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Scattering of linear and nonlinear waves in a waveguide array with a PT -symmetric defect
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We study the scattering of linear and nonlinear waves in a long waveguide array with a parity-time (PT )-
symmetric defect created by two waveguides with balanced gain and loss. We present exact solutions for the
scattering of linear waves on such a defect, and then demonstrate numerically that the linear theory can describe,
with a good accuracy, the soliton scattering in the case of weak nonlinearity. We reveal that the reflected and
transmitted linear and nonlinear waves can be amplified substantially after interaction with the PT -symmetric
defect thus allowing an active control of the wave scattering in the array.
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I. INTRODUCTION AND MODEL

Photonic structures composed of coupled waveguides with
loss and gain regions offer new possibilities for shaping optical
beams and pulses compared to conservative structures [1–4].
Such structures can be designed as optical analogues of
complex parity-time (PT )-symmetric potentials, which can
have a real spectrum corresponding to the conservation of
power for optical eigenmodes, however the beam dynamics
can demonstrate unique features distinct from conservative
systems due to nontrivial wave interference and phase transi-
tion effects [5–10]. Most recently, PT -symmetric properties
in couplers composed of two waveguides were demonstrated
experimentally [11,12]. Various schemes have been suggested
to tailor beam shaping and switching using PT -symmetric
structures, including introduction of fabricated defects in
periodic lattices [13] and employing self-induced refractive
index change in nonlinear structures [1,14–18].

In this paper, we suggest and analyze nonlinear PT -
symmetric systems, where a pair of waveguides with bal-
anced gain and loss are embedded into an array of lossless
waveguides, as illustrated schematically in Fig. 1(a). Since
the active region is confined at only two waveguides, it can be
anticipated that the experimental realization of such a structure
can be simpler compared to the previously considered cases
of nonlinear structures with a periodic arrangement of gain
and loss elements [14–16]. On the other hand, the proposed
structure offers a full potential for nonlinear switching and con-
trol combined with amplification. Specifically, we reveal that
reflected and transmitted discrete soliton (self-localized beam
supported by nonlinear conservative lattice) [19] can be sub-
stantially amplified by the PT -symmetric defect. We employ
the linear scattering theory to explain this effect analytically.

We use the coupled-model equations [10,12,16] to model
the beam propagation in a nonlinear waveguide array with
a local inhomogeneity created by a pair of PT -symmetric
waveguides with balanced gain and loss [see Fig. 1(a)]:

i
daj

dz
+ C1aj−1 + C1aj+1 + γ |aj |2aj = 0, j �= 0,1, (1)

i
da0

dz
+ iρa0 + C1a−1 + C2a1 + γ |a0|2a0 = 0, (2)

i
da1

dz
− iρa1 + C2a0 + C1a2 + γ |a1|2a1 = 0, (3)

where j is the waveguide number, z is the propagation distance,
aj are the mode amplitudes at waveguides, ρ > 0(< 0) defines
the rate of loss (gain) at zeroth and gain (loss) at first
waveguides, γ is the Kerr nonlinearity coefficient, and C1,2 are
the coupling coefficients between the modes of waveguides
that can be tuned by changing the distance between the
waveguides.

The paper is organized as follows. In Sec. II we analyze the
scattering of linear waves by the composite PT -symmetric
defect setting γ = 0 in Eqs. (1)–(3), and derive some exact
relations for the transmission and reflection coefficients. Then,
in Sec. III we study numerically the soliton scattering for
the case of weak nonlinearity (|aj |2 � 1). Finally, Sec. IV
concludes the paper.

II. LINEAR WAVE SCATTERING

In the case of γ = 0, which is the subject of this section,
the model described by Eqs. (1)–(3) becomes linear, and it can
be treated analytically.

A. Transmission and reflection coefficients

For C1 = C2 and ρ = 0, the waveguide array supports the
eigenmode solutions in the form of Floquet-Bloch modes,
aj (z) = A exp(ikj − iβz), where A is amplitude, k is Bloch
wave number, and β is propagation constant obeying the
following diffraction relation:

β = −2C1 cos (k) . (4)

In a general case, the presence of gain and loss at zeroth and
first waveguides and the difference of the coupling constant
between these two waveguides from the other ones play the
role of scatterer of the linear waves. In order to calculate the
transmission and reflection coefficients we consider solution
to Eqs. (1)–(3) of the form

aj = exp(ikj − iβz) + R(ρ) exp(−ikj−iβz), j � 0,
(5)

aj = T (ρ) exp(ikj − iβz), j � 1,

where the first line represents the incident and the reflected
waves, and the second one—the transmitted wave. Obviously,
Eq. (1) is satisfied automatically. Substituting Eq. (5) into
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FIG. 1. (Color online) (a) Schematic of a waveguide array with
a pair of PT -symmetric waveguides at sites j = 0,1 with balanced
gain and loss. Here j is the waveguide number, z is the propagation
distance, aj are the mode amplitudes at waveguides, and C1,2 are the
coupling coefficients between the modes of waveguides. (b) Range
of parameters (shaded) corresponding to the PT -symmetric regime
where the power of all linear eigenmodes are conserved.

Eqs. (2) and (3) one finds the complex reflection and
transmission coefficients

T (ρ) = e−ik2iC1 sin k

D
,

R(ρ) = 1 − C
2
1 − ρ2 + 2ρC1 sin k

D
, (6)

where

D = C
2
1 exp(−2ik) + ρ2 − 1,

ρ = ρ

C2
, C1 = C1

C2
. (7)

Note that T (ρ) = T (−ρ) but R(ρ) �= R(−ρ). This implies
that the intensity of the transmitted wave does not depend on
whether the incident wave hits the waveguide with gain or with
loss, while the intensity of the reflected wave does.

It can be easily demonstrated that T and R diverge for
k = π/2 for the model parameters satisfying

|ρ| = (
1 + C

2
1

)1/2 ≡ ρcrit. (8)

Stability analysis demonstrates that the waveguide array with
a double PT -symmetric defect is unstable with respect to
small-amplitude waves for |ρ| � ρcrit. The range of admissible
model parameters is shaded in Fig. 1(b).

B. Localized defect modes

For C1 < C2, i.e., C1 < 1, considered system Eqs. (1)–(3)
supports the two localized eigenmodes

aj (z) = Lq1−j exp(−iβz), j � 0,
(9)

aj (z) = Lqj exp(−iβz + iϕ), j � 1,

with

β1,2 = ±(
ρ2 − C

2
1 − 1

)
(1 − ρ)−1/2 ,

q2 = 1

q1
= −β1,2

2C1
+

(
β2

1,2

4C2
1

− 1

)1/2

, (10)

ϕ1 = − sin−1 (ρ) , ϕ2 = π + sin−1 (ρ) ,

where L is amplitude and β is the mode propagation constant.
For β < 0(> 0) one has nonstaggered (staggered) mode with
q > 0(< 0). The propagation mode is real, i.e., the linear
mode is a stationary state if |C2| > |ρ|. For C2 < C1 the
localized mode cannot exist because its frequency lies within
the frequency band of linear waves given by Eq. (4).

C. Illustrations

We now illustrate the analytical results with some numerical
examples. In Fig. 2, for the transmission and reflection
coefficients defined by Eq. (6), we plot |R|2 (dotted line) and
|T |2 (solid line) as the functions of k for different values of
ρ/ρcrit. Left column gives the results for C1 = 1/4 (localized
mode can be excited) and the right one for C1 = 4 (localized
mode cannot be excited).

As one can see from Fig. 2, intensity of the transmitted and
reflected waves can be amplified significantly. Waves with k

close to π/2 are amplified more intensively, and for |ρ| = ρcrit,

FIG. 2. Reflection |R|2 (dotted line) and transmission |T |2 (solid
line) coefficients as the functions of k for different values of ρ/ρcrit:
(a) −1, (b) −0.9, (c) −0.6, (d) 0, (e) 0.6, (f) 0.9, (g) 1. Left column:
C1 = 1/4, right column: C1 = 4.
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FIG. 3. (a,c) Intensity and (b,d) phase profiles of the localized
modes given by Eqs. (9) and (10) for C1 = 1, C2 = 4, ρ = 2 with (a,b)
β < 0 and (c,d) β > 0. (e,f) 3D plots showing evolution of |aj (z)|2
for the localized mode presented in (a,c) and (b,d), respectively.
(g) 3D plot for the linear combination of localized modes presented
in (a,c) and (b,d) with equal amplitudes.

as it was already mentioned, the transmission and reflection
coefficients diverge for waves with k = π/2 [see Fig. 2(a)
and (g)]. Note that in the case when the localized defect
mode cannot be excited (left column in Fig. 2), transmitted
and reflected waves can be amplified with almost constant
amplification factor for a wide range of k [see Fig. 2(b) and
(f)].

In Fig. 3(a,b,e) we plot the nonstaggered localized mode
given by Eqs. (9) and (10) with β < 0 for C1 = 1, C2 = 4,
ρ = 2. In (a) the intensity profile, |aj |2, and in (b) the phase
profile, arg(aj ), are presented. In (c), the three-dimensional
(3D) plot showing the evolution of |aj (z)|2 for the localized
mode depicted in (a,b) is shown. In (c,d,f) we present the same
as in (a,b,e), respectively, but for the staggered mode with β >

0. Panel (g) shows the linear combination of localized defect
modes presented in (a,b,e) and (c,d,f) with equal amplitudes. In
(e) the intensities of the waveguides with loss (j = 0) and gain
(j = 1) periodically change from exactly zero to a maximal
value, oscillating out-of-phase.

In Fig. 4, we show the scattering of the Gaussian beam,

aj (z = 0) = exp[ik(j − j0) − δ(j − j0)2], (11)

for the pulse parameters δ = 0.01, k = π/2 (the case of zero
second-order diffraction), j0 = −50, and model parameters
C1 = 1, C2 = 4, and ρ/ρcrit = −0.9. One can see that the
reflected and transmitted pulses have amplitude considerably

FIG. 4. 3D plot showing evolution of |aj (z)|2 for the scattering
of the nondiffracting Gaussian pulse Eq. (11) with parameters δ =
0.01, k = π/2, j0 = −50. Model parameters are C1 = 1, C2 = 4, and
ρ/ρcrit = −0.9.

higher than the incident one. The amplification coefficients are
equal to those corresponding to extended wave with k = π/2.
Model parameters in this example are the same as in the case
shown in Fig. 2(b), where for k = π/2 we have |T |2 = 6.13
and |R|2 = 3.67.

III. SOLITON SCATTERING

The Gaussian beam (11) does not preserve its shape with
propagation in z for k �= ±π/2 due to the wave diffraction. On
the other hand, it is well known that the nonlinearity effect can
compensate for diffraction leading to the stable propagation
of solitary waves. In this section, we study the interaction
of solitary waves with PT -symmetric defect for the case of
γ > 0.

Far from the location of the defect, i.e., for |j | � 1, Eq. (1)
has an approximate solution for a self-localized beam, where
such solitons can propagate through the waveguide array
[19,20],

aj =Asech[δ(j−j0 − 2C1vz)]ei[v(j−j0)+(δ2−v2)C1z+α],

(12)
which can be found by considering the continuum limit of
Eq. (1) in the form of the integrable nonlinear Schrödinger
equation [20]. Here A, δ = A

√
γ /(2C1), v, j0, and α are

parameters defining the soliton amplitude, inverse width, ve-
locity, initial position, and initial phase, respectively. Whereas
solitons moving in optical lattices may emit radiation [20],
the radiative losses can be neglected for small propagation
velocities.

In order to characterize the soliton scattering by a PT -
symmetric defect, we define the soliton power as

P =
∞∑

j=−∞
|aj |2, (13)

where in practice the summation over j is done around
the soliton center to obtain P with a desirable accuracy.
We consider the incident soliton approaching the two-
waveguide defect from the left, and calculate the relative power
of the transmitted and reflected waves defined as follows:

NT = PT /PI , NR = PR/PI , (14)
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where PI , PT , and PR are the powers of the incident,
transmitted, and reflected solitons, respectively. We calculate
the powers PT and PR , and also the amount of total power
captured by the scatterer, after the transmitted and reflected
solitons move well apart.

It is useful to compare the results of the soliton scattering
with the prediction of the linear scattering theory. In this case,
the relative intensities of the reflected and transmitted linear
waves are denoted as

N̂T = |T |2, N̂R = |R|2, (15)

where R and T are given by Eq. (6).
We aim to compare the numerically found relative powers of

the reflected and transmitted solitons, Eq. (14), with that of the
linear waves, Eqs. (6) and (15). We note that for a broad soliton
beam, its spatial Fourier spectrum shall be centered around the
wave number k = v, and we use this wave number value for
comparison of linear and nonlinear scattering regimes.

For the model parameters, we always take γ = 1, C1,2 of
order of unity, and rather small incident soliton amplitude,
A = 0.05, to make the soliton width much greater than the
distance between nearest waveguides, when the approximate
solution in Eq. (12) has high accuracy. Also for small soliton
amplitude, A � 1, influence of the cubic term in Eqs. (1)–(3)
is small and one has the regime of weak nonlinearity. We find
that the soliton initial phase α has no effect on the scattering
process and set α = 0.

FIG. 5. (a) Example of the soliton scattering for the model pa-
rameters C1 = 1, C2 = 4, ρ = −3.7108, γ = 1 (C1 = 1/4, ρ/ρcrit =
−0.9) and the incident soliton parameters A = 0.05, v = k = 0.5,
j0 = −150. The 3D plot presents |aj (z)|2. Both reflected and
transmitted solitons are considerably amplified. (b) Same as in (a)
but for the opposite sign of ρ.

In Fig. 5(a), we show an example of soliton scattering
for model parameters C1 = 1, C2 = 4, ρ = −3.7108, γ = 1
and incident soliton parameters A = 0.05, v = k = 0.5, j0 =
−150. The 3D plot presents |aj (z)|2. Both reflected and trans-
mitted solitons are amplified. For chosen model parameters
we find C1 = 1/4, ρ/ρcrit = −0.9, and this corresponds to
the linear wave scattering presented in Fig. 2(c, left column),
where for k = 0.5 one has N̂T = |T |2 = 4.145 and N̂R =
|R|2 = 1.535. This should be compared with the numerically
found intensities of transmitted and reflected solitons, NT =
4.169, NR = 1.542. One can see that linear theory gives a
very good prediction for scattering parameters of solitons in
the regime of weak nonlinearity.

In Fig. 5(b) we show the same as in (a), but for ρ having
the opposite sign. Comparison of the results in (a) and (b)
confirms the prediction of linear theory that the transmitted
waves do not depend on the sign of ρ, while the reflected
waves do. Transmitted and reflected solitons bare the soliton
internal mode.

In Fig. 6, we plot numerical results for the relative soliton
scattering intensities NR (white dots) and NT (black dots)
given by Eq. (14), as the functions of ρ/ρcrit. We also plot
the analytical result for the linear wave scattering, N̂R (thin
line) and N̂T (thick line), given by Eq. (15). Simulation
parameters are provided in the figure caption. A remarkably
good prediction of the amplitudes of transmitted and reflected
solitons is given by the linear theory in the entire range of
ρ, except for |ρ/ρcrit| close to unity in (a) and (b), where the
soliton amplitudes diverge and linear theory becomes invalid.

It is expected that the results of the soliton scattering should
deviate from the prediction of linear theory with increasing
incident soliton amplitude, A. Such deviation is shown in
Fig. 7, where we plot NR (white dots), NT (black dots), N̂R

(thin lines), and N̂T (thick lines) as the functions of the soliton
amplitude A. Simulation parameters are listed in the figure

FIG. 6. Numerical results for the soliton scattering, NR (white
dots) and NT (black dots), and analytical result for the linear wave
scattering, N̂R (thin line) and N̂T (thick line), as the functions of
ρ/ρcrit. Parameters are (a) C1 = 1, C2 = 4, and v = k = 0.5; (b) same
as in (a) but for v = k = 1; (c) C1 = 4, C2 = 1, and v = k = 0.5;
(d) same as in (c) but v = k = 1. In all cases, for soliton scattering,
γ = 1 and incident soliton amplitude A = 0.05. For linear wave
scattering γ = 0.
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FIG. 7. Numerical results for the soliton scattering, NR (white
dots) and NT (black dots), and analytical results for the linear wave
scattering, N̂R (thin line) and N̂T (thick line), as the functions of the
soliton amplitude A. Parameters are (a) C1 = 1, C2 = 4; (b) C1 = 4,
C2 = 1. In all cases, v = k = 0.5, ρ/ρcrit = −0.9. For the soliton
scattering γ = 1, and for the linear wave scattering γ = 0.

caption. In (a), both transmitted and reflected solitons are
amplified and linear theory gives a good result for A < 0.1.
In (b), the amplitude of the transmitted soliton is nearly zero
and only reflected soliton is amplified. In this situation, linear
theory works in a wider range of incident soliton amplitude,
A < 0.4.

In all studied cases, fraction of the total power captured
by the defect is practically zero. This is expected for the case
C1 > 1, when no defect modes exist. On the other hand, in
the case C1 < 1, two such modes do exist [see Eqs. (9) and
(10)], but they are not excited in the soliton scattering process.
One can check that for C1 = 1/2 the smallest positive q is
achieved when ρ = C2 − C1 and it is equal to

√
3. This means

that the linear nonstaggered localized mode is highly localized
and a relatively wide soliton cannot excite it. Nevertheless we

expect that specially excited defect modes, using approaches
suggested for conservative structures [19,21], may offer extra
flexibility to tune the soliton scattering.

IV. CONCLUSIONS

We have proposed a discrete nonlinear model describing the
propagation of electromagnetic waves in a waveguide array
with a two-site defect created by a pair of PT -symmetric
waveguides with balanced gain and loss.

In the case of long arrays (when the effects of boundaries
are neglected), we have found the profiles of spatially localized
defect modes, and also derived the exact relations for the trans-
mission and reflection coefficients of linear waves scattered
at the PT -symmetric defect. For a nonlinear array, we have
studied numerically the soliton scattering in the regime of
weak nonlinearity, when no excitation of the defect mode is
observed.

We have found that the reflected and transmitted linear
and nonlinear waves can be substantially amplified by the
PT -symmetric defect, and we have demonstrated that the
results of the linear theory give a good prediction for
the scattering of relatively wide solitons in the regime of weak
nonlinearity.

Our results demonstrate that a pair of PT -symmetric
waveguides with balanced gain and loss can provide a flexible
and active control of the propagation of optical beams in
waveguide arrays.
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