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Scattering of light from quasi-homogeneous
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The field generated by scattering of light from a quasi-homogeneous source on a quasi-homogeneous, random
medium is investigated. It is found that, within the accuracy of the first-order Born approximation, the far field
satisfies two reciprocity relations (sometimes called uncertainty relations). One of them implies that the spec-
tral density (or spectral intensity) is proportional to the convolution of the spectral density of the source and
the spatial Fourier transform of the correlation coefficient of the scattering potential. The other implies that
the spectral degree of coherence of the far field is proportional to the convolution of the correlation coefficient
of the source and the spatial Fourier transform of the strength of the scattering potential. While the case we
consider might seem restrictive, it is actually quite general. For instance, the quasi-homogeneous source model
can be used to describe the generation of beams with different coherence properties and different angular
spreads. In addition, the quasi-homogeneous scattering model adequately describes a wide class of turbulent
media, including a stratified, turbulent atmosphere and confined plasmas. © 2006 Optical Society of America
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. INTRODUCTION
class of model random sources that play an important

ole in statistical optics are the so-called quasi-
omogeneous sources (see, for example, Ref. 1, Sec. 5.2.2).
hey have the property that their spectral density (spec-
ral intensity) SQ�r ,�� at a particular frequency � varies
uch more slowly with position than the correlation coef-

cient of the source �Q�r1 ,r2 ;����Q�r2−r1 ;�� varies
ith r�=r2−r1. Well-known members of this class are
ambertian sources (Ref. 1, Sec. 5.3.3). The far field gen-
rated by a quasi-homogeneous source satisfies two reci-
rocity relations. One implies that the angular distribu-
ion of the spectral density is proportional to the spatial
ourier transform of the spectral degree of coherence of
he source. The other implies that the spectral degree of
oherence of the far field is proportional to the spatial
ourier transform of the spectral density of the source.
The intimate relation that exists between radiation

nd scattering is well illustrated by so-called quasi-
omogeneous, random scatterers. Such scatterers were

ntroduced by Silverman (who called them locally homo-
eneous media).2 Quasi-homogeneous media are charac-
erized by the property that the strength of their scatter-
ng potential SF�r ,�� at a particular frequency � varies

uch more slowly with position than the correlation coef-
cient �F�r1 ,r2 ;����F�r2−r1 ;�� varies with the differ-
nce r�=r2−r1. The troposphere, for example, is some-
imes modeled as such a medium,3 as are confined
1084-7529/06/071631-8/$15.00 © 2
lasmas.4 An analysis of the spectral changes produced by
cattering from a quasi-homogeneous, anisotropic random
edium was carried out in Ref. 5.
The far field generated by scattering of a plane mono-

hromatic wave that is incident on a quasi-homogeneous,
andom medium is known to satisfy two reciprocity rela-
ions that are strictly analogous to those pertaining to the
adiation from three-dimensional quasi-homogeneous
ources. More specifically, it can be shown that, within the
ccuracy of the first-order Born approximation, the angu-
ar distribution of the spectral density of the far field is
roportional to the spatial Fourier transform of the corre-
ation coefficient of the scattering potential and that the
pectral degree of coherence of the far field is proportional
o the spatial Fourier transform of the strength of the
cattering potential.6 These two reciprocity relations were
sed to study certain inverse problems.7 Because these
eciprocity relations are less well known, and also to es-
ablish our notation, a short derivation of them is pre-
ented in Section 2. The significance of these results is il-
ustrated by applying them, in Section 3, to the case of a
lane monochromatic wave scattered by a Gaussian-
orrelated spherical medium.

The more general problem of scattering of light from a
uasi-homogeneous source on a quasi-homogeneous me-
ium does not appear to have been studied so far. In Sec-
ion 4 we show that, within the accuracy of the first-order
orn approximation, the scattered field satisfies two gen-
006 Optical Society of America
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ralized reciprocity relations. One pertains to the spectral
ensity of the far field; it connects the spectral density of
he source and the correlation coefficient of the scattering
otential. The other pertains to the spectral degree of co-
erence of the far field and relates the correlation coeffi-
ient of the source and the strength of the scattering po-
ential.

. SCATTERING ON A QUASI-
OMOGENEOUS, RANDOM POTENTIAL

et us consider a monochromatic plane wave V�i��r , t� of
requency � and (possibly complex) amplitude a propagat-
ng in a direction specified by a unit vector s0, i.e.,

V�i��r,t� = U�i��r,��exp�− i�t�, �1�

here r is a position vector of a field point, t denotes the
ime, and

U�i��r,�� = a���exp�iks0 · r� �s0
2 = 1�, �2�

ith k=� /c, c being the speed of light in vacuum. Suppose
hat the wave is incident on a deterministic scatterer that
ccupies a finite domain D. The space-dependent part of
he scattered field U�s��r ,�� is, within the accuracy of the
rst-order Born approximation, given by the expression
Ref. 8, Sec. 13.1.2)

U�s��r,�� =�
D

F�r�,��U�i��r�,��G�r,r�;��d3r�, �3�

here

F�r,�� =
k2

4�
�n2�r,�� − 1� �4�

s the scattering potential, n�r ,�� being the refractive in-
ex of the medium, and

G�r,r�;�� =
exp�ik�r − r���

�r − r��
�5�

s the outgoing free-space Green’s function of the Helm-
oltz operator.
For a random scatterer the scattering potential is a

andom function of position. Let

CF�r1�,r2� ;�� = �F*�r1�,��F�r2�,��	 �6�

e its correlation function. The angle brackets denote the
verage, taken over an ensemble of realizations of the
cattering potential. Because of the random nature of the
catterer, the scattered field will, of course, also be ran-
om. Its spatial coherence properties may be character-
zed by its cross-spectral density function (Ref. 1, Sec.
.3.2)

W�s��r1,r2;�� = �U�s�*�r1,��U�s��r2,��	. �7�

n substituting from Eqs. (3) and (6) into Eq. (7) and on
nterchanging the order of integration and ensemble av-
raging we obtain the formula
W�s��r1,r2;�� =�
D
�

D

W�i��r1�,r2� ;��CF�r1�,r2� ;��

�G*�r1,r1� ;��G�r2,r2� ;��d3r1�d
3r2� , �8�

here W�i� denotes the cross-spectral density of the
monochromatic) incident plane wave, i.e.,

W�i��r1�,r2� ;�� = U�i�*�r1�,��U�i��r2�,��

= I�i����exp�iks0 · �r2�,− r1���, �9�

ith I�i����= �a����2. We choose the origin O of a Cartesian
oordinate system in the region containing the scatterer
nd consider the field at a point r in the far zone. Setting
=ru, with u2=1, we have for the Green’s function the
ell-known asymptotic approximation

G�ru,r�;�� 

exp�ikr�

r
exp�− iku · r�� as kr → � ,

�10�

being kept fixed. Let

�F�r1�,r2� ;�� =
CF�r1�,r2� ;��

�SF�r1�,��SF�r2�,��
, �11�

here

SF�r,�� = CF�r,r;��. �12�

ince, according to Eq. (6), SF�r ,��= �F*�r ,��F�r ,��	, we
all SF the strength of the scattering potential. The func-
ion �F is the normalized correlation coefficient of the
cattering potential. We assume that the scatterer is ho-
ogeneous in the sense that �F�r1� ,r2� ;�� depends on r1�,

nd r2� only through the difference r2�−r1�, i.e.,

�F�r1�,r2� ;�� � �F�r2� − r1� ;��. �13�

e also assume that the strength of the scattering poten-
ial varies so slowly with position that over the effective
idth of ��F� the function SF�r ,�� is essentially constant.
uch a situation may be described by saying that SF�r ,��

s a slow function of r and that �F�r� ;�� is a fast function
f r�. Evidently, over regions of the scatterer for which

�F�r2�−r1� ;��� is appreciable, we may make the approxi-
ations

SF�r1�,�� � SF�r2�,�� � SF��r1� + r2��/2,��. �14�

e then see from Eq. (11) that

CF�r1�,r2� ;�� = �SF�r1�,��SF�r2�,���F�r1�,r2� ;��, �15�

�SF��r1� + r2��/2,���F�r2� − r1� ;��. �16�

catterers whose correlation functions have this form,
ith SF being a slow function of its spatial argument and
F being a fast function of its spatial argument, may be
aid to be quasi-homogeneous.

It will be useful to make the change of variables:
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RS
− = r2� − r1�, RS

+ = �r1� + r2��/2. �17�

n substituting from expressions (9), (10), and (16) into
q. (8), we obtain for the cross-spectral density of the
cattered field in the far zone the expression

W�s��r1u1,r2u2;�� � ��r1,r2;��S̃F�k�u1 − u2�,��

��̃F�k�s0 − �u1 + u2�/2�;��

�u1
2 = u2

2 = 1�. �18�

ere

��r1,r2;�� = I�i����
exp�ik�r2 − r1��

r1r2
, �19�

nd

S̃F�ku,�� =� SF�RS
+,��exp�ikRS

+ · u�d3RS
+ , �20�

�̃F�ku,�� =� �F�RS
−,��exp�ikRS

+ · u�d3RS
− �21�

re the three-dimensional spatial Fourier transforms of
F and �F, respectively, the integrals extending formally
ver the whole space. The spectral degree of coherence
Ref. 1, Sec. 4.3.2) of the scattered field is defined by the
ormula

��s��r1,r2;�� =
W�s��r1,r2;��

�S�s��r1,��S�s��r2,��
, �22�

nd the spectral density of the field is, evidently, given by
he expression

S�s��r,�� = W�s��r,r;��. �23�

n substituting from expression (18) into Eqs. (22) and
23), we find that in the far zone

S�s��ru,�� =
I�i����S̃F�0,��

r2 �̃F�k�s0 − u�,��; �24�

nd

�s��r1u1,r2u2;��

=
�̃F�k�s0 − �u1 + u2�/2�,��S̃F�k�u1 − u2�,��

��̃F�k�s0 − u1�,���̃F�k�s0 − u2�,��

�
exp�ik�r2 − r1��

S̃F�0,��
. �25�

ecause �F is a fast function of its spatial argument, it
ollows from well-known properties of Fourier transforms
hat �̃F is a slow function of ku. Hence

�̃F�k�s0 − u1�,�� � �̃F�k�s0 − u2�,��

� �̃F�k�s0 − �u1 + u2�/2�,��. �26�

n making use of these approximations in Eq. (25) we ob-
ain for the spectral degree of coherence of the far field
he formula

��s��r1u1,r2u2;�� =
S̃F�k�u1 − u2�,��

S̃F�0,��
exp�ik�r2 − r1��.

�27�

quations (24) and (27) bring into evidence the following
wo reciprocity relations, valid within the accuracy of the
rst-order Born approximation, for scattering of a plane
onochromatic wave on a quasi-homogeneous, random

cattering potential:

1. The angular distribution of the spectral density of
he scattered field in the far zone is proportional to the
hree-dimensional spatial Fourier transform of the nor-
alized correlation coefficient of the scattering potential.
2. The spectral degree of coherence of the scattered

eld in the far zone is, apart from a simple geometrical
hase factor, equal to the normalized three-dimensional
patial Fourier transform of the strength of the scattering
otential.

The second result will be recognized as an analogue to
he van Cittert–Zernike theorem for the field in the far
one generated by a spatially incoherent source (Ref. 1,
ec. 4.4.4). It is known that this theorem also holds for ra-
iation from quasi-homogeneous, random sources (Ref. 1,
ec. 5.2.2).
The above two results can be used to study inverse

roblems pertaining to quasi-homogeneous, random me-
ia (cf. Ref. 7).

. SPHERICAL, GAUSSIAN-CORRELATED
CATTERER
e will now apply the two reciprocity relations that we

ust derived to the scattering of a plane monochromatic
ave on a nonuniform, quasi-homogeneous, Gaussian-

orrelated spherical scatterer with radius �. A similar, but
omewhat less general, analysis dealing with the angular
istribution of the intensity of the far field generated by
cattering on a homogeneous random medium was pre-
ented in Ref. 9.

One has, in this case,

�F�RS
− ;�� = exp�− �RS

−�2/2	�
2�, �28�

SF�RS
+,�� = A exp�− �RS

+�2/2	S
2�, �29�

ith A, 	�, and 	S positive constants and �
	S
	�. The
ourier transforms of these two expressions are

�̃F�ku,�� � �	��2��3exp�− �k	�u�2/2�, �30�

S̃F�ku,�� � A�	S�2��3exp�− �k	Su�2/2�. �31�

n substituting from expressions (30) and (31) into Eq.
24), one finds that
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S�s��ru,�� =
�	�	S2��3AI�i����

r2 exp�− 2k2	�
2 sin2��/2��,

�32�

here � denotes the angle between the direction of inci-
ence s0 and the direction of scattering u, i.e., s0 ·u
cos � (see Fig. 1). A striking example of the correspon-
ence between scattering and radiation is evident when
ne compares Eq. (32) with Eq. (5.2–45) of Ref. 1. The lat-
er deals with the spectral density of the far field radiated
y a three-dimensional, Gaussian-correlated, quasi-
omogeneous source. It is seen that the spectral density

n that case has the same functional dependence on the
orrelation length of the source �	g� as does the spectral

Fig. 1. Illustration of the notation.

ig. 2. Normalized spectral density S�s��ru ,�� /S�s��rs0 ,�� of the
ar field [Eq. (32)], as a function of the angle � between the direc-
ion of incidence s0 and the direction of scattering u, for selected
alues of the scaled correlation length k	�.

ig. 3. (Color online) Normalized time-averaged total scattered
ower �P�s�	k3 /AI�i����	S

3�2��4, given by Eq. (34), as a function of
he scaled correlation length k	� of a Gaussian-correlated, ran-
om spherical scatterer.
ensity of the far field generated by scattering a plane
onochromatic wave on a Gaussian-correlated, quasi-
omogeneous sphere on the correlation length of the scat-
ering potential �	��.

The behavior of the spectral density of the scattered
eld in the far zone, given by Eq. (32), is shown in Fig. 2
or selected values of the scaled correlation length k	�. It
s seen that when the correlation length of the quasi-
omogeneous scatterer increases the effective angular
idth of the spectral density of the far-zone field de-

reases, in agreement with the general considerations of
ection 2.
The (time-averaged) total scattered power is given by

he expression

�P�s�	 =�
0

��
0

2�

S�s��ru,��r2 sin � d� d�, �33�

= AI�i����	�
3	S

3�2��41 − exp�− 2k2	�
2�

k2	�
2 � .

�34�

he behavior of this quantity, as calculated from Eq. (34),
s shown in Fig. 3. It is seen that, within the validity of
he first-order Born approximation, for a completely ran-
om, uncorrelated spherical scatterer �k	�→0�, the aver-
ged scattered power �P�s�	→0, i.e., no scattered power is
enerated. On increasing the correlation length, the total
cattered power is seen to increase approximately linearly
ith k	�.
On substituting from expression (31) into Eq. (27), one

btains for the spectral degree of coherence of the far field
he expression

ig. 4. Directions of observation u1 and u2, located symmetri-
ally with respect to the direction of incidence s0.

ig. 5. (Color online) Spectral degree of coherence of the far
eld [Eq. (36)], for two symmetrically located directions of scat-
ering, u1 and u2, as a function of the angle � between the vec-
ors u1 and u2, for selected values of the scaled effective radius
	S of the sphere.
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��s��r1u1,r2u2;�� = exp�− k2	S
2�u1 − u2�2/2�exp�ik�r2 − r1��.

�35�

ithout loss of generality we may take the z direction to
e along the direction of incidence s0 and the x direction
long the vector u1−u2. If we restrict our attention to
airs of observation points placed symmetrically along
he direction of incidence, then ru1=r�ux ,0 ,uz�, and ru2
r�−ux ,0 ,uz� (see Fig. 4). Formula (35) then takes on the
imple form

��s��ru1,ru2;�� = exp�− 2k2	S
2 sin2��/2��, �36�

here � is the angle between u1 and u2. The behavior of
�s��ru1 ,ru2 ;�� is shown in Fig. 5 for selected values of

he scaled effective scatterer radius k	S. It is seen that
hen the effective radius of the scatterer increases the
ngular width of the spectral degree of coherence of the
ar-zone field decreases, in agreement with one of the gen-
ral results of the previous section.

. QUASI-HOMOGENEOUS SOURCE
LLUMINATING A QUASI-HOMOGENEOUS
CATTERER
he correlation properties of a three-dimensional random
ource Q may be characterized by its cross-spectral den-
ity function

WQ�r1,r2;�� = �UQ
* �r1,��UQ�r2,��	. �37�

ere the brackets denote the average taken over an en-
emble of realizations UQ�r ,�� of the source distribution.
he spectral density of the source is given by the diagonal
lement of its cross-spectral density, i.e.,

SQ�r,�� = WQ�r,r;��, �38�

nd its spectral degree of coherence is given by the ex-
ression

�Q�r1,r2;�� =
WQ�r1,r2;��

�SQ�r1,��SQ�r2,��
. �39�

e will from now on not display the frequency depen-
ence of the various quantities. As already mentioned,
hen a source is quasi-homogeneous its spectral degree of

oherence depends on r1 and r2 only through the differ-
nce r2−r1, i.e.,

�Q�r1,r2� � �Q�r2 − r1�; �40�

nd if, in addition, its spectral density varies so slowly
ith position that over the region where ��Q�r2−r1�� is ap-
reciable SQ�r ,�� is essentially constant. So one has, to a
ood approximation,

WQ�r1,r2� � SQ��r1 + r2�/2��Q�r2 − r1�. �41�

f the field generated by a quasi-homogeneous source is
ncident on a scatterer that is located in the far zone of
he source, the cross-spectral density of the incident field
t the scatterer is given by the formula (Ref. 1, Sec. 4.4.5)
W�i��r1,r2� =��WQ�r1�,r2��G*�r1,r1��G�r2,r2��d3r1�d
3r2� ,

�42�

ith the integrals extending over the domain that is oc-
upied by the source and the far-zone expression for the
reen’s function G�r ,r�� given by expression (10). On in-

roducing new spatial variables

RQ
− = r2� − r1�, RQ

+ = �r1� + r2��/2 �43�

nd on substituting from expression (41) into Eq. (42), we
btain for the cross-spectral density function of the inci-
ent field the expression

W�i��r1,r2� �
exp�ik�r2 − r1��

r1r2
�� SQ�RQ

+ ��Q�RQ
− �

�exp�ikr1 · �RQ
+ − RQ

− /2�/r1�

�exp�− ikr2 · �RQ
+ + RQ

− /2�/r2�d3RQ
+ d3RQ

− ,

�44�

he integrals formally extending over the entire space. In
he denominator of the factor in front of the integral we
an make the approximation

r1r2 � R2, �45�

= �R� being the distance from the origin (located in the
ource region) to the region of the scatterer (see Fig. 6).
urther, each of the factors r1 and r2 appearing in the de-
ominator of the two exponentials in the integrand of ex-
ression (44) may also be approximated by R. It is shown
n Appendix A that this latter approximation introduces
n error in the phase of the exponential functions, p, say,
hat is bounded in absolute value by

�p� �
kLQLS

2R
, �46�

ith LQ and LS denoting the linear dimensions of the
ource and of the scatterer, respectively. It is seen from
his inequality that �p� may be made arbitrarily small by
aking the distance R between the source and the scatter-
ng medium large enough. Within the validity of the first-
rder Born approximation, the cross-spectral density of
he scattered field in the far zone has the general form
see Eq. (8)]

Fig. 6. Illustration of the notation.
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W����r1,r2� =�
D
�

D

W�i�

��r1�,r2��CF�r1�,r2��G*�r1,r1��G�r2,r2��d3r1�d
3r2� ,

�47�

ith the integrations extending over the domain D occu-
ied by the scatterer. On substituting from expression
44) into Eq. (47), it is advantageous to absorb the factor
xp�ik�r2�−r1��� into the function CF. Accordingly, we define
modified correlation function:

C̄F�r1�,r2�� = CF�r1�,r2��exp�ik�r2� − r1���. �48�

t is seen from Eq. (12) that the strength of the scattering
otential, SF, remains unchanged when this modification
s made. It follows immediately from Eq. (11) that the

odified correlation coefficient, �̄F, is given by the expres-
ion

�̄F�r1�,r2�� = �F�r1�,r2��exp�ik�r2� − r1���. �49�

he term �r2�−r1�� appearing in Eq. (49) may be approxi-
ated by [see Fig. 6 and Ref. 8, Sec. 8.8.1, Eq. (2)]

r2� − r1� � �r2� − r1�� · r2�/r2� � �r2� − r1�� · R/R. �50�

he last step follows from the fact that the scatterer is lo-
ated sufficiently far from the source. Since ��̄F�r1� ,r2�� �
��F�r1� ,r2���, it follows that C̄F�r1� ,r2�� can also be ex-
ressed as the product of a fast function and a slow func-
ion. Moreover, since �=��RS

−�, it follows from expression
50) that �̄= �̄�RS

−�. Hence

C̄F�r1� − r2�� = �̄F�RS
−�SF�RS

+�, �51�

ith the variables RS
+ and RS

− defined by Eqs. (17). We
hus obtain for the cross-spectral density function of the
ar-zone scattered field the expression

����r1s1,r2s2�

�
exp�ik�r2 − r1��

R2r1r2
���� SQ�RQ

+ ��Q�RQ
− �SF�RS

+�

��̄F�RS
−�exp�ik��d3RQ

+ d3RQ
− d3RS

+d3RS
− , �52�

ith the integrals extending over the entire space. Also,

1
2=s2

2=1, and the phase � of the propagator term is given
y the formula

� = r1� · �RQ
+ − RQ

− /2�/R − r2� · �RQ
+ + RQ

− /2�/R − RS
+ · �s2 − s1�

− RS
− · �s1 − s2�/2, �53�

=− RS
+ · ��s2 − s1� + RQ

− /R� − RS
− · ��s1 + s2�/2 + RQ

+ /R�,

�54�

here we have used Eqs. (17). On carrying out the inte-
rations over R+ and R−, we find that
S S
W����r1s1,r2s2� =
exp�ik�r2 − r1��

R2r1r2
A�s2 − s1�B��s1 + s2�/2�,

�55�

ith

A�s2 − s1� =� �Q�RQ
− �S̃F�− k��s2 − s1� + RQ

− /R��d3RQ
− ,

�56�

��s1 + s2�/2� =� SQ�RQ
+ ��̃F�− k��s1 + s2�/2 + RQ

+ /R��d3RQ
+ ,

�57�

nd

S̃F�ku� =� SF�RS
+�exp�ikRS

+ · u�d3RS
+ , �58�

�̃F�ku� =� �̄F�RS
−�exp�ikRS

− · u�d3RS
− , �59�

egin the three-dimensional spatial Fourier transforms of
he strength of the scattering potential, SF, and the modi-
ed correlation coefficient of the scattering potential, �̄F,
espectively. We note that both functions A and B have
he form of a (scaled) convolution. It follows from Eq. (55)
hat the spectral density of the far field is given by the for-
ula

S����rs� = W����rs,rs� =
1

R2r2A�0�B�s�. �60�

n using Eqs. (22) and (55) we obtain for the spectral de-
ree of coherence of the far field the expression

�����r1s1,r2s2� =
A�s2 − s1�B��s1 + s2�/2�

A�0��B�s1�B�s2�
exp�ik�r2 − r1��.

�61�

ince �̄F is a fast function of RS
−, it follows that �̃F is a

low function of ku. Hence

B�s1� � B�s2� � B��s1 + s2�/2�. �62�

n making use of these approximations in Eq. (61), we
btain for the spectral degree of coherence of the far field
he expression

�����r1s1,r2s2� =
A�s2 − s1�

A�0�
exp�ik�r2 − r1��. �63�

quations (60) and (63) are generalized reciprocity rela-
ions that may be stated as follows:

1. The spectral density of the far field generated by ra-
iation from a quasi-homogeneous source scattered on a
uasi-homogeneous medium is proportional to the convo-
ution of the spectral density of the source, SQ, and the
patial Fourier transform of the modified correlation coef-
cient of the scatterer, �̃ .
F
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2. The spectral degree of coherence of the far field gen-
rated by radiation from a quasi-homogeneous source
cattered on a quasi-homogeneous medium is, apart from
geometrical factor, given by the convolution of the cor-

elation coefficient of the source, �Q, and the spatial Fou-
ier transform of the strength of the scattering potential,

F.

We mention in passing that the convolution of two
aussian functions with widths w1 and w2 is again a
aussian function with width w3= �w1

2+w2
2�1/2. Therefore,

f, for example, both SQ and �̃F are Gaussians, then the
pectral density of the far-zone field will also be a Gauss-
an. This observation implies the existence of an equiva-
ence theorem in which both SQ and �̃F are altered, with-
ut affecting the spectral density of the far field. In other
ords, a suitably chosen trade-off between the width of

he spectral density of the source and the width of the cor-
elation length of the scattering potential will leave the
pectral density of the far field unchanged.

. CONCLUSIONS
e reviewed and extended various reciprocity relations

elating to quasi-homogeneous sources and quasi-
omogeneous scatterers. The usual reciprocity relations
ere applied to analyze the far-zone field generated by a
onochromatic plane wave incident on a Gaussian-

orrelated, spherical scatterer. Further, we analyzed the
ore general case when light emitted by a quasi-
omogeneous, random source is incident on a quasi-
omogeneous, random medium. Two generalized reciproc-

ty relations for the scattered field in the far zone were
erived. These relations were found to have the form of
onvolutions of a function describing properties of the
ource and a function describing properties of the scat-
erer.

In recent years, there has been much interest in the
cattering of partially coherent light by the turbulent at-
osphere (see, for example, Refs. 10–12), and our results
ay find application in the analysis of problems of this

ind.

PPENDIX A: DERIVATION OF AN
PPROXIMATION RELATING TO
XPRESSION (44)
e will derive here the approximation that is applied in

xpression (44), viz.,

xp�− ikr2 · �RQ
+ + RQ

− /2�/r2� = exp�− ikr2 · r2�/r2�

� exp�− ikr2 · r2�/R�. �A1�

aking the approximation in expression (A1) introduces
n error p in the phase of the exponential function, i.e.,

p = − kr2 · r2� 1

R
−

1

r2
� . �A2�

or the factors r2 and r2� appearing in Eq. (A2), we have
see Fig. 6)
�r2� � R, �A3�

�r2�� � LQ, �A4�

here LQ denotes the linear dimension of the source. On
aking use of these two expressions in Eq. (A2), we find

hat

�p� � kRLQ� 1

R
−

1

r2
� . �A5�

ecause the scatterer is in the far zone of the source, we
ave

R 
 LS, �A6�

here LS denotes the linear dimension of the scatterer.
lso (see Fig. 6),

R − LS/2 � r2 � R + LS/2. �A7�

ence,

 1

R
−

1

R ± LS/2� =
±LS/2

R2 ± RLS/2
�

±LS

2R2 , �A8�

nd consequently

� 1

R
−

1

r2
� �

LS

2R2 . �A9�

n substituting from expression (A9) into expression
A5), we obtain the inequality

�p� �
kLQLS

2R
, �A10�

hich is expression (46). One can derive the approxima-
ion of the other exponential in expression (44) in a
trictly analogous manner.
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