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Abstract—Diffraction of a plane wave from a geometry which contains
an infinite slit in a perfect electric conducting (PEC) plane and a
perfectly electromagnetic conductor (PEMC) cylinder is presented.
The method is based on the extension of Clemmow, Karp and Russek
solution for the diffraction by a wide slit. The results are compared
with the published work and agreement is fairly good.

1. INTRODUCTION

Geometrical theory of diffraction (GTD), developed by Keller and his
associates [1–7], is one of the most powerful high frequency technique
for evaluating the acoustic and electromagnetic waves diffracted by
obstacles with or without edges. To derive the solutions for the
fields diffracted by edged obstacles, we need the solution of the
canonical problem, that is, field diffracted by a wedge, to which half
plane is a special case. The multiple objects scattering problem was
investigated by many researchers [8–22]. Moreover, the diffraction of
electromagnetic plane wave by a slit in a conducting screen has been
studied extensively using various kinds of analytical methods such as
Mathieu function expansion and Kobayashi potential [23, 24]. In most
cases, however, the problem has been limited to ideal cases in which
the screen is made of a conducting plane with zero thickness, and
the surrounding medium is isotropic and homogeneous. A possible
technique is to use fictitious line sources, located according to the
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geometry of each scatterers. This technique was used by Clemmow [25]
for the diffraction by a wide slit and extended by Elsherbeni and
Hamid [26, 27]. In this paper we have applied the technique to three
scatterers, i.e., two parallel perfect electric conducting (PEC) half
planes and a perfectly electromagnetic conductor cylinder (PEMC).

The concept of PEMC as the generalization of the perfect electric
conductor (PEC) and a perfect magnetic conductor (PMC) [28]
has been studied recently. It has attracted the attention of many
researchers [29–32]. The PEMC boundary conditions are of the general
form

�n× ( �H +M �E) = 0 �n · ( �D −M �B) = 0

where M denotes the admittance of the PEMC boundary. Here, PMC
corresponds to M = 0, while PEC corresponds to M = ±∞.

In this paper, the interaction fields between the PEMC cylinder
and a PEC slit are presented by using the known solutions for the
scattered field by an isolated half plane and an isolated cylinder due
to a plane wave incidence and a line source excitation.

2. FORMULATION OF THE PROBLEM

A slit may be viewed as composed of two coplanar half-planes, with
zero wedge angles, separated by a slit width 2d. The geometry
and co-ordinates of the problem are shown in Fig. 1(a). The ray
optical technique, comprising of geometrical optics and its extension,
provides a simple and physical approach to the description of the
diffraction of an electromagnetic wave by an object, as it contains
only trigonometric functions. This is a great advantage of the GTD
over other conventional methods. In this section first we will present
scattering of plane wave from PEC half plane, PEC slit and an isolated
PEMC cylinder.
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Figure 1. (a) Unloaded slit. (b) Slit loaded by a PEMC cylinder.
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2.1. Wedge Excited by Plane Wave

The problem is two dimensional since all fields are uniform in the z-
direction. The incident field is given as

(

Ei
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z

)
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)

exp[jk(x cosφ0 + y sinφ0)] (1)

The diffracted field is derived due to an incident plane wave plus a
fictitious line source located at the edge of opposite wedge/half plane.

The uniform expression for the field diffracted from wedge has the
form:
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Ds and Dh are the diffraction coefficients of E- and H-polarization
respectively. Here p = 1

n = π
φω

and for half plane n = 2, φω = 2π.

Function F (x) is the Fresnel integral defined as

F (x) =
1

π
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jx2 + j
π
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The diffraction co-efficient for the half plane is
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It is assumed that point of observation is far from the slit. For large
argument approximation, Fresnel integral simplifies as

F (x) ≈
1
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Hence (5) simplifies to
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The angles between the incident and diffracted rays and normal to the
screen are φ and φ0 respectively.

2.2. A Slit Excited by Plane Wave

In this sub-section the field from two isolated half planes, placed
parallel to each other, is determined. These two half planes have been
considered to form a slit.
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2.2.1. Field Diffracted from Right Half Plane

It is assumed that the slit is wide, so field diffracted by the slit may
be considered as the sum of field diffracted by each isolated half plane.
The singly diffracted field at an observation point is the sum of two
contributions due to each isolated half plane. The field diffracted from
right edge is
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In the far field of the slit (ρ≫ a):
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This far-field substitution for ρ1 is used in the exponential term; in the
amplitude term ρ1 = ρ
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2.2.2. Field Diffracted from Left Half Plane

The field diffracted from left edge is
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In the far field of the slit (ρ≫ a):
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Thus the singly diffracted field due to perfectly conducting slit at
an observation point is:

Ed = Ed
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Numerical results shown in Fig. 2 are in good agreement with the
Elsherbeni’s results [26]. It may be noted that these results are also
valid for all incident angles.

2.3. Perfect Electromagnetic Conductor Cylinder Excited
by Plane Wave

A circular cylinder is defined by the surface ρ = a, while its axis
coincides with the z-axis. The scattered field due to plane wave
incident on circular cylinder [34] is:
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Tn is the transmission co-efficient for perfect electromagnetic conductor
cylinder [35–37] given as:
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In above equations the Neumann number ǫn = 1 for n = 0 and 2
for n > 0, Jn(x) is the Bessel function of argument x and order n
and Hn(x) is the Hankel function of the second kind of order n and
argument x.
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Figure 2. (a) Comparison with Elsherbeni’s results. (b) Perfectly
conducting slit for kd = 4 and kd = 8 at incident angles θ0 = 0 and
θ0 = 30.
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3. CYLINDRICAL WAVE INCIDENT

In this section, the interaction fields between the PEMC cylinder and
the two parallel PEC half planes are presented by using the known
solutions for the scattered field by the half plane alone and a cylinder
alone due to line source excitation.

3.1. Isolated Half Plane Excited by a Line Source

For a line source of unit amplitude at (ρ0, φ0) and parallel to the z-axis,
the total field in the presence of the half plane is the incident field plus
the scattered field. The incident field is given by:

Ei =
π

2j
H0(kR)

where R is the distance between the line source and the field point, k is
the wave number, and H0(x) is the Hankel function of the second kind
of order zero and argument x. Using the exact series solution of the
total field due to a line source near a conducting wedge/half plane [33],
is found to be
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3.2. Perfect Electromagnetic Conductor Cylinder Excited
by a Line Source

The scattered field due to cylindrical wave incident on circular
cylinder [34] is:
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Tn is the transmission co-efficient for perfect electromagnetic conductor
cylinder [35–37] given as:

Tn=
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Here, again the Neumann number ǫn = 1 for n = 0 and 2 for n > 0,
Jn(x) is the Bessel function of argument x and order n and Hn(x) is
the Hankel function of the second kind of order n and argument x.

4. INTERACTION CONTRIBUTION OF THE
GEOMETRY

We have two conducting half planes separated by a distance 2d, where
2kd≫ 1 and a circular cylinder of radius a whose axis is parallel to the
edges of two parallel half planes as shown in Fig. 1(b). We consider that
all the three bodies are illuminated by a plane wave of unit amplitude.
The field at any observation point is considered to be composed of the
incident field plus a response field from each of the two half planes
and the cylinder. The response field consists of scattered field by the
three scatterers due to the original plane wave plus an interaction field
which will be represented by three fictitious line sources located at
the edges of half planes and at the cylinder axis in order to take into
account multiple interaction between three objects. If the plane wave
is restricted such that the incident field does not illuminate the lower
faces of the half planes, the total field in the forward direction is given
by [38]:

Et = Ei + Es

where
Es = Es1 + Es2 + Es3 (20)
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π
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+c3F (φ1, s1, φ31) + c2F (φ1, 2d, φ21) (21a)
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π
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+c3F (φ2, s2, φ32) + c1F (φ2, 2d, φ12) (21b)

Es3 =
π

2j
H0(kρ3)[exp(−jks sin θ0)]D(φ3, φ03)
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+c1G(φ3, s1, φ13) + c2G(φ3, s2, φ23) (21c)

where c1, c2 and c3 are the unknown strengths of the line sources at
half plane edges and along the cylinder axis, respectively. We use
well-known far field conditions in which φ0 = φ01 = φ03 = π

2 + θ0,

φ02 = π
2 − θ0, φ1 = φ3 ≃ 3π

2 + θ, φ2 ≃ 3π
2 − θ, φ12 = φ21 ≃ π ,

φ13 = ψ ≃ tan−1( s
d), φ31 = φ32 ≃ π + ψ, φ23 ≃ π − ψ, ρ1 ≃ ρ− d sin θ,

ρ2 ≃ ρ+d sin θ, ρ3 ≃ ρ−s sin θ, and s1 and s2 are the distances between
the edges of the two half planes and the cylinder axis, respectively.

To determine c1, c2 and c3, we can follow the analysis of Karp and
Russek [12] by imposing the requirement that the fields scattered by
the two half planes and the cylinder be consistent with one another.
The same technique was used by Elsherbeni and Hamid [38].

2c1 − c2[F (φ31, 2d, φ21) + F (φ21, 2d, φ21)]

−c3[F (φ31, s1, φ31) + F (φ21, s1, φ31)] =

exp(−jkd sin θ0)[D(φ31, φ01) +D(φ21, φ01)] (22a)

2c2 − c1[F (φ32, 2d, φ12) + F (φ12, 2d, φ12)]

−c3[F (φ32, s2, φ32) + F (φ12, s2, φ32)] =

exp(jkd sin θ0)[D(φ32, φ02) +D(φ12, φ02)] (22b)

2c3 − c1[G(φ13, s1, φ13) +G(φ23, s1, φ13)]

−c2[G(φ13, s2, φ23) +G(φ23, s2, φ23)] =

exp(−jks cos θ0)[D(φ13, φ03) +D(φ23, φ03)] (22c)

We solve 22(a) ∼ 22(c) for c1, c2 and c3, the scattered field is found
and rewritten in the form

Es =
exp(−jkρ)√

πkρ
E(θ, d, s) (23)

where the scattered field pattern E is obtained from (20).

5. DISCUSSION

The solution for the diffraction of an incident plane wave by a slit has
been studied in GTD regime. We have derived a simple and convenient
expression for the field diffracted by an infinite slit in a PEC plane when
the wavelength is greater than or equal to the slit width. The principal
result is that this field can be accurately calculated everywhere by
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Figure 3. (a) Unloaded slit with kd = 8 and kd = 12. (b) Scattering
from PEC slit and PEMC cylinder with ks = 0 and kd = 8.

considering two half planes composing the slit and excited by the plane
wave. Fig. 2(a) shows the normalized diffracted field from the slit with
kd = 4 and kd = 8 compared with the normalized diffracted field by
Elsherbeni [26]. Fig. 2(b) shows the results at different incident angles
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with kd = 4 and kd = 8. Fig. 3(a) shows the diffraction pattern of
an unloaded slit. The diffraction field patterns in the presence of a
PEMC cylinder for both co-polarized and cross-polarized for kd = 8,
ka = 0.5 and ǫr = 4 are shown in Fig. 3(b). The plots for unloaded
slit diffraction pattern are in good agreement with the corresponding
patterns given by Keller [39].
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