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We present a theory for the multiple scattering of light by obstacles situated over a rough surface. This prob-
lem is important for applications in biological and chemical sensors. To keep the formulation of this theory
simple, we study scalar waves. This theory requires knowledge of the scattering operator (¢-matrix) for each of
the obstacles as well as the reflection operator for the rough surface. The scattering operator gives the field
scattered by the obstacle due to an exciting field incident on the scatterer. The reflection operator gives the field
reflected by the rough surface due to an exciting field incident on the rough surface. We apply this general
theory for the special case of point scatterers and a slightly rough surface with homogeneous Dirichlet and
Neumann boundary conditions. We show examples that demonstrate the utility of this theory. © 2010 Optical

Society of America

OCIS codes: 290.5825, 290.5880, 290.5850, 290.4210.

1. INTRODUCTION

Detection and discernment of nucleic acids, proteins, and
other biologically relevant small molecules are of critical
diagnostic importance [1]. The ability to identify such
with high sensitivity enables accurate pathogen identifi-
cation for environmental protection, food safety, and early
disease diagnosis [2]. It allows also for better and faster
response to bio-terrorism threats. Most molecular identi-
fication methods currently rely on fluorescence readouts
in which fluorophores are coupled to specific bio-
molecules of interest for detection [3].

As the unique blueprint to every organism, nucleic acid
sequences are important molecular signatures. The poly-
merase chain reaction (PCR) coupled with molecular fluo-
rophore readouts enables rapid nucleic acid sequencing
for high-sensitivity molecular identification [4]. However,
the PCR is complex, costly, and sensitive to contamina-
tion. Moreover, it is limited in its ability to multiplex mul-
tiple targets [5].

Abnormal protein levels reflect infections and diseases.
The gold standard for protein analysis is the fluorescent
based enzyme-linked immunosorbent assay (ELISA),
with detection limits typically in the picomolar range [5].
Higher sensitivity enables protein markers of infectious
diseases and cancers to be detected earlier, at lower con-
centrations. Earlier diagnosis enables more effective
treatment and therefore potentially higher patient sur-
vival rates [1]. Despite their exquisite sensitivity and
prevalence in molecular detection, fluorophores have sig-
nificant drawbacks, including photo-bleaching, broad
absorption/emission bands, and dependence on expensive
excitation and detection equipment. Moreover, fluores-
cence based labeling and detection typically requires mul-
tiple steps [6].

1084-7529/10/051002-10/$15.00

Label-free approaches are more adaptable to point-of-
care diagnostics, in which rapid, low-cost, low-powered,
portable, and robust systems are required. This is par-
ticularly important for first responders of bio-terrorist
threats as well as diagnostics for the developing world. Af-
finity bio-sensors allow for the real-time analysis of bio-
specific interactions without the need for labeling mol-
ecules. Various optical methods for label-free bio-
molecular detection have been explored. Plasmonics
involves manipulating light in the subwavelength regime.
Nano-structured free-electron metals can be resonantly
excited using visible light to produce surface plasmon os-
cillations that lead to surface-bound electromagnetic
fields; these fields can then be manipulated in various
ways to detect bio-molecules [2,7,8]. For example, in sur-
face plasmon resonance sensing, molecular adsorption
can be detected through changes in the refractive index.

Surface plasmon excitations which leverage subwave-
length field localization can also be used for enhanced
fluorescence spectroscopy (metal-enhanced fluorescence)
or label-free spectroscopy, such as surface-enhanced Ra-
man spectroscopy (SERS) based on more efficient inelas-
tic scattering of light by a molecule in proximity to nano-
structured metals. The SERS provides chemical bond
information and is considerably more sensitive (down to
single molecule sensitivity) than either refractometric or
colormetric assays [9]. While one of the best label-free ap-
proaches, the challenge with the SERS lies in the trade-
off between reliability (with structures made from surface
roughening or colloids) and manufacturability (with
structures requiring high cost ion beam or electron beam
nano-fabrication approaches) [10,11].

We have recently developed a new, low-cost, and nano-
structured metallic substrate which can be readily and ro-
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bustly integrated into microfluidic devices [12]. These
self-assembled nano-structures are due to the stiffness
mismatch between retracting shape memory polymers
and a thin film of metal. Because the metal cannot re-
tract, it buckles in a predictable manner with controllable
predominant wavelengths. A diagram showing this pro-
cess appears in Fig. 1. These complex non-periodic struc-
tures demonstrate strong and tunable plasmon reso-
nances.

A key step in enabling this new fabrication technology
for optical sensors lies in understanding optical signals
emanating from molecules situated over nanoscale rough
metal surfaces. These signals are inherently complicated
due to the multiple scattering from the molecules and the
rough metal surface. This problem is challenging because
one must take into account accurately all of the interac-
tions between the small obstacle and the rough surface.
Scattering by the obstacle and the rough surface consti-
tutes challenging problems by themselves. Our objective
here is to develop a multiple scattering theory that takes
into account interactions between the obstacle and a
rough surface.

There are several studies that address obstacle scatter-
ing over flat planar surfaces in a variety of contexts
[13-15]. For scattering by an obstacle over a rough sur-
face, there are fewer results. In particular, Chiu and Sa-
rabandi [16] studied the special case in which the obstacle
is a dielectric cylinder and the surface is only slightly
rough. Using the angular correlation function, Jin and Li
[17] described a method to detect a scatter target over a
randomly rough surface. Johnson [18] studied this prob-
lem numerically by taking into account up to fourth-order
interactions between the obstacle and the rough surface.
Recently, Guo et al. [19] used a parallel implementation of
the finite-difference/time-domain method to study this
problem.

In this paper, we present a systematic method for
studying the multiple scattering due to an obstacle situ-
ated over a rough surface. This theory requires knowledge
of the scattering properties of the obstacle and the rough
surface separately. We combine these two operations in a
self-consistent way. This theory is simply an extension to
the Foldy—Lax theory for multiple scattering [20—23]. We
show explicitly that this theory takes into account infi-
nitely many interactions between an obstacle and the
rough surface. Thus, this theory provides a foundation for
studying carefully the multiple scattering by obstacles
over rough surfaces provided that scattering by the ob-
stacle and the rough surface themselves is sufficiently ac-
curate.

5 > [~ <

Fig. 1. (Color online) Method for fabricating low-cost and nano-
structured metallic substrates reported in [12]. A shape memory
polymer is coated with a thin film of metal. Upon heating, the
polymer retracts, but the metal does not lead to a buckling of the
metal surface. The final image on the right shows a scanning
electron micrograph of one such nano-structured metallic sub-
strate fabricated using this method.
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It is important to establish here that we do not consider
the rough surface to be a random rough surface. Although
one may not know the exact spatial properties of the sur-
face for these applications, the surface is fixed. Thus, one
may perform several calibration steps, if necessary. In
particular, we work under the assumption that we can
first measure the light scattered by the rough surface
without the presence of the obstacles. Then we can mea-
sure the light scattered by the obstacles over the rough
surface. For this reason, we do not compute any statistical
quantities. One may consider computing statistical quan-
tities using this method to make statements about an en-
semble of sensors. However, we do not address this issue
here.

The remainder of this paper is as follows. In Section 2,
we describe the physical problem. We present the self-
consistent multiple scattering theory in Section 3. In Sec-
tion 4, we consider the special case in which the obstacles
are point scatterers and the rough surface is a slightly
rough perfect electric conductor. We use that simplified
special case to work through some examples explicitly in
Section 5. We give the conclusions in Section 6. Appen-
dixes A and B give details of the reflection operator for Di-
richlet and Neumann slightly rough surfaces, respec-
tively.

2. DESCRIPTION OF THE PROBLEM

We seek to develop a theoretical framework to study the
interactions of light scattered by obstacles over a rough
surface. To study this problem in a simple setting, we
study time-harmonic (monochromatic light), scalar wave
propagation, and scattering. In particular, we consider a
wave incident on several obstacles situated over a rough
surface. A sketch of this problem appears in Fig. 2.

In Fig. 2 the rough surface is given by the function z
=f(x,y). We consider time-harmonic wave propagation
with time dependence e~** and circular frequency w. For
this scattering problem, we need to solve the following re-
duced wave or Helmholtz equation:

M
Viu+ku=-k>> V,u,

m=1

in z > flx,y), (2.1)

with V2=ﬁ3+&§+ﬂ3 denoting the Laplacian. Here, V,, for
m=1,...,M denotes the M scattering “potentials” for each
of the M scattering obstacles situated over the rough sur-
face. To solve Eq. (2.1), we must prescribe boundary con-
ditions. In particular, we study two different boundary

incident wave

Fig. 2. A sketch of the physical problem. A wave is incident on
several obstacles situated over a rough surface. The rough sur-
face is given by the function z=f(x,y). Light scatters from the ob-
stacles and the rough surface.
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conditions: Dirichlet and Neumann. The Dirichlet bound-
ary condition is given by

u=0 on z=f(x,y), (2.2)
and the Neumann boundary condition is given by
v-Vu=0 on z=f(x,y), (2.3)
with
(0, 0,f,— 1)

e e — (24)
V(@ D%+ (9, 241
denoting the unit normal to the rough surface.

We write the solution of Eq. (2.1) subject to Eq. (2.2) or
Eq. (2.3) as the sum of the incident and scattered fields:
u=u;+ug. The incident field u; is an incoming solution of
homogeneous problem,

Viu +k*u =0, (2.5)

near the bounding surface z=f(x,y). We assume that u; is
known explicitly. The scattered field u, is an outgoing so-
lution of Eq. (2.1) and is to be found. For this scattered
field, we prescribe also Sommerfeld radiation conditions
far away from the boundary surface and scattering ob-
stacles.

3. SELF-CONSISTENT MULTIPLE
SCATTERING THEORY FOR OBSTACLES
OVER A ROUGH SURFACE

In what follows, we develop a self-consistent theory for
the multiple scattering of light by M obstacles situated
over a rough surface. This theory requires knowledge of
the scattering operator or the ¢-matrix for each of the ob-
stacles and the reflection operator for the rough surface.
Once those operators are established, we combine them in
a self-consistent manner to obtain a multiple scattering
theory.

The scattering operator S,, gives the field scattered by
the mth obstacle due to an exciting field. When S,, is
known, the scattered field produced by the field u excit-
ing the obstacle is given by S,,u”. The scattering operator
S,, (otherwise known as the ¢-matrix or transition opera-
tor) with kernel ¢,,(r,r’) for the mth obstacle is given by

SmuE(r)zf b, e e (r')dr’. (3.1)

Xm

Here, x,, corresponds to the support of the mth obstacle.

The reflection operator R gives the field reflected by the
rough surface due to an exciting field. When R is known,
the reflected field produced by the field u? exciting the
rough surface is given by Ruf. In general, R is defined by
the solution of a surface integral equation derived from
the Kirchhoff theory [22-24]. For the special case of a
slightly rough surface, we obtain an asymptotic result for
R which we will use later.

For the problem corresponding to M obstacles situated
over a rough surface, we represent the total field as the
following sum:

Long et al.

M
u=u;+ D Spbp+Ri. (3.2)
m=1

Here, ¢, denotes the field exciting the mth obstacle and
represents the field exciting the rough surface. These
fields are to be determined. Once we have determined
them, we can compute u(r) through the evaluation of Eq.
(3.2).

We represent the exciting fields as

M
bp=u;+ > Sy, +Ry in x,, m=1,...,M,
n=1
n+m
(3.3)
M
Y=u;+ X Spd, on z=flxy). (3.4)
m=1

Equations (3.3) and (3.4) comprise a self-consistent sys-
tem for the exciting fields ¢,, and . This self-consistent
system is an extension of the so-called Foldy-Lax theory
for multiple scattering [20—23]. This extension incorpo-
rates scattering by the rough surface. In the same way
that the Foldy—Lax theory includes infinitely many inter-
actions, Egs. (3.3) and (3.4) include infinitely many inter-
actions between the obstacles and the rough surface.

Through substituting Eq. (3.4) into Eq. (3.3), we can
construct an M X M system of equations for exciting fields
at the obstacles: ¢,, for m=1,...,M. When those exciting
fields are known, we compute ¢ through the evaluation of
Eq. (38.4). In what follows, we will show this computation
explicitly for the special case of point obstacles over a
slightly rough surface.

4. POINT OBSTACLES OVER A SLIGHTLY
ROUGH SURFACE

We specialize the general theory given in the previous
section to point obstacles situated over a slightly rough
surface. For this specific case, the problem reduces to a
linear system of algebraic equations. Nonetheless, these
simplifications lead to a model problem that allows us to
study the complicated interactions between the obstacles
and the rough surface.

We say an obstacle, with a characteristic length scale a,
is small when ka <1. For that case, we may use the point
scatterer approximation [25] in which the scattering op-
erator for a point obstacle at position r,, is given by

Suui(r) = 0,Go(r;1,)u(r,), (4.1)

with o, denoting the scattering cross-section for the point
obstacle and

eik\r—rm\ _ e—\r—rml/a

Go(r;r,,) = (4.2)

471 + (ka)?|lr -,

is the free-space Green’s function regularized to remove
the singularity at r=r,, [25]. For M point obstacles at po-
sitions r,, with scattering cross-sections o,, for m
=1,...,M, Eq. (3.3) reduces to
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M
b =ui(ry) + D 0,Go(r,3T,) b, + RUr,), m=1,... .M.
n=1
n#m
(4.3)
Furthermore, Eq. (3.4) reduces to
M
Y(r) = u;(x) + 2, 0,Go(r5e,) b, o0 z2=fx,y).
m=1
(4.4)

The exciting fields ¢, for the point obstacles are just com-
plex scalars.

We now consider the case in which the roughness of the
surface z=f(x,y) is small compared to the wavelength.
Moreover, we assume that the gradient of the rough sur-
face is small compared to the wavelength. To make this
assumption explicit, we introduce the small dimension-
less parameter 0 <e<1 so that the rough surface is given
by z=¢€f(x,y). We call this rough surface a “slightly” rough
surface. We assume that the function f(x,y) and the pa-
rameter € are known.

In the limit as e— 0%, we can compute an asymptotic
approximation of the reflection operator R as a perturba-
tion expansion [26,27]. We consider an incident field of
the form

ui(x5y5z) = f fA(§5 ﬂ)eiéx+iw_ikzd§d779 (45)

with A denoting the angular spectrum of the incident field
and

W-E-F, E+r=k

- 4.6
i\s"§2+772_k27 §2+7]2>k2 ( )

k=k(&n) =

The field reflected by the slightly rough surface, Ru; can
then be represented as

Rui(xayVZ) = J f RA(gy n)eigx+i77y+iKZd§d7]’ (47)

with R denoting a linear operator that takes into account
scattering due to the surface roughness. In Appendix A,
we derive an asymptotic approximation for Rp, the opera-
tor for the Dirichlet problem. In Appendix B, we derive an
asymptotic approximation for Ry, the operator for the
Neumann problem. In what follows, we proceed as if R is
known explicitly.
Evaluating Eq. (4.4) at z=0, we find that

M
lp(xxy:o) = ui(xay?o) + E O-mGO(xay70;rm) ¢m' (48)

m=1
Fourier transforming this result with respect to x and y,
we obtain

M
V(E N =AED + Dy 0nbo(& 7T 0) s (4.9)

m=1

with A(&, n) defined in Eq. (4.5),

Vol. 27, No. 5/May 2010/dJ. Opt. Soc. Am. A 1005

1 o
‘I’(E,n)=wffl,lf(x,y,O)e"lgx"”’ydxdy, (4.10)

i
§0(§> 77;1'm) = 8772Ke_L§xm_me+lK‘zm"

(4.11)

In Eq. (4.9), we have made use of the Weyl representation

for G, given by
1 i ] )
(277)2J J Z(exp[zf(x—x )

+inly —y') +ilz -z'[]d&d 7.

Equations (4.11) and (4.12) correspond to the free-space
Green’s function rather than Eq. (4.2) since we are not
evaluating them near the singularity. Now, we introduce
the quantities

Go(r;r') =

(4.12)

RGO(r;rn) = J f R§0(§7 n;rn)ei§x+i7y+ikzd§d,’]’

(4.13)

Ru,(r) = f f RA(E pei&+imrindedy.  (4.14)

Notice that RGy(r;r,) is the field reflected by the slightly
rough surface due to a point source at position r,. Simi-
larly, Ru,(r) is the incident field reflected by the slightly
rough surface evaluated at position r.

By applying the reflection operator to Eq. (4.8) and
evaluating that result at position r,,, we obtain

M
Ry(r,,) = Ru,(r,,) + >, 0,RG((x,,;r,) ¢,

n=1

(4.15)

Thus, substituting Eq. (4.15) into Eq. (4.3) and rearrang-
ing terms yields the following M X M linear system:

M
> Apntby = ui(r,,) + Ruy(r,,), m=1,...,M,
n=1

(4.16)
with
1-0,RGy(r,;r,), m=n
Ao = {— 0 GolEit,) + RGolryix,)], m .
(4.17)

Upon the solution of Eq. (4.16), we obtain the M complex
numbers &1, s, ...,Py. With those complex numbers
known, we can compute ¢ through the evaluation of Eq.
(4.4). Thus, the field scattered by the point obstacles and
the slightly rough surface is given by

M

uy(r) = Ru,(r) + X, 0,,[Go(r;r,,) + RGo(r;r,,) ]y,

m=1

(4.18)

To summarize the results of this section, we give the fol-
lowing procedure to compute the field scattered by M
point obstacles situated over a slightly rough surface.
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1. Prescribe the slightly rough surface z=¢f(x,y).

2. With that slightly rough surface, compute the
asymptotic approximation to R using Eq. (A12) for a Di-
richlet surface (Appendix A) or Eq. (B13) for a Neumann
surface (Appendix B).

3. Set the positions r,, and scattering cross-sections o,
for the M point obstacles.

4. Solve Eq. (4.16) to obtain ¢q, ¢o, ..., oy

5. Evaluate Eq. (4.18) to obtain uy(r).

5. EXAMPLES

In what follows, we consider two particular examples. The
first one is for a single point obstacle situated over a
slightly rough surface. The second one is for two point ob-
stacles situated over a slightly rough surface. These two
examples are relevant for applications of optical sensors
for point-of-care diagnostics. The ability to detect ex-
tremely low concentrations of analytes in a solution is im-
portant for this application, but remains a persistent
challenge. For example, the limit of detection for the
ELISA, the gold standard, is typically in the picomolar
range. To be able to detect molecules at much more dilute
concentrations would enable earlier stage detection with
a less invasive sampling. Thus, we assume only a few ob-
stacles in a site specific region to test the ability to detect
extremely low concentrations.

For both of these examples, we are able to obtain ana-
Iytical results that we interpret physically. Using those
analytical results, we compute asymptotic results for the
scattered field uy(r) evaluated in the far-field.

A. One Point Obstacle

When there is only one point obstacle with scattering
cross-section oy situated over a slightly rough surface at
position ry, Eq. (4.15) reduces to

[1-01RGo(ry;r1)] = ui(ry) + Ruy(ry). (5.1)
The solution is given by

ui(ry) + Ruy(ry)

=, 5.2
1-0RGy(ry;ry) (5.2

#

Expanding Eq. (5.2) formally, we find that

b= E [01RG(r ;1) ]"[,(ry) + Ru,(ry)]. (5.3)

n=0

We can interpret this result in the following way. The first
term corresponds to the incident field u; and the incident
field reflected by the slightly rough surface, Ru;, exciting
the point obstacle. The next term corresponds to the scat-
tering of that exciting field down to the slightly rough sur-
face and reflected back up to excite the point scatterer,
and so on. A diagram showing these interactions appears
in Fig. 3. Thus, Eq. (5.3) shows that this theory takes into
account infinitely many interactions between the point
obstacle and the slightly rough surface.

Now that ¢; is known explicitly, we compute the scat-
tered field through the evaluation of

Long et al.
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Fig. 3. A diagram showing the interactions between the point
obstacle and the slightly rough surface given by Eq. (5.3). In the
first diagram, the incident field and the incident field reflected by
the rough surface excite the point obstacle. Next, that exciting
field is scattered by the point obstacle and reflected by the rough
surface to excite the point obstacle again. This series continues to
include infinitely many interactions between the point obstacle
and the slightly rough surface.

uy(r) = Ru,(r) + o4[Go(r;ry) + RGo(r;ry)]d;.  (5.4)

We have computed numerically the results given by Eq.
(5.4). All quantities that are given below are in units of
the wavelength \. For these numerical calculations, we
consider a uni-axial slightly rough surface of the form z
=¢f(x) with €=0.05. For this example, we generated one
realization of a Gaussian correlated random rough sur-
face with a correlation length of 1.5 and a RMS height of
1 [23]. The point obstacle has scattering cross-section set
to oy =1. It is located at position r;=(11.7,0.0,0.1). The lo-
cation of the point obstacle in relation to this rough sur-
face is shown in Fig. 4.

A plane wave propagating in the xz-plane of the form
u;=exp(-ikz) is incident on the point obstacle and rough
surface. With these considerations, the symmetry with re-
spect to the xz-plane is broken only due to scattering by
the point obstacle. To compute these fields, we replaced
the Fourier transforms in the results from the previous
section with the discrete Fourier transforms computed on
a b512x512 grid of the computational domain:
[-25.6,25.6]x[-25.6,25.6]. Figure 5 shows contour plots
of the image I(x,y) defined as

I(x’y) = |us(xay’20)‘2 - |Rui(x’y,20)|2 (55)

for both the Dirichlet (top) and Neumann (bottom) cases.
Here, the plane zy=5.0 corresponds to the plane on which
the light is detected. This difference image I(x,y) corre-
sponds to the subtraction of the direct image without the
point obstacles taken at the detector plane from the direct
image with the point obstacles taken at the detector

0.5

0.3f : : .

0.21 i i 5 1

€ f(x)

-20 -10 0 10 20

Fig. 4. A plot of the rough surface and point obstacle shown on
the y=0 plane. The point obstacle is located at position r;
=(11.7,0.0,0.1) in units of wavelengths.
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Fig. 5. (Color online) Contour plots of the image I(x,y) defined
in Eq. (5.5) corresponding to a single point obstacle shown in Fig.
4 for the Dirichlet (top) and Neumann (bottom) cases.

plane. It is normalized to the maximum absolute value of
I(x,y). This difference image shows the complicated inter-
actions between the rough surface and the point obstacle.
In Fig. 5, we see distortions of the scattering by the point
obstacle by the uni-axial rough surface as faint vertical
bands. The Dirichlet surface produces a more localized
image about the point obstacle than does the Neumann
surface. However, we have observed widely varying re-
sults depending on the location of the point obstacle to the
rough surface.

Using the standard expression for the far-field Green’s
function and the method of stationary phase [28], we find
that

iR
Uy~ Fl(é)?, kR — o, (5.6)

with
Fy(8) = —i27ks,RA(ks,,ks,)

e—ik§~r1

+ 0101 —127ks,Rgo(ks,,ks,;ry) |.

(5.7)

Here, §=(s,,s,,s;)=(sin 6 cos ¢,sin @ sin ¢,cos ), with ¢
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denoting the polar angle and ¢ denoting the azimuthal
angle.

B. Two Point Obstacles

When there are two point obstacles with scattering cross-
sections o7 and oy situated over a slightly rough surface
at positions r; and ry, respectively, Eq. (4.15) reduces to

[Au A12] [4’1] ~ {b1:| 58
Ay Ags || o | |0y .
with A,,, defined in Eq. (4.16) and

by u;(ry) + Ruy(rq)

|:b2i| - |:ui(l'2) +Rui(r2):| . (59)

This linear system is solved easily and we find that

ol {[1 = 02RG(1r2;15) 161 — 09 Go(r1;12)

~ det(4)

+RGy(ry;1r9) 105}, (5.10)

o {[1 - 04RGy(r1;11) 165 — 01[Go(rg;11)

~ det(A)

+RGy(ry;r1)]b1}, (5.11)

with
det(A) =1 - 01RG(r1;r)) — 0:RG(re;15)
= 0109 Go(r1;71)Go(ra;15) + Go(r1;71)RGo(ra;15)
+RG(r1;11)Go(re;19)]. (5.12)

Now that ¢; and ¢ are known explicitly, we compute the
scattered field uy(r) through the evaluation of

uy(r) = Ru,(r) + 01[Go(r;r7) + RGo(r;11) |1 + 09[ G (1575)
+RGO(I‘;I’2)]¢2. (513)

We have computed numerically the results given by Eq.
(5.13). We use the same rough surface that we used for
the numerical example above. The two point obstacles
have scattering cross-section set to oy=09=1. One of the
point obstacles is located at position r;=(11.7,0.0,0.1).
The other point obstacle is located at position ry
=(9.7,0.0,0.1). Thus, the two point obstacles are two
wavelengths apart from one another. The location of the
two point obstacles in relation to this rough surface is
shown in Fig. 6.

In Fig. 7 we plot the image I(x,y) defined in Eq. (5.5) for
both the Dirichlet (top) and Neumann (bottom) cases.
Just as with Fig. 5, the detector plane is zy=5.0. These re-
sults are similar qualitatively to those in Fig. 5. However,
one can observe a distorted dipole pattern resulting from
the scattering by the two point obstacles.

Just as we have done for the one point obstacle, we can
evaluate uy(r) in the far-field limit. In doing so, we find
that

iR
Uy ~ Fg(é)?, kR — o, (5.14)

with
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Fig. 6. A plot of the rough surface and two point obstacles
shown on the y=0 plane. The point obstacles are located at posi-
tions r;=(11.7,0.0,0.1) and r,=(9.7,0.0,0.1) in wunits of
wavelengths.
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Fig. 7. (Color online) Contour plots of the image I(x,y) defined
in Eq. (5.5) corresponding to two point obstacles shown in Fig. 6
for the Dirichlet (top) and Neumann (bottom) cases.
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Fy(8) = - i2mks,RA(ks,,ks,)
eiké-rl

+ 0'1¢1[ in

-i2 wkszRgo(ksx,ksy;rl)]

eiké-r2
+ 0-2¢2 ? - izﬁkSzRé'o(ka,kSy;I'Q) .

(5.15)

6. CONCLUSIONS

We have developed a theoretical framework to study ob-
stacle scattering over a rough surface. This theory in-
volves combining each of the scattering operators for each
of the obstacles and the reflection operator for the rough
surface in a self-consistent way. For the simple case of
point obstacles over a slightly rough Dirichlet or Neu-
mann surface, we are able to obtain analytical results. We
have shown analytical and numerical results for the cases
involving one and two point obstacles.

This theoretical framework provides, to our knowledge,
a critical first step in studying the multiple scattering of
light by nano-structured metallic substrates for sensor
applications. It takes into account the interactions made
between a single molecule and a rough surface. Here, we
have addressed this problem in an idealized setting. The
obstacles are point scatterers and the rough surface is a
small perturbation from a plane. Moreover, the surface is
assumed to be a perfect electric conductor.

There remain several theoretical challenges to realize
the potential of using nano-structured metallic surfaces
for chemical and biological sensors. For example, we will
need to consider very rough surfaces rather than slightly
rough surfaces. Preliminary data taken from the nano-
structured metallic substrates indicate very large surface
roughnesses. That means that we will need to compute
numerically the reflection operator rather than use an
analytical approximation. By assuming that the surface is
a perfect electric conductor, we ignore surface plasmons in
the problem. To harness the full potential of these sen-
sors, we will need to include these surface plasmons.
Therefore, we will have to take into account the optical
properties of the metallic material more accurately. In ad-
dition, a point scatterer model may be insufficient for cap-
turing the scattering properties of single molecules. Thus,
we will have to consider more sophisticated scattering op-
erators.

Despite the fact this simple model that we have studied
is limited in practice, it provides valuable insight into this
problem. Moreover, it gives a simple setting to test and
design single molecule detection and characterization al-
gorithms which require solving the associated inverse
problem. We will extend this theory to be more practically
useful in the ways mentioned above in our future work.

APPENDIX A: THE DIRICHLET PROBLEM

The Dirichlet boundary value problem for a slightly rough
surface is

Viu+ku=0 in z> ¢(x,y), (A1)
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u=0 on z=¢lx,y). (A2)
We seek the wave field as the sum u=u;+Ru;, with u; de-
noting the wave field incident on the slightly rough sur-
face and Ru; denoting the wave field scattered by the
rough surface. To solve this boundary value problem, we

expand u;+Ru; in Eq. (A2) in a Taylor series about z=0
and set z=¢f(x,y) to obtain

[1 +€f0, + ezéfﬁaf + (’)(63)](ui +Ru;)=0 on z=0.
(A3)

We derive the asymptotic approximation for the reflec-
tion operator Rp introduced in Eq. (4.7). Here, the D sub-
script identifies that this operator is for the Dirichlet
problem. The incident field u; is given in Eq. (4.5). We
seek the scattered field Ru; in the form

Ru;(x,y,z) = J f B(g mle'&rimriededy, (A4)

with B(&, 7)) to be found. Substituting Eqs. (4.5) and (A4)
into Eq. (A3) and Fourier transforming that result with
respect to x and y, we find that

B(én)=-A(&n)+ Eif fF(S— E,m-n")x(&,7)AE,7)
1
-B(&,7)]dédy + fzif JF(§— &,m-1)

Xf fF(S’ =&,y - 7VEE NAE, )
+B(¢&',7")]d&'dy'd¢'dy’. (A5)
Now, we expand B in powers of € in the form

B(é, 77) =BO(§, 7]) + EBl(g, 77) + 6232(6? 7]) + 0(63) (AG)

To determine the terms in Eq. (A6), we substitute Eq. (A3)
into Eq. (A5) and equate the coefficient of each power of €
to zero. Thus, to O(1), we obtain

By(&m) =-A(£n). (A7)

To O(e), we obtain

By (&, 77)=if fF(S— &= n)x(&,7)AE,7)
= By(&',7")]d¢'dy’ (A8)

Substituting Eq. (A7) into Eq. (A8), we find that

By(¢,7) =i2f fF(S— E,m—n)k(&,n)AE ,7n)dEdy'
=i2F * (kA). (A9)

To O(€?), we obtain
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1
Bz(é,n)=5ffF(§—§',n—n’)JJF(E’—i”,n’

= 1)EENAE, 7) + Bo(¢', 7)]dE"dn'dg d o’

—if fF(é— &,m=n)k(&,n")B (&, n)dE'dy’ .
(A10)

Substituting Eq. (A7) into Eq. (A10), we find that the first
term in Eq. (A10) vanishes identically. Thus, we find, af-
ter substituting Eq. (A9), that Eq. (A10) becomes

B2(§,77)=2ffﬂ%—é’m—n’)K(f’,n’)ffF(é-&”,n’

— 1)K, A7) A dg doy
=2F #[«F = (kA)]. (A11)
Combining the results, we find that
B(&,7) =RpA=—A+ 62F * kA + €2F + [kF * (kA)]
+0(€%). (A12)

APPENDIX B: THE NEUMANN PROBLEM

The Neumann boundary value problem for a slightly
rough surface is given by

Viu+ku=0 in z> €flx,y), (B1)

v-Vu=0 on z=¢lxy). (B2)

Just as we have done for the Dirichlet problem in Appen-
dix A, we seek the wave field u as the sum u=u;+Ru;. To
solve this boundary value problem, we expand u;+Ru; in
Eq. (B2) in a Taylor series about z=0 and set z=¢f(x,y) to
obtain

- [(92 + 6(]‘}93 _fx(;x _f;/ay) + 62(%}‘2(93 _fﬂcax’?z _ff_:yayaz)
+0(é") |(u;+ Ru) =0 on z=0. (B3)

We derive an asymptotic approximation for the reflec-
tion operator Ry introduced in Eq. (4.7). Here, the N sub-
script identifies that this operator is for the Neumann
problem. We follow the same procedure that we have done
for the Dirichlet problem in Appendix A. By substituting
Egs. (4.5) and (A4) into Eq. (B3) and Fourier transforming
that result with respect to x and y, we obtain

-ikB(§n) =-iKkA(£7) + Ef fF(é— E,m- K&, )
(& -3 - gy - 7HIAE,7)
+B(&,7)]dédy - fzif JF(S— &,n-7')
[ [re-eonriseiean

— (@ -EN - (g'n - )&, NAE, 7
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- B(¢',7")]dg"dy"dé'dy". (B4)

We use the same expansion for B given in Eq. (A6). To
O(1), we find that

By(é,n)=A(& 7). (B5)
To O(e), we find that

—ikB(§7) = j JF(f— &,m- 1A ) - (66 - &%)
= (97 = 7 )NAE,7') +Bo(¢',7)]dg'dn’.
(B6)
Substituting Eq. (B5) and making use of the fact that
(&, 7)) (& - &%) - (g’ = n'?) =k* - &' - 97,
(B7)
we find that Eq. (B6) simplifies to

Bl(§7 7’) =l2f fF(g_ 6,}7]_ 7]’)0’(57 77;‘,_::,7 W’)A(flﬂi’)dfrdﬂr

=i2F * (aA), (B8)
with
k*— & -y
algné,n)=—"F". (B9)
(& m)
Next, to O(e%) we obtain

—lKBz(fﬂ)—lffF(f &, n- n)ffF(f &.n' -7

X[ 3K = (&€ - €2
- (7' = ) |, NAE, )
_Bo(gﬂ I!)]dé:"d,'?!ldg d
. f f F(¢-&,n- 0 )K(E 7)) - (&€ - &)

= (' = 7'?)By(¢, 7' )d€'dn. (B10)

Substituting Egs. (B5) and (B7), we find that Eq. (B6) re-
duces to

B2(§,7/)=if fF(é—f’,v— 7)alé, m;¢',7)B1(&', 7' )dg dy’ .
(B11)

Substituting Eq. (B8) into Eq. (B11), we find that

B2(§7 77) = _2f fF(g_ 5/777_ 77’)01(5, 77§§,, 77/)

Xffﬂ&’—é*@ 7 = 7)a(&, 7', 7")

XA, 7)dg"dy'dg' dy’
=—2F #[aF * (aA)]. (B12)

Combining the results, we obtain

Long et al.

B(é,7) = RyA = A + €2F % (aA) — €2F * [aF * (aA)]
+0(). (B13)
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