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Abstract: In a recent note we presented a compact formula for the complete tree-level

S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimension. In this

paper we show that a natural formulation also exists for a massless colored cubic scalar

theory. In Yang-Mills, the formula is an integral over the space of n marked points on a

sphere and has as integrand two factors. The first factor is a combination of Parke-Taylor-

like terms dressed with U(N) color structures while the second is a Pfaffian. The S-matrix

of a U(N) × U(Ñ) cubic scalar theory is obtained by simply replacing the Pfaffian with

a U(Ñ) version of the previous U(N) factor. Given that gravity amplitudes are obtained

by replacing the U(N) factor in Yang-Mills by a second Pfaffian, we are led to a natural

color-kinematics correspondence. An expansion of the integrand of the scalar theory leads

to sums over trivalent graphs and are directly related to the KLT matrix. Combining this

and the Yang-Mills formula we find a connection to the BCJ color-kinematics duality as

well as a new proof of the BCJ doubling property that gives rise to gravity amplitudes. We

end by considering a special kinematic point where the partial amplitude simply counts

the number of color-ordered planar trivalent trees, which equals a Catalan number. The

scattering equations simplify dramatically and are equivalent to a special Y-system with

solutions related to roots of Chebyshev polynomials. The sum of the integrand over the

solutions gives rise to a representation of Catalan numbers in terms of eigenvectors and

eigenvalues of the adjacency matrix of an A-type Dynkin diagram.
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1 Introduction and summary of results

In 2003, Witten proposed a formula for the tree-level S-matrix of Yang-Mills in four di-

mensions, as an integral over the moduli space of certain rational maps from a n-punctured

sphere to twistor space [1]. Shortly after, Roiban, Spradlin and Volovich (RSV) studied the

formula in momentum space and gave non-trivial evidence for its validity [2]. In 2012, an

analogous construction for gravity in four dimensions was found [3, 4]. A natural question

is whether similar constructions exist in arbitrary dimension.

In recent work [5] we presented compact formulas for the complete tree-level S-matrix

of Yang-Mills and gravity theories in any dimension. In their simplest form, both formulas

can be written in a unified manner as

M(s)
n =

∫
dnσ

vol SL(2,C)

∏
a

′δ(
∑
b 6=a

sab
σa − σb

)

(
Tr(T a1T a2 · · ·T an)

(σ1 − σ2) · · · (σn − σ1)
+ . . .

)2−s (
Pf ′Ψ

)s
(1.1)

with s = 1 for Yang-Mills and s = 2 for gravity. In this formula T a denotes the U(N) color

group generators, and the ellipsis means a sum over all permutations of labels modulo
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cyclic ones. Here sab = (ka + kb)
2 and by defining eab = (εa + εb)

2 and dab = (εa + kb)
2

with the understanding that the polarization vectors ε’s are null, one can write Ψ, which

is a 2n× 2n antisymmetric matrix, as

Ψa,b=


sab

σa−σb
a 6= b,

0 a = b,
Ψa+n,b+n=


eab

σa−σb
a 6= b,

0 a = b,
Ψa+n,b=


dab

σa − σb
a 6= b,

−
∑
c6=a

dac
σa−σc

a = b,

(1.2)

for 1 ≤ a, b ≤ n, and the block Ψa,b+n follows from the antisymmetry of the matrix.

Pf ′Ψ ≡ (−1)i+j

σi−σj PfΨij
ij for 1 ≤ i < j ≤ n is called the reduced Pfaffian of Ψ, where Ψij

ij

denotes the non-singular matrix obtained by removing columns {i, j} and rows {i, j} from

Ψ.1 The meaning of the symbol
∏′ and illustrations on how to use the formula explicitly

are reviewed in section 2.

Here we would like to consider (1.1) not only as a convenient way to write Yang-Mills

and gravity scattering matrices in a unified way but also as a definition of the S-matrix for

particles of spin s. This means that the case s = 0 should correspond to a scalar theory.

In this paper we show that this is indeed the case.

In order to make the claim more precise, recall that the formula for pure gravity can

be slightly generalized [5] by replacing the integrand by the product of two independent

Pfaffians, each with its own choice of gauge for polarization vectors

(Pf ′Ψ(ε, k, σ))2 → Pf ′Ψ(ε, k, σ)× Pf ′Ψ(ε̃, k, σ). (1.3)

As proven in [6], the corresponding formula is obtained by applying the Kawai-Lewellen-

Tye (KLT) relations to two copies of the Yang-Mills formula with polarizations ε and ε̃.

It is well known that the result gives amplitudes with gravitons coupled to dilatons and

B-fields [7].

This suggests that when we set s = 0 in (1.1) to get a scalar theory, the integrand can

also be generalized as(
Tr(T a1T a2 · · ·T an)

σ12σ23 · · ·σn1
+ . . .

)2

→
(

Tr(T a1T a2 · · ·T an)

σ12σ23 . . . σn1
+ . . .

)(
Tr(T̃ b1 T̃ b2 · · · T̃ bn)

σ12σ23 · · ·σn1
+ . . .

)
(1.4)

where σab denotes σa − σb (this notation is used here and in the rest of the paper in order

to keep formulas more compact). Note that while the original squared factor depends on a

single color group U(N), the new factor has, in general, a different color group U(Ñ) with

T̃ b as its generators.

This naturally motivates the study of a theory of scalars in the adjoint of the product

of two different color groups U(N) × U(Ñ). The simplest possibility is the theory with

1Note that the formulas above differ from those in [5] by some overall constant factors that can be

absorbed into the definition of the coupling constants. More explicitly, MYM,here
n = 1

2
MYM,there

n and

Mgravity,here
n = 2n−1Mgravity,there

n . The convention we use in this paper (which coincides with that in [6])

is more standard, and we will see that it is convenient for connecting formulas with different s.

– 2 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
3

only cubic interactions of the form,

− fabcf̃a’b’c’φaa’φbb’φcc’ (1.5)

where fabc and f̃a’b’c’ are structure constants of U(N) and U(Ñ) respectively.

In this note we show that M(0)
n defined as∫

dnσ

vol SL(2,C)

∏
a

′δ(
∑
b6=a

sab
σa − σb

)

(
Tr(T a1T a2 · · ·T an)

σ12σ23 . . . σn1
+ . . .

)(
Tr(T̃ b1 T̃ b2 · · · T̃ bn)

σ12σ23 · · ·σn1
+ . . .

)
(1.6)

gives the full tree-level S-matrix of such scalar theory in any dimension.

All of the above also leads to the natural conclusion that the factors

CU(N) ≡
(

Tr(T a1T a2 · · ·T an)

σ12σ23 . . . σn1
+ . . .

)
and Eε ≡ Pf ′Ψ(ε) (1.7)

are interchangeable as they give rise to physical theories in the process. This is a color-

kinematics correspondence which is valid for individual solutions to the scattering equa-

tions.

More precisely, the formulas with s = 0, 1, 2 are closely related. Starting from the

formula for the scalar theory, with integrand CU(N)×CU(Ñ), if we replace CU(N) (or CU(Ñ)),

by the Pfaffian Eε (or Eε̃), we get the Yang-Mills formula with color group U(Ñ) (or U(N));

if we further replace CU(Ñ) (or CU(N)) in the Yang-Mills formula by another copy of the

Pfaffian Eε̃ (or Eε), we arrive at the gravity formula. We summarize the relations by the

following diagram

M(1)
n (U(N), ε̃)

M(0)
n (U(N)×U(Ñ))

CU(Ñ)→Eε̃
>

CU(N)→Eε

>
M(2)

n (ε, ε̃)

CU(N)→Eε >
M(1)

n (U(Ñ), ε)
CU(Ñ)→Eε̃

>

Amplitudes in theories with color can be decomposed into partial amplitudes, dressed

with color factors. For the scalar theory with color group U(N)×U(Ñ), one can decompose

M(0)
n with respect to either copy of the color groups, e.g. U(Ñ), in terms of the traces

in (1.6)

M(0)
n =

∑
α∈Sn/Zn

Tr(T̃ bα(1) T̃ bα(2) · · · T̃ bα(n))M (0)
n (α(1), α(2), . . . , α(n)), (1.8)

where M
(0)
n (α(1), α(2), . . . , α(n)) ≡ M

(0)
n (α) are known in the literature as color-ordered

partial amplitudes. Furthermore, one can decompose M
(0)
n (α) with respect to the other

copy of color group, U(N),

M (0)
n (α) =

∑
β∈Sn/Zn

Tr(T aβ(1)T aβ(2) · · ·T aβ(n))m(0)
n (α|β), (1.9)
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into what we call ‘double-partial’ amplitudes, denoted as m
(0)
n (α|β).

There are two natural specializations of our formula which give rise to the two cases

of partial amplitudes. The first case is (for simplicity we write the explicit formula with

the canonical ordering α = I),

M (0)
n =

∫
dnσ

vol SL(2,C)

∏
a

′δ(
∑
b6=a

sab
σab

)

 ∑
β∈Sn/Zn

Tr(T aβ(1)T aβ(2) · · ·T aβ(n))

σβ(1),β(2) · · ·σβ(n),β(1)

 1

σ1,2 · · ·σn,1
.

(1.10)

By definition M
(0)
n must be given by the sum over trivalent U(Ñ)-color-ordered Feynman

diagrams where each vertex is dressed with a structure constant fabc of U(N).

The second one gives double-partial amplitudes

m(0)
n (α|β)=

∫
d nσ

vol SL(2,C)

∏
a
′δ(
∑

b6=a
sab
σab

)

(σα(1),α(2) · · ·σα(n),α(1))(σβ(1),β(2) · · ·σβ(n),β(1))
. (1.11)

In section 3, we show that m
(0)
n (α|β) is given by the sum over all trivalent graphs which

have two planar embeddings, one consistent with the α ordering and the other with the

β ordering. In the special case α = β, the formula gives rise to the sum over all planar

(ordered) trivalent graphs with weights given by the product of all scalar propagators. In

section 5 we focus on the kinematic regime where each trivalent graph evaluates to unity.

This means the double-partial amplitude with n particles evaluates to the total number

of planar trivalent graphs which is Cn−2, the (n − 2)th Catalan number. We find that on

this special kinematics the scattering equations simplify dramatically and are reduced to a

special Y-system whose solutions are related to the roots of Chebyshev polynomials. We

make a conjecture for what the integrand of our formula (1.11) gives when evaluated on

each solution.

Having a direct connection to scalar trivalent graphs and the fact that the color and

kinematic factors in (1.7) are interchangeable indicates a link to the color-kinematics duality

discovered by Bern, Carrasco and Johansson (BCJ) in 2008 [8]. In fact, we are able to show

that an expansion of the kinematic factor Eε analogous to that of the color factor CU(N)

exists. This leads to a formula for the Yang-Mills amplitude as a linear combination of

double-partial amplitudes, m
(0)
n (α|β). Using their expansion in terms of trivalent graphs,

our formula leads directly to the BCJ color-kinematics duality. Furthermore, by using our

transformation from Yang-Mills amplitudes to gravity amplitudes one finds a new proof

for the BCJ double-copy relations [8]. These facts will be discussed in section 4.

Section 6 is devoted to consistency checks of our formula by showing that (1.6) has

correct soft limits and factorization limits. There we also give a proof for the structure of

the double-partial amplitudes (1.11). We end in section 7 with conclusions and discussions.

2 Details of the formula and examples

Let us discuss the precise definition of all the elements entering (1.11) and then show how

explicit computations are carried out. Let us denote by {σ1, σ2, . . . , σn} the position of
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n punctures in the complex plane. Below we will see that our formula has an SL(2,C)

invariance which means that we are dealing with n punctures on CP1. One of the main

ingredients of the formula are the scattering equations [6, 9]∑
b 6=a

sab
σa − σb

= 0 for a ∈ {1, 2, . . . , n} (2.1)

which connect the space of kinematic invariants defined by scalar products of the momenta

of external particles {kµa} and the puncture locations {σa}. Using the fact that in any

physical process momentum is conserved and all particles are on-shell (i.e. k2
a = 0), one

can show that the equations are SL(2,C) invariant and only n−3 are linearly independent.

Here SL(2,C) acts as usual

σ → aσ + b

cσ + d
with ad− bc = 1. (2.2)

A simple way of imposing the support of the scattering equations is by noticing that∏
a

′δ(
∑
b6=a

sab
σab

) ≡ σijσjkσki
∏

a6=i,j,k
δ(
∑
b 6=a

sab
σab

) (2.3)

is independent of the choice {i, j, k} and hence permutation invariant [6].

In section 1, we discussed color decomposition by using traces of products of color

group generators. However, in practice it is more convenient to use an alternative color

basis proposed in [10] which contains only (n − 2)! elements. It fixes the position of two

particles, e.g. 1 and n while permuting the remaining n − 2 labels. The traces are then

replaced by

cα ≡
∑

c1,...,cn−3

fa1aα(2)c1 · · · fcn−3aα(n−1)an , (2.4)

where α ∈ Sn−2, and similarly for c̃α. CU(N) and CU(Ñ) can be decomposed in terms of

cα and c̃α respectively. In this color basis, partial amplitudes M
(0)
n (α) and double-partial

amplitudes m
(0)
n (α|β) are identical to those in the trace basis, but with the position of 1

and n fixed.

Combining these with the Faddeev-Popov Jacobian obtained by fixing the SL(2,C)

redundancy acting on the σ′s one finds that the scalar amplitude, (1.6), becomes

M(0)
n =

∑
{σ}∈solutions

1

det′Φ

∑
α,β∈Sn−2

cαc̃β
(σα(1),α(2) · · ·σα(n),α(1))(σβ(1),β(2) · · ·σβ(n),β(1))

(2.5)

where in the new color basis α(1) = β(1) = 1, α(n) = β(n) = n, and the sum is over all

the solutions to the scattering equations and

Φab =


sab

(σa − σb)2
a 6= b,

−
∑
c 6=a

sac
(σa − σc)2

a = b.
(2.6)
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is a corank 3 matrix. To get the reduced determinant det′Φ, one removes any three rows

{i, j, k} and any three columns {p, q, r} to get a reduced matrix, whose determinant, which

we denote as |Φ|ijkpqr, is non-vanishing. Then

det′Φ ≡ |Φ|ijkpqr
(σpqσqrσrp)(σijσjkσki)

. (2.7)

This matrix was first encountered in [3] as a natural analog of Hodge’s MHV gravity

formula [11].

Finally, it is important to mention that an inductive algorithm for solving the scattering

equations is known [6]. The total number of solutions for generic kinematics is (n− 3)!. In

section 5 we show that in some special situations the equations simplify dramatically and

all solutions can be obtained analytically.

2.1 Examples

The simplest example is the three particle amplitude. In this case one finds that no

equations have to be solved as all σ variables can be fixed using the SL(2,C) invariance.

Moreover, det′Φ = 1/(σ12σ23σ31)2 which cancels the Parke-Taylor like factor squared in

the integrand of (2.5) to give

M(0)
3 (1aa’, 2bb’, 3cc’) = fabcf̃a’b’c’. (2.8)

which is the correct answer for a cubic scalar theory.

Next we compute the four particle amplitude. The scattering equations become a

single equation for one variable. Solving the scattering equations with σ1 = 0, σ2 = 1,

σ3 = ∞ gives σ4 = s24/s34. Let us define s12 = s, s23 = t, s13 = u, and for four particles,

we adopt the standard convention for labelling the color factors using the s, t, u channels:

cs =
∑
b

fa1a2bfba3a4 , ct =
∑
b

fa1a4bfba3a2 , cu =
∑
b

fa1a3bfba2a4 , (2.9)

and similarly for c̃s, c̃t, c̃u. We also denote the ordering (1324) as P (the canonical ordering

is denoted as I). Computing det′Φ = |Φ|123
234/(σ12σ

2
23σ31σ34σ42) and plugging the solution

into the amplitude one gets

M(0)
4 = csc̃sm

(0)
4 (I; I) + csc̃um

(0)
4 (I;P ) + cuc̃sm

(0)
4 (P ; I) + cuc̃um

(0)
4 (P ;P )

= csc̃s
u

st
+ (csc̃u + cuc̃s)

1

t
+ cuc̃u

s

ut

= −csc̃s
s
− ctc̃t

t
− cuc̃u

u
(2.10)

as expected for a color-dressed cubic theory amplitude. In the last equality we have used

the Jacobi identities cs − cu − ct = c̃s − c̃u − c̃t = 0.

We have also checked explicitly that formula (1.6) gives the correct five point ampli-

tude. The full amplitude can be written as a term proportional to the partial amplitude

– 6 –
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M
(0)
5 (1, 2, 3, 4, 5), plus five terms related by permutations, and each partial amplitude can

be decomposed into six double-partial amplitudes,

M(0)
5 = c̃I

(
5∑
i=0

cPim
(0)
5 (I|Pi)

)
+ permutations of (2, 3, 4), (2.11)

where we have denoted the orderings as I = P0, (13245) = P1, (12435) = P2, (14325) = P3,

(13425) = P4, (14235) = P5. Let us first consider how to compute these double-partial

amplitudes. In arbitrary dimensions the scattering equations give rise to an irreducible

quadratic polynomial. We have checked that by summing over solutions as dictated by (2.5)

one reproduces the desired answer for the pair of two canonical orderings,

m
(0)
5 (I|I) =

1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23
, (2.12)

and for other five pairs of orderings needed in (2.11),

m
(0)
5 (I|P1)=− 1

s23

(
1

s45
+

1

s51

)
, m

(0)
5 (I|P2)=− 1

s34

(
1

s51
+

1

s12

)
,

m
(0)
5 (I|P3)=− 1

s51

(
1

s23
+

1

s34

)
,

m
(0)
5 (I|P4) = − 1

s34s51
, m

(0)
5 (I|P5) = − 1

s23s51
. (2.13)

By plugging them into the combination inside the bracket of (2.11) and after using Ja-

cobi identities repeatedly, one gets the expected partial amplitude M
(0)
5 (1, 2, 3, 4, 5). By

summing over permutations, (2.11) gives the full five-point amplitude.

In four dimensions, something special happens and when using spinor variables the

quadratic polynomial from the scattering equations factorizes. In the terminology of Yang-

Mills theory, one solution gives rise to the MHV sector while the other gives the MHV

sector. In our computation we have to add up both solutions. It is easy to find the explicit

formula for an arbitrary choice of permutations, m
(0)
5 (α|β) to get( ∏

i<j〈i j〉
〈α(1)α(2) . . . α(5)〉〈β(1)β(2) . . . β(5)〉

−
∏
i<j [i j]

[α(1)α(2) . . . α(5)][β(1)β(2) . . . β(5)]

)
1

ε(1234)
(2.14)

with

〈12345〉 = 〈12〉〈23〉 · · · 〈51〉, [12345] = [12][23] · · · [51]

and ε(1234) = 〈12〉[23]〈34〉[41]− [12]〈23〉[34]〈41〉.
This formula indeed reproduces (2.12) and (2.13).

Finally, we have checked that our formula also reproduces the sum of planar trivalent

diagrams up to eight particles. Just as in previous cases, it is crucial to sum over all (n−3)!

solutions to find the amplitude.

In the next section we give an interpretation of each m
(0)
n (α|β) as a sum over trivalent

graphs. Hints of what the interpretation is can already be obtained from the examples

given in this section. One more example worth mentioning is the case m
(0)
5 (12345|13524).

– 7 –
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The reason this is special is that the two permutations shown as a graph connecting five

points do not share any edges and therefore their union gives the complete graph with five

vertices. Moreover, this means that, e.g., in four dimensions,

〈12345〉〈13524〉 = −
∏
i<j

〈i j〉 and [12345][13524] = −
∏
i<j

[i j]. (2.15)

Plugging this into (2.14) immediately gives m
(0)
5 (12345|13524) = 0.

3 Double-partial amplitudes

Double-partial amplitudes are the building blocks of scalar amplitudes. In section 4, we

show that they are also building blocks of Yang-Mills and gravity amplitudes. In this

section, we show that double-partial amplitudes can be expanded as sums of trivalent

graphs. Also, using a property of scattering equations called KLT orthogonality, we prove

that the matrix with double-partial amplitudes as entries equals the inverse of the KLT

matrix.

3.1 Trivalent graph expansion

Here we study double-partial amplitudes as generating functions of sums of scalar diagrams.

We first recall the formula defining double-partial amplitudes

m(0)
n (α|β) =

∑
{σ}∈solutions

1

(σα(1),α(2) · · ·σα(n),α(1))(σβ(1),β(2) · · ·σβ(n),β(1))det′Φ
. (3.1)

The sum is over all (n− 3)! solutions to the scattering equations.

The simplest examples are those for n = 3, 4 and n = 5 given in the previous section.

Let us recall some of the results in order to motivate the proposal for the meaning of

m
(0)
n (α|β). Consider

m
(0)
3 (I|I) = 1, m

(0)
4 (I|I) = − 1

s12
− 1

s14
, m

(0)
4 (I|1, 3, 2, 4) =

1

s14
, (3.2)

and

m
(0)
5 (I|I) =

1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23
,

m
(0)
5 (I|13245) = − 1

s23s45
− 1

s23s51
, m

(0)
5 (I|13524) = 0. (3.3)

From these examples it is easy to see that when both permutations in m
(0)
n (α|β) are the

same then the answer is a sum over all color-ordered trivalent graphs, each contributing the

product of its propagators. When the two permutations are different it gives a subset of

terms appearing in the formula for m(α|α). In extreme cases like m
(0)
5 (I|13524) the subset

is the empty set. A closer look at the relation between the diagrams that contribute to a

given case straightforwardly motivates the following proposition.

Proposition: The function m
(0)
n (α|β) computes the sum of the collection of all

trivalent scalar diagrams that can be regarded both as α-color-ordered and β-color-ordered,

– 8 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
3

where each diagram’s contribution is given by the product of its propagators. In other words,

only diagrams that belong to the intersection of both sets contribute to the double-partial

amplitude.

More explicitly, let T (α) denote the set of α-color-ordered diagrams and T (β) the set

of β-color-ordered ones. Then

m(0)
n (α|β) = (−1)n−3+nflip(α|β)

∑
g∈T (α)∩T (β)

∏
e∈E(g)

1

se
, (3.4)

where the integer nflip(α|β) is defined below and se = P 2
e where Pe is the momentum

flowing along the edge e in the set of edges, E(g), for the Feynman diagram g. In particular,

whenever T (α) ∩ T (β) = ∅ then m
(0)
n (α|β) = 0.

We give a proof of this proposition in section 6 by showing that m
(0)
n (α|β) has the

same soft limits and factorizations properties as the sum over the corresponding Feynman

diagrams. In the rest of this section we present an efficient description of the diagrams

that appear in a particular amplitude as well as a procedure to determine nflip(α|β).

Consider a particular double-partial amplitude m
(0)
n (α|β), without loss of generality

take α to be the identity permutation, i.e., α = I. Start by drawing a disk with n nodes

sitting on the boundary in the ordering α. Then link the n nodes together with a loop of

line segments according to the ordering β. Generally the segments intersect each other in

the middle of the graph. It is convenient to introduce the following terminology: A subset

of all n points which are consecutive with respect to the α (or β) ordering will be said to

be α-consecutive (or β-consecutive).

The way to compute m
(0)
n (α|β) is iteratively: Start by locating a set of at least two

external labels which are both α- and β-consecutive, say {i, i + 1, . . . , i + r} with r > 1

(if no set can be found then m
(0)
n (α|β) vanishes and if r = n then β = α and m

(0)
n (α|α)

is given as above). If the set can be extended, e.g., by adding i − 1 while still remaining

β-consecutive then take its maximal extension.

Assuming {i, i+1, . . . , i+r} is maximal already, redraw the graph by moving all points

in the set along the boundary of the disk, until they are close to each other.2 The other

external points must be kept fixed. If the lines coming out of i and i + r intersect then

give a name to identify the intersection point, e.g. R (If the lines do not intersect then

go back to the original graph and move on to the next set of both α- and β-consecutive

external points).

Assuming the lines intersect, note that {i, i + 1, . . . , i + r,R} form a convex polygon.

Now remove the polygon from the graph, bring R to the boundary of the disk and treat the

new graph, which has R as an external point, as a new problem and repeat the procedure.

If at any given point one fails to find a set which forms a polygon with at most one internal

point after trying all of them, then m
(0)
n (α|β) = 0.

This procedure comes to an end when one finds a graph where both orderings agree

completely and therefore gives a single polygon with only ‘external’ edges.

2In order to make this precise one has to take the limit in which they become a single point. However,

the more informal description is enough for most practical purposes.
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Figure 1. Computing m
(0)
8 (I|54376218) by finding its polygon decomposition. (a) Points are

drawn on the boundary of a disk according to the α ordering. (b) A loop of line segments is

drawn connecting the points according to the β ordering. (c) External points are moved along the

boundary so that a polygon decomposition is manifest. In this example all polygons can be easily

exhibited in a single step.

Finally, after completing all iterations and obtaining a list of all polygons found in

the process one computes for each polygon its corresponding sub-amplitude. These sub-

amplitudes can be computed just as regular amplitudes, where both orderings coincide,

because for scalar particles it is straightforward to go off-shell.

The double partial amplitude, m
(0)
n (α|β), is then given by the product of all sub-

amplitudes times a propagator for each internal point that was obtained in the process of

removing polygons.

In figure 1 we present m
(0)
8 (I|54376218) as an illustrative example. In this particular

case, by a simple rearrangement of the external points (from figure 1(b) to figure 1(c)) one

finds a decomposition in terms of four convex polygons, namely, {2, 1, 8, B}, {3, 4, 5, A},
{6, 7, C} and {A,B,C}. It is easy to obtain the corresponding sub-amplitudes (ignoring

the signs)

m(0)(1, 2, B, 8|B, 2, 1, 8) =
1

s21
+

1

s18
, m(0)(3, 4, 5, A|5, 4, 3, A) =

1

s34
+

1

s45
,

m(0)(6, 7, C|7, 6, C) = 1, m(0)(B,A,C|B,A,C) = 1, (3.5)

and propagators

A→ 1

s345
, B → 1

s812
, C → 1

s67
. (3.6)

Putting all of them together gives, up to an overall sign,

m
(0)
8 (I|54376218) =

(
1

s21
+

1

s18

)(
1

s34
+

1

s45

)
1

s345s812s67
. (3.7)

Now we give the rule to determine the overall sign of the results. First define the

orientation of the disk by the ordering α (figure 2 (a)), and define the orientation of the

loop of segments by the ordering β (figure 2 (b)), which induces an orientation in every

convex polygon. The rule is as follows: (1) each polygon with odd number of vertices

contributes a plus sign if its orientation is the same as that of the disk and a minus sign if

opposite, (2) each polygon with even number of vertices always contributes a minus sign,
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Figure 2. Sign of m
(0)
8 (I|54376218)

and (3) each intersection point contributes a minus sign (figure 2 (c)). Then the product

of all these signs determines the overall sign of the double-partial amplitude relative to its

corresponding scalar diagrams.

In our example one finds that the three external polygons give a minus sign while the

internal one gives a plus sign. There are three propagators, and each gives a minus sign

(see figure 2). Altogether one finds six minus signs and therefore the overall sign is plus.

This means that (3.7) is indeed the right answer.

Alternatively, one can write down any diagram from the double-partial amplitude

(e.g. figure 2 (d)), and think of each cubic vertex as a triangle whose vertices are glued

either to a node or to a vertex of another triangle. Then the sign can be obtained by the

same rules as above. This is because in replacing each convex polygon by a specific diagram,

the number of triangles and propagators are fixed by the polygon, and the triangles therein

inherit the same orientation. Whenever a triangle picks up a minus sign, the ordering of

its three vertices are flipped in β as compared to α.3 In this way, the sign of the double-

partial amplitude can be interpreted as the number of propagators n− 3 and the number

of ordering flips nflip(α|β) in the cubic vertices of any specific diagram contained therein.

This explains the factor

(−1)n−3+nflip(α|β) (3.8)

introduced in (3.4).

3.2 Relation to the KLT matrix

We have shown that the formula for double-partial amplitudes m(0)(α|β), (1.11), is a gen-

erating function of sums of trivalent diagrams for any given pair of permutations α, β. Now

we will give it another physical interpretation. Recall that in the KLT relations one defines

the momentum kernel

S[α|β] =

n−2∏
i=2

s1,α(i) +

i−1∑
j=2

θ(α(j), α(i))βsα(j),α(i)

 , (3.9)

3When a vertex is not directly glued to a node, it is regarded as the set of all nodes that are linked to

it indirectly. So it is easy to see that each triangle (or cubic vertex) induces a partition of the nodes into

three sets consistent with both orderings α and β.
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where α, β ∈ Sn−3 are permutations acting on labels 2, 3, . . . , n−2; θ(i, j)β = 1 if the order-

ing of i, j is the same in both sequences of labels, α(2), . . . , α(n−2) and β(2), . . . , β(n−2),

and zero otherwise.4

We define the KLT matrix, SKLT as a (n−3)! by (n−3)! matrix whose rows (superscript)

and columns (subscript) are labeled by orderings α ≡ (1, α(2), . . . , α(n−2), n−1, n) and

β ≡ (1, β(2), . . . , β(n−2), n, n−1) (we use the same labels, α, β to denote the orderings and

the permutations), and the entries are given by (SKLT)αβ = S[α|β].

At first sight, this matrix has nothing to do with double-partial amplitudes. However,

here we will show that the inverse of the KLT matrix, is precisely given by a matrix, whose

entries are double-partial amplitudes with corresponding pairs of orderings, (mscalar)
α
β =

m(0)(1, α(2), . . . , α(n−2), n−1, n|1, β(2), . . . , β(n−2), n, n−1). The proof directly follows

from a remarkable property of scattering equations called KLT orthogonality [3, 6].

In order to state what KLT orthogonality is let us define a function defined for any

two given solutions to the scattering equations {σI} and {σJ}

(I, J) ≡
∑

α,β∈Sn−3

V (I)
α S[α|β]U

(J)
β , (3.10)

where V
(I)
α stands for

Vα =
1

(σ1 − σα2)(σα2 − σα3) · · · (σαn−2 − σn−1)(σn−1 − σn)(σn − σ1)
(3.11)

evaluated on the Ith solution while U
(J)
β stands for the following expression evaluated on

the J th solution.

Uβ =
1

(σ1 − σβ2)(σβ2 − σβ3) · · · (σβn−2 − σn)(σn − σn−1)(σn−1 − σ1)
. (3.12)

As proven in [6], the following holds for any I and J ,

(I, J)

(I, I)
1
2 (J, J)

1
2

= δIJ . (3.13)

This is known as KLT orthogonality.

For our purposes, only two facts, also explained in detail in [6], are necessary. The

first is that S[α|β] is only a function of the kinematic invariants sab. The second is that

(J, J) = det′Φ(σJ). (3.14)

It is interesting to note that the dimension of space of permutations of labels 2, . . . , n−2

(for which both U and V vectors form a basis, evaluated on any solution), and the dimension

of the solution space, are both (n−3)!. This allows us to define the following (n−3)!×(n−3)!

matrices based on U, V vectors normalized with respect to the inner product (3.10)

(Û)Iα ≡
U

(I)
α

(I, I)
1
2

, (V̂ )Iβ ≡
V

(I)
β

(I, I)
1
2

, (3.15)

4The convention we use here follows that in [12], where particle 1 was chosen as a pivot.
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where the rows (superscripts) are labeled by solutions and columns (subscripts) by permu-

tations (or orderings), and KLT orthogonality is the simple statement that the product of

these three matrices gives the identity matrix I in solution space,

ÛSKLTV̂
T = I. (3.16)

It is obvious that V̂ is invertible, thus by multiplying V̂ T and (V̂ T )−1 from left and right

respectively, we obtain the identity matrix in permutation space,

I = V̂ T ÛSKLTV̂
T (V̂ T )−1 = V̂ T ÛSKLT ⇔ S−1

KLT = V̂ T Û , (3.17)

where by (3.1) we find the right-hand-side of the second equality is precisely given mscalar

(S−1
KLT)αβ =

(n−3)!∑
I=1

V
(I)
α U

(I)
β

det′Φ(I)
= (mscalar)

α
β . (3.18)

The inverse of the KLT matrix has also been discussed in [13] where it was related

to the field-theory limit of string disk integrals,5 following computations in [14, 15]. As

explicit examples, the inverse was given in [13] for up to seven points, and the result

agrees with that of the double-partial amplitudes. It would be interesting to explore the

connections further.

4 Color-kinematics duality

In the introduction we illustrated how our formulation relates scalar-, gluon- and graviton-

amplitudes by simple transformations (C → E or C̃ → Ẽ or both). This replacement

occurs solution by solution of the scattering equations. More explicitly,

M(0)
n =

(n−3)!∑
I=1

C(σ(I))C̃(σ(I))

det′Φ(σ(I))
, M(1)

n =

(n−3)!∑
I=1

C(σ(I))Ẽ(σ(I))

det′Φ(σ(I))
, M(2)

n =

(n−3)!∑
I=1

E(σ(I))Ẽ(σ(I))

det′Φ(σ(I))
.

(4.1)

Very interestingly, in [16] Hodges made the observation that using twistor diagrams the

statement that “gravity is the squared of Yang-Mills” is replaced by “gravity times φ3 is the

square of Yang-Mills”. Indeed, our construction shows that this is precisely true solution

by solution of the scattering equations!

Also mentioned in the introduction is the fact that the color factor C and the kinematic

factor E have very similar properties and this is the reason why they are exchangeable. It

is very natural to suspect that this color-kinematics duality must have a connection to the

color-kinematics duality introduced by Bern, Carrasco and Johansson (BCJ) [8].

Indeed, in this section we show that these simple transformations are equivalent to the

BCJ doubling procedure to obtain gravity amplitudes from Yang-Mills ones.

5We thank Oliver Schlotterer for pointing out [13] to us, which motivated us to find the relation between

double-partial amplitudes and the KLT matrix.
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4.1 Expansion of the Pfaffian

Here we show that the Pfaffian can be expanded in a way similar to the expansion of the

color factors. We choose to expand the color factor, C (C̃), in terms of the basis given

in (2.4),

C =
∑

γ∈Sn−2

c1γ(2)···γ(n−1)n

σ1,γ(2) · · ·σγ(n−1),nσn,1
, (4.2)

and a similar formula holds for C̃.

This form of C hints that a similar form for E should exist. More explicitly, there must

exist functions, denoted as n, which only depend on kinematic data {εµa , kµa}, such that

E = Pf ′Ψ(ε, k, σ) =
∑

γ∈Sn−2

n1γ(2)···γ(n−1)n

σ1,γ(2) · · ·σγ(n−1),nσn,1
. (4.3)

Straightforwardly expanding the reduced Pfaffian Pf ′Ψ(ε, k, σ) leads to an expression very

different from the right hand side. In fact, at first sight it seems difficult to rewrite it into

the form of (4.3).

Luckily, not only (4.3) holds but the proof is very simple again thanks to the KLT

orthogonality [3, 6]. In order to prove that the expansion in (4.3) exists it is enough to

rewrite (3.13) as (recall the definitions in (3.11), (3.12))

(I, J)

(J, J)
= δIJ , (4.4)

then to multiply it by Pf ′Ψ(σJ) and sum over J get

(n−3)!∑
J=1

(I, J)Pf ′Ψ(σJ)

(J, J)
= Pf ′Ψ(σI). (4.5)

Using (3.10) and (3.14) one finds that the left hand side of (4.5) is given by

∑
α,β∈Sn−3

V (I)
α S[α|β]

(n−3)!∑
J=1

U
(J)
β Pf ′Ψ(σJ)

det′Φ(σJ)
, (4.6)

where note that α and β are permutations of labels 2, 3, . . . , n−2. The sum over (n −
3)! solutions appearing in this equation is nothing but the Yang-Mills partial amplitude

M
(1)
n (1, β, n, n− 1). Therefore, on the support of scattering equations,

Pf ′Ψ(σ) =
∑

α∈Sn−3

∑
β∈Sn−3

S[α|β]M
(1)
n (1, β, n, n− 1)

(σ1 − σα2)(σα2 − σα3) · · · (σαn−2 − σn−1)(σn−1 − σn)(σn − σ1)
. (4.7)

This concludes the proof of (4.3) since we have found an explicit form of the numerators

in terms of only external kinematic invariants. More explicitly,

n1γ(2)···γ(n−1)n =


∑

β∈Sn−3

S[γ|β]M (1)
n (1, β, n, n− 1), γ(n− 1) = n− 1,

0, γ(n− 1) 6= n− 1.

(4.8)
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The form given in this proof (which was also discussed in e.g. [17]) is not unique and not

very useful for practical computations as it is tautological in nature. However, it shows

that expansions of the form (4.3) do exists if we regard the M
(1)
n ’s in (4.8) as functions

of external data, and this is all we need in order to make the connection to the BCJ

doubling construction. As we will see shortly, the (n−2)! n’s play the role of a basis for

BCJ numerators, and in practice it is always possible to derive local expressions for them

by carefully using scattering equations when expanding E; explicit expressions for such

BCJ numerators can be found in [18, 19].

Now we can unify (4.2) and (4.3) by denoting both c and n as e in all three theories.

Then if we expand the product of the two summations, each term is of the form

e1α(2)···α(n−1)nẽ1β(2)···β(n−1)nm
(0)
n (1α(2) · · ·α(n− 1)n|1β(2) · · ·β(n− 1)n) ≡ eαẽβm(0)(α|β).

(4.9)

The full amplitude for scalar, pure Yang-Mills or gravity can be written in a unified

form,

M(s)
n = (−1)n−3

∑
α,β∈Sn−2

(−)nflip(α|β)eαẽβ
∑

g∈T (α)∩T (β)

∏
e∈E(g)

1

se
, (4.10)

where for e, ẽ we have s kinematic numerators and 2−s color numerators, with s = 0, 1, 2.

In this form the color-kinematics correspondence of our formula becomes more transparent:

the σ-independent color and kinematic factors cα and nα are on a equal footing, and by

exchanging them one relates amplitudes of scalar theory, Yang-Mills and gravity.

4.2 Relation to BCJ color-kinematics duality

To see that (4.10) actually gives a representation which respects the BCJ color-kinematics

duality, we can start by exchanging the two summations. First note that the union of

all sets T (α) ∩ T (β) with α, β ∈ Sn−2 is the complete set of trivalent diagrams with n

legs, Tn. For each trivalent diagram g, we define the set of pairs of orderings6 that can

generate g, PO(g), and it is obvious that (α, β) ∈ PO(g) ⇔ (β, α) ∈ PO(g). Thus

PO(g) = O(g) ⊗ O(g) which defines O(g): g ∈ T (α) ∩ T (β) ⇔ α, β ∈ O(g). The formula

can be written as a sum of all cubic diagrams, each with propagators and two numerators,

M(s)
n = (−1)n−3

∑
g∈Tn

∏
e∈E(g)

1

se

∑
(α,β)∈O(g)⊗O(g)

(−)nflip(α|β)eαẽβ. (4.11)

Note that the signs satisfy a composition identity, which simply follow from its defini-

tion in the previous section: for any γ ∈ O(g), (−1)nflip(α|β) = (−1)nflip(α|γ)+nflip(γ|β), thus

the double sum over α, β factorizes into two sums,

∑
(α,β)∈O(g)⊗O(g)

(−)nflip(α|β)eαẽβ=

 ∑
α∈O(g)

(−1)nflip(α|γ)eα

 ∑
β∈O(g)

(−1)nflip(γ|β)ẽβ

 ≡ eg ẽg,
(4.12)

6Here we slightly abuse the notation, by an ordering α we mean the sequence (1, α(2), . . . , α(n−1), n)

obtained from the permutation α.
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where we have defined eg and ẽg to be the combinations in the two brackets respectively.

Note that this definition depends on the choice of γ that is fixed for the sums. Different

choices of γ may leads to different signs, and when {eg} corresponds to color factors, this

is the standard sign ambiguity for generic trivalent diagrams (in the special case when eg
receives contributions from only one eα, we can choose γ = α).

In this way, up to possible signs, our formula defines numerator factors eg, ẽg for every

trivalent diagram, and the physical quantity which is the product of the two copies, eg ẽg,

has no such ambiguities. We now argue that these numerators automatically satisfy Jacobi-

like identities. Given three trivalent trees which differ only by a four-particle subdiagram,

as illustrated in figure. 3, we need to prove that the numerators eg (similarly for ẽg) satisfy

a Jacobi identity,

egt = ±(egs − egu), (4.13)

and here we emphasize that the relative sign of the two terms on the right-hand-side is

important.

Let us denote the four trees attached to the four legs of the subdiagram as A,B,C and

D, and we first consider the simple case where particles 1, n are attached to two different

trees, which, without loss of generality, we assume to be A,D respectively (see figure. 3).

The idea is that the set of orderings for the complete diagram can be obtained from putting

together the four sets corresponding to the four trees. For the tree B(C), we remove the

label of the internal leg from each α ∈ O(B) (α ∈ O(C)), and define the new set which

only has labels for external particles as O∗(B) (O∗(C)); we do the same thing for A and D,

but in the definition of O∗(A) we only keep the orderings with 1 in one end, and in O∗(D)

only those with n in the other. It is straightforward to find that,

O(gs)={(αA, αB, αC , αD)}, O(gu)={(αA, αB, αC , αD)}, withαi ∈ O∗(i) for i=A,B,C,D,

(4.14)

while O(gt) = O(gs)
⋃
O(gu), and the three sets have been indicated in figure 3. Note

that in the three sets 1, n are on the two ends of the orderings, and it is trivial to see that

O(gs)
⋂
O(gu) = ∅. Using (4.12) we have

egt =
∑

α∈O(gt)

(−1)nflip(α|γt)eα

= (−1)nflip(γs|γt)
∑

α∈O(gs)

(−1)nflip(α|γs)eα + (−1)nflip(γu|γt)
∑

α∈O(gu)

(−1)nflip(α|γu)eα,

where γt,s,u ∈ O(gt,s,u) are the elements chosen in the definition of egt,s,u , and in the second

line the two summations give egs and egu respectively. The sign for an individual e does

not matter, but the relative sign of the two terms, (−1)nflip(γs|γu), is unambiguous: from

our definition of nflip, this sign is determined by looking at the relative orientation for each

cubic vertex of gt in the ordering γs and γu, and the only difference appears in the cubic

vertex with three internal legs, where B and C are exchanged from γs to γu, thus the

relative sign of egs and egu is always −1.

The case when particle 1, n are attached to the same tree, e.g. A , see figure. 4, can be

argued similarly. To keep the expressions short, we denote the ordering corresponding to
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Figure 3. Trivalent diagrams gt, gs, gu when particle 1, n are contained in two different trees, e.g.

A,D, attached to the four-particle subdiagram. Red and blue regions correspond to O(gs) and

O(gu) respectively, the union of which gives O(gt).

Figure 4. Trivalent diagrams gt, gs, gu when particle 1, n are contained in a single tree, e.g.

A, attached to the four-particle subdiagram. Green, red and blue regions correspond to O =

O(gs)
⋂
O(gu), O(gs)/O and O(gu)/O respectively. It is easy to see that O(gt) = O(gs)

⋃
O(gu)/O

is the union of red and blue regions.

tree A by two groups of ellipses which contain 1 and n respectively. The sets of orderings

for gs, gt, gu can be written as

O(gs) = {(. . . , {αB, {αC , αD}}, . . .)}, O(gu) = {(. . . , {αC , {αB, αD}}, . . .)}, (4.15)

O(gt) = {(. . . , {αD, {αB, αC}}, . . .)}, withαi ∈ O∗(i) for i = B,C,D, (4.16)

where {α, β}means that the two objects are unordered, and there are four types of elements
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in each set depending on how B,C,D are ordered, as illustrated in figure. 4. Note that in

this case O ≡ O(gs)
⋂
O(gu) 6= ∅ (the green region in figure. 4), which has elements of the

form (. . . , αB, αD, αC , . . .) or (. . . , αC , αD, αB, . . .). The two sets O(gs)/O and O(gu)/O

are indicated by the red and blue regions in figure. 4, and it is obvious that their union

gives O(gt). Again from (4.12), up to a possible overall sign, the difference of egs and egu
is given by the following expression with γs ∈ O(gs)/O, γu ∈ O(gu)/O,

egs − egu =
∑

α∈O(gs)/O

(−1)nflip(α|γs)eα + (−1)nflip(γ|γs)
∑
α∈O

(−1)nflip(α|γ)eα

−(−1)nflip(γu|γs)
∑

α∈O(gu)/O

(−1)nflip(α|γu)eα − (−1)nflip(γ|γu)
∑
α∈O

(−1)nflip(α|γ)eα,

where γ ∈ O, and the three sign factors all give −1. Note that the second and the fourth

term cancel with each other, and the first and the third term combine into, up to a sign,

egt , thus we again find egt = ±(egs − egu).

Since the above statement holds regardless of e, ẽ being color or kinematic numerators,

it guarantees that the representation of M(s)
n as a sum of cubic diagrams given by our

formula automatically respects color-kinematics duality. Moreover, the simple transforma-

tions between C (C̃) and E (Ẽ) in our formula correspond to the substitution of the set

of e factors into a set of e′ factors which satisfy the same algebraic relations (or ẽ into

ẽ′), thus they are equivalent to the double-copy procedures that relate scalar, Yang-Mills

and gravity amplitudes. Proofs of the existence of dualtiy-respecting numerators and the

double-copy relations can also be found in [18, 20].

To conclude this section it is important to recall a simple and well-known property of

formulas of the form

M(s)
n = (−1)n−3

∑
g∈Tn

eg ẽg
∏

e∈E(g)

1

se
. (4.17)

Given any three graphs, as the ones discussed above, gs, gu, gt, which only differ in a single

propagator, i.e.,

s
∏

e∈E(gs)

1

se
= t

∏
e∈E(gt)

1

se
= u

∏
e∈E(gu)

1

se
(4.18)

one can freely redefine a kinematic set of numerators, say, {eg} according to

egs → e′gs = egs + ωs, egt → e′gt = egt + ωt, egu → e′gu = egu − ωu, (4.19)

and the value of the formula remains invariant. This is simply because the set {ẽg}, which

can be either color or kinematic numerators, satisfy Jacobi-like identities.

In general the new numerators {e′g} obtained by applying any number of transfor-

mations of this form, with completely arbitrary parameters w, will not satisfy Jacobi-like

identities. Applying this to Yang-Mills amplitudes one can obtain formulas of the form

M(1)
n = (−1)n−3

∑
g∈Tn

cgn
′
g

∏
e∈E(g)

1

se
(4.20)
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with kinematic numerators {n′g} which do not satisfy Jacobi-like relations starting from

M(1)
n = (−1)n−3

∑
g∈Tn

cgng
∏

e∈E(g)

1

se
(4.21)

where {ng} satisfy the Jacobi-like relations.

Clearly, one can start with a gravity formula given by eg = ng and ẽg = ng and apply

the same transformations that led to (4.20) on the ẽg factors to get

M(2)
n = (−1)n−3

∑
g∈Tn

ngn
′
g

∏
e∈E(g)

1

se
. (4.22)

This result can be interpreted as saying that the gravity formula (4.22) can be obtained

by using a double-copy procedure applied to (4.20) and (4.21) and therefore conclude that

the double-copy procedure works even when one of the two Yang-Mills numerators do not

satisfy Jacobi-like identities.7

5 Special kinematics: generating Catalan numbers

The Feynman diagrams of a colored cubic scalar theory are all possible trivalent, color-

ordered planar trees. Each internal edge of the tree is dressed with a propagator factor

and its contribution to the amplitude is the product of all propagators in the tree. In

spacetime dimensions large enough compared to the number of particles, the set of kine-

matic invariants

(ki + ki+1 + . . .+ ki+r)
2 with i ∈ {1, 2, . . . , n}, r ∈

{
2, 3, . . . ,

[n
2

]}
, (5.1)

modulo momentum conservation, form a basis of the n(n − 3)/2 dimensional space of

kinematic invariants. This means that we can choose any values for them which then

completely specifies a single kinematic point.

In this section we consider the point where

(ki + ki+1 + . . .+ ki+r)
2 = 1 (5.2)

for all possible values of i and r. The motivation for doing this is that each Feynman

diagram contributes exactly 1 to the amplitude. Therefore m0
n ≡ m

(0
n (I|I) with I =

(1, 2, . . . , n) is simply the number of planar ordered trees. This number is known to be the

Calatan number Cn−2, i.e.,

m(0)
n (1, 2, . . . , n) =

(−1)n+1

n+ 1

(
2n

n

)
. (5.3)

At the special kinematic point it is easy to compute that all two particle kinematic invari-

ants are {si,i+1 = 1, si,i+2 = −1} for i ∈ {1, . . . , n} (indexes are understood modulo n) and

zero otherwise.
7We thank Yu-tin Huang for discussions that led to this point.

– 19 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
3

The scattering equations simplify dramatically and become

− 1

σa − σa−2
+

1

σa − σa−1
+

1

σa − σa+1
− 1

σa − σa+2
= 0 for a ∈ {1, 2, . . . , n}. (5.4)

The most direct way to solve the equations is to use n−4 equations to express n−4 σ’s

in terms of the remaining one, and when plugging into the last equation, it becomes a

polynomial equation of the remaining σ, which one can solve to get all the solutions. Here

we follow a different route which turns out to be more instructive. The equations are

SL(2,C) invariant, and one can rewrite them in terms of the cross-ratios:

ui,j ≡
(σi − σj+1)(σi+1 − σj)
(σi − σj)(σi+1 − σj+1)

, (5.5)

where by definition ui,i±1 = 0 and ui,i = ∞. It is straightforward to see that the ath

scattering equation at the special kinematic point becomes,

(ua−1,a+1 − ua−2,a)

(
1

σa − σa+1
− 1

σa − σa−1

)
= 0. (5.6)

Since the second factor does not vanish (unless σa−1 = σa+1 which represents a unwanted,

singular kinematic point), we conclude that the scattering equations are equivalent to

u1,3 = u2,4 = . . . = un,2, (5.7)

which corresponds to a symmetric configuration with all cross-ratios built from four con-

secutive points equal to each other.

Therefore, in terms of the cross-ratios, the scattering equations become trivial. On

the other hand, by definition the cross-ratios satisfy constraints which correspond to the

so-called “Y-system” equations [21]

(1− ui,j+1)(1− ui+1,j) =

(
1− 1

ui,j

)(
1− 1

ui+1,j+1

)
, (5.8)

and it turns out we can directly solve the combined system of (5.7) and (5.8)! Given the fact

ui,i+2 is independent of i, we immediately see that for m = 2, 3, . . . , n−2 (m = 0, 1, n−1, n

are trivial), the cross-ratios ui,i+m are independent of i. Thus we can define Rm ≡ ui,i+m,

and by a simple change of variable Rm = Ym
1+Ym

the equations in terms of the new variables

become precisely the Y-system equations in the high temperature limit considered in [21],

(1−Rm−1)(1−Rm+1) = (1−Rm)2 ⇔ (1 + Ym−1)(1 + Ym+1) = Y 2
m, (5.9)

with the boundary condition Y0 = −1, Y1 = 0. It is well known that there are b(n−1)/2c
solutions, labeled by i, of the following form,

Y (i)
m =

sin(2πi(m−1)/n) sin(2πi(m+1)/n)

sin2(2πi/n)
, (5.10)

for i = 1, . . . , b(n−1)/2c.
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Based on the solutions, one can evaluate the double-partial amplitude at the special

kinematic point,

m(0)
n (1, 2, . . . , n) =

b(n−1)/2c∑
i=1

1

(σ12 . . . σn1)2 det′Φ(Y
(i)
m )

, (5.11)

where . . . (Y
(i)
m ) means that the full integrand is a rational function of the Ym variables.

For general n and kinematic points, the integrand is a rather complicated function of

cross-ratios; on the other hand, with the special solutions (5.10), as we have checked up to

n = 20, the summand simplifies significantly, which we conjecture to be true for general n.

Conjecture: At the special kinematic point, the formula as a function of Y
(i)
m in (5.10) is

1

(σ12 . . . σn1)2 det′Φ(Y
(i)
m )

= −2n−1

n

(
cos

(
2πî

n

)
−1

)n−2(
cos

(
2πî

n

)
+1

)
, (5.12)

where î = i for n even, and î = i− 1
2 for n odd.

From this it is straightforward to see that the amplitude at the special kinematic point

indeed counts the number of planar trivalent diagrams, which is the Catalan number.

Corollary : The double-partial amplitude at the special kinematic point is given by

m(0)
n (1, 2, . . . , n) = −2n−1

n

b(n−1)/2c∑
i=1

(
cos

(
2πî

n

)
−1

)n−2(
cos

(
2πî

n

)
+1

)
=

(−1)n+1

n+1

(
2n

n

)
,

(5.13)

Proof : Consider the Dynkin diagram of An−1, which consists of n−1 vertices and n−2

edges connecting them in sequence. By the combinatoric definition of Catalan number,

Ck is the number of closed paths with length 2k from one end of the diagram to itself.

Denote the vertices as 1, 2, . . . , n−1, then the adjacency matrix of the diagram is given

by (An−1)i,j = δi,j−1 + δi,j+1. If we start from vertex 1, the number of closed paths with

length 2n−4 is given by the (1, 1) component of the matrix A2n−4
n−1 . It is straightforward to

see that An−1 has eigenvectors vi =
√

2
n(sin(πin ), sin(2πi

n ), . . . , sin( (n−1)πi
n )), and eigenvalues

λi = 2 cos(πin ), for i = 1, 2, . . . , n−1, thus

Cn−2 =
(
A2n−4
n−1

)
1,1

=
n−1∑
i=1

(vi)1λ
2n−4
i (vi)1 =

22n−3

n

n−1∑
i=1

cos2n−4

(
iπ

n

)
sin2

(
iπ

n

)
, (5.14)

where note the summand is symmetric under i ↔ n−i (for n odd, the term with i =

(n−1)/2 vanishes), thus one can replace the range of summation by i = 1, . . . , b(n−1)/2c
and multiply the result by 2. A simple rewriting gives (5.13), which concludes the proof.

One of the most interesting future directions is to consider the scattering equations

for general kinematics in light of the special kinematic calculation. It is possible that

by rewriting the scattering equations in terms of cross-ratios, one may encounter more

general Y-systems. It would be fascinating to find a physical interpretation of such system
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of equations, especially an interpretation of our formula as certain physical quantities, in

analog of the minimal area as the free energy of the Y-system. Doing so may allow us to

find simple expressions for the integrand (in particular a proof for the conjecture above),

and possibly to connect scattering equations to some integrable system.

5.1 Comments on the special kinematics

As the first step towards more general kinematics, we study the cases where all kine-

matic invariants of the form si,i+m with any fixed m are equal, as long as the diagrams

contributing to the double-partial amplitude do not diverge, which is the most general

kinematics cyclically symmetric with respect to the canonical ordering. Up to a rescaling,

we can always set si,i+1 = 1 for all i, then the simplest cases of this type is si,i+1 = 1 and

si,i+m = −1 for some fixed m, while all the remaining sa,b are identically zero (when n is

even and m = (n−2)/2, we need to set si,i+m = −2 due to momentum conservation). The

above case correspond to m = 2.

However, since these configurations are in general highly singular with respect to the

scattering equations, one may encounter problems if evaluating the formula directly on

them. For example, in the case si,i+1 = 1, si,i+2 = −1
3 and si,i+3 = −2

3 at 7 points, directly

solving the equations shows that apart from three isolated solutions, there is a continuous

region of infinite number of solutions, and naively our previous way of evaluating the

formula fails. Even for our favorite special kinematic points m = 2, which has only isolated

solutions and they give the correct result, the number of solutions seems to contradict the

general counting, (n−3)!. To understand these situations properly, one should regard these

kinematics as a limit, i.e. starting by adding to the kinematics small deviations controlled

by a scale ε and evaluate the formula, and then take the ε → 0 limit. To illustrate this,

here we provide two examples.

First we give an interpretation to the known result for the kinematics si,i+1 = −si,i+2 =

1 at 6 points from this point of view. There we get two solutions, and if we fix SL(2,C) by

setting {σ1, σ2, σ3} = {0, 1,−1} they are

{σ1, σ2, σ3, σ4, σ5, σ6} =

{
0, 1,−1,−1

2
,−1

3
,−1

5

}
, {0, 1,−1, 0, 1,−1}, (5.15)

and the formula gives −27
2 on the first solution and −1

2 on the second, thus adding up to

−14 which matches the result calculated from Feynman diagrams. Alternatively, we can

start from the configuration

sab =



0 1 x −2− x− y y 1

1 0 1 y −2− y − z z

x 1 0 1 z −2− x− z
−2− x− y y 1 0 1 x

y −2− y − z z 1 0 1

1 z −2− x− z x 1 0


,

(5.16)

where the parameters x, y, z all deviate from −1 by some small values proportional to a

scale ε. This configuration is generic enough to produce all (n − 3)! = 6 solutions, and

– 22 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
3

whatever ε we choose the summation of the formula evaluating on these solutions gives the

correct value matching the diagrams. As ε gradually approaches zero, we observe that the

evaluation of the formula also approaches zero on three of the solutions. In these solutions,

some of the σi − σi+3 become O(ε), and their role is to compensate the infinitesimal si,i+3

to produce a finite value that keeps the scattering equations satisfied. However, at ε = 0

terms with si,i+3 disappear, leaving the equations un-balanced, and so these three sets of σ

values are excluded. For those remaining three solutions, for infinitesimal ε the evaluation

of the formula approaches −27
2 on one of them and −1

4 on the other two, and the two

solutions that gives the same value approaches each other. Although collision of σi and

σi+3 may still occur in this case, the scattering equations are still balanced at ε = 0, so

all the three solutions remain. Since the multiplicity of the two identified solutions has

already been taken into account by the Jacobian of the delta constraints, upon the limit

ε = 0 we only see two distinct solutions and we only need to evaluate the formula once on

each to produce the correct result.

For the second example, we look at a more interesting case which gives rise to a

continuous region of solutions. This happens first time at 7 points, when we consider a

generic cyclic symmetric configuration, the most general form of which is (after normalizing

si,i+1 = 1)

si,i+1 = 1, si,i+2 = −t, si,i+3 = −1 + t, ∀i, (5.17)

parameterized by a single variable t. In this specific example we set t = 1
3 , and we are

going to show that from the view of limit the formula still gives correct answer, which is
462
25 . To approach this kinematics from a generic data, we start with the configuration

si,i+1 = 1, ∀i,
s14 = p, s25 = q, s36 = u, s47 = v, s15 = x, s26 = y, s37 = z, (5.18)

s13 = −1− p+ q − v + y − z,

and obtain all the remaining kinematic invariants by momentum conservation, and we

set all the seven parameters p, q, u, v, x, y, z to deviate from −2
3 by some small values

proportional to the scale ε. This in general gives all the (n − 3)! = 24 solutions. Again

we let ε to approach zero, and we will observe three types of behaviors for the formula:

(a) the formula approaches zero on 7 solutions. The collision of σ’s again occurs in all

these solutions, and at ε = 0 these solutions are excluded also due to the fact that the

equations are no longer balanced. (b) there are 3 solutions upon which the evaluation of

the formula remains finite and the solutions are regular. However, the summation of the

formula evaluated just on these solutions does not yet add up to the correct result. (c) the

evaluation of the formula diverges on all the remaining 14 solutions, and these solutions

are also regular. However, they always add up to be a finite number and when combined

with the evaluation upon the 3 solutions in case (b) the total summation gives the correct

result 462
25 in the ε→ 0 limit!

On the other hand, if we work at ε = 0 right at the start, we will find only 3 isolated

solutions, which match exactly with the ε → 0 limit of the 3 solutions in case (b). The

7 solutions in case (a) are already excluded. Moreover, here we will see a 1-dimensional
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continuous region of solutions to the scattering equations, and if we pick up the 14 solutions

in case (c) and take the ε→ 0 limit, we will see that they ultimately sit within this region.

In other words, upon ε = 0, the original 14 isolated solutions emerge into a continuous

region of solutions, which also gives a non-trivial contribution to the final result.

This continues to be true for generic t, where there is always a continuous region of

solutions together with 3 isolated ones at ε = 0. Given a certain SL(2,C) fixing the 3

isolated solutions in case (b) are actually independent of the value of t, and it is possible

to work out that the formula evaluated over these 3 solutions add up to

14(1− 31t+ 280t2 − 543t3 − 513t4 + 1926t5 − 427t6 − 1553t7 + 863t8)

(1− t− 2t2 + t3)2(1− 15t+ 12t+ t3)2
. (5.19)

On the other hand, the total value determined from the scalar diagrams is

− 14(−4 + t)

(−2 + t)2
, (5.20)

which only contains one physical pole corresponding to si,i+1,i+2 = 0, and so all the poles

in (5.19) are spurious. Subtracting the above two expressions, we know that the contribu-

tion from the continuous region should be

14(−1 + t)t(1 + t)2(−1 + 12t− 36t2 + 27t3 + 31t4 − 87t5 + 113t6 − 74t7 + 15t8 + t9)

(−2 + t)2(1− t− 2t2 + t3)2(1− 15t+ 12t+ t3)2
.

(5.21)

In particular, this contribution vanishes when t assumes one of the roots of its numerator.

Actually upon such values one can verify that the continuous region of solutions is absent

and all the solutions left are the 3 isolated solutions, which by themselves determines the

correct result. Among these, t = 1 is what we have mainly studied in this section. If we

choose to approach this limit from generic kinematics, we will find that in the neighborhood

of the limit the formula remains finit on the 3 solutions in case (b), while it approaches

zero on all the remaining solutions, which are ultimately excluded at ε = 0.

The above explains that although the formula naively fails for such singular kinematics,

it gives the correct answer when regarded as a limit from generic kinematic data. Due to

the existence of the continuous region of solutions and its non-trivial contribution to the

final result as in (5.21), it is interesting to look for a way to determine the contribution from

such region directly. A possible solution may be similar to the method proposed in [22].

6 Consistency checks

In this section we perform the two standard consistency checks on tree-level amplitudes.

The first is the behavior when one of the particles becomes soft. The second is the presence

of a simple pole whenever a kinematic invariant of the form (
∑

i∈I ki)
2 for a set I vanishes

with residue equaling to the product of lower-point amplitudes.
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6.1 Soft-limit

Following the analysis done for Yang-Mills theory in [5] one has that in the limit kµn → εk̂µn

M(0)
n →

(n−4)!∑
I=1

∮
Γ
dσn

1∑
a6=n

sn,a
σn,a

∑
α,β∈Sn−2

cαc̃β
σα(n−1),1σβ(n−1),1

σα(n−1),nσβ(n−1),nσn,1σn,1
In−1(α|β)

=

(n−4)!∑
I=1

∮
Γ
dσn

1∑
a6=n

sn,a
σn,a

n−1∑
i,j=2

σi,1σj,1
σi,nσj,nσ2

n,1

∑
αi,βj∈Sn−3

cαi c̃βjIn−1(αi, i;βj , j) (6.1)

where in addition to the sum over (n−4)! solutions for σ1, . . . , σn−1 (we have abbreviated

their solution-label I), the contour Γ encircles the n − 3 zeroes of the first factor in the

denominator, and I(α|β) denote the integrand for (n−1)-point double-partial amplitude

with permutations α, β; in the second equality we have decomposed the sum over α into the

sum over i ≡ α(n−1) and the sum over αi, which are permutations within {2, . . . , n−1}\{i},
and similarly for the sum over β.

Since σa’s are taken to be complex numbers in this paper, the delta functions imposing

the scattering equations are in fact poles and all our integrals are contour integrals. In

using the residue theorem, one finds that there is no contribution at infinity; for each term

in the sum over i, j, there is a pole at σn = σ1, and only for each of the terms with i = j,

we have a pole at σn = σi which gives non-zero residue. Upon each pole only one term

from
∑

a6=n
sn,a
σn,a

will contribute to the residue, giving rise to

M(0)
n →

∑
cd

 1

sn,1

n−1∑
i,j=2

fcaian f̃dbjbnM
(0)
n−1(icbi , jajd) +

n−1∑
i=2

1

sn,i
fcaian f̃dbibnM

(0)
n−1(icd)

 ,

(6.2)

where we have pulled out one structure constant of U(N) from cαi and one of Ũ(N) from

c̃βj , and rewritten the remaining factors as full amplitudesM(0)
n−1 with the color indices of

particle i (and those of particle j for the first sum inside the bracket) being summed over;

note that we have suppressed color indices of other particles, which are al, bl for particle l.

Let us consider the combination

n−1∑
i=1

∑
c

fcaianM
(0)
n−1(1a1b1 , . . . , icbi , . . . , (n−1)an−1bn−1)

=
n−1∑
i=1

∑
c

Tr([T ai , T an ]T c)
∑

α∈Sn−2

Tr(T cT aα(i+1) . . . T aα(i−1))M
(0)
n−1(i, α(i+1), . . . , α(i−1)),

(6.3)

where we have used the color-decomposition of M(0)
n−1 in the trace basis with the po-

sition of particle i fixed. Note that
∑

c Tr([T ai , T an ]T c)Tr(T c . . .) = −Tr(T anT ai . . .) +

Tr(T an . . . T ai), and by combining the sum over i and that over α ∈ Sn−2 we get a

sum over α′ ∈ Sn−1, i.e. permutations of 1, . . . , n−1; for each permutation there are two

terms that differ only by a sign, thus the combination vanishes. This means the sum over
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i = 2, . . . , n−1 in the double sum of (6.2) gives minus the term with i = 1, and similarly

for the sum over j = 2, . . . , n−1, thus (6.2) can be simplified as

M(0)
n →

∑
cd

n−1∑
i=1

fcaian f̃dbibn
1

sn,i
M(0)

n−1(icd), (6.4)

which is the correct soft behavior as one can see from Feynman diagrams. This can be

compared with the soft limit of Yang-Mills full amplitude,

M(1)
n →

∑
c

n−1∑
i=1

fcaian
εn · ki
kn · ki

M(1)
n−1(ic). (6.5)

The soft limit of the partial amplitude, M
(0)
n (1, . . . , n), can be derived similarly,

which can be compared with the soft limit of color-ordered Yang-Mills partial amplitude

M
(1)
n (1, . . . , n)

M (0)
n (1, . . . , n) →

∑
c

(
fca1an

sn,1
M

(0)
n−1(1c, . . . , n−1) +

fcan−1an

sn,n−1
M

(0)
n−1(1, . . . , (n−1)c)

)
,

M (1)
n (1, . . . , n) →

(
εn · k1

kn · k1
+
εn · kn−1

kn · kn−1

)
M

(1)
n−1(1, . . . , n−1). (6.6)

6.2 Factorization

For the purpose of showing factorizations of the formula (1.1) in the scalar theory, it sufficies

to have a look at only the kinematics singularity defined by

k2
IR

= (k1 + k2 + · · ·+ knL)2 −→ 0, (6.7)

with 2 ≤ nL ≤ n − 2, and we denote L = {1, . . . , nL} and R as its complement set, with

nR = n−nL. Upon such a limit, only a subset of (nL−2)!×(nR−2)! from all the solutions

are singular [6]. To make factorization manifest, we start by choosing a special redefinition

σa =
s

ua
, a ∈ L, σa =

va
s
, a ∈ R, (6.8)

where we regard vn−1 as being fixed to a specific value v∗n−1, and leave s as well as the

remaining u’s and v’s as variables to be integrated over. Now the measure transforms to

n∏
a=1

dσa = (−1)nL+1snL−nR−1 vn−1

(
∏
u)2

ds
∏
a∈L

dua
∏

a∈R\{n−1}

dva. (6.9)

where
∏
u denotes the product of all ua with a ∈ L. We choose to fix {u1, u2, vn} to get

rid of the SL(2,C) redundancy. Faddeev-Popov method in this gauge-fixing gives rise to a

Jacobian8

− 2u1,2vn−1,n(−s4 + u1u2vn−1vn)

s2vn−1
. (6.10)

8For explicit derivations via Faddeev-Popov gauge-fixing, please refer to the complementary notes on

http://ellisyeyuan.wordpress.com/2013/07/07/soft-limits-and-factorizations/.
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If s becomes infinitesimal in the neighborhood of singular solutions, we are able to approx-

imate (6.10) and we can think of the u1 in the parentheses above as (u1 − 0) where the

“0” corresponds to the puncture of the internal particle in the factorization (the same for

u2, vn−1, vn).

The reason that s is constrained to be infinitesimal near singular solutions can be jus-

tified by the behavior of the delta constraints. Here we choose to eliminate the constraints

corresponding to particles {1, 2, n}. Then for a ∈ R, we can expand the nR− 1 constraints

with respect to s

s

(
sa,IR
va

+
sa,nL+1

va,nL+1
+ · · ·+ sa,n

va,n

)
+O(s3) = 0. (6.11)

However, we only need nR−2 of them for the right sub-amplitude, and so one delta function

needs to be isolated to produce a constraint on the invariant mass k2
IR

, so that when it

approaches zero a massless internal particle is emerged. For this purpose, we dress each

constraint in (6.11) with a factor
vavn,a
svn

and sum them up, we obtain

− k2
IR

+ s2 (F (k, u, v) +O(s)) = 0, (6.12)

with F some function independent of s. From this, we explicitly see that upon the factor-

ization limit (6.7) we do have a subset of solutions which gives s → 0. In producing the

constraint (6.12) from the original ones we get an additional Jacobian
vn−1vn,n−1

svn
. Moreover,

for a ∈ L, the nL − 2 delta constraints are expanded to

− u2
a

s

(
sa,1
ua,1

+ · · ·+ sa,nL
ua,nL

+
sa,IL
ua

)
+O(s) = 0. (6.13)

Given (6.12), now we focus only in the regions where s is constrained to be infinitesimal,

we are allowed to pick up only the leading terms in (6.10), (6.11), (6.12) and (6.13).

Collecting these results together with (6.9), we conclude that the measure and the delta

constraints approximates to

−ds2
nL∏
a=3

dua

n−2∏
a=nL+1

dva
(u1,2u1u2vn−1,nvn−1vn)2

(
∏
u)4

s2nL−2nR−6δ(s2F − k2
IR

)·

·
∏

a∈L∪{IL}\{1,2}

δ

( ∑
b∈L∪{IL}\{a}

sa,b
ua,b

) ∏
a∈R∪{IR}\{n−1,n}

δ

( ∑
b∈R∪{IR}\{a}

sa,b
va,b

)
.

(6.14)

Then we go on with the summation of color-dressed Parke-Taylor factors. It is conve-

nient to start with the form as in (1.8) and (1.9) where the color factors are expressed in

terms of structure contants. With infinitesimal s, it is not hard to check that the leading

terms are contributed solely by terms where both the two Parke-Taylor forms are of the

pattern such that all labels in L sit in front of all the labels in R, which behave as

1

σ1,α(2) · · ·σα(nL),β(nL+1) · · ·σβ(n−1),nσn,1
−→

(−1)nLs−nL+nR+2(
∏
u)2

(u1u1,α(2) · · ·uα(nL−1),α(nL)uα(nL))(vβ(nL+1)vβ(nL+1),β(nL+2) · · · vβ(n−1),nvn)
,

(6.15)
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where α is any permutation within the label set L\{1}, and β any permutation within

the label set R\{n}. All the other Parke-Taylor forms are of higher order in s compared

to (6.15), and so they are irrelavent in the factorization. For these leading terms, it is clear

that each copy of their corresponding color factors also breaks into two parts, with one

new fixed end arising in each part, and the two new ends are glued by a Kronecker delta

with indices in the adjoint representation of the color groups

∑
{c}

fa1,aα(2),c1 · · · fcnL−2,aα(nL),cnL−1fcnL−1,aβ(nL+1),cnL
· · · fcn−3,aβ(n−1),an =

∑
aL,aR

(∑
{c′}

fa1,aα(2),c′1 · · · fc′nL−2,aα(nL),aL

)
δaL,aR

(∑
{c′′}

faR,aβ(nL+1),c′′nL
· · · fc′′n−3,aβ(n−1),an

)
.

(6.16)

As a consequence, each copy of the summation over Parke-Taylor forms exactly splits into

the product of summations on the left part and that on the right part. Combining two

copies of this summation together with (6.14), it is easy to see that if we regard the factors

{u1, u2, vn−1, vn} therein as {u1 − uIL , u2 − uIL , vn−1 − vnR , vn − vnR}, with uIL and vIR
as punctures for the internal particles on the left part and right part, which are fixed to

be zero, then we have an emergent SL(2,C)× SL(2,C) redundancy in these leading terms,

acting on L ∪ {uIL} and R ∪ {vIR} respectively. When we integrate s2 out, we see that

M(0)
n factorizes in the correct way

M(0)
n −→

∑
aL,aR,bL,bR

M(0)
nL+1(1, . . . , nL, I

aL,bL
L )

−δaL,aRδbL,bR
k2
I

M(0)
nR+1(IaR,bRR , nL + 1, . . . , n).

(6.17)

We can also apply the above discussion to the double-partial amplitudes m(0)(α|β)

with any orderings α and β. By (6.15), we see that m(0)(α|β) will have diverging leading

terms in the form

m(0)
n (α|β) −→ m

(0)
nL+1(αL, IL|βL, IL)

−1

k2
I

m
(0)
nR+1(IR, αR|IR, βR) (6.18)

if and only if the labels contained in kI forms a consecutive subset in both α and β,

and since m(0)(α|β) is a function of only kinematic invariants, it vanishes whenever there

doesn’t exist such a factorization channel. By studying factorizations recursively it is

straightforward to observe that up to a sign m(0)(α|β) has the form as presented in (3.4).

For the overall sign, we can just pick up any tree diagram g ∈ m(0)(α|β) and do n − 3

consecutive factorizations according to the propagators therein to fully factorize m(0)(α|β)

down to n− 2 cubic vertices. On the one hand (6.18) indicates that each propagator gives

rise to a minus sign, and on the other hand as in (3.2) it is easy to see that each cubic

vertex gives +1 if the α and β orderings of the three labels are the same and −1 if flipped,

so the overall sign is (−1)n−3+nflip . Since as argued in section 3, this value is independent

of the diagram g we choose, we have thus verified (3.4).
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7 Discussions

In this paper we provided a unified description of the tree-level S-matrix of a colored

massless cubic scalar theory, Yang-Mills and gravity. The new description manifests a

relation between factors that contain the color information and factors that contain the

polarization information. All amplitudes are written as integrals over the moduli space of

an n-punctured sphere. The locations of the punctures are fixed by solving the scattering

equations which in general give rise to (n− 3)! solutions. Amplitudes are then obtained as

a sum over solutions of an integrand and a Jacobian factor

M(s)
n =

(n−3)!∑
I=1

I(s)

det′Φ

∣∣∣∣∣
I

(7.1)

where I(s) with s = 0, 1, 2 represent the integrand for scalars, gluons or gravitons respec-

tively. The integrands, in their simplest forms, are given by

I(0) = C2
U(N), I(1) = CU(N)Eε, I(2) = E2

ε . (7.2)

This shows that solution by solution one has (I(1))2 = I(2)I(0). This connection between

the square of Yang-Mills and the product of gravity with a φ3 theory has the same structure

as that found by Hodges using twistor diagrams in [16].

Very nicely, there is a third way to make this connection between Yang-Mills, gravity

and φ3 explicit. Recall that the KLT construction represents a gravity amplitude as a

linear combination of products of partial Yang-Mills amplitudes. The sum is over certain

pairs of (n− 3)! permutations and it is given schematically as

M(2)
n =

∑
α,β∈Sn−3

M (1)
n (α)S(α|β)M (1)

n (β). (7.3)

In section 3.1 we proved that if S(α|β) is taken to be the entries of an (n− 3)!× (n− 3)!

matrix, SKLT, then

SKLT = (mscalar)
−1 (7.4)

where the entries of mscalar are given by the double partial amplitudes of the scalar theory,

m(α|β). Therefore one has

M(2)
n =

∑
α,β

M (1)
n (α)(m−1

scalar)
α
βM

(1)
n (β). (7.5)

It would be interesting to explore possible connections among all three descriptions.

In the work of Broedel, Schlotterer and Stieberger [13], it was shown that the field

theory limit of certain string theory integrals on the disk compute the entries of S−1
KLT.

Combining this with our result (7.4) one can conclude that

m(0)
n (γ|β) =

∫
γ
[dnz]

∏
i<j |zi − zj |α

′sij

(z1 − zβ(2))(zβ(2) − zβ(3)) · · · (zβ(n−2) − zn)(zn − zn−1)(zn−1 − z1)

∣∣∣∣∣
α′→0
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where the dependence on the permutation γ is through the region of integration given by

z1 < zγ(2) < . . . < zγ(n−2) < zn−1 < zn (7.6)

and the measure [dnz] is defined to be dnz/vol(SL(2,R)).

Recall the formula for m
(0)
n (α|β) found in this work is given by

∫
d nσ

vol SL(2,C)

∏
a
′δ(
∑

b6=a
sab
σab

)

(1, α(2), α(3), . . . , α(n− 2), n− 1, n)(1, β(2), β(3), . . . , β(n− 2), n, n− 1)

with (a1, a2, . . . , an) = (σa1 − σa2) · · · (σan − σa1).

Finding a direct proof of the equivalence of the two formulas for m
(0)
n (α|β) is an

important problem which might also give a reason why the formulas for Yang-Mills and

gravity amplitudes are strikingly similar to those of string amplitudes in the Gross-Mende

or high energy limit [23]. Hints in this direction were already discussed in [6].

Clearly there are other pressing issues which we leave for future work. The first is

finding a formula analogous to the reduced Pfaffian, Pf ′Ψ, which could accommodate the

scattering of fermions. In dimensions less than twelve for gravity and less than eleven

for Yang-Mills one could try and find a supersymmetric version of the reduced Pfaffian.

In four dimensions, our formula has been shown to agree with the Witten-RSV formula

for the scattering of gluons for up to eight particles and in all helicity sectors [5]. The

agreement happens solution by solution of the scattering equations which means that the

formulas are equivalent at the level of the integrand. It is well known that the Witten-

RSV formula for gluons is only a set of components of an elegant N = 4 supersymmetric

formula [1, 2]. An analogous formulation for N = 8 supergravity is also known [3, 4]. This

suggests that a supersymmetric generalization of the Pfaffian exists in four dimensions and

perhaps in higher. Finally, all the formulas obtained so far have been restricted to tree

level S-matrices. Extending this formalism to loop level will likely involve higher genus

Riemann surfaces and constrains on the theories. It would be fascinating to understand

the class of theories whose S-matrices can be recast in this way.
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