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Scattering of light by stochastically rough particles

Jouni 1. Peltoniemi, Kari Lumme, Karri Muinonen, and William M. Irvine

The single particle phase function and the linear polarization for large stochastically deformed spheres have

been calculated by Monte Carlo simulation using the geometrical optics approximation. The radius vector of

a particle is assumed to obey a bivariate lognormal distribution with three free parameters: mean radius, its

standard deviation and the coherence length of the autocorrelation function. All reflections/refractions
which include sufficient energy have been included. Real and imaginary parts of the refractive index can be

varied without any restrictions. Results and comparisons with some earlier less general theories are

presented. Applications of this theory to the photometric properties of atmosphereless bodies and interplan-
etary dust are discussed.

1. Introduction

In nature most particles are irregular. These parti-
cles scatter light in a way different from regular ones.
The scattering from irregular particles is, however,
poorly characterized.

The exact starting point for calculating all electro-
dynamic problems is Maxwell's equations. In the case
of scattering by particles, we have to solve a boundary
value problem. This can be done easily for some reg-
ular forms only.",2

For random surfaces that deviate only slightly from
a regular form, some perturbation methods can be.
used. Schiffer3 has calculated the reflection from a
perturbed sphere and Bass and Fuks4 presented some
methods to calculate scattering from random surfaces.

To calculate the scattering from macroscopically de-
formed particles one must apply more approximate
methods. For large particles geometrical optics can be
used. For example, Schiffer and Thielheim5 used geo-
metrical optics to find analytical forms for single re-
flection, multiple scattering from a surface and for
light passing through the particle using shadowing
theory. They failed, however, to treat the multiple
scattering correctly.

Another approach is that by Mukai et al.6 They
assumed a large rough sphere and used geometrical
optics and 1-D radiative transfer theory to calculate
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the scattering by a rough surface and integrated over
the sphere. They assumed that the absorption is so
high that no light travels through the particle. These
simplifying assumptions restrict the generality of their
model to the point where we believe it is not very
accurate for typical rough particles. Some additional
methods are listed in Schuerman7 and Giese and
Lamy. 8

In this paper we assume the geometrical optics re-
gime. Using a Monte Carlo simulation we have been
able to develop a model with which we can investigate
both dielectric and absorbing particles with no limit on
the refractive index and with a well controlled rough-
ness scale.

The underlying optical theory is presented first.
Then we define the particle model and give those for-
mulas with which this specific problem is solved.

In Sec. IV we analyze the results and fit the phase
functions to an analytic function. In Sec. V the results
are compared with some experimental results and with
earlier theories. Lastly we discuss astronomic appli-
cations, estimate the reliability of the present model,
and give some suggestions for further development.

11. Ray Tracing Model

In what follows we assume that the particle is large
enough to allow the application of geometrical optics.
This approximation is valid if the size parameter x =
kD >> 1, where k = 27r/X is the wavenumber, X is the
wavelength, and D is a (smallest) characteristic dimen-
sion of the particle. Polarization is taken into account
by using Stokes parameters I = (I,Q,UV).1 9

We express the scattering in the form

(1)Is(Q) = 2 P(O)

where I is the Stokes vector of the incoming radiance,
Is is the scattered one, uext is the extinction cross sec-
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tion, cio is single scattering albedo, r is the distance
from the scatterer, is the scattering angle (cosO = -
Q'), and P is the 4 X 4 phase matrix, 9 whose first
element is normalized by

P11 (O)I 4r = 1. (2)

The equation is valid in the scattering region, i.e., when
r >> a, where a is the largest dimension of the scatterer.

The path of the ray is assumed to be defined by a
Markov process (that means that the probability that
the ray can advance from point r to r + dr depends
only on the situation at r, not on the previous history)
so that we can write the whole scattering in the form of
an integro-differential equation. The procedure is in
essence analogous to the classical radiative transfer
theory, but now the scatterings are reflections and
refractions from the boundary which separates regions
of different refractive indices m. Also the propagation
probability for a photon is now nonisotropic. The
path of the ray is characterized by a position vector r
and a ray direction vector Q(112 = 1). The probability
that the ray will be either scattered or absorbed in
distance dl is 3dl, where A is the extinction coefficient.
This can be divided into scattering and absorption
coefficients as f = 3 + a. The matrix W(Q,m) de-
scribes the probability that the ray will be scattered
into the direction Q and medium m and does the neces-
sary transformations for polarization. The emitted
radiation is described by the source distribution A,
which for the current case is a plane wave source

(rG = i-Fo(z-z0)6(Q-Q0). With this notation we
get the equation9"10

(r,Q,m)I(r,Q,m) + 0 * VI(rfm)

- > S dO'W(0,mlr,fl',m')j3,(r,0',m')I(r,fl',m') + tI(r,0,m), (3)

where the integration goes over the angle and the sum
is over the refractive index values m' of all the different
media involved. This is just the Boltzmann equation
for radiative transfer. This can be converted to an
integral equation

The phase matrix can now in principle be obtained
from Eqs. (1)-(7). However, the formal solution con-
tains multidimensional integrals that are impossible to
calculate analytically. We found it most convenient to
solve the problem with Monte Carlo simulation for ray
tracing.10,"'

The first step in this is the estimation of the free
path length L that the ray travels between scatterings.
This is solved numerically from the equation -r(r + UL)
= r(r) + n(.), where . is a random number distribut-
ed uniformly between 0 and 1.

The second step is the simulation of the scattering
process, which contains the selection of the orientation
of a surface element at the interaction point, the selec-
tion between reflection and refraction, the calculation
of the new direction, and the change of the Stokes
vector. The distribution of the surface element de-
pends on the particle model which is described in the
next section. The selection between reflection and
refraction is made by weighting with reflectivity and
transmissivity (Fresnel coefficients), and the optical
processing is simply a multiplication with the reflec-
tion or the transmission matrix and the appropriate
rotation matrices.

We have not usually included diffraction in these
results. Thus the forward scattering is not accurate
for 0 5. For many applications this error is negligi-
ble, because for large particles the diffraction spike is
very narrow and can be considered to be part of the
unscattered radiation. Only in one case, where we
compare our results to experiment (Fig. 6), have we
taken diffraction into account. Even there the treat-
ment is rather approximate, because we have assumed
the projection of the particle to be circular and then
used the standard circular aperture scalar diffraction
theory 2 " averaged over a size distribution.

Ill. Particle Model

Our starting point is a homogeneous sphere which
we deform stochastically. Assume that the probabili-
ty density for the distance h from the center of the
particle to the surface follows the lognormal distribu-
tion

I = I + Io, .(4)

where 1k is the integral operator

= dQ'dr' exp1-[-r(r0,m)-T(r',&lm)]}f(r',&Y~m')

X W(0,mlr',G',m')5(r'- r + Jr - r'ig), (5)

o= f dr' exp1-[r(r,Q,m)-
X r'- r + Ir'- rIO)(r',0,m), (6)

where r is the optical depth (r,,Q,m) = Sq-c dl (O r +
l,0,m). Equation (4) has the formal order of scatter-

ing solution

I (r,%m) = E tn0

= 10 + I + 2 + 13 + 14 +...
= I+8. (7)

f(h)dh = +, exp[-[ln(h/a) + 1/2 212/232],
2-rflh

(8)

where a is the mean radius, 2 = ln(1 + U
2), and a is the

normalized standard deviation.
To specify the particle shape completely, we also

need to know the autocorrelation function of the sur-
face between two adjacent points. To keep the model
simple it is assumed that the correlation depends only
on the angular distance between these two points. At
short distances we can use a second order Taylor ex-
pansion

1 2

Ce) = 1-2~ (9)

where E is the angular distance between the points and
t is the correlation angle (in radians). From these
definitions we can determine the probability density
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function for the slope () of a surface element with
respect to the radius4

gl(tan-yl)d tany, = d exp(-tan2y 1/2p2 ), (10)

where p = 2a/tj1 + a2 is the standard deviation of the
slopes. Equation (10) gives the slope only in one di-
mension. Because we assumed no azimuthal depen-
dence on the correlation function, the 2-D distribution
is simply the product of two 1-D distributions (tan 2 y =
tan 2 yl + tan2 y2). We obtain

g(tany,)d tanydt =tanyd tanydr exp(-tan,y/2p2), (11)
2irp2

where r is the azimuth. In Fig. 1 we present some
computer-generated rough particles.

Physical and numerical reasons limit the sensible
values of a to 0.002-0.5 and of p to 0.002-2.0. An
increase of p above this does not give any natural kind
of roughness, because the slope is always limited be-'
tween 0 and 900 and with very high p we get a surface
where the mean slope is near 90°. The assumption
that the path of a ray is Markovian prohibits all long
range correlations. In other words the mean free path
length must be longer than the correlation length and
thus a < p.

There are no essential restrictions on the refractive
index, as long as it is a scalar. One difficulty arises
when the imaginary part of the refractive index is high,
because then the internal wave is inhomogeneous. We
did not find it necessary to treat this properly' 9 4 be-
cause, when the inhomogeneity is large enough to pro-
duce visible effects [Im(m) >> 0.01], the absorption is so
high that under the assumption of geometrical optics
(x >> 1) in practice all the energy entering the particle is
absorbed.

Next we derive an expression for the scattering coef-
ficient 0s. This is the probability that the ray, which at
point r is outside (inside) the particle, will meet the
surface in the distance dl or that the radius of the
surface at point r + Qdl is greater (smaller) than Ir +
QdlI.13 For this to happen the normal of the surface
element must be tilted toward the coming ray, or cotqt
< tan-y, < and the radius of the surface must be in [r
- dh,r], where dh = dl(-cos4/ + sing' tanyl). This
gives for a ray approaching the surface from outside

d tany 1dhf(r)g 1 (tan-y1)

j33 (r,fl,m1 )d =cotp , (12)

J dhf(h)
0

which reduces to

B(r,Q,ml)dl = f(r) [p2g(cotik) + cotiG 1(cot4)]sintdl,

,X,

ace_>\ t~(a
(b)

Fig. 1. Computer-generated silhouettes of typical rough particles:
(a) a = 0.1, p = 0.5; (b) a = 0.5, p = 1.5, where ai is the normalized
standard deviation of the radius and p is the standard deviation of

the slope.

(10)] and F,G are the respective distribution functions
F(r) = for dhf(h),G(x) = fx i. dxg(x). From these
the optical density can be calculated numerically or
analytically when the curvature effects of the spherical
geometry are negligible. The distribution for the free-
path length can then be computed.

The effective distribution geff for the slope, with the
condition that the ray comes from direction 6, is

geff(tanzl~d tanyd= d tanyd cost g(tan-y),g~ff~ta~yI1,OdQ(cot4l') cos-y

where Q is

Q(t) = I d tanyd c g(tany).
-at cosy

(15)

(16)

The factor cost = -cosVI cosy + sin4l siny cost is the
fraction of the surface element seen by the ray, and 1/
cosy gives the ratio between the real surface element
and its projection to the horizontal level.

The matrix W in Eqs. (3) and (5) is now

W(Q,mlr,fl',m') = K(4 2 ) {R} (ai,atmm')K(bi)

(17)

where Q is the direction of the scattered ray and l' is
the direction of the incident ray. The K are rotation
matrices that are needed first to rotate the reference
plane of the Stokes vector to the current scattering
plane that is defined by the normal of the surface
element and the direction of ray (n4g') and then to
rotate back to the standard plane that is defined by the
original and present ray (0o,Q),9 l0

[1 0 0 01
0 cos2t sin2b 0

K 0 -sin24 cos24) 0 . (18)

o 0 0 1

The b are rotation angles
(13)

and for a ray inside the particle

#3(r,U,m2)dl = f(r) [p2gl(cot - cotAG1 (-cotq/)]sin4dl, (14)
1 - F(r) [~ 1 ct'

where cos4 = r -0/r; f and g are the probability densi-
ties for radius and slope of the surface [Eqs. (8) and

and

cos-tl = n - 1o + ' go cos aii -f') 1 -Osai

sin(P1 = sign(0 n X Q')41-Cos2(l,

(19)

(20)

n - o + .-o cosai
cos42 =

;1 - * (O sinai
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sinPl = -sign(0 0 - n X 0) 1-cos 2
4 2,

In the case of reflection (m = m') the incident angle is

cosa = 2a, (21)

and the normal

2 cosai (22)

In refraction (m #i m') we have for incident and refrac-
tion angles

cosai =

cosa, =

Im0 -m-rnI

V|M
2 + Mr2 - 2mmrn - '

Im'a 0'-ml
rVM2 + Mr2 - 2mm' - 0'

rn'0' - mu0n =
m cosai - m' cosac,

The reflection R and transmission T
Fresnel coefficients (r,t)19"1

matrices with

properly take into account the fact that the ray reflect-
ed directly back must of course advance through exact-
ly the same way it came. Computing time with a
VAX-8800 computer was 4-5 h for one case. We can
summarize our results as:

Effect of small roughness With zero roughness we
naturally have a sphere. When disturbing that very
little (ap < 0.01) the first visible effects are that the
rainbows move closer to each other and spread; see Fig.
2. With water droplets (m = 1.33) we get a small spike,
or glory, in the backward direction. With increasing
roughness the rainbows and spikes disappear. With
spheres the polarization has a rapidly oscillating fine
structure near the rainbows. This of course vanishes
with roughness and the polarizing gets its typical shape
with two maxima (60-70° and 120-160°) and two mini-
ma (40-50° and 90-150°). The increase of roughness
moves all of them forward. All this is produced by
roughness that corresponds to a particle which is very
hard to distinguish from a sphere from the profile of
the particle. An interesting observation is that the

jrill2 + r11
2 rIl12- Ir12 0 0

R = 1 |rjjI - Ir, 12 IrjjI' + Ir, 12 ° °
2 [ I 2 Re[r'jjrj 2 Im[rllr1 ,

_ 0 -2 Im[rllr± 2 Re[rllr,]_

lt,112 + It'l l2 t,12 - It ll

m cosat It112 - t'l 2 It112 + It 12

2m' cosai 0 0

0 0

0 0 1
0 0 1

2 Re[tllt,] 2 Im[tllt,] 

-2 Im[tlt] 2 Re[tllt,]_

The last factor in Eq. (17) is the Jacobian for changing
the variables of q from y,¢ to '. The connection
-between them is

cosy = -* r/r,

cos4t os-y + osa, (27)
Cos~~ sinv/ sin7y

IV. Summary of Results

We have computed over seventy different cases by
varying the parameters, in most cases with refractive
indices m = 1.33 or m = 1.55 + in', where n varies from
0 to 10, which are thought to represent many typical
materials.

We calculated the phase function P and linear
polarization -P 2 1/P11. All other matrix elements
could be calculated as well, but they are not so impor-
tant in the most usual cases. We always used a few
million input rays, and followed the ray until it came
out or was absorbed (cutoff value for intensity 10-4-
10-5 I). The accuracy of the simulation is proportion-
al to the square root of the number of rays. The
program gives an estimate for the error produced by
the finite number of rays, and it is usually <1% except
in the backward direction, where it can be as large as
20-40%; this error decreases rapidly to a few percent 2
or 3 away from the exact backward direction. The
use of a Markov process can give a little inaccuracy in
the backward direction, because this method does not

effect of perturbing the sphere very little is rather
similar to averaged Mie results when decreasing the
size parameter.9 The explanation for this is that with
smaller spheres the localization principle of geometri-
cal optics does not hold and the rays are spread wider
than the specific direction given by Snell's law. Of
course the similarity disappears with larger roughness.

Effect of large roughness Really rough particles
are illustrated in Fig. 3. The phase function varies
smoothly in the middle and backward directions. The
forward scattering is always strong, but large rough-
ness weakens that. Rainbows, spikes, and other fine
structures do not exist. With dielectric rough parti-
cles the polarization is small (<10%) and no negative
polarization in the backward direction is evident.

a vs p The typical features of roughness can be
achieved with many combinations of a and p. If we
nonetheless try to separate their effects, we can say
that p is more responsible for decreasing polarization.
The effect of a is most visible in the middle angles
where it controls the absolute magnitude of the phase
function.

Effect of the refractive index The effects of rough-
ness become evident more rapidly for large refractive
indices than for small ones, i.e., particles are optically
rougher (Fig. 4). Decreasing the refractive index pro-
duces more forward scattering. With small refrctive
index (m < 1.6) the backward polarization maximum
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0.2

0

-0.2

-0.4

150 180
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Fig.2. Small deformations from the sphere. This figure illustrates
clearly how fast even a small roughness changes the scattering be-
havior. The first particle is almost spherical; the only effects of
roughness are a small opposition spike and the moving of rainbows

closer to each other. The seocnd particle is slightly deformed and
the third has visible irregularities. Note the great change in both

the phase function and polarization.

tends to dominate, and with large m (5>1.6) the forward
peak is more dominant.

Effect of absorption The increase of the absorp-
tion coefficient decreases the internal intensity and
thus decreases the value of the phase function in the
forward direction, as shown in Fig. 5. The polarization
becomes stronger because the external reflections be-
gin to dominate. As long as the imaginary part of the
refractive index is small (<<0.01), the results can be
scaled keeping the product Im(m)x constant, but with
a large imaginary part the Fresnel coefficients are
changed and the reflectivity of the surface starts to
increase. The large roughness decreases the albedo
(o). With very rough and highly absorbing particles
there can occasionally be a small amount of negative
polarization in the backward direction, caused by mul-
tiple external reflections, but this is not enough to
explain any observed phenomena, like the negative
polarization of atmosphereless bodies. With absorb-
ing particles the difference between true spheres and
rough particles is not as clear as with dielectric parti-
cles. Polarizations differ only when there is consider-
able multiple scattering. Because of shadowing the

100

10

0.1

0.01

0.8

c 0.6
0
0
N

.L 0.2
0

(I 0

-0.2

-0.4

m = 1.55

- o=0.01 p =0.01
: = 0.05 = 0.5 
. .. o=0. p=l.0

I ... .............

s C,< X.-.. A.L

100

10

0.1

0.01

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

0 30 60 90 120 150 180

Scattering Angle

Fig. 3. Typical rough particles with m = 1.55. As in Fig. 2 we have
the nearly spherical particle first as a comparison base. The two
other particles are intermediately and extremely rough. The differ-
ence between spherical and irregular particles is very clear. An
additional increase of roughness does not give anything new within

this theory.

phase function is a bit more backward oriented with
rough particles than with smooth ones.

In many applications it is useful to have an analyti-
cal form of the phase function. The numerical calcu-
lations do not directly support any analytical forms, so
we have to proceed in a different way. We have care-
fully selected among simple analytical functions with
few free parameters, and then made a least-squares fit
to numerical data to fix the parameters. The selected
properly normalized function is

k e o

Pi = I, ah exp(k cosO),
k=kmin

(28)

where aO = 1- k 0 ak sinhk/k. We included terms
from k = -1 to +4, i.e., five free parameters. The
advantages of this function are that it is easy to manip-
ulate analytically, it is normalized, it is linear with the
parameters so it can be fitted easily to data, and it
describes the scattering behavior very well with all the
refractive index values. The calculated parameters
with error estimates are presented in Table I and in
Figs. 6 and 7. At best the root mean square error is
only a few percent. When the roughness is small, the
phase functions become more complicated and the five
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Fig. 4. Roughness of the particle is now fixed and the scattering has
been calculated with different refractive indices.

parameter model can no longer provide good agree-
ment; therefore more terms or a more complicated
function are needed. For the sake of comparison, the
rms error using a Mie scattering solution to approxi-
mate the solution of an irregular particle can be several
hundred percent, and even the sum of two Henyey-
Greenstein functions gives typically much more than
10% errors. With any polynomials about twice the
number of terms (10) are needed to get the same accu-
racy as here.

We emphasize that these forms are only least square
fits to numerical results and do not have any deeper
theoretical character. Our purpose when presenting
this function is solely to give a better approximation
for those who still use isotropic, Henyey-Greenstein, or
Mie phase functions to describe the unknown scat-
terers.

V. Comparison with Experiments and Other Theoretical
Models

The calculated results may be compared with some
experimental results. We have first used the results of
Giese et al.'4 who measured fluffy rough particles with
their microwave equipment (Fig. 6). Even though the
size parameters are rather small (x - 30), which makes
the use of geometrical optics very doubtful, we still
hope the comparison is useful. The roughness param-
eters were crudely estimated from the photographs

0.8

0.6

0.4

02

0

-0.2

-0.+

0 30 60 90 120 150 180

Scottering Anqle
Fig. 5. Dependence of the phase function and the polarization on
the imaginary part of the refractive index. The size parameter x =

500.

published in the same article. Taking diffraction into
account we find that the agreement of overall behavior
is good, but differences in detail remain.

Another experiment is that by Weiss-Wrana,15 in
which she measured small particles with a laser. Here
too we have to be careful in applying geometrical op-
tics, because even though the particles are large, they
have a fine structure just in the resonance region. The
comparison for a dielectric quartz particle (m = 1.54, x
= 150) is shown in Fig. 7. The agreement for the phase
functions is relatively satisfactory and for polarization
it is amazingly good. That some small discrepancies
still exist is most likely because we failed to reconstruct
the properties of the particles completely. Another
reason can be some wave optics effects caused by the
microstructure of the particles.

If we compare our results with the calculations by
Mukai et al.6 we note that, excluding some differences
caused by diffraction, the results agree rather well.
Our polarization is typically between Mukai's rough
and smooth, which is in accordance with the selection
of surface slope distributions.

For the verification of our model one should do more
controlled measurements where the particle would be
clearly in the geometrical optics region and where the
roughness of the surface could be determined.
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VI. Discussion

Geometrical optics is no doubt a rather reliable ap-
proximation when the particle is large, but at this point
we cannot accurately define the lower limit for the size
of the particle for geometrical optics to still hold. For
spheres the limit for the size parameter is many hun-
dreds, but the sphere is perhaps the most pathological
case, and one can intuitively believe that stochastic
particles obey geometrical optics much better. After
all, geometrical optics is a random phase approxima-
tion, and thus random surfaces will make the phases
even more random. The comparisons with experi-
mental results support the last argument, but this may
be as well good luck as good theory. One must keep in
mind that in principle all the structures of the particle
must be large, i.e., the surface elements from which the
ray reflects or transmits must be planes on the scale of
a few wavelengths. In most natural cases this is not
perfectly true, and there is almost always roughness
even at the wavelength scale. When there is a dis-
agreement between the theory and reality, this is the
most evident reason.

Table 1. Summary of Computed Results

p z po Q a.. a a as a, err

1.33 0.002 0.002 1.0 1.001

1.33 0.01 0.05 1.0 1.003

1.33 0.05 0.1 1.0 1.01

1.33 0.1 0.5 1.0 1.13

1.33 0.05 1.0 1.0 1.14 -0.897 -16.84 20.11 -10.64 2.065 5.4

1.33 0.1 1.0 1.0 1.24 .0.882 -16.46 19.83 -10.48 2.027 4.4

1.33 0.5 0.5 1.0 1.37 -1.741 -31.77 37.69 -20.08 3.907 16

1.33 0.5 1.0 1.0 1.73 -1.116 -19.53 23.17 -12.20 2.355 5.3

1.41 0.1 0.5 1.0 1.13 -1.307 -25.47 30.77 -16.82 3.362 18

1.54 0.3 0.5 1.0 1.26 .0.087 -4.738 7.927 -5.582 1.359 6.2

1.55 0.01 0.01 1.0 1.002

1.55 0.01 0.5 1.0 1.03 -1.908 -28.44 29.58 -14.77 2.843 13

1.55 0.01 1.0 1.0 1.04 0.112 -2.104 3.944 -2.785 0.681 1.7

1.55 0.05 6.5 1.0 1.09 -1.160 -19.94 22.14 -11.73 2.370 10

1.55 0.1 0.5 1.0 1.13 .0.580 -12.80 15.84 -9.154 1.965 8.7

1.55 0.1 1.0 1.0 1.24 0.166 0.17G 1.448 -1.482 0.423 1.4

1.55 0.5 1.0 1.0 1.73 0.135 0.571 1.019 -1.308 0.407 1.6

1.55 + 1'-li 0.1 0.5 500 0.998 1.13 -0.555 -12.58 15.66 -9.082 1.954 8.8

1.55 + 1
3
-li 0.1 0.5 500 0.98 1.13 -0.560 -12.57 15.65 -9.083 1.956 8.8

1.55 + 10-'i 0.1 0.5 500 0.83 1.13 -0.568 -12.40 15.52 -9.056 1.961 8.7

1.55 + 10'-i 0.1 0.5 500 0.23 1.13 -0.824 -13.71 15.74 -8.675 1.831 5.6

1.55 + 0.61i 0.1 0.5 500 0.065 1.13 -0.949 -12.17 9.726 -3.739 0.580 3.7

1.55 + 0.1i 0.1 0.5 500 0.067 1.13 -0.929 -12.05 9.615 -3.690 0.570 3.1

1.55+1.0i 0.1 0.5 500 0.19 1.13 -0.932 -12.01 8.675 -2.975 0.400 2.0

1.55 + 16i 0.1 0.5 500 0.94 1.13 .0.897 -12.01 8.134 -2.580 0.312 1.3

1.65 + 0.25i 0.1 1.7 31.2 0.054 1.31 -0.0014 -1.607 0.966 -0.362 0.096 5.3

1.70 0.1 0.5 1.0 1.13 .0.418 -7.924 8.778 -4.984 1.121 3.8

2.0 0.1 0.5 1.0 1.13 -0.463 -5.933 4.544 -1.926 0.410 1.9

Refractive index m, roughness parameters a,p, size parameter x =
ka (a = mean radius), single scattering albedo , Q = atot/-7ra2 (ctot =

total cross section). The next five columns give the parameter for
the function fit [Eq. (28)] (not calculated for all particles), and the
last one gives the rms error in percent. Note that these are only
fitting errors and the true error can be larger. All these values are
without diffraction.

inn
m = .65+0.25i x=31.2
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Fig. 6. Comparison of the present model with the experiment by
Giese et al.'4 Unlike in the previous figures, the diffraction is
included in our results using a simple circular aperture theory. The
dashed line in the upper figure (very near the solid line) is the

function fit to our results [Eq. (28)].

Another small uncertainty comes from the use of a
simple optical model of the medium. We assumed
that the particle is internally homogeneous and isotro-
pic and thus describable by a scalar refractive index.
This may be an oversimplification, since many parti-
cles are to some degree anisotropic, birefringent, non-
linear, or consist of a mixture of different materials.
The use of an average refractive index may or may not
give correct results, depending on whether the inho-
mogeneities are large, small (Rayleigh criteria), or in
between.16 Very often the surface of the particle is
covered by a thin layer of different material (oxide,
dust, or just more porous stuff).

The present model can be generalized to other types
of stochastic particle having, for example, different
statistics for the surface. One can guess, however, that
the results are not very dependent on the detailed
selection of particle model, if the particle is rough
enough and the main features are kept similar. Thus a
sufficiently perturbed spheroid, cube, or cylinder
should give almost the same scattering as a similarly
perturbed sphere. Only when the concavity becomes
significantly high can we expect new features. When
one wants to deal with even more irregular particles
than those considered here, the next step is to con-
struct a compact packing of several particles. One can
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100 model we, however, cannot explain either the opposi-
tion spike or the negative polarization in the backward
direction that is observed for many airless bodies.18

T 0 ... The assumption of fully irregular stochastic particles
is not the whole truth, since there can be and usually

- . .are regular particles too. We need to add only a rather
I l ...small amount of sharp-edged structure to a random

f - . .surface to change the backscattering behavior signifi-
cantly. Muinonen et al.'

7 have calculated the scatter-
0.1 .. ing from various crystals and discuss more about the

effects of such sharp-edged particles. Together with
- 0.01 this paper, these calculations should significantly im-
-- -prove the ability to realistically model situations in

planetary science and remote sensing such as those
l ... mentioned above.

William M. Irvine is partially supported by NASA
- 0. grants NGL 22-010-023 and NAGW 1353.
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Fig. 7. Comparison of the present theory with experiment by
Weiss-Wrana.15 The agreement is satisfactory.

also try to take the history of a ray better into account
using multivariate statistics. It is, at least in principle,
a rather straightforward task to extend the present
model to include all these effects. The most serious
problem is the rapidly increasing need for computing
time.

Another modification to the present work would be
to generalize the geometrical optical model with at
least first order physical optics corrections. The way
to do it might be to replace the Fresnel scattering of a
surface element by some other plausible and more
general law. Using perturbation theory the small
scale roughness can be treated, and with the tangent
plane (Kirchhoff) method perhaps intermediate irreg-
ularities could be included.

Some interesting applications of this theory to as-
tronomy exist. With good reason one may expect a
certain amount of planetary and interplanetary parti-
cles to be in the range of this theory. Giese et al.'4

studied the properties of zodiacal light particles.
Typically these particles are very irregular but the size
is often in the difficult resonance region. In Saturn's
rings the particles are large enough for geometrical
optics to apply and consist mainly of pure water ice.
In planetary regoliths the irregular particles play a
major role. When formulating a radiative transfer
theory for the surface of a regolith-covered body we
must first know the phase function of the single parti-
cle, i.e., the subject of this paper. With our present
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