion process where the polarizations are orthog
~TE-TM!.
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simple. Generally, however, the stronger features are ind
broader. It is also interesting to compare the polarization
which a resonance feature appears with that of the unde
ing mode: it was show in Ref. 2 that, due to the polarizatio
mixing effects of the patterned waveguide, a predominan
TE-polarized mode can show up in TM-polarized spect
and vice versa. Occasionally, a single mode appears in
TE and TM spectra, for example, the marked feature in F
4. For theG2K and G2M directions, which are lines o
reflection symmetry for the lattice, polarization conversion
forbidden: TE incident light cannot be reflected as TM, b
cause a change of parity is involved. However, in lower sy
metry directions, where parity is not definable, weak pol
ization conversion can occur. A typical example is shown
Fig. 5, for thef520° direction. The conversion spectrum
labeled ‘‘TE-TM’’ on the figure, is sharply peaked at th
energies of the ordinary reflectivity resonances. Understa
ably, the stronger features correspond to those modes
appear in both TE and TM spectra, but even the largest p
only represents a conversion efficiency of;0.2%.

Angle-dependent emission spectra for our structure
shown in Fig. 6. The source is a dipole oriented in thez
direction, perpendicular to the plane of the layers. Its
plane position is the midpoint of one of the triangles whi
form the lattice, and it is located at a depth of 200 n
halfway through the waveguide layer~see Fig. 3!. Note that
with the symmetry reduced by the addition of the source,
G2K directions are no longer equivalent: the present cal
lation corresponds to light emitted in the direction of one
the edges of the triangle containing the source. The top
the stronger features are truncated in the figure; without s
a cutoff, one or two peaks would dominate the spectra, m
ing it difficult to see the detailed structure. We have assum
a ‘‘white’’ source, in that without the waveguide the emi
sion would be independent of frequency. This implies th
the amplitude of the dipole motion varies asv22, and that of
the current density,J0 , asv24.

The emission features in Fig. 6 follow closely the res
nances in the reflectivity spectra of Fig. 4, and are clea
related. Emission can be thought of as a two stage proc
the source excites the waveguide modes, and these then
ter out of the guide according to the strength of the coupl

re

nal
e
ole

of

ker
FIG. 6. Calculated emission spectra for th
same conditions as Fig. 4. The source is a dip
oriented in thez dir ection. It is located in the
center of the waveguide at the midpoint of one
the lattice triangles~see Fig. 3!. The strong, sharp
peaks are truncated in order to reveal the wea
features in the spectra.
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to the external fields. Thus, significant emission only occ
at the energies of the reflectivity resonances, where the
strong external coupling. The actual strength of the emiss
features is determined by both the external coupling, and
coupling between the source and the waveguide modes.
explains how a perpendicularly oriented dipole can gene
TE-polarized emission, which would be impossible witho
the patterning—the source excites mixed-polarization wa
guide modes, which then scatter out to produce external
polarized light.

The source coupling depends on the magnitude of
waveguide fields at the location of the dipole. Hence, co
parisons of the relative strengths of the emission peaks
different source positions can, in principle, help to map
the spatial variation of the fields. To be more precise, for
perpendicular oriented dipole considered here, the near
E in the plane of the source is in thez direction, so the source
can only excite waveguide modes for whichezÞ0. As an
example, for the source position considered above, whic
on a high symmetry line parallel toG2M , no TE polarized
light is emitted in the correspondingG2M direction: parity
requires a TE active mode propagating in this direction
haveez50 along such a line. Similar considerations app
for in-plane dipoles, though the detailed rules for the co
pling of the source to the waveguide mode are obviou
different.
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X. CONCLUSIONS

We have developed a scattering-matrix treatment that
ables us to calculate the electromagnetic properties
multilayer dielectric structures with an arbitrary in-plane p
riodic patterning. The treatment includes the coupling of
internal electromagnetic modes to external fields, so it p
vides a straightforward way of calculating reflectivity an
emission spectra for patterned waveguide structures.

The computational procedure is numerically stable, a
we have shown that it converges rapidly when the dielec
matrices«̂ andĥ are determined in the appropriate way. F
simple lattices, the calculation is fast enough to allow ac
rate spectra to be obtained using a work station or PC.

The reflectivity spectra that we have presented, here
in Ref. 2, have been shown to agree well with experimen
results. They provide information about the waveguide p
tonic band structure, and the external coupling of the guid
modes. We have also calculated spectra for light emitted
a dipole source within the structure, and discussed the fac
that determine its intensity. An obvious development of the
calculations would be to integrate the emitted intensity o
the entire Brillouin zone, providing a theoretical determin
tion of the control of the emission rate obtainable in re
structures.
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