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Abstract—The scattering of electromagnetic spherical wave by a
perfectly conducting circular disk is studied by using the method of
Kobayashi Potential (abbreviated as KP method). The formulation
of the problem yields the dual integral equations (DIE). The spherical
wave is produced by an arbitrarily oriented dipole. The unknowns
are the induced surface current (or magnetic field) and the tangential
components of the electric field on the disk. The solution for the surface
current is expanded in terms of a set of functions which satisfy one of
a pair (equations for the magnetic field) of Maxwell equations and the
required edge condition on the surface of the disk. At this stage we
have used the vector Hankel transform. Applying the projection solves
the rest of the pair of equations. Thus the problem reduces to the
matrix equations for the expansion coefficients. The matrix elements
are given in terms of the infinite integrals with a single variable and
these may be transformed into infinite series that are convenient for
numerical computation. The far field patterns of the scattered wave are
computed and compared with those computed based on the physical
optics approximation. The agreement between them is fairly good.

1. INTRODUCTION

The problem of scattering of electromagnetic wave by a circular
disk of perfect conductor has attracted researchers much attentions
theoretically and practically. The circular disk/aperture is canonical
structure in the field of scattering. It has wide range of application
in radars, reflectors, and antennas etc.. Many methods for analysis
of electromagnetic scattering have been developed. High frequency
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approximation techniques are approximate methods and are applied
when size of the object is large in terms of wavelength. Among
them simple and relatively accurate methods are the Physical Optics
(PO) [1–4], Physical Theory of Diffraction (PTD) and Increment
Length of Diffraction Coefficient (ILDC) [5–8], Geometrical Theory
of Diffraction (GTD) [9–13], and the Method of Equivalent Current
(MEC) [14, 15]. The method of moment (MoM) developed by
Harrington is very useful and is considered to be numerically exact [16].
This method was initially improved by Kim and Thiele [17], and later
enhanced by Kaye et al. [18] which is known as hybrid-iterative method.
This method employs the magnetic field integral equation for the
induced currents to solve the scattering problems. The hybrid-iterative
method has been applied to the disk problem successfully by Li et al.
for plane wave incidence [19]. The works on the circular aperture
and the related problems, conducted before 1953, were reviewed by
Bouwkamp [20, 21]. And these methods can also be applied to the
present problem of spherical wave scattering by a circular disk.

Since the surface of the disk is the limiting case of the oblate
spheroid, the direct approach is to find a series expansion for
the field in terms of suitable characteristic functions. Meixner
and Andrejewski [22, 23] and Flammer [24] used three rectangular
components of the Hertz vectors that describe the incident and
scattered fields which are expanded in terms of appropriate oblate
spheroidal wave functions. But their work was limited to plane wave
incidence. Bjrkberg and Kristensson [25, 26] solved the elliptic disk
problem using the null field approach in which the incident and the
scattered fields are expanded in terms of spherical vector waves. While
Kristensson and Waterman [27, 28] applied the T-matrix approach to
study the scattering by circular disk. Balaban et al. [29] used the
coupled dual integral equation technique to solve the disk problem.
However there is another set of characteristic functions which satisfy
the boundary conditions and edge condition. These are constructed
by applying the properties of the Weber-Schafheitlin’s discontinuous
integrals. This idea was first proposed by Kobayashi [30] to solve
the electrostatic problem of the electrified conducting disk and this
method was named by Sneddon [31] as the Kobayashi Potential
(KP). The KP method is like eigen function expansion and also is
similar to the Method of Moments (MoM) in its spectral domain,
but the formulation is different. The MoM is based on an integral
equation, whereas the KP method has dual integral equations. In
addition, advantages of the KP method over the MoM are that these
characteristic functions satisfy a proper edge condition as well as the
required boundary conditions and it produces an accurate and faster
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convergent solution. The disadvantage of this method is that the
tractable geometries are limited to special shapes, such as circular
and rectangular plates and apertures. The KP method has already
been successfully applied to many rectangular or related objects [32–
35]. By using these characteristic functions, exact solutions were
derived by Nomura and Katsura [32] for plane wave incidence and by
Inawashiro [35] for spherical wave incidence. The work by Inawashiro
was restricted to the case where the dipole is directed to parallel to
the disk and is located on the axis passing through the center of the
disk. They used two rectangular components of the Hertz vector plus
auxiliary scalar wave function which describe the surface field of the
disk to satisfy the edge conditions. The summaries of the works by the
above two groups, Meixner and Andrejewski, and Nomura and Katsura
are reproduced in the handbook by Bowman et al. [36].

In a paper [34], Hongo and Naqvi improved the treatment by
Nomura and Katsura for plane wave excitation. It is the purpose of
the present paper to improve and extend the work of Inawashiro [35]
for spherical wave excitation using KP method. First we derived the
expressions for the incident field produced by an arbitrarily oriented
dipole. Next we introduced two longitudinal components of the vector
potentials of electric and magnetic types to express the scattered
wave. The expressions have the form of Fourier-Hankel transform. By
applying the boundary conditions we derive the dual integral equations
(DIE), one set is for induced electric current densities and another is
for the tangential components of the electric field. The equations may
be written in the form of the vector Hankel transform given by Chew
and Kong [37]. The expressions for the current densities are expanded
in terms of a set of the functions with expansion coefficients. These
functions are constructed by applying the discontinuous properties
of the Weber-Schafheitlin’s integrals [38–41] and it is readily shown
that these functions satisfy the Maxwell equations on the surface
of the disk and the required edge conditions. Applying the inverse
vector Hankel transform derives corresponding spectral functions of
the current densities. The derived results are substituted into the
equation for the electric field in DIE and we derive the solutions of
the expansion coefficients by using the projection. Thus the problem
reduces to the matrix equation for the expansion coefficients of the
current densities. The matrix elements are given in the form of an
infinite integrals. These integrals can be transformed into infinite
series which is convenient for numerical computation. Numerical
computation is made using FORTRAN to obtain the far field patterns.
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2. EXPRESSIONS FOR INCIDENT WAVE

2.1. Derivation of Dyadic Green’s Function in Free Space in
Terms of Cylindrical Coordinates

First we discuss the derivation of the dyadic Green’s function in free
space, which is the solution of inhomogeneous Maxwell’s equations
expressed by

∇×E = −jωµH, ∇×H = jωεE + J,

∇ ·E =
ρe

ε
= −∇ · J

jωε
, ∇ ·H = 0; J = Iδ(r− r0)

(1)

where r and r0 denote the position vectors of the observation and
source points, respectively, and ρe is the electric charge density. In (1),
we assume a homogeneous medium. The solution of (1) can be written
in the form [42, p. 197].

E =
1

jωε

{(
∂

∂z
∇t − iz∇2

t

)(
∂

∂z0
∇t0 − iz∇2

t0

)
S(r, r0)

+k2(∇× iz)(∇0 × iz0)S(r, r0)

}
· I (2a)

H =

{(
∂

∂z
∇t − iz∇2

t

)
(∇t0 × iz0)S(r, r0)

−(∇× iz)

(
∂

∂z0
∇t0 − iz∇2

t0

)
S(r, r0)

}
· I (2b)

where S (r, r0) is derived from the scalar Green’s function G (r, r0)
through the relation

G(r, r0) =

(
∂2

∂z2
+ k2

)
S(r, r0) = −∇2

t S(r, r0) (3a)

∇2G + k2G = −δ(r− r0) (3b)

In free space, (2a) is replaced by dyadic Green’s function [43, 44]

G̃(r, r0) =
1
4π

[
Ĩ +

1
k2
∇∇

]
exp(−jkR)

R
(4a)

where Ĩ is unit dyadic and R = [(x − x0)2 + (y − y0)2 + (z − z0)2]
1
2 .

The equivalence of (2a) and (4) in free space may be verified readily.
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In circular cylindrical coordinates, function G (r, r0) satisfies the wave
equation

1
ρ

∂

∂ρ
ρ
∂G

∂ρ
+

1
ρ2

∂2G

∂φ2
+

∂2G

∂z2
+k2G=−δ(ρ−ρ0)δ(φ−φ0)δ(z−z0)

ρ
(4b)

By using the theory of Fourier series for the angular variable φ and
Hankel transform for the variable ρ defined by

F (α) =

∞∫

0

f(ρ)Jm(αρ)ρdρ, f(ρ) =

∞∫

0

F (α)Jm(αρ)αdα (5)

we can represent G (r, r0) and S (r, r0) in the form

G(r, r0) =
1

4πja

∞∑

m=0

εm cosm(φ− φ0)

∞∫

0

Jm(αρ0a)Jm(αρa)√
κ2 − α2

exp(−jha|za −z0a|)αdα (6a)

S(r, r0) =
a

4πj

∞∑

m=0

εm cosm(φ− φ0)

∞∫

0

Jm(αρ0a)Jm(αρa)
α2
√

κ2 − α2

exp(−jha|za − z0a|)αdα (6b)

where we have normalized the variables and parameters by the radius
of the disk

ρa =
ρ

a
, ρ0a =

ρ0

a
, za =

z

a
, z0a =

z0

a
, ha =ha, κ=ka, h=

√
κ2 − α2

Here “a” is the radius of the disk as shown in the Fig. 1. (ρ0, z0) are the
coordinates of the position of the dipole/source point and (ρ, z) are the
coordinates of the observation point. Here k is the wave number. The
electromagnetic field due to the dipole is derived by substituting (6)
into (2a) and (2b) and we write the value of the tangential components
of the electromagnetic field for a disk problem and hole problem derived
from S.(

Ei

Hi

)
=

∞∑

m=0

{
iρ

[(
Ei

ρc,m

H i
ρc,m

)
cosmφ+

(
Ei

ρs,m

H i
ρs,m

)
sinmφ

]

+iφ

[(
Ei

φc,m

H i
φc,m

)
cosmφ +

(
Ei

φs,m

H i
φs,m

)
sinmφ

]}
(7)

Also the the field produced by an arbitrarily oriented dipole is derived
in [45]. And we can assume φ0 = 0 without a loss of generality because
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Figure 1. Scattering of an arbitrarily oriented dipole field by a circular
disk.

of the symmetry of the problem. The expressions for the Fourier
components defined in (7) at z = 0 are given as follows.

(i): ρ-Directed Field

Ei
ρc,m = − Z0

4πκa2
εm

∞∫

o

exp(−jhaz0a)√
κ2 − α2

[
h2

aJ
′
m(αρ0a)J ′m(αρa)

+κ2 m

αρ0a
Jm(αρ0a)

m

αρa
Jm(αρa)

]
αdα (8a)

Ei
φs,m =

Z0

2πκa2

∞∫

o

exp(−jhaz0a)√
κ2 − α2

[
h2

aJ
′
m(αρ0a)

m

αρa
Jm(αρa)

+κ2 m

αρ0a
Jm(αρ0a)J ′m(αρa)

]
αdα (8b)

H i
ρs,m = − 1

2πa2

∞∫

o

[
J ′m(αρa)

m

αρ0a
Jm(αρ0a) +

m

αρa
Jm(αρa)J ′m(αρ0a)

]

exp(−jhaz0a)αdα (9a)

H i
φc,m =

εm

4πa2

∞∫

o

[ m

αρa
Jm(αρa)

m

αρ0a
Jm(αρ0a) + J ′m(αρa)J ′m(αρ0a)

]

exp(−jhaz0a)αdα (9b)



Progress In Electromagnetics Research, Vol. 129, 2012 321

(ii): φ-Directed Field

Ei
ρs,m = − Z0

2πκa2

∞∫

o

exp(−jhaz0a)√
κ2 − α2

[
h2

a

m

αρ0a
Jm(αρ0a)J ′m(αρa)

+κ2J ′m(αρ0a)
m

αρa
Jm(αρa)

]
αdα (10a)

Ei
φc,m = − Z0

4πκa2
εm

∞∫

o

exp(−jhaz0a)√
κ2 − α2

[
κ2J ′m(αρ0a)J ′m(αρa)

+h2
a

m

αρ0a
Jm(αρ0a)

m

αρa
Jm(αρa)

]
αdα (10b)

H i
ρc,m = − εm

4πa2

∞∫

o

[
J ′m(αρa)J ′m(αρ0a) +

m

αρa
Jm(αρa)

m

αρ0a
Jm(αρ0a)

]

exp(−jhaz0a)αdα (11a)

H i
φs,m =

1
2πa2

∞∫

o

[ m

αρa
Jm(αρa)J ′m(αρ0a) +

m

αρ0a
Jm(αρ0a)J ′m(αρa)

]

exp(−jhaz0a)αdα (11b)

(iii): z-Directed Field

Ei
ρc,m =

Z0

4πjκa2
εm

∞∫

o

Jm(αρ0a)J ′m(αρa) exp(−jhaz0a)α2dα (12a)

Ei
φs,m = − Z0

2πjκa2

∞∫

o

Jm(αρ0a)
m

αρa
Jm(αρa) exp(−jhaz0a)α2dα (12b)

H i
ρs,m=

1
2πja2

∞∫

o

1√
κ2−α2

Jm(αρ0a)
m

αρa
Jm(αρa)exp(−jhaz0a)α2dα(13a)

H i
φc,m=

1
4πja2

εm

∞∫

o

1√
κ2−α2

Jm(αρ0a)J ′m(αρa)exp(−jhaz0a)α2dα(13b)

where εm = 1 for m = 0 and εm = 2 for m ≥ 1.
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2.2. Relation to Plane Wave Incidence

It may be expected that the dipole solution reduce to that of plane
wave incidence when the dipole recedes to infinity. When κRa À 1,
we can derive the asymptotic expressions for dipole field given in (8)
to (13). We consider only the electric field components. First we
consider the integral having the form

I = Q0

∞∫

o

P (α)Jm(αρ0a) exp(−jhaza)dα (14a)

By using the integral representation of the Bessel function

Jm(αρ0a) =
jm

π

∫ π−δ

−δ
exp(−jmt− jαρ0a cos t)dt (14b)

with 0 < δ < π/2, I becomes

I=
Q0

π
jm

∞∫

o

∫ π−δ

−δ
P (α) exp

(
−jmt−jαρ0a cos t−jhaza

)
dtdα (14c)

We impose the transformation of the variables

α = κ sinβ, ha = κ cosβ, za = Ra cos θ0, ρ0a = Ra sin θ0 (14d)

and apply the stationary phase method of integration, then we have

I = 2Q0j
m+1 cos θ0

sin θ0
P (κ sin θ0)

exp(−jκR0a)
R0a

(14e)

Therefore, Equations (8), (10) and (12) are simplified as follows

(i): ρ-Directed Field

Ei
ρc,m = − Z0κ

2πa2
εmjm cos2 θ0J

′
m(κρa sin θ0)

exp(−jκR0a)
R0a

(15a)

Ei
φs,m =

Z0κ

πa2
jm cos2 θ0

m

κρa sin θ0
Jm(κρa sin θ0)

exp(−jκR0a)
R0a

(15b)

(ii): φ-Directed Field

Ei
ρs,m = −Z0κ

πa2
jm sin θ0

m

κρa sin θ0
Jm(κρa sin θ0)

exp(−jκR0a)
R0a

(16a)

Ei
φs,m = − Z0κ

2πa2
εmjm sin θ0J

′
m(κρa sin θ0)

exp(−jκR0a)
R0a

(16b)
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(iii): z-Directed Field

Ei
ρc,m =

Z0κ

2πa2
εmjmcos θ0sin θ0J

′
m(κρa sin θ0)

exp(−jκR0a)
R0a

(17a)

Ei
φs,m = −Z0κ

πa2
jmcosθ0sinθ0

m

κρa sinθ0
Jm(κρasinθ0)

exp(−jκR0a)
R0a

(17b)

It may be readily verified that z-component of the magnetic dipole
located at (ρ0, 0, z0) produces the same field as that of φ-directed
electric dipole located at the same place. And when z-directed
electric and magnetic dipoles recedes to infinite they produce the
same electromagnetic field as those of perpendicular and parallel
polarized plane wave incidence provided that some factor proportional
to R0a exp(jκR0a), more explicitly, we use the replacement

Z0
κ

πa2
sin θ0

exp(−jκR0a)
R0a

→jE1,
Z0κ

πa2
sin θ0

exp(−jκR0a)
R0a

→−E2 (18)

3. THE EXPRESSIONS FOR THE FIELDS SCATTERED
BY A DISK

We now discuss our analytical method for predicting the field scattered
by a perfectly conducting disk on the plane z = 0 when it is excited
by a dipole current.

3.1. Spectrum Functions of the Current Density on the Disk

Since Ed
ρ and Ed

φ are continuous on the plane z = 0, we assume the
vector potentials corresponding to the diffracted field are expressed in
the form

Ad
z(ρ, φ, z) = ±µ0aκY0

∞∑

m=0

∞∫

o

[
f̃cm(ξ) cos mφ + f̃sm(ξ) sin mφ

]

Jm(ρaξ) exp
[
∓

√
ξ2 − κ2za

]
ξ−1dξ (19a)

F d
z (ρ, φ, z) = ε0a

∞∑

m=0

∞∫

o

[
g̃cm(ξ) cos mφ + g̃sm(ξ) sin mφ

]
Jm(ρaξ)

exp
[
∓

√
ξ2 − κ2za

]
ξ−1dξ (19b)

where the upper and lower signs refer to the region z > 0 and
z < 0, respectively. In the above equations f̃(ξ) and g̃(ξ) are the
unknown spectrum functions and they are to be determined so that
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they satisfy all the required boundary conditions and edge conditions.
Equations (19a) and (19b) are of the form of the Hankel transform for
z = 0. First we consider the surface field at the plane z = 0 to derive
the dual integral equations for seeking the solution for the spectrum
functions. By using the relations between the vector potentials (19)
and the electromagnetic field, we obtain the expressions for the field
components.

[
Ed

ρc,m(ρa)
Ed

φs,m(ρa)

]
=

∞∫

o

[
H−(ξρa)

]
[
j
√

ξ2 − κ2f̃cm(ξ)ξ−1

g̃sm(ξ)ξ−1

]
ξdξ (20a)

[
Ed

ρs,m(ρa)
Ed

φc,m(ρa)

]
=

∞∫

o

[
H+(ξρa)

]
[
j
√

ξ2 − κ2f̃sm(ξ)ξ−1

g̃cm(ξ)ξ−1

]
ξdξ (20b)

where Ed
ρc,m(ρa) ∼ Ed

φs,m(ρa) are the Fourier components of scattered
electric field components Eρ and Eφ. Similarly, the components of
the electric current density having the relations with magnetic field
components by Kρ = −2Hφ and Kφ = 2Hρ are given by

[
Kρc,m(ρa)
Kφs,m(ρa)

]
= 2Y0

∞∫

o

[
H−(ξρa)

]
[

κf̃cm(ξ)ξ−1

j
√

ξ2 − κ2g̃sm(ξ)(κξ)−1

]
ξdξ

=

∞∫

o

[
H−(ξρa)

][
K̃ρc,m(ξ)
K̃φs,m(ξ)

]
ξdξ = 0 ρa > 1 (21a)

[
Kρs,m(ρa)
Kφc,m(ρa)

]
= 2Y0

∞∫

o

[
H+(ξρa)

]
[

κf̃sm(ξ)ξ−1

j
√

ξ2 − κ2g̃cm(ξ)(κξ)−1

]
ξdξ

=

∞∫

o

[
H+(ξρa)

]
[
K̃ρs,m(ξ)
K̃φc,m(ξ)

]
ξdξ = 0 ρa > 1 (21b)

From these equations we have the relations

f̃cm(ξ)=
Z0

2κ
K̃ρc,m(ξ)ξ f̃sm(ξ) =

Z0

2κ
K̃ρs,m(ξ)ξ

g̃cm(ξ)=
κZ0

j2
√

ξ2−κ2
K̃φc,m(ξ)ξ g̃sm(ξ)=

κZ0

j2
√

ξ2−κ2
K̃φs,m(ξ)ξ

(21c)

The kernel matrices [H+(ξρa)] and [H−(ξρa)] are defined by
[
H±(ξρa)

]
=

[
J ′m(ξρa) ± m

ξρa
Jm(ξρa)

± m
ξρa

Jm(ξρa) J ′m(ξρa)

]
(22)
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To solve (21) we expand K (ρa) in terms of the functions which
satisfy the Maxwell’s equations and edge conditions. These functions
can be found by taking into account the discontinuity property of
the Weber-Schafheitlin’s integrals. Once the expressions for K (ρa)
are established, the corresponding spectrum functions can be derived
by applying the vector Hankel transform introduced by Chew and
Kong [37]. That is, from (21a) and (21b) we have

[
K̃ρc,m(ξ)
K̃φs,m(ξ)

]
=

∞∫

o

[
H−(ξρa)

]
[
Kρc,m(ρa)
Kφs,m(ρa)

]
ρadρa,

[
K̃ρs,m(ξ)
K̃φc,m(ξ)

]
=

∞∫

o

[
H+(ξρa)

]
[
Kρs,m(ρa)
Kφc,m(ρa)

]
ρadρa

(23)

where Kρc,m ∼ Kφs,m are the Fourier components of the surface current
on the disk.

Kρ(ρa, φ) =
∞∑

m=0

[
Kρc,m(ρa) cosmφ + Kρs,m(ρa) sinmφ

]

Kφ(ρa, φ) =
∞∑

m=0

[
Kφc,m(ρa) cos mφ + Kφs,m(ρa) sin mφ

] (24a)

It is noted that (Kρ, Kφ) satisfy the vector Helmholtz equation
∇2K + k2K = 0 in circular cylindrical coordinates on the plane z = 0
since K and H are related by K = n̂ × H and in our problem n̂ is
ẑ. Furthermore (Kρ,Kφ) have the properties Kρ ∼ (1 − ρ2

a)
1
2 and

Kφ ∼ (1 − ρ2
a)
− 1

2 near the edge of the disk. By taking into account
these facts, we set

Kρc,m(ρa) =
∞∑

n=0

[
AmnF−

mn(ρa)−BmnG+
mn(ρa)

]
,

Kρs,m(ρa) =
∞∑

n=0

[
CmnF−

mn(ρa) + DmnG+
mn(ρa)

]

Kφs,m(ρa) =
∞∑

n=0

[
−AmnF+

mn(ρa) + BmnG−
mn(ρa)

]
,

Kφc,m(ρa) =
∞∑

n=0

[
CmnF+

mn(ρa) + DmnG−
mn(ρa)

]

(24b)
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where

F±
mn(ρa) =

∞∫

o

[
Jm−1(ηρa)Jm+2n− 1

2
(η)± Jm+1(ηρa)Jm+2n+ 3

2
(η)

]

η
1
2 dη m ≥ 1 (25a)

F+
0n(ρa) = 2

∞∫

o

J1(ηρa)J2n+ 3
2
(η)η

1
2 dη

G±
mn(ρa) =

∞∫

o

[
Jm−1(ηρa)Jm+2n+ 1

2
(η)± Jm+1(ηρa)Jm+2n+ 5

2
(η)

]

η−
1
2 dη m ≥ 1 (25b)

G+
0n(ρa) = 2

∞∫

o

J1(ηρa)J2n+ 5
2
(η)η−

1
2 dη

and these functions can be represented in terms of the hypergeometric
functions and their explicit expressions are given in the paper [34]. It
may be readily verified that F±

mn(ρa) = G±
mn(ρa) = 0 for ρa ≥ 1, and

F+
mn(ρa) ∼ (1 − ρ2

a)
− 1

2 , F−
mn(ρa) ∼ (1 − ρ2

a)
1
2 , G+

mn(ρa) ∼ (1 − ρ2
a)

1
2 ,

and G−
mn(ρa) ∼ (1 − ρ2

a)
− 1

2 near the edge ρa ' 1. To derive the
spectrum functions f̃ (ξ) and g̃( ξ) of the vector potentials we first
determine the spectrum functions of the current densities K̃ (ρa), since
they are related each other. We substitute (24) into (23) and perform
the integration, then the spectrum functions of the current density are
determined. The result is

K̃ρc,m(ξ) =
∞∑

n=0

[
AmnΞ+

mn(ξ)−BmnΓ−mn(ξ)
]
,

K̃φs,m(ξ) =
∞∑

n=0

[
−AmnΞ−mn(ξ) + BmnΓ+

mn(ξ)
]

K̃ρs,m(ξ) =
∞∑

n=0

[
CmnΞ+

mn(ξ) + DmnΓ−mn(ξ)
]

K̃φc,m(ξ) =
∞∑

n=0

[
CmnΞ−mn(ξ) + DmnΓ+

mn(ξ)
]

(26a)
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for m ≥ 1 and

K̃ρc,0(ξ)=2
∞∑

n=0

B0nJ2n+ 5
2
(ξ)ξ−

3
2 K̃φc,0(ξ)=−2

∞∑

n=0

C0nJ2n+ 3
2
(ξ)ξ−

1
2 (26b)

for m = 0. In the above equations the functions Ξ±mn(ξ) and Γ±mn(ξ)
are defined by

Ξ±mn(ξ) =
[
Jm+2n− 1

2
(ξ)± Jm+2n+ 3

2
(ξ)

]
ξ−

1
2 ,

Γ±mn(ξ) =
[
Jm+2n+ 1

2
(ξ)± Jm+2n+ 5

2
(ξ)

]
ξ−

3
2 , m ≥ 1

(26c)

In deriving (26a) and (26b) we used the formula of the Hankel
transform given by

∞∫

o

Jm(αρ)Jm(βρ)ρdρ =
δ(α− β)

α
(27)

where δ (x) is the Dirac’s delta function. We see from (21c) the spectral
functions f̃cm(ξ) ∼ g̃sm(ξ) are represented in terms of K̃ρc(ξ) ∼ K̃φs(ξ).

3.2. Derivation of the Expansion Coefficients

The equations for the expansion coefficients can be obtained by
applying the remaining boundary condition that the tangential
components of the electric field vanish on the disk. If we
substitute (21c) into (20a) and (20b), we have the relations along
with incident electric field, and we projected them into the functional
space with elements vm

n (ρ2
a) for Eρ and um

n (ρ2
a) for Eφ, where vm

n (ρ2
a)

and um
n (ρ2

a) are the Jacobi’s polynomials given in Appendix of the
paper [34]. Then we obtain the matrix equations for the expansion
coefficients Amn ∼ Dmn. The result is given by

∞∑

n=0

[
AmnZ(1,1)

mp,n −BmnZ(1,2)
mp,n

]
= H(1)

m,p,

∞∑

n=0

[
AmnZ(2,1)

mp,n −BmnZ(2,2)
mp,n

]
= H(2)

m,p

(28a)

∞∑

n=0

[
CmnZ(1,1)

mp,n + DmnZ(1,2)
mp,n

]
= K(1)

m,p,

∞∑

n=0

[
CmnZ(2,1)

mp,n + DmnZ(2,2)
mp,n

]
= K(2)

m,p

m = 1, 2, 3, . . . ; p = 0, 1, 2, 3, . . .

(28b)
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∞∑

n=0

B0nZ
(1,2)
0p,n = H

(1)
0,p ,

∞∑

n=0

C0nZ
(2,1)
0p,n = K

(2)
0,p p = 0, 1, 2, 3, . . . (28c)

These equations may be conveniently represented in terms of the
matrices.[
Z(1,1)

m

][
Am

]
−
[
Z(1,2)

m

][
Bm

]
=

[
H(1)

m

]
,

[
Z(2,1)

m

][
Am

]
−
[
Z(2,2)

m

][
Bm

]
=

[
H(2)

m

]

(29a)[
Z(1,1)

m

][
Cm

]
+
[
Z(1,2)

m

][
Dm

]
=

[
K(1)

m

]
,

[
Z(2,1)

m

][
Cm

]
+
[
Z(2,2)

m

][
Dm

]
=

[
K(1)

m

]

(29b)
The matrix elements Z

(1,1)
m ∼ Z

(2,2)
m are defined in [34]. The functions

in the right hand side of the above equations which differ from plane
wave incidence are given as follows.

(i): ρ-Directed Dipole

H(1)
m,p =− j

2πκa2
εm

∞∫

o

√
κ2−α2J ′m(αρ0a)

[
αm

p Jm+2p+ 1
2
(α)−(

αm
p +3

)

Jm+2p+ 5
2
(α)

]
×exp(−jhaz0a)α−

1
2 dα−j

κ

2πa2
εm ·m

∞∫

o

exp(−jhaz0a)√
κ2−α2

m

αρ0a
Jm(αρ0a)

[
Jm+2p+ 1

2
(α) + Jm+2p+ 5

2
(α)

]
α−

1
2 dα (30a)

H(2)
m,p =− j

πκa2
·m

∞∫

o

√
κ2−α2J ′m(αρ0a)

[
Jm+2p− 1

2
(α)+Jm+2p+ 3

2
(α)

]

exp(−jhaz0a)α
1
2 dα− jκ

πa2

∞∫

o

exp(−jhaz0a)√
κ2−α2

m

αρ0a
Jm(αρ0a)

[
αm

p Jm+2p− 1
2
(α)− (αm

p + 1)Jm+2p+ 3
2
(α)

]
α

1
2 dα (30b)

H
(1)
0,p =

j

2πκa2

∞∫

o

√
κ2−α2J1(αρ0a)

[
−pJ2p+1

2
(α)+(p+1.5)J2p+5

2
(α)

]

exp(−jhaz0a)α−
1
2 dα (30c)
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(ii): φ-Directed Dipole

K(1)
m,p =− j

πκa2

∞∫

o

√
κ2−α2

m

αρ0a
Jm(αρ0a)

[
αm

p Jm+2p+ 1
2
(α)−(

αm
p + 3

)

Jm+2p+ 5
2
(α)

]
×exp(−jhaz0a)α−

1
2 dα− jκ

πa2
·m

∞∫

o

exp(−jhaz0a)√
κ2−α2

J ′m(αρ0a)
[
Jm+2p+ 1

2
(α) + Jm+2p+ 5

2
(α)

]
α−

1
2 dα (31a)

K(2)
m,p =− j

πκa2
·m

∞∫

o

√
κ2−α2

m

αρ0a
Jm(αρ0a)

[
Jm+2p−1

2
(α)+Jm+2p+ 3

2
(α)

]

exp(−jhaz0a)α
1
2 dα− jκ

πa2

∞∫

o

exp(−jhaz0a)√
κ2−α2

J ′m(αρ0a)

[
αm

p Jm+2p− 1
2
(α)− (αm

p + 1)Jm+2p+ 3
2
(α)

]
α

1
2 dα (31b)

K
(2)
0p =

jκ

2πa2

∞∫

o

exp(−jhaz0a)√
κ2 − α2

J1(αρ0a)
[
−pJ2p− 1

2
(α) + (p + 0.5)

J2p+ 3
2
(α)

]
α

1
2 dα (31c)

(iii): z-Directed Dipole

H(1)
m,p =

1
πκa2

∞∫

o

Jm(αρ0a)
[
αm

p Jm+2p+ 1
2
(α)− (

αm
p + 3

)
Jm+2p+ 5

2
(α)

]

exp(−jhaz0a)α
1
2 dα (32a)

H(2)
m,p =

1
πκa2

·m
∞∫

o

Jm(αρ0a)
[
Jm+2p− 1

2
(α) + Jm+2p+ 3

2
(α)

]

exp(−jhaz0a)α
3
2 dα (32b)

H
(1)
0,p =

1
2πκa2

∞∫

o

J0(αρ0a)
[
−pJ2p+ 1

2
(α) + (p + 1.5)J2p+ 5

2
(α)

]

exp(−jhaz0a)α
1
2 dα (32c)
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3.3. Far Field Expressions

The far field expressions can be derived by applying the stationary
phase method of integration. Vector potential given in (19) can be
written in the form

Int =

∞∫

o

P̃ (ξ)Jm(ρaξ) exp
[
−

√
ξ2 − κ2za

]
ξ−1dξ (33a)

and after application of method, the following result is produced

Int = exp
(

j
m + 1

2
π

)
exp(−jκRa)

κRa
P̃ (κ sin θ)

cos θ

sin2 θ
(33b)

This formula is applied to the vector potential given in (19) and then
the far electromagnetic field is obtained from vector potential via the
relation

Eθ = −jωAθ = jω sin θAz, Eφ = jZ0ω sin θFz (34a)

and these are written as

Eθ = Z0
exp(−jkR)

kR
Dθ(θ, φ), Eφ = Z0

exp(−jkR)
kR

Dφ(θ, φ) (34b)

where

Dθ(θ, φ)=−k2a2cosθ
∞∑

n=0

B0nJ2n+ 5
2
(κ sin θ)(κ sin θ)−

3
2 +

j

2
k2a2 cos θ

∞∑

m=1

jm+1
∞∑

n=0

{[
AmnΞ+

mn(κ sin θ)−BmnΓ−mn(κ sinθ)
]
cosmφ

+
[
CmnΞ+

mn(κ sin θ) + DmnΓ−mn(κ sin θ)
]
sinmφ

}
(34c)

Dφ(θ, φ)=k2a2
∞∑

n=0

C0nJ2n+ 3
2
(κ sin θ)(κ sin θ)−

1
2 +

j

2
k2a2

∞∑

m=1

jm+1
∞∑

n=0

{[
CmnΞ−mn(κ sin θ)+DmnΓ+

mn(κ sinθ)
]
cosmφ

+
[
−AmnΞ−mn(κ sin θ) + BmnΓ+

mn(κ sin θ)
]
sinmφ

}
(34d)

3.4. Physical Optics Approximate Solution

Since we assume that the dipole is located at φ0 = 0, ρ-directed and
φ-directed dipoles are the x-dierected and y-directed. In this section
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we consider an approximate solution for the spherical field scattered by
a disk. The current density induced on the disk and far field radiated
from the current density are obtained as follows.

(i): x-Directed Dipole

Jx = − Ix

2π

[
jk +

1
Rp

]
z0

R2
p

exp(−jkRp) (35a)

Ax = − µIx

8π2R0
exp(−jkR0)

∫

S

[
jk +

1
Rp

]
z0

R2
p

exp(−jkRp)

× exp
[
jk sin θ

(
x′ cosφ + y′ sinφ

)]
dx′dy′ (35b)

where Ix is the strength of the dipole current; (x′, y′) are the
rectangular coordinates of the point on the disk; (θ, φ) are the spherical
angular coordinates of the observation point; R0 is the distance of
the observation point from the center of the disk; Rp is the distance
between the source point and the point on the disk. R0 and Rp are
given by

R0 =
√

x2 + y2 + z2, Rp =
√

(x′ − x0)2 + (y′ − y0)2 + z2
0 (35c)

(ii): y-Directed Dipole

Jy = − Iy

2π

[
jk +

1
Rp

]
z0

R2
p

exp(−jkRp) (36a)

Ay = − µIy

8π2R0
exp(−jkR0)

∫

S

[
jk +

1
Rp

]
z0

R2
p

exp(−jkRp)

× exp
[
jk sin θ

(
x′ cosφ + y′ sinφ

)]
dx′dy′ (36b)

(iii): z-Directed Dipole

Jx = − Iz

2π

[
jk +

1
Rp

]
x′ − x0

R2
p

exp(−jkRp) (37a)

Jy = − Iz

2π

[
jk +

1
Rp

]
y′ − y0

R2
p

exp(−jkRp) (37b)

Ax = − µIz

8π2R0
exp(−jkR0)

∫

S

[
jk +

1
Rp

]
x′ − x0

R2
p

exp(−jkRp)

× exp
[
jk sin θ

(
x′ cosφ + y′ sinφ

)]
dx′dy′ (37c)
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Ay = − µIz

8π2R0
exp(−jkR0)

∫

S

[
jk +

1
Rp

]
y′ − y0

R2
p

exp(−jkRp)

× exp
[
jk sin θ

(
x′ cosφ + y′ sinφ

)]
dx′dy′ (37d)

In contrast to the case of plane wave incidence, the numerical
computation of the PO results are not easy. We need double numerical
integration. Far field is obtained from the relation Eθ = −jωAθ

and Eφ = −jωAφ with Aθ = Ax cos θ cosφ + Ay cos θ sinφ and
Aφ = −Ax sinφ + Ay cosφ.

y

z

x

 

(x’,y’)

 

R’

Dipole

a0θ θ

(x0, y0, z0)

ϕ

Rp

Figure 2. Scattering of an arbitrarily oriented dipole field by a circular
hole.

4. THE EXPRESSIONS FOR THE FIELDS
DIFFRACTED BY A CIRCULAR HOLE IN A
PERFECTLY CONDUCTING PLATE

Figure 2 is a complementary problem of dipole field scattering by a
perfectly conducting disk discussed in the previous section.

4.1. Dual Integral Equations for the Spectrum Functions

The diffracted field can be derived from the vector potentials which
have the same form as (19). The boundary conditions are that the
tangential components of the diffracted electric field Ed

t vanish in the
z = 0 plane for ρa ≥ 1, and the tangential components of the total
magnetic field Htotal

t are continuous on the hole. The former condition
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gives
[
Ed

ρc,m(ρa)
Ed

φs,m(ρa)

]
=

∞∫

o

[
H−(ξρa)

] [
j
√

ξ2 − κ2f̃cm(ξ)ξ−1

g̃sm(ξ)ξ−1

]
ξdξ

=

∞∫

o

[
H−(ξρa)

] [
Ẽρc,m(ξ)
Ẽφs,m(ξ)

]
ξdξ = 0 ρa ≥ 1 (38a)

[
Ed

ρs,m(ρa)
Ed

φc,m(ρa)

]
=

∞∫

o

[
H+(ξρa)

] [
j
√

ξ2 − κ2f̃sm(ξ)ξ−1

g̃cm(ξ)ξ−1

]
ξdξ

=

∞∫

o

[
H+(ξρa)

] [
Ẽρs,m(ξ)
Ẽφc,m(ξ)

]
ξdξ = 0 ρa ≥ 1 (38b)

From the above equations we have the relations between the spectrum
functions f̃cm(ξ) ∼ g̃sm(ξ) and the spectrum functions of the surface
field Ẽ(ξ) as given below

f̃cm(ξ)ξ−1 = 1

j
√

ξ2−κ2
Ẽρc,m(ξ) g̃sm(ξ)ξ−1 = Ẽφs,m(ξ)

f̃sm(ξ)ξ−1 = 1

j
√

ξ2−κ2
Ẽρs,m(ξ) g̃cm(ξ)ξ−1 = Ẽφc,m(ξ)

(38c)

And from the continuity of the tangential components of the magnetic
field on the aperture we have

Y0

∞∫

o

[
H−(ξρa)

] [
j
√

ξ2 − κ2g̃cm(ξ)(κξ)−1

−κf̃sm(ξ)ξ−1

]
ξdξ +

[
H i

ρc,m(ρa)
H i

φs,m(ρa)

]
= 0

0 ≤ ρa ≤ 1 (39a)

Y0

∞∫

o

[
H+(ξρa)

] [
j
√

ξ2 − κ2g̃sm(ξ)(κξ)−1

−κf̃cm(ξ)ξ−1

]
ξdξ +

[
H i

ρs,m(ρa)
H i

φc,m(ρa)

]
= 0

0 ≤ ρa ≤ 1 (39b)

where the kernel functions H±(ξρa) are defined by (22). The functions
H i

ρc,m and H i
ρs,m denote the coefficients of cosmφ and sinmφ parts

of the incident wave H i
ρ, respectively, and same is true for H i

φc,m and
H i

φs,m. The explicit expressions of these functions are given in (9), (11)
and (13) for ρ-directed, φ-directed and z-directed dipole respectively.

The aperture electric field can be expanded in a manner similar
to the disk problem given in (24a) and (24b). It is noted that (Eρ, Eφ)
satisfy the vector Helmholtz equation ∇2E + k2E = 0 in circular
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cylindrical coordinates. Furthermore (Eρ, Eφ) have the property
Eρ ∼ (1 − ρ2

a)
− 1

2 and Eφ ∼ (1 − ρ2
a)

1
2 near the edge of the hole. By

taking into these facts, we set

Eρc,m(ρa) =
∞∑

n=0

[
CmnF+

mn(ρa) + DmnG−
mn(ρa)

]
,

Eρs,m(ρa) =
∞∑

n=0

[
AmnF+

mn(ρa)−BmnG−
mn(ρa)

]

Eφs,m(ρa) = −
∞∑

n=0

[
CmnF−

mn(ρa) + DmnG+
mn(ρa)

]
,

Eφc,m(ρa) =
∞∑

n=0

[
AmnF−

mn(ρa)−BmnG+
mn(ρa)

]

(40)

where Amn ∼ Dmn are the expansion coefficients and are to be
determined from the remaining boundary condition (39). We have
allocated these coefficients so that they satisfy the same Equation (28).
The functions F±

mn(ρa) and G±
mn(ρa) are defined in (25a), (25b). Then

the corresponding spectrum functions can be derived by applying the
vector Hankel transform given by

[
Ẽρc,m(ξ)
Ẽφs,m(ξ)

]
=

∞∫

o

[
H−(ξρa)

] [
Eρc,m(ρa)
Eφs,m(ρa)

]
ρadρa,

[
Ẽρs,m(ξ)
Ẽφc,m(ξ)

]
=

∞∫

o

[
H+(ξρa)

] [
Eρs,m(ρa)
Eφc,m(ρa)

]
ρadρa

(41)

We substitute (40) into (41) and perform the integration, then the
spectrum functions of the aperture electric field are determined. The
result is

Ẽρc,m(ξ) = −
∞∑

n=0

[CmnΞ−mn(ξ) + DmnΓ+
mn(ξ)]

Ẽφs,m(ξ) =
∞∑

n=0

[CmnΞ+
mn(ξ) + DmnΓ−mn(ξ)]

Ẽρs,m(ξ) =
∞∑

n=0

[AmnΞ−mn(ξ)−BmnΓ+
mn(ξ)]

(42a)

Ẽφc,m(ξ) =
∞∑

n=0

[AmnΞ+
mn(ξ)−BmnΓ−mn(ξ)]
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for m ≥ 1 and

Ẽρc,0(ξ)=−2
∞∑

n=0

C0nJ2n+ 3
2
(ξ)ξ−

1
2 Ẽφc,0(ξ)=2

∞∑

n=0

B0nJ2n+ 5
2
(ξ)ξ−

3
2 (42b)

for m = 0, where Ξ±mn and Γ±mn are defined by (26c). From (38c) we can
express the spectral functions f̃cm(ξ) ∼ g̃sm(ξ) of the vector potentials
in terms of those of the aperture distribution. This means that the
surface magnetic field can be expressed in terms of the spectrum
functions of the surface electric field.

4.2. Derivation of the Expansion Coefficients

We substitute (38c) into (39a) and (39b) and the both sides of
the resulting equations are projected into the functional space with
elements vm

n (ρ2
a) for Hρ and um

n (ρ2
a) for Hφ. The functions vm

n (ρ2
a) and

um
n (ρ2

a) are the Jacobi’s polynomials and the explicit expressions and
their some properties are defined in [34]. Then we have the matrix
equations for the expansion coefficients. The equations have the same
form as those for disk problem given by (28) except that Hm,p and
Km,p in the right hand sides are interchanged. The expressions for
Hm,p and Km,p for the hole problem are given as follows.

(i): ρ-Directed Dipole

K(1)
m,p =

jZ0

2πa2

∞∫

o

m

αρ0a
Jm(αρ0a)

[
αm

p Jm+2p+ 1
2
(α)−(

αm
p + 3

)
Jm+2p+ 5

2
(α)

]

× exp(−jhaz0a)α−
1
2 dα− jZ0

2πa2
m

∞∫

o

J ′m(αρ0a)
[
Jm+2p+ 1

2
(α)

+Jm+2p+ 5
2
(α)

]
exp(−jhaz0a)α−

1
2 dα (43a)

K(2)
m,p =

jZ0

2πa2
·m

∞∫

o

m

αρ0a
Jm(αρ0a)

[
Jm+2p− 1

2
(α) + Jm+2p+ 3

2
(α)

]

exp(−jhaz0a)α
1
2 dα− jZ0

2πa2

∞∫

o

J ′m(αρ0a)
[
αm

p Jm+2p− 1
2
(α)

−(αm
p + 1)Jm+2p+ 3

2
(α)

]
exp(−jhaz0a)α

1
2 dα (43b)

K
(2)
0,p = − jZ0

8πa2

∞∫

o

J1(αρ0a)
[
−pJ2p− 1

2
(α) + (p + 0.5)Jm+2p+ 3

2
(α)

]
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exp(−jhaz0a)α
1
2 dα (43c)

(ii): φ-Directed Dipole

H(1)
m,p = − jZ0

2πa2

∞∫

o

J ′m(αρ0a)
[
αm

p Jm+2p+ 1
2
(α)− (

αm
p + 3

)
Jm+2p+ 5

2
(α)

]

exp(−jhaz0a)α−
1
2 dα +

jZ0

2πa2
·m

∞∫

o

m

αρ0a
Jm(αρ0a)

[
Jm+2p+ 1

2
(α) + Jm+2p+ 5

2
(α)

]
exp(−jhaz0a)α−

1
2 dα (44a)

H(2)
m,p = − jZ0

2πa2
·m

∞∫

o

J ′m(αρ0a)
[
Jm+2p− 1

2
(α) + Jm+2p+ 3

2
(α)

]

exp(−jhaz0a)α
1
2 dα +

jZ0

2πa2

∞∫

o

m

αρ0a
Jm(αρ0a)

[
αm

p Jm+2p− 1
2
(α)

−(αm
p + 1)Jm+2p+ 3

2
(α)

]
exp(−jhaz0a)α

1
2 dα (44b)

H
(1)
0p =

jZ0

8πa2

∞∫

o

J1(αρ0a)
[
−pJ2p+ 1

2
(α) + (p + 1.5)J2p+ 5

2
(α)

]

exp(−jhaz0a)α−
1
2 dα (44c)

(iii): z-Directed Dipole

K(1)
m,p =

Z0

2πa2
m

∞∫

o

1√
α2 − κ2

Jm(αρ0a)
[
Jm+2p+ 1

2
(α) + Jm+2p+ 5

2
(α)

]

exp(−jhaz0a)α
1
2 dα (45a)

K(2)
m,p =

Z0

2πa2

∞∫

o

1√
α2 − κ2

Jm(αρ0a)
[
αm

p Jm+2p− 1
2
(α)

−(αm
p + 1)Jm+2p+ 3

2
(α)

]
exp(−jhaz0a)α

3
2 dα (45b)

K
(2)
0p = − Z0

8πa2

∞∫

o

1√
α2 − κ2

J0(αρ0a)
[
−pJ2p− 1

2
(α)

+(p + 0.5)J2p+ 3
2
(α)

]
exp(−jhaz0a)α

3
2 dα (45c)
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4.3. Far Field Expressions

Far field expression is obtained from (19) by applying the stationary
phase method of integration. In a far region we have the relations
Eθ ∼ −jωAθ = jω sin θAz and Hθ ∼ −jωFθ or Eφ = −jω sin θFz, and
we can write

Eθ =
exp(−jkR)

kR
Dθ(θ, φ), Eφ =

exp(−jkR)
kR

Dφ(θ, φ) (46a)

where

Dθ(θ, φ) = −2k2a2
∞∑

n=0

C0nJ2n+ 3
2
(κ sin θ)(κ sin θ)−

1
2

+k2a2
∞∑

m=1

jm
∞∑

n=0

{[
CmnΞ−mn(κ sin θ) + DmnΓ+

mn(κ sin θ)
]

cosmφ+
[
AmnΞ−mn(κ sinθ)−BmnΓ+

mn(κ sinθ)
]
sinmφ

}
(46b)

Dφ(θ, φ) = 2k2a2 cos θ
∞∑

n=0

B0nJ2n+ 5
2
(κ sin θ)(κ sin θ)−

3
2

+k2a2 cos θ
∞∑

m=0

jm
∞∑

n=0

{[
AmnΞ+

mn(κ sinθ)−BmnΓ−mn(κ sinθ)
]

cosmφ−
[
CmnΞ+

mn(κ sinθ)+DmnΓ−mn(κ sinθ)
]
sinmφ

}
(46c)

5. NUMERICAL COMPUTATION

With the formulation developed in the previous sections, we have
performed the numerical computation for far field patterns. To perform
the computation we must determine the expansion coefficients Amn ∼
Dmn for given values of radius κ = ka and incident angle θ0. These
are derived from (29) by using the standard numerical code of matrix
equation for complex coefficients. The matrix elements contain the
functions G (α, β), G2 (α, β), and K (α, β) and these infinite integrals
are transformed into infinite series and these series are convenient for
numerical computation. How to derive these expressions are firstly
discussed by Nomura and Katsura [32], but we used a slightly different
method as discussed in [34]. To verify the validity of these expressions
numerically, we compare the results of series expressions with those by
direct numerical integration. The agreement is complete. The required
maximum size M of matrix equations to determine the expansion
coefficients depends on the values of κ and we chose M ' 1.6κ + 5
and it is found to be sufficient in the present computation.
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5.1. Radiation Pattern

The theoretical expressions for the far field are given by (34) for the
disk and (46) for aperture problem. Fig. 3 to Fig. 11 show the far field
patterns of circular disk in the φ-cut plane φ = 0, π in the presence
of ρ-directed, φ-directed and z-directed dipole. The normalized radii
are κ = ka = 3 and ka = 5, respectively. The dipole is placed at
ρ0 = 5. The plane of incidence is xz-plane (φ0 = 0, π). In all these
figures, the normal incidence is for θ = 0. In these figures the results
obtained using the physical optics (PO) method are also included for
comparison. The PO expressions are given by (35)–(37). It is observed
from the comparison that the PO and KP results agree well for normal
incidence (θ = 0) but the degree of discrepancy increases as the angle
of incidence becomes large and radius of disk decreases. It is due to the
fact that the PO approximation inaccuracy increases for shadow region
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Figure 3. Diffracted far field
patterns of disk for ρ-directed
dipole.
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Figure 4. Diffracted far field
patterns of disk for ρ-directed
dipole.
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Figure 5. Diffracted far field
patterns of disk for ρ-directed
dipole.
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Figure 6. Diffracted far field
patterns of disk for φ-directed
dipole.
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Figure 7. Diffracted far field
patterns of disk for φ-directed
dipole.
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Figure 8. Diffracted far field
patterns of disk for φ-directed
dipole.
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Figure 9. Diffracted far field
patterns of disk for z-directed
dipole.
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Figure 10. Diffracted far field
patterns of disk for z-directed
dipole.
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Figure 11. Diffracted far field patterns of disk for z-directed dipole.
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contribution. Secondly PO gives good results for bigger objects(in
terms of wavelength).

6. CONCLUSION

We have formulated the spherical wave field produced by an arbitrarily
oriented dipole scattered by a perfectly conducting circular disk and its
complementary circular hole in a perfectly conducting infinite plane.
We derived dual integral equations for the induced current and the
tangential components of the electric field on the disk. The equations
for the current densities are solved by applying the discontinuous
properties of the Weber-Schafheitlin’s integrals and the vector Hankel
transform. It is readily found that the solution satisfies Maxwell’s
equations and edge conditions. Therefore it may be considered as the
eigen function expansion. The equations for the electric field are solved
by applying the projection. We use the functional space of the Jacobi’s
polynomials. Thus the problem reduces to the matrix equations and
their elements are given by infinite integrals of a single variables. These
integrals are transformed into infinite series in terms of the normalized
radius. Numerical computation for the far field patterns has been
carried out for different values of κ and incident angles θ.
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