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S U M M A R Y

The scattering of plane SH waves incident on a circular sectorial canyon is considered. An

accurate region-matching technique is applied to derive a rigorous series solution. Appropriate

wavefunctions are employed to describe antiplane motions. Judicious basis functions, involving

Gegenbauer polynomials, are well utilized to correctly capture the singular behaviour in stress

fields near the canyon bottom. The enforcement of matching conditions on the auxiliary

boundary leads to the determination of unknown coefficients. Plotted results demonstrate

the influence of pertinent parameters on surface and subsurface motions. Both steady-state

and transient results are included. The solution technique proposed achieves a considerable

reduction in the computational effort, facilitating benchmark computations. The derived series

solution enriches the limited list of series solutions presently known for canyon problems

related to SH-wave scattering.

Key words: Earthquake ground motions; Theoretical seismology; Wave scattering and

diffraction; Wave propagation.

1 I N T RO D U C T I O N

Rugged topographic relief has been well known as one of the lead-

ing factors substantially affecting the spatial and temporal variations

in seismic ground motions (e.g. Boore 1973; Bouchon 1973; Spu-

dich et al. 1996). The near-surface complexity in local geometric

discontinuities (e.g. canyons, ridges, slopes and cliffs) intensifies

the great diversity of seismic wavefields. This is usually called the

topographic effect in the pertinent literature (e.g. Geli et al. 1988;

Kawase & Aki 1990; Hartzell et al. 1994; Scott et al. 1997). Over

the years, the measurement, assessment and prediction on the po-

tential topographic amplification during earthquake shaking (e.g.

Davis & West 1973; Celebi 1987; Hough et al. 2010) have been of

continued interest to researchers in shallow geophysics, seismology,

civil engineering, etc.

Concave topographies like canyons are one common type of natu-

ral landforms on Earth’s surface. Since the early 1970s, various con-

ceptual models have been built to approximate the cross-sectional

profiles of real canyons. Simply take the SH-wave case, for exam-

ple, two representatives in the range of theoretical concerns are the

semi-circular and semi-elliptic canyons (see Trifunac 1973; Wong &

Trifunac 1974). Within the range of numerical concerns, simplified

models for the triangular, rectangular, trapezoid, cosine-shaped and

Gaussian-shaped cases have been devised (see e.g. Aki & Larner

1970; Sánchez-Sesma & Rosenblueth 1979; England et al. 1980;

Zhou & Chen 2006). Sánchez-Sesma et al. (2002) extensively re-

viewed the analogous models. Indeed, these simplified models have

contributed to a qualitative understanding of seismic wave propa-

gation and earthquake-induced motions around canyons.

As to the more complicated terrain, sophisticated numerical

schemes are, no doubt, the powerful tools to deal with related

issues. In recent decades, the tremendous progress in computer

technologies has boosted the growth of numerous mesh discretiza-

tion techniques. Some of the most popular methods utilized to-

day are the finite-difference, finite-element, spectral-element and

boundary-element methods (see e.g. Tessmer et al. 1992; Geller

& Takeuchi 1998; Komatitsch & Vilotte 1998; Satoh et al. 2001;

Käser & Dumbser 2006; Kham et al. 2006; Ichimura et al. 2007; Ma

et al. 2007; Lee et al. 2008; Lombard et al. 2008; Lee et al. 2009;

Kristek et al. 2010; Pelties et al. 2010). Although these approaches

are very flexible for arbitrary surficial configurations, the reliability

and accuracy of terminal results from these codes at hand have to

be strictly verified with the existing canonical solutions.

For 2-D problems regarding the SH-wave scattering in the half-

plane, exact analytical solutions, derived by the method of separa-

tion of variables (MSV), which is sometimes termed as the method

of wavefunction expansions in engineering seismology, are lim-

ited to simple geometric shapes. To date, there have only been two

cases available, that is, the semi-circular and semi-elliptic canyons

(Trifunac 1973; Wong & Trifunac 1974). This is because when the

scatterer geometry coincides with any one of the separable coor-

dinate systems, the MSV can be straightforwardly applied to the

governing wave equation to yield complete expressions in terms of

eigenfunctions (or wavefunctions). However, even for some simple
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Circular sectorial canyons 533

geometric cases, it is nearly impossible to exactly solve these prob-

lems via the MSV. That is to say, the possibility of determining

a one-to-one relationship to each unknown coefficient has been

excluded. Examples for those whose surface geometries incom-

pletely/completely fitting to a certain separable coordinate system

are the truncated semicircular canyons, the partially filled semi-

circular/semi-elliptic alluvial valleys, the circular-arc mountains

and the semi-elliptic hills. Examples for those whose cross-sections,

not matching any one of the separable coordinate systems, are the

symmetrical V-shaped canyons. Under such a circumstance, if a se-

ries solution can be constructed, it may be the best candidate for an

exact analytical solution. Recently, a breakthrough in the application

of the region-matching technique (RMT) to handle aforementioned

tasks was made by Chang (2009), Tsaur & Chang (2009), Tsaur

(2011) and Tsaur & Hsu (2013). Through the promising RMT, the

intrinsic difficulty in utilizing the MSV to derive a chain of series

solutions has been conquered.

With regard to the canyons of circular sectorial shapes, there

seems to be little attention paid to relevant topics in the literature.

Such an idealized shape is approximately close to the cross-section

of Pacoima Canyon (see fig. 2b in Wong & Jennings 1975). To the

authors’ knowledge, the series solution to the scattering problem of

circular sectorial canyons is unavailable so far. This has motivated

the authors to tackle this issue in a theoretical way. In this work,

the RMT is applied to derive a series solution to the case under

SH-wave excitation.

From a mathematical standpoint, the problem under considera-

tion constitutes an exterior elliptic boundary-value problem involv-

ing one salient corner (at the canyon bottom). From fundamental

concepts of elastostatics and elastodynamics, it is easy to compre-

hend that certain quantities such as stress fields may be ill behaved

in the vicinity of geometric discontinuities (e.g. corners and sharp

edges). The presence of those discontinuous points usually makes

the conventional mesh-based methods computationally inefficient

(e.g. an enormous amount of discretised meshes required), espe-

cially when acquiring an acceptable solution to fields near geomet-

ric singularities. When one attempts to get the series solution via

the RMT, the exclusion of such significant information may lead to

a very large system of equations. Although most results obtained

by the RMT may have acceptable accuracy for engineering pur-

pose, further efforts are worthy to be done from the viewpoint of

numerical computation for condensing the system of equations and

improving the solution accuracy. In view of this, an additional treat-

ment for the corner singularity at the canyon bottom is essential, and

it is integrated into the RMT. Such integration is called the accurate

RMT hereafter.

The key step of the accurate RMT is to capture the dominant char-

acteristics of stress fields near the canyon bottom. This highlights

the importance of blending stress singularities into the solution pro-

cedure. At the initial stage, the RMT is followed and subsequently,

the present problem is recast in terms of stress integral equations in-

stead of wavefunctions. Therefore, the singular behaviour of stress

fields can be incorporated with the RMT in a straightforward way.

Meanwhile, the accurate RMT more strongly enhances the overall

computational efficiency of solutions than the RMT.

The main contributions of the present work are threefold. First,

the proposed series solution is novel since it is likely to be non-

existent in the literature. Second, the canonical geometries studied

in the literature are broadened herein to cover a range of circular sec-

torial shapes. Third, the analytical approach adopted here provides

an efficient validation tool for various numerical approximation

schemes.

2 T H E O R E T I C A L F O R M U L AT I O N S

Consider a homogeneous, isotropic, linearly elastic, semi-infinite

medium (with shear modulus μ and shear wave velocity cs) bounded

by the horizontal ground surface, inlaid with an infinitely long,

circular, sectorial canyon (see Fig. 1). The radius and central angle

of the canyon are a and β, respectively. An infinite train of unit-

amplitude plane SH waves (with angular frequency ω) is incident

upon this canyon at an angle α to the y-axis.

As seen in Fig. 1, through introducing a circular-arc auxiliary

boundary Sa , the half-plane is divided into two regions, an open

region 1 and an enclosed region 2. In these two regions, the steady-

state out-of-plane motions are required to satisfy the governing

Helmholtz equations, namely

∇2u j + k2u j = 0, j = 1, 2, (1)

where ∇2 is the 2-D Laplacian and k = ω/cs is the shear wavenum-

ber. The subscripts j , where j = 1 and 2, denote the total displace-

ment fields in regions 1 and 2, respectively. The time-harmonic

factor exp(iωt) is omitted in all the expressions throughout this

paper.

The zero-stress boundary conditions on the horizontal ground

surface and the canyon surface are

τ
(1)
θ z =

μ

r

∂u1(r, θ )

∂θ
= 0, for θ = ±

π

2
and r > a, (2)

τ (1)
r z = μ

∂u1(r, θ )

∂r
= 0, for −

π

2
<θ <−

π

2
+ β and r = a,

(3)

τ
(2)
θ z =

μ

r

∂u2(r, θ )

∂θ
= 0, for θ = −

π

2
+ β,

π

2
and r < a.

(4)

The free-field displacement uF , existing in the half-plane medium

without any surface/subsurface irregularities, can be expressed as a

sum of the incident waves and their specularly reflected waves from

the horizontal ground surface, that is,

uF (r, θ ) = exp[ikr cos(θ + α)] + exp[−ikr cos(θ − α)]. (5)

Employing the Jacobi–Anger expansion (Abramowitz & Stegun

1972), eq. (5) can be re-expressed as

uF (r, θ ) = 2

∞
∑

n=0

εn(−1)n J2n(kr ) cos(2n)α cos(2n)θ

− 4i

∞
∑

n=0

(−1)n J2n+1(kr ) sin(2n + 1)α sin(2n + 1)θ,

(6)

Figure 1. Geometric layout of the problem.
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where εn is the Neumann factor (equal to 1 if n = 0 and to 2 if

n ≥ 1) and Jn(·) denotes the nth order Bessel function of the first

kind. Note that this expression inherently satisfies the stress-free

condition on the horizontal ground surface (eq. 2).

The total scattered field uS in open region 1 may be separated

into two parts, uS0 and uS2, that is, uS = uS0 + uS2. The first part

uS0 represents the scattered fields excluding the effect of region 2,

and it also corresponds to the scattered fields derived by Trifunac

(1973) for a semi-circular canyon, that is,

uS0(r, θ ) = −2

∞
∑

n=0

εn(−1)n J ′
2n(ka)

H
(2)′
2n (ka)

H
(2)

2n (kr ) cos(2n)α cos(2n)θ

+ 4i

∞
∑

n=0

(−1)n
J ′

2n+1(ka)

H
(2) ′
2n+1(ka)

H
(2)

2n+1(kr ) sin(2n + 1)α

× sin(2n + 1)θ, (7)

where H (2)
n (·) is the nth order Hankel function of the second kind,

and primes stand for differentiation with respect to the argument of

respective functions.

The second part uS2 is the contribution due to the presence of

region 2. Through satisfying the governing Helmholtz equation

(eq. 1) and the zero-stress conditions on the horizontal ground sur-

face (eq. 2), and then taking account of the outgoing scattered waves,

the scattered wavefield uS2 can be written as

uS2(r, θ ) =
∞

∑

n=0

An

H
(2)

2n (kr )

H
(2)′
2n (ka)

cos(2n)θ

+
∞

∑

n=0

Bn

H
(2)

2n+1(kr )

H
(2) ′
2n+1(ka)

sin(2n + 1)θ, (8)

where the complex expansion coefficients An and Bn are unknown.

The displacement of the resultant wavefield u1 in the open region

1, which is the combination of free and scattered wavefields, can be

expressed as

u1(r, θ ) = uF (r, θ ) + uS(r, θ ) (9)

In the enclosed region 2, the displacement of wavefield u2, satis-

fying the Helmholtz equation (eq. 1) and the traction-free conditions

(eq. 4), is given by

u2(r, θ ) =
∞

∑

n=0

Cn

Jnν(kr )

J ′
nν(ka)

cos n ν
(

θ −
π

2

)

, (10)

in which ν = π/(π − β) and the complex expansion coefficients

Cn are to be determined. More details for the derivation of eq. (10)

are set out in Appendix A.

The radial stress must be continuous over the entire auxiliary

boundary Sa , implying

∂u1

∂r
=

∂u2

∂r
=

{

P(θ ), − π

2
+ β < θ < π

2
,

0, − π

2
< θ < − π

2
+ β,

r = a, (11)

Notice that the introduction of the stress function P(θ ) may allow

one to include the stress singularity (near the canyon bottom) in the

later formulation.

Multiplying both sides of eq. (11) by the proper cosine/sine func-

tions, and integrating over the corresponding ranges gives

∫ π
2

− π
2

∂u1

∂r
cos(2q)θdθ =

∫ π
2

− π
2

+β

P(θ ) cos(2q)θdθ, q = 0, 1, . . . ,

(12)

∫ π
2

− π
2

∂u1

∂r
sin(2q + 1)θdθ =

∫ π
2

− π
2

+β

P(θ ) sin(2q + 1)θdθ,

q = 0, 1, . . . , (13)

∫ π
2

− π
2

+β

∂u2

∂r
cos qν

(

θ −
π

2

)

dθ =
∫ π

2

− π
2

+β

P(θ ) cos qν
(

θ −
π

2

)

dθ,

q = 0, 1, . . . . (14)

After some algebra, it can be shown that

An =
εn

π
P̂C1

n , (15)

Bn =
2

π
P̂ S

n , (16)

Cn =
εn

π − β
P̂C2

n , (17)

where the transformed functions P̂C1
n , P̂C2

n and P̂ S
n are as follows:

P̂C1
n =

∫ π
2

− π
2

+β

P(θ ) cos(2n)θdθ, (18)

P̂C2
n =

∫ π
2

− π
2

+β

P(θ ) cos nν
(

θ −
π

2

)

dθ, (19)

P̂ S
n =

∫ π
2

− π
2

+β

P(θ ) sin(2n + 1)θdθ. (20)

To make progress and achieve numerical efficiency, the stress

function P(θ ) may be expanded in a series of basis functions, con-

taining pivotal information on the behaviour of stress fields at the

auxiliary boundary Sa . Hence, P(θ ) may be approximated as fol-

lows:

P(θ ) =
∞

∑

m=0

pm Sm(θ ), (21)

where pm are the singular expansion coefficients to be determined,

and Sm(θ ) are the singular basis functions.

At a salient corner with an interior angle of 90◦, P(θ ) has a

singular behaviour of the form r−1/3 as the radial distance r from

the endpoint tends to zero (see Appendix B for details). Pondering

over the singular nature of the corner point at θ = −π/2 + β, and

taking the traction-free condition into account, a set of appropriate

basis functions satisfying the correct inverse cubic-root singularity

is given by

Sm(θ ) = ψm

C
1/6
2m [2θ − π/2(π − β)]

{(θ + π/2 − β) [3π − 2(β + θ )] (π − β)/2}1/3
, (22)

where ψm = (2m)!Ŵ(1/6) [πŴ(2m + 1/3)]−1, Ŵ(·) denotes the

gamma functions, and C
1/6
2m [·] are the Gegenbauer polynomials typ-

ically having the following property (see, e.g. Gradshteyn & Ryzhik

2007, pp. 798, eq. 7.324):

∫ 1

0

C
1/6
2m (σ ) cos(hσ )

(1 − σ 2)1/3
dσ =

π (−1)mŴ (2m + 1/3)

(2m)!Ŵ (1/6) (2h)1/6
J2m+1/6(h). (23)

Additional remarks pertaining to the selection of singular basis

functions are given in Appendix C.
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Circular sectorial canyons 535

Figure 2. Surface motions versus x/a at α = 60◦ for comparison with the

results of Trifunac (1973). (a) η = 0.25; (b) η = 1.25.

After substituting eqs (21) and (22) into (18)–(20), one may find

that the execution of Fourier cosine/sine transforms to the singular

basis functions Sm(θ ) is required. Using the change of variables

and employing eq. (23), three integral transforms of Sm(θ ) may be

written, respectively, as follows:

∫ π
2

− π
2

+β

Sm(θ ) cos(2n)θdθ = (−1)m+n J2m+1/6 [2n(π − β)]

[4n(π − β)]1/6
, (24)

∫ π
2

− π
2

+β

Sm(θ ) cos nν
(

θ −
π

2

)

dθ = (−1)m J2m+1/6(nπ )

(2nπ )1/6
, (25)

∫ π
2

− π
2

+β

Sm(θ ) sin(2n + 1)θdθ = (−1)m+n J2m+1/6 [(2n + 1)(π − β)]

[(4n + 2)(π − β)]1/6
.

(26)

In the light of eqs (24)–(26), the transformed functions shown in

eqs (18)–(20) may be expressed as follows:

P̂C1
n =

∞
∑

m=0

pm(−1)m+n J2m+1/6 [2n(π − β)]

[4n(π − β)]1/6
, n ≥ 1, (27)

P̂C2
n =

∞
∑

m=0

pm(−1)m J2m+1/6(nπ )

(2nπ )1/6
, n ≥ 1, (28)

P̂ S
n =

∞
∑

m=0

pm(−1)m+n J2m+1/6 [(2n + 1)(π − β)]

[(4n + 2)(π − β)]1/6
. (29)

Table 1. Calculated results of the first components of wavefield expansion coefficients for β = 45◦

at α = 30◦ and η = 2.

Accurate RMT

M A0 B0 C0

12 1.71507486 + 0.25135313i 2.11465312 − 1.24052281i 2.28676648 + 0.33513751i

20 1.71508502 + 0.25134337i 2.11464785 − 1.24054703i 2.28678003 + 0.33512449i

30 1.71508493 + 0.25134327i 2.11464762 − 1.24054697i 2.28677990 + 0.33512436i

42 1.71508493 + 0.25134325i 2.11464759 − 1.24054699i 2.28677991 + 0.33512434i

44 1.71508493 + 0.25134325i 2.11464759 − 1.24054699i 2.28677991 + 0.33512434i

RMT

50 1.71410826 + 0.25166114i 2.11460540 − 1.23928226i 2.28547768 + 0.33554819i

100 1.71472627 + 0.25143148i 2.11458908 − 1.24009935i 2.28630169 + 0.33524197i

500 1.71504652 + 0.25134894i 2.11463564 − 1.24050127i 2.28672869 + 0.33513192i

1000 1.71506992 + 0.25134519i 2.11464250 − 1.24052929i 2.28675990 + 0.33512692i

Table 2. Calculated results of the first components of wavefield expansion coefficients for β = 45◦

at α = 30◦ and η = 12.

Accurate RMT

M A0 B0 C0

49 7.17640661 + 1.61364908i 6.83176172 − 3.95258994i 9.56854215 + 2.15153210i

60 7.17641493 + 1.61364728i 6.83176459 − 3.95259864i 9.56855324 + 2.15152970i

75 7.17641454 + 1.61364657i 6.83176375 − 3.95259869i 9.56855272 + 2.15152876i

95 7.17641426 + 1.61364619i 6.83176326 − 3.95259866i 9.56855235 + 2.15152825i

98 7.17641426 + 1.61364619i 6.83176326 − 3.95259866i 9.56855235 + 2.15152825i

RMT

50 7.18656337 + 1.62708650i 6.84934638 − 3.95397975i 9.58208449 + 2.16944867i

100 7.17872288 + 1.61751378i 6.83646096 − 3.95243003i 9.57163051 + 2.15668504i

500 7.17654539 + 1.61393512i 6.83209015 − 3.95254680i 9.56872718 + 2.15191350i

1000 7.17645845 + 1.61375043i 6.83187938 − 3.95257697i 9.56861126 + 2.15166723i
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536 K.-H. Chang, D.-H. Tsaur and J.-H. Wang

Figure 3. Surface motions versus x/a for different α with β = 30◦ at η = 4. (a) α = 0◦ and 30◦; (b) α = 60◦ and 90◦; (c) α = −30◦ and −60◦; (d) α = −90◦.

Note that if n = 0, eqs (27) and (28) have the following forms:

P̂C1
0 =

6

21/3Ŵ(1/6)
p0, (30)

P̂C2
0 =

6

21/3Ŵ(1/6)
p0. (31)

Substitution of eqs (27)–(31) into (15)–(17) leads to the con-

nection between the expansion coefficients of displacement fields

(An , Bn and Cn) and those of corner singularity (pm), that is,

A0 =
6

π 21/3 Ŵ(1/6)
p0, (32)

An =
2

π

∞
∑

m=0

pm(−1)m+n J2m+1/6 [2n(π − β)]

[4n(π − β)]1/6
, n ≥ 1, (33)

Bn =
2

π

∞
∑

m=0

pm(−1)m+n J2m+1/6 [(2n + 1)(π − β)]

[(4n + 2)(π − β)]1/6
(34)

C0 =
6

(π − β) 21/3 Ŵ(1/6)
p0, (35)

Cn =
2

π − β

∞
∑

m=0

pm(−1)m J2m+1/6(nπ )

(2nπ )1/6
, n ≥ 1. (36)

For the sake of determining the singular expansion coefficients

pm , the enforcement of displacement continuity condition across

the auxiliary boundary Sa is necessary, that is,

u1(r, θ ) = u2(r, θ ), for −
π

2
+ β < θ <

π

2
and r = a.

(37)

Multiplying eq. (37) by a sequence of testing functions and inte-

grating over the range [−π/2 + β, π/2] gives

∫ π
2

− π
2

+β

u1 Sq (θ ) dθ =
∫ π

2

− π
2

+β

u2 Sq (θ ) dθ, q = 0, 1, . . . . (38)

Substituting eqs (9), (10) and (32)–(36) into (38), utilizing the

Wronskian relations (Abramowitz & Stegun 1972), applying eqs

(24)–(26) and rearranging yields a system of linear algebraic equa-

tions for singular coefficients pm , that is,

∞
∑

m=0

pmUq,m = Vq , q = 0, 1, . . . , (39)

where all the involved functions are given in Appendix D (see eqs

D1 and D2). After truncating the infinite series properly, the singular

expansion coefficients pm can be evaluated by the standard matrix

techniques.

For numerical computation, truncating the infinite summation to

a finite number of terms is indispensable. In eq. (39), the sum-

mation indices m and the weighting indices q are truncated af-

ter M − 1 terms. Therefore, eq. (39) constitutes a system of M

equations with M unknowns. The number of truncation terms in

consideration depends only on the accuracy requirement. Once the

singular coefficients pm are found, the wavefield expansion coeffi-

cients (i.e. An , Bn and Cn) can be evaluated straightforwardly via

eqs (32)–(36).

3 N U M E R I C A L R E S U LT S

A N D D I S C U S S I O N S

To get the proper truncation value M in eq. (39), a number of con-

vergence tests are carried out first. It is worth emphasizing that each
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Circular sectorial canyons 537

Figure 4. Spectral variations in surface motions around the canyon with

β = 60◦ at (a) α = 0◦ and (b) α = 45◦.

inner sum with index n is truncated to N or N − 1 terms (see eqs

D3–D7 and D13–D15 in Appendix D), and it should be calculated

accurately by numerical testing for its convergence, thereby leav-

ing only one parameter (i.e. summation indices M) to remove the

problem of relative convergence. Numerical experiments show that

more terms are required as the wave frequency increases.

In the following, the dimensionless frequency η is defined as

η =
ka

π
=

2a

λ
. (40)

3.1 Validation for the limiting case

When the size of region 2 becomes very small (i.e. β → 180◦),

the sectorial canyon approximates to the semi-circular one. Since

Trifunac (1973) derived an exact analytical solution to antiplane

scattering induced by a semi-circular canyon, several cases shown

in figs 6 and 8 of Trifunac (1973) are taken as validation examples.

Computed results pertinent to the case of η = 0.25 at oblique inci-

dence (α = 60◦) are given in Fig. 2(a), while those relative to the

case of η = 1.25 in Fig. 2(b). Specific locations on the canyon sur-

face ranging between x/a = −1 and 1 are displayed by a bold black

line. Figs 2(a) and (b) exhibit good consistency between the present

results and those of Trifunac (1973). Obviously, results ensure that

there is no mistake in the formulism presented. In addition, one

can find that at a relatively high frequency (see Fig. 2b), the results

of this study are very close to those of Trifunac (1973) when the

selected value of β is larger than 170◦. However, at a relatively low

frequency (see Fig. 2a), in order to arrive at a good approximation

to the result of Trifunac (1973), β has to be larger than 179◦. The

reason is that the canyon can easily hamper the incident waves with

relatively short wavelengths, and, therefore, only a small amount of

scattered waves can penetrate into region 2.

3.2 Accuracy and performance of the accurate RMT

Tables 1 and 2 demonstrate three sets of computed values to the first

components of wavefield expansion coefficients in regions 1 and 2 at

oblique incidence (α = 30◦). The central angle of the canyon is set

to be β = 45◦. Table 1 corresponds to a low-frequency case (η = 2),

while Table 2 to a high-frequency case (η = 12). To manifest the

accuracy and efficiency of the accurate RMT, calculated results of

the series solution derived by the RMT (see Appendix E) are also

included in Tables 1 and 2.

As shown in Table 1, the accurate RMT guarantees 4-decimal

place accuracy at M = 12 (a 12 × 12 matrix required), and 8-

decimal place accuracy is attainable at M = 42 (a 42 × 42 matrix

needed). When the wave frequency becomes higher (see Table 2), 4-

decimal place accuracy can be achieved at M = 49, and 8-decimal

place accuracy at M = 95. By contrast, results obtained by the RMT

converge extremely slowly. The RMT gets only 4-decimal place ac-

curacy at best for the low-frequency case, albeit a huge value of

M = 1000 (a 1000 × 1000 matrix solved) adopted. As seen in Ta-

ble 2, the RMT with a vast truncation value merely maintains 2- or

3-decimal place accuracy at a very high frequency. Undoubtedly,

Tables 1 and 2 show that the employment of the accurate RMT is

much more efficient than that of the RMT. The reason to get such

good results is the inclusion of near-corner stress singularity in the

solution procedure.

3.3 Surface and subsurface motions

in the frequency domain

Fig. 3 displays the surface displacement amplitudes versus the di-

mensionless horizontal distance for seven incident angles at a rel-

atively high frequency (η = 4). From Fig. 3, one can find that the

relatively high levels of ground shaking are likely to occur frequently

near the upper left corner (ULC) of the canyon. The maximum value

of displacement amplitudes tends to increase as the angle of inci-

dence bends towards the horizontal ground surface. Surface motions

on the illuminated side become more oscillatory than those on the

shielded side. For horizontal incidence (α = −90◦) in Fig. 3(d), the

peak amplitude can be up to about 2.5 times that of the free-field

response.

For the sake of revealing the influence of dimensionless fre-

quencies on surface motions, Fig. 4 gives the spectral variations

in displacement amplitudes for vertical and oblique incidence (i.e.

α = 0◦ and 45◦) with β = 60◦. As seen in Fig. 4(a), the upper right

corner (URC) of the canyon (0 < x/a < 0.5) behaves as a concen-

trator collecting the wave energy, especially for the high-frequency

cases (6 < η < 12). In Fig. 4(b), similar focusing phenomenon can

also be observed at locations close to the ULC of the canyon. The

amplification factor can reach the values of 2.3 and 2.0 for vertical

and oblique incidence, respectively.
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Figure 5. Subsurface motions around the canyon with β = 60◦ for η = 8. (a) α = 0◦; (b) α = 90◦; (c) α = −60◦; (d) α = −90◦.

Figure 6. Synthetic seismograms for fc = 2 Hz at β = 60◦. (a) α = 0◦;

(b) α = 30◦.

Figs 5(a)–(d) exhibit the subsurface motions around the canyon

at α = 0◦, 90◦, −60◦ and −90◦, respectively, when η = 8. The local

maximum displacement amplitudes occur on the right-hand side of

the flat ground surface for vertical incidence (α = 0◦) in Fig. 5(a),

and on the even surface of the canyon for oblique incidence in

Fig. 5(c). For the case of horizontally incident waves (see Figs 5b

and d), seismic motions in the illuminated region can be amplified

at least two times more than those in the nearby region. This may

be attributed to the constructive interference between the incident,

reflected, and scattered waves.

Overall, surface and subsurface motions in the vicinity of the

canyon are dependent not only on the central angle of the canyon

but also on the frequency and angle of incidence of arriving waves.

3.4 Surface and subsurface motions in the time domain

Using the fast Fourier transform algorithm, one may pursue the

time-domain responses from the preliminary results obtained in

the frequency domain. The incident signal is a symmetric Ricker

wavelet (Ricker 1945), which is defined to be

u(t) = (2π 2 f 2
c t2 − 1) exp(−π 2 f 2

c t2), (41)

where fc is the characteristic frequency and is set to be 2 Hz here.

Computations are made at a number of discrete frequencies ranging

from 0 to 8 Hz with an interval of 0.0625 Hz. The time window is

chosen as 16 s. The canyon radius a and shear-wave velocity cs are

set to be 1 km and 1 kms−1, respectively. The central angle of the

canyon is β = 60◦.

Fig. 6 displays two synthetic seismograms at vertical and oblique

incidence (α = 0◦ and 30◦). At the top of Fig. 6(b), four signals

received after the direct-wave signals are labelled, in turn, by arrows

B, L1, L2 and L3, while at the bottom of Fig. 6(b), three signals

are designated by arrows B, R1 and R2. From Figs 6(a) and (b), the

amplifications of surface motions can be up to about 1.62 and 1.82
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Circular sectorial canyons 539

Figure 7. Snapshots for subsurface motions around the canyon with β = 60◦ at α = 30◦. (a) t = 3.0 s; (b) t = 3.5 s; (c) t = 4.0 s; (d) t = 4.5 s; (e) t = 5.0 s;

(f) t = 5.5 s; (g) t = 6.0 s; (h) t = 6.5 s.

times those of the free-field response under vertical and oblique

incidence, respectively.

In order to show the discrimination between different signal

sources, eight snapshots of transient subsurface motions at α = 30◦

are shown in Fig. 7. Furthermore, all arrows marked in Fig. 6(b)

are appropriately tagged in Fig. 7. In Fig. 7(a), the incoming pulses

impinge on the canyon bottom. In Fig. 7(b), a scattered wavetrain

B (i.e. arrow B in Fig. 6b) radiates from the canyon bottom. In

Fig. 7(c), the incident pulses reach the URC of the canyon. The

scattered waves arising from the ULC of the canyon and the scat-

tered waves B combine together on the left-hand side of the hor-

izontal ground surface. Fig. 7(d) shows two new scattered waves

(see arrows L1 and R1) radiated from the two upper corners of the

canyon. In Figs 7(g) and (h), the scattered waves L2, L3 and R2

generate. The amplitudes of scattered waves L2 and L3 are smaller

than those of R2.

In general, the bottom and two upper corners of the canyon behave

as new wave sources. A key feature of the diffraction is that a part

of the reflected wave front from the horizontal ground surface is cut

off by the canyon and then continuously regenerates itself.

4 C O N C LU S I O N S

A rigorous series solution was derived for the SH-wave scattering

by a circular sectorial canyon. A robust, accurate RMT proposed

herein has successfully combined the RMT with the forethought of

corner singularity. Selected basis functions explicitly include and

can correctly model the known singularity in stress fields around

the canyon bottom. A set of integral equations for stress fields at the

auxiliary interface has been derived and then solved by the Galerkin

method. Both the steady-state and transient variations in surface and
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subsurface motions have been evaluated and analysed . Comparing

with the computational results using the RMT, the accurate RMT

indeed performs well without any excessive computational effort.

Such a fast, convergent technique not only provides a reliable bench-

mark for assessing the results of other numerical approaches, but

also has a promising potential to attack similar problems with trou-

blesome geometric singularities.
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A P P E N D I X A : D E R I VAT I O N O F E Q ( 1 0 )

For the enclosed region 2, eq. (1) written in polar coordinates takes

the following form

1

r

∂

∂r

(

r
∂ u2

∂ r

)

+
1

r 2

∂2u2

∂θ 2
+ k2u2 = 0. (A1)

Using the MSV (see e.g. Pivato 2010, section 16C; Arfken et al.

2013, section 9.4), we take a separated solution in the form

u2(r, θ ) = R(r )�(θ ), (A2)

with the separation constant as ν̃2, we can decompose eq. (A1) into

two linear homogeneous ordinary differential equations in r and θ ,

respectively:

R′′(r ) + r−1 R′(r ) +
(

k2 −
ν̃2

r 2

)

R(r ) = 0, (A3)

�′′(θ ) + ν̃2 �(θ ) = 0. (A4)

The radial part (eq. A3) can be easily transformed into Bessel’s

differential equation. Taking into account the fact that the solution

has to be finite at the origin r = 0, and consequently getting rid of

the terms involving Bessel functions of the second kind, the general

solution of eq. (A3) can be expressed as

R(r ) = c1 Jν̃(kr ), (A5)

in which c1 is the arbitrary constant.

On the other hand, the angular part (eq. A4) has the following

family of solutions:

�(θ ) = c2 cos ν̃ θ + c3 sin ν̃ θ, (A6)

where c2 and c3 are arbitrary constants. Applying the zero-stress

condition at θ = π/2, inserting eq. (4) into eq. (A6) leads to

c2 = c3

cos(ν̃ π/2)

sin(ν̃ π/2)
. (A7)

Employing eq. (A7), we may rewrite eq. (A6) as

�(θ ) = c̃3 cos ν̃
(

θ −
π

2

)

. (A8)

In order to determine ν̃, substituting eq. (A8) into the stress-free

condition at θ = −π/2 + β, eq. (4), yields

ν̃ =
n π

π − β
, n = 0, 1, . . . . (A9)

After setting ν̃ = nν, eqs (A5) and (A8) become the building blocks

with which we construct the general solution for region 2 by linear

superposition, that is, eq. (10).

A P P E N D I X B : S I N G U L A R S T R E S S

F I E L D S N E A R T H E S A L I E N T C O R N E R

In order to reveal the existence of stress singularity in the vicinity

of the canyon bottom, we turn to the derivation of stress fields in a

wedge-shaped region (with an internal angle of 2π − 2β̂). Referring

to the geometric layout shown in fig. 1 of Tsaur & Chang (2008)

(or that in fig. 1 of Tsaur et al. 2010) and following eq. (13) of

Tsaur & Chang (2008) (or eq. 10 of Tsaur et al. 2010), the antiplane

displacement fields within the region 2 (i.e. corner region) can be

expressed as

û2(r1, θ1) =
∞

∑

n=0

Ĉn J2n ν̂(k r1) cos(2n)ν̂θ1

+
∞

∑

n=0

D̂n J(2n+1)ν̂(k r1) sin(2n + 1)ν̂θ1, (B1)

where ν̂ = π/(2β̂) and r1 is the radial distance from the apex of

the wedge to the observed point. Note that eq. (B1) intrinsically

satisfies the Helmholtz equation and the zero-stress conditions on

both sides of the corner region.

As to the stress fields, their components in the radial and circum-

ferential directions can be written, respectively, as

τ̂ (2)
r1 z = μ

∂ û2

∂r1

(r1, θ1), (B2)

τ̂
(2)
θ1 z =

μ

r1

∂ û2

∂θ1

(r1, θ1). (B3)

Substituting eq. (B1) into (B2) gives

τ̂ (2)
r1 z(r1, θ1) =

kμ

2

∞
∑

n=0

Ĉn J2n ν̂−1(k r1) cos(2n)ν̂ θ1

−
kμ

2

∞
∑

n=0

Ĉn J2n ν̂+1(k r1) cos(2n)ν̂ θ1

+
kμ

2

∞
∑

n=0

D̂n J(2n+1)ν̂−1(k r1) sin(2n + 1)ν̂ θ1

−
kμ

2

∞
∑

n=0

D̂n J(2n+1)ν̂+1(k r1) sin(2n + 1)ν̂ θ1. (B4)

Accordingly, substituting eq. (B1) into (B3) yields

τ̂
(2)
θ1 z(r1, θ1) = −

2μν̂

r1

∞
∑

n=0

n Ĉn J2n ν̂(k r1) sin(2n)ν̂ θ1

+
μν̂

r1

∞
∑

n=0

(2n + 1) D̂n J(2n+1)ν̂(k r1) cos(2n + 1)ν̂ θ1.

(B5)

From the power-series expansion for Bessel functions of the first

kind (e.g. Jeffrey & Dai 2008, pp. 291, section 17.2.1.1, eq. 6), we

have

Jζ (ϕ) =
(ϕ

2

)ζ
∞

∑

m=0

(−1)m

m! Ŵ(ζ + m + 1)

(ϕ

2

)2m

. (B6)

For −1 < ζ < 0, the leading term tends to an unbounded value

when the argument ϕ approaches zero, indicating the existence of

a singularity of the type ϕζ . From eq. (B6), the stress fields around

the corner point can be expressed as a power series in r1.
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Applying eq. (B6) to (B4) and (B5), one can easily find that for

radial stresses close to the tip of the wedge, the dominant singularity

arises in the first term of the third infinite series on the right-hand

side (RHS) of eq. (B4). Similarly, for angular stresses, a singularity

exists due to the first term of the second infinite sum on the RHS

of eq. (B5). These imply that the extremely near-field behaviour of

stress components in the neighbourhood of the corner point should

have the following forms:

lim
r1 → 0

τ̂ (2)
r1 z(r1, θ1) = O(r ν̂−1

1 ), (B7)

lim
r1 → 0

τ̂
(2)
θ1z(r1, θ1) = O(r ν̂−1

1 ), (B8)

where ν̂ − 1 stands for the order of stress singularity.

Considering a special case of right-angled corners (i.e. β̂ = 3 π/4

and ν̂ = 2/3), the stress function P(θ ) introduced in eq. (11) must

behave like r
−1/3

1 . On the other hand, a limiting case is present when

both sides of the wedge coincide with each other (i.e. β̂ = π and

ν̂ = 1/2). Such a case corresponds to that of zero-thickness cracks

(see fig. 1 of Tsaur et al. 2011). Based on eqs (B7) or (B8), the

crack-tip stress singularity is of order r
−1/2
1 , which is commonly

known in the field of fracture mechanics (e.g. Freund 1998).

A P P E N D I X C : A D D I T I O NA L R E M A R K S

F O R E Q. ( 2 2 )

When using the traditional RMT, the presence of singularities usu-

ally makes the construction of field solutions in the domains with

non-smooth edges require a vast amount of eigenfunction expan-

sions. Such a circumstance is analogous to the well-known Gibbs–

Wilbraham phenomenon, that is, an issue regarding the slow conver-

gence of the Fourier partial sums at a jump discontinuity. Gottlieb

& Shu (1997) proposed the Fourier–Gegenbauer method (FGM)

to entirely remove the Gibbs phenomenon. The core of the FGM

hinges on the re-expansion of Fourier partial sums into the rapidly

convergent Gegenbauer series. This solution concept allows one to

deal with the problems involving singularities. Thus, the weighted

Gegenbauer polynomials, that is,

(1 − σ̃ 2)ξ−1/2C
ξ

2m(σ̃ ), (C1)

provide a wide choice of basis functions because the weight func-

tion (1 − σ̃ 2)ξ−1/2 can be adjusted flexibly to cover the expected

singular behaviour. Evidently, if one attempts to explicitly model

the dominant feature of singular stress fields around a right-angled

corner, taking ξ = 1/6 in eq. (C1) gives an inverse cubic-root sin-

gularity. Furthermore, the form of the argument σ̃ depends only on

the location of singular points. The reduction factor ψm is incorpo-

rated into the weighted Gegenbauer polynomials, so as to obtain a

chain of concise results (eqs 24–26) after carrying out the integral

transform shown in eq. (23).

Previous studies concerning the application of Gegenbauer poly-

nomials to treat the corner singularities may trace back to those in

the field of electromagnetics (e.g. Zargano et al. 1979).

A P P E N D I X D : E X P R E S S I O N S O F

A S S O C I AT E D F U N C T I O N S I N E Q. ( 3 9 )

In eq. (39), the involved functions used for brevity are listed as

follows:

Uq,m = Û (1)
q,m + Û (2)

q,m + Û (3)
q,m, (D1)

Vq = V̂ (1)
q + V̂ (2)

q , (D2)

where

Û (1)
q,m =

1

π

∞
∑

n=0

εn H̃ 2n J C1
m,n J C1

q,n + F1, (D3)

Û (2)
q,m = −

2

π − β

∞
∑

n=0

εn J̃ n J C2
m,n J C2

q,n + F2, (D4)

Û (3)
q,m =

2

π

∞
∑

n=0

H̃ 2n+1 J S
m,n J S

q,n + F3, (D5)

V̂ (1)
q =

4i

πa

∞
∑

n=0

εn(−1)n cos(2n)α

H
(2)′
2n (ka)

J C1
q,n, (D6)

V̂ (2)
q =

8

πa

∞
∑

n=0

(−1)n sin(2n + 1)α

H
(2) ′
2n+1(ka)

J S
q,n, (D7)

together with

J̃ n =
Jn ν(ka)

J ′
n ν(ka)

, (D8)

H̃ n =
H (2)

n (ka)

H
(2)′
n (ka)

, (D9)

J C1
m,n =

⎧

⎨

⎩

6

21/3Ŵ(1/6)
δm,0, n = 0

(−1)m+n J2m+1/6[2n(π−β)]

[4n(π−β)]1/6 , n 	= 0
, (D10)

J C2
m,n =

⎧

⎨

⎩

6

21/3Ŵ(1/6)
δm,0, n = 0

(−1)m J2m+1/6(nπ )

(2nπ )1/6 , n 	= 0
, (D11)

J S
m,n = (−1)m+n J2m+1/6 [(2n + 1)(π − β)]

[(4n + 2)(π − β)]1/6
. (D12)

In eqs (D10) and (D11), δm,0 is the Kronecker delta function. Be-

sides, the Kummer’s transformation (Abramowitz & Stegun 1972),

involving some auxiliary series constructed via the asymptotic ex-

pressions of Bessel and Hankel functions for large arguments and

orders, may be exploited to accelerate the convergence of the first

series in eqs (D3)–(D5). Thus, the second terms in eqs (D3)–(D5)

are given, respectively, as follows:

F1 =
2−8/3π−2a

(π − β)4/3

{ ∞
∑

n=1

n−7/3
[

cos(2n)β −
√

3 sin(2n)β
]2

−
(1 + i

√
3)Li7/3(e−4iβ ) + (1 − i

√
3)Li7/3(e4iβ )

2
+ 2ζ (7/3)

}

,

(D13)

F2 = −
2−1/3π−2a

(π − β)4/3

{ ∞
∑

n=0

[

cos(2n + 1)β −
√

3 sin(2n + 1)β
]2

(2n + 1)7/3

− 2−10/3e−2iβ (1 + i
√

3)�
(

e−4iβ , 7/3, 1/2
)
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− 2−10/3e2iβ (1 − i
√

3)�
(

e4iβ , 7/3, 1/2
)

− (2−4/3 − 4)ζ (7/3)

}

, (D14)

F3 =
2−1/3π−7/3a

ν(π − β)

[ ∞
∑

n=1

n−7/3 − ζ (7/3)

]

, (D15)

where Lin(·) is the polylogarithm, ζ (·) is the Riemann zeta function

and �(·) is the Lerch transcendent.

A P P E N D I X E : S E R I E S S O LU T I O N

D E R I V E D B Y T H E R M T

The series solution derived by the RMT is given herein. Using

eq. (3) and multiplying the stress continuity condition (eq. 11) by

cosine/sine functions, the following relations are obtained.

An =
εn

π

∞
∑

p=0

C p I CC
p,n , (E1)

Bn =
2

π

∞
∑

p=0

C p I C S
p,n, (E2)

where the functions I CC
p,n and I C S

p,n are given by

I CC
p,n =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

π − β, p = n = 0

4n(π−β)(−1)n

8n
+ sin[n(3π−4β)]

8n
, pν = 2n 	= 0

2n cos[pν(π−β)] sin[n(π−2β)]

4n2−(pν)2

− pν cos[n(π−2β)] sin[pν(π−β)]

4n2−(pν)2 , pν 	= 2n

, (E3)

I C S
p,n =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2(2n+1)(π−β)(−1)n

4(2n+1)
+ sin[n(3π−4β)−2β]

4(2n+1)
, pν = 2n + 1

− (2n+1) cos[pν(π−β)] sin[n(π−2β)−β]

(2n+1)2−(pν)2

+ pν cos[n(π−2β)−β] sin[pν(π−β)]

(2n+1)2−(pν)2 , pν 	= 2n + 1

. (E4)

Next, applying eqs (9) and (10) to the displacement continu-

ity condition (eq. 37), and employing eqs (E1) and (E2) to elim-

inate the scattering coefficients An and Bn yields the following

system of linear algebraic equations pertinent to the unknown

coefficients Cn .

∞
∑

n=0

Cn Gq,n = Wq , q = 0, 1, . . . , (E5)

in which

Gq,n =
1

π

∞
∑

m=0

εm H̃ 2m I CC
n,m I CC

q,m +
2

π

∞
∑

m=0

H̃ 2m+1 I C S
n,m I C S

q,m

− δn,q

π − β

εq

J̃ q , (E6)

Wq =
4i

πa

∞
∑

n=0

εn(−1)n cos(2n)α

H
(2)′
2n (ka)

I CC
q,n

+
8

πa

∞
∑

n=0

(−1)n sin(2n + 1)α

H
(2) ′
2n+1(ka)

I C S
q,n . (E7)

In eq. (E5), choosing a finite truncation of the infinite series

is required. The weighting indices q and the infinite sums with

indices n and m are truncated after M − 1 terms. Consequently, a

system of M equations with M unknowns can be solved by standard

matrix techniques. Once the coefficients Cn are found, the scattering

coefficients An and Bn can be straightforwardly evaluated via eqs

(E1) and (E2).
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