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Summary 

The method of matched asymptotic expansions is used to look into the 
problem of the scattering of plane SH waves by topographic irregularities 
of a restricted range in an otherwise plane half-space when the charac- 
teristic length dimension of the irregularity is much smaller than the 
wavelength of the incident wave. In contrast to previous work the slope 
of the irregularity remains arbitrary. Expressions for the near and far 
scattered fields are obtained. Comparison between this theory and the 
regular perturbation technique (which also assumes that the irregularity 
has a small slope) show that both agree when the slope is small but differ 
in the general case. Results are given for irregularities in the shape of 
triangles, trapezia and semicircles. 

1. Introduction 

The San Fernando earthquake of 1971 February 9, recently stimulated interest in 
the effect of topography on the propagation of seismic waves. The contribution of 
the present work will be to analyse asymptotically in the limit of the long waves, the 
effect of an irregularity of finite extent on the otherwise plane surface of a half space. 
The problem of the scattering of elastic waves by such an irregularity is a complex 
one, and solutions for arbitrary wavelengths can only realistically be sought numeric- 
ally (Boore 1972, 1973; Bouchon 1973). One exception to date is for the scattering 
of SH waves by a groove of semi-circular cross-section (Trifunac 1973); this solution 
is rather special but does provide at least one check on the validity of other approaches, 
numerical or analytical. 

Analytical methods have so far been restricted to regular perturbation techniques, 
appropriate to small amplitude irregularities of gentle slope (see for instance Gilbert & 
Knopoff; McIvor 1969). These have the virtue of providing simple expressions for 
the scattered field far from the irregularity, so long as they are applicable, but do not 
give the motion on the scatterer itself. Hudson et al. (1973) have confirmed that the 
theory and experiment agree for P to Rayleigh wave scattering at surface irregularities 
with slopes of 25" or less from the median plane, when the irregularity is small. 

In the present work, we employ the method of matched asymptotic expansions 
(Van Dyke 1964; Cole 1968; Eckhaus 1973; Nayfeh 1973). This removes the restriction 
on the slope of the irregularity, so that (finite) irregularities of any shape can be 
considered, but retains the restriction to long waves. Like the regular perturbation 
technique, it yields simple expressions for the far scattered field, but also yields 
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686 F. J. Sabina and J. R. Willis: 

expressions for the motion in the vicinity of the irregularity. Here, the method is 
applied to the scattering of SH waves; results concerning the scattering of Rayleigh 
waves will be reported separately. 

2. Statement of the problem 

We shaY consider a medium of homogeneous, isotropic, elastic material of 
density p and elastic constants 1 and p in a state of anti-plane strain. Thus the displace- 
ment of the point given by (x’,  y ’ ,  z’) referred to Cartesian axes and at time t is given 

Let us consider the problem of the scattering of plane SH waves by an uneven 
surface as follows: when a plane SH wave wi’ is incident upon the free surface of a 
perfectly plane half-space, i.e. a half space with no surface irregularities, it produces 
a reflected plane SH wave w,’ such that a displacement w‘ = wi’+ w,’ results. Now, 
if an irregularity is present it produces an additional wave w,’ which we shall refer to 
as the scattered SH wave produced by the irregular topography, so that a wave 

by (O,O, w’(x’, y‘, 0). 

w‘ = Wi’ + wr‘ + w,’ (2.1) 
arises. 

We assume the wave w’(x’, y ’ ,  t )  to be a simple harmonic function of time with 
circular frequency w. Hence the equation satisfied by the amplitude w’(x’, y ‘ )  is the 
reduced wave equation, i.e. 

V:, y ,  w’ + k2 w‘ = 0, in d’, 
where 

is the Laplacian operator in two dimensions, d‘ is the irregular half space given by 
y’ > f ’ (x ’ ) ,  k = w/P is the wavenumber and /? = (p/p)f is the velocity of propagation 
of equivoluminal waves. 

The free surface condition satisfied by the wave can be written as 

where n’ is the inward unit normal to the boundary ad’ of d’. 
The incident plane wave wi’, of unit amplitude, and reflected plane wave wr’, 

assumed known, satisfy (2.2) in d’ and the free surface condition (2.3) on y‘ = 0. 
The scattered wave w,‘ must then satisfy 

V$ y.wl  + k2 w,’ = 0, in d‘,  (2 * 4) 

To render the solution of (2.4) and (2.5) unique, we require w,‘ to satisfy Sommer- 
feld’s condition for outward radiation, namely 

where r’ = (x”+y”)* (Sommerfeld 1949, p. 193). 
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Scattering of SH waves 687 

The complete solution of the Neumann problem (2.4) to (2.6) cannot be found 
in closed form, so we shall restrict our attention to finding an asymptotic solution 
when the wavelength of the incident wave is much larger than the characteristic linear 
dimension 1' of the irregularity. Or in other words, if we introduce the dimensionless 
parameter E = kl', we seek an asymptotic solution w,' as E tends to zero by the method 
of matched asymptotic expansions (Van Dyke 1964). We shall only deal with a 
finite surface irregularity on an otherwise flat half-space, with no restriction imposed 
on its slope. 

3. The outer problem and expansion 

In order to obtain the outer problem and the outer expansion we have to solve the 
exact differential equation to get solutions satisfying the radiation condition but not 
necessarily with the exact boundary condition imposed on the irregularity. We there- 
fore choose the wavenumber k as a scaling factor so that independent space variabIes 
become dimensionless. Thus we define outer independent variables x = (x ,  y )  and 
corresponding polar co-ordinates (r ,  6) such that 

x = kx' and r = kr', 8 = d', (3 f 1) 
where x' = (x', y')  and (r', 0') are the corresponding polar co-ordinates. 

In the same way the characteristic linear dimension 1' of the irregularity is 
normalized to kl'(=E). The surface irregularity is finite and so is contained in a 
neighbourhood of the origin in x-space of order E .  In the limit as E tends to zero with 
fixed outer co-ordinates x and y ,  this neighbourhood shrinks to a point, the origin. 
Then the outer domain d becomes the half-space y > 0 and it is to be expected that 
terms with singularities at the origin must be admitted in the outer expansion of 
wsf,  whose amplitudes must be fixed by matching. 

Also dimensionless dependent variables are given by 

w, = w,', wi = wily w, = w,' (3.2) 

V,", w,+w, = 0 in y > 0, (3.3) 

since wi' is of unit amplitude. In these new variables, equations (2.4), (2.5) and 
(2.6) become 

on y = o  

1-00 lim r+(%+iw,) = 0. (3.5) 

The general solution of the outer problem (3.3) to (3.5) can readily be found by 
separation of variables. We shall assume the asymptotic expansion as E --f 0 

m 

n = O  
w,(r, e) - C E" un(c)H,'2)(r) cos ne, (3.6) 

where Hi2) ( r )  is the Hankel function of the second kind of order n. The coefficients 
un(n 2 0) are undetermined constants which are allowed to depend on E in case the 
subsequent matching demands it. They are assumed to be such that a, = 0(1) or 
smaller for n > 0 and a, = O(E)  or smaller; in this situation terms like 

E" a, Hd2)(r )  cos ne, for n 2 0, 

remain bounded for each ( X ,  Y )  # (0,O) (see (4.1) below) when they are written in 
inner variables and expanded asymptotically for smalf E. Moreover it proves con- 
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venient to write 

where we take a&') = 0. 
The solution ( 3 . 6 )  is obviously not uniformly valid throughout the outer domain d 

because each of the Hankel functions is singular at the origin. To study the solution 
in the vicinity of the origin, we shall solve, with the exact boundary condition on the 
irregularity an approximate differential equation without the radiation condition. 
Again unspecified constants will appear in this solution. They will have to be deter- 
mined together with the a,'s by the matching which provides the extra boundary 
condition. 

F. J. Sabina and J. R. Willis 

a, = a,'O)+Ea,(l)+E' a,'''+ ..., (n 2 O), (3.7) 

4. The inner problem and expansion 

with corresponding polar co-ordinates R and 0 such that 
We stretch our variables by introducing inner independent variables X and Y 

In terms of X and Y 

We define the inner 
F ( X )  = j'(Z'X)/Z'. 

the equation for the free surface becomes Y = F ( X )  where 

dependent variables by the equations 

w, = w,, wi = wi, w, = w,. (4.2) 

Viy W,+E' W, = 0, in D, (4.3) 

After substituting (4.1) and (4.2) into (2.4) and (2.5) we obtain the equations 
of the inner problem, i.e. 

-- a~ onaD, a wi -- - -- a w ,  
aN aN a" (4.4) 

where D is the region given by Y > F(X) and N is the inward normal to the boundary 

Instead of the radiation condition, we shall require W,(X) to be bounded in any 
finite domain of D containing the topographic irregularity. 

Before solving the inner equations, we need to know the right-hand side of (4.4). 
The incident wi' and reflected w,I SH waves in a perfectly plane half-space satisfying 
a free surface condition, are, in terms of the inner variables, 

ao of D.  

Wi = exp [is(X cos $ + Y sin $)I, 
W, = exp [ie(X cos $ - Y sin $)I, ] (4.5) 

where $ is the angle of incidence. 

explicitly as 
The contribution of these waves to the right-hand side of (4.4) can now be written 

after expanding terms in powers of E, where 

M(')(x) = - 2i cos $ sin a. n, 
M(')(x) = 2(x  cos' $ sin a. n - Ysin2 $ cos a. n). ) (4.7) 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/42/2/685/651745 by guest on 21 August 2022



Scattering of SH waves 689 

Here a. 7~ is the angle formed by the local tangent to the surface Y = F ( X )  and the 
X -  axis. 

Let us now construct an asymptotic expansion for W,. We note that only positive 
integer powers of E appear in the inner equations, so we may assume that as E 4 0 

W,(X) - EW,(1)(X) + E 2  W@'(X) + . . . (4 8) 
where, for i = 1, 2, 

V i  WJi)  = 0, in D, (4 9) 

(4.10) 

and Ws(i) is bounded in any finite domain in D which contains the irregularity. 
To solve the equations (4.9) and (4. lo), we employ a conformal transformation 

of the Z( = X + i Y = R exp (i0)) plane into the [( = E + iq = p exp (ix)) plane which 
transforms Y 2 F ( X )  into the half-plane q 2 0. Let this transformation be Z = g([), 
chosen in such a way that the finite interval [A,, A,] of the real axis in the C-plane is 
mapped into the topographic irregularity. Under this mapping the equations (4.9) 
and (4.10) transform, for i = 1 ,  2, to 

v$,, wJi) = 0, in q > 0, (4.11) 

(4.12) 

and W>')([) is bounded in any finite domain in q > 0 which contains the interval 
[A,, A,]. It is clear that outside the interval [A,, A,] the Neumann condition (4.12) 
has zero right side. 

It is reasonable to assume, further, that the conformal mapping has, for large C,  
the asymptotic expansion 

(4.13) 

where b is real and positive, since the irregularity of the boundary Y = F ( X )  is of 
finite extent; this property is displayed by all of the mappings used in the examples 
given in Section 6. The function inverse to (4.13) has an expansion of the same form: 

(4.14) 

Also the functions In 5 and C", m an integer, have similar expansions, i.e. 
m 

n = l  
In C = In ( b - ' Z ) +  C dnZ-"- l ,  (4.15) 

m 

n = l  
C" = b-'"Z"+ C em,nZ-nim-l ,  (4.16) 

The coefficients appearing in (4.14) to (4.16) are related to those appearing in (4.13). 
The solution of the equations (4.1 1) and (4.12) can readily be found. A particular 

solution W,") is given by 

(4.17) 

(cf., e.g. Kantorovich & Krylov 1958, p. 579). The general solution of (4.11) and 
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690 F. J. Sabina and J. R. Willis 

(4.12) is formed by adding to (4.17) the general solution of the homogeneous problem 
associated with (4.11) and (4.12); i.e. Laplace's equation together with a homo- 
geneous Neumann condition on q = 0 and boundedness in any finite domain in 
q > 0 containing [A,, ,Ip]. This is given by 

00 

C A i ' ) ( ~ ) p "  cos nx ( i  = 1,2) (4.18) 
n = O  

where Adi)(&), n > 0, are undetermined complex constants whose possible dependence 
upon E is admitted at this stage in case the subsequent matching demands it. Now 
terms like E~ A,,(')Re[P] for n = i ,  i + 1 , . . . and i = 1,2 give rise to unbounded terms, 
when they are expanded asymptotically for small E ,  after being written successively 
in inner and outer variables. For example 

] (4.19) - m + n - 1  

I m 
E~A, , (~ )R~[Y]  = EiA,,(')Re b-"z"+ C en,mZ-mfn-t [ m = t  

m 
= E'A,,(')Re E-"b-"z"+ C &m-n't en,,z [ m = t  

is bounded for each fixed (x ,  y )  # (0,O) only when A,,(i) = O(E"- ') for n = i ,  i + 1 , . . . 
and i = 1,2, or smaller. But terms like this, in any case, appear later in the expansion 
(4.8) and so may be neglected at this stage. Hence the admissible general solution 
of the homogeneous equations for i = 1,2  is simply given by 

i 

n = O  
C Ad')(~)p" cos nx. (4.20) 

Finally, the admissible general solution of (4.11) and (4.12) for i = 1,2  is the 
sum of (4.17) and (4.20), i.e. 

If we expand the integrand in (4.21), we get 
i m 

n = O  [ n = t  
K(''(2;) = C Ad' )p"cosn~+n-~  B,(')lnp- C B ~ i ) n - t p - n c o s n ~ ]  (4.22) 

valid for 161 > max (lAll, lApl), where B,,(i), n = 0, 1,2, ... and i = 1,2 are constants 
defined by 

(4.23) 

The above constants for i = 1 are imaginary whereas those for i = 2 are real. 
In particular, we have that 

Bo(l) = 0, (4.24) 

B p  = 2s, (4.25) 

where S is the area under the curve Y = F ( X ) .  

5. The matching of inner and outer expansions 

We shall now proceed to relate the inner and outer expansions of the previous 
sections in order to fix the unknown constants which arose in each of them. This 
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Scattering of SH waves 69 1 

may simply be done using Van Dyke's asymptotic matching principle (Van Dyke 
1964, p. 64) which amounts to the following: 

the p-term inner expansion of (the q-term outer expansion = the q-term 

outer expansion of (the p-term inner expansion). (5.1) 

Here p and q may be taken as any two integers, equal or unequal. By definition the 
p-term inner expansion of the q-term outer expansion is found by rewriting it in 
inner variables, expanding asymptotically for small E, and truncating the result to p 
terms; and conversely for the right-hand side (RHS) of (5.1). 

When the matching is attempted, it can be seen that terms such as E and Elns 
appear, so let us assume that the first terms in the asymptotic sequence for both inner 
and outer expansions are 1,  dnc, E ,  c2 In& and 8'. Initially, we apply (5.1) with 
p = q = 3, that is, up to terms of order E in each expansion. Firstly, we form the 
RHS of (5.1) from the first three terms of the inner expansion, that is, from W:')(C) 
which, written in inner variables, becomes 

03 

03 Z-m-n-l] ) (5.2) 
n = l  [ m = l  

- C (xn)-'B,,(')Re b"Z-"+ C e-n,m 

valid for 161 > max (lAll ,  1AJ) where we have made use of (4.14), (4.16) and (4.24). 
We rewrite (5.2) in outer variables and expand it asymptotically for small E. 

Retaining 3 terms we have for the RHS of (5.1) 

~ p ) ~ - 1  cos e + & A p .  (5 * 3) 

Next we construct the left-hand side (LHS) of (5.1) from the 3 terms of the outer 
expansion 

which written in inner variables becomes 

E[~ , ( ' )H , (~ ) (J - )  + ~ , ( O ) H , ( ~ ) ( T - )  cos el, 

E [ U ~ ' ~ H o ' 2 ' ( E R )  + a,(0)Hl(2)(ER) cos 01. 

(5 * 4) 

(5  * 5)  

In the asymptotic expansion of (5.5) for small E ,  we use the expansion of the 
Hankel function for small values of its argument given by 

where y is the Euler constant (7 = 0.5772). By retaining 3 terms we get the LHS 
of (5. l), i.e. 

(5.7) 

To match we write (5.7) in outer variables and compare similar terms with (5.3). 
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692 F. J. Sabina and J. R. Willis 

Comparison of the coefficients of 1, Inr, r cos 0 and r -  ' cos 8 yields four equations 
for the four constants a,('), a,('), A,(') and A,('). This produces 

(5.8) 1 a,(') = q ( 0 )  = 0, 
A,(') = A (1)  N 0. 1 

Hence, there is no term of order elne in the inner expansion and no term of order E 
in the outer expansion. 

The next step is to use the matching principle with p = q = 5, that is, up to terms 
of order e2 in each expansion. Then the RHS of (5.1) becomes 

A,(o)b-2 r2 c o s 0 + ~ A ~ ( ' ) b - ~  r cos0-e' lneB,(')n-' 

and the LHS of (5.1) is given by 

2i c o s 0  2i 
n R  n 

- E' Ins-aJ2) 

After writing (5.10) in outer variables and comparing with (5.9) the coefficients 
of r2  cos 28, r cos 8, 1,  Inr, r-' cos 0 and r - 2  cos 20 we have six equations to fix the 
six unknowns: a,('), a'('), a,('), A&'), and The results are 

(5.11) 

Hence the inner and outer expansions become as E -+ 0 

(5.12) 

(5.13) 1 and iB,(" ib 
w,(x) - e' [ -j-H,(')(r) + -B1(')H{')(r) 2 cos 8 , 
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Scattering of SH waves 693 

respectively. The solution given by (5.12) and (5.13) is valid asymptotically as E 

tends to zero, and so may be expected to give a satisfactory approximation to the 
solution when E is small. It contains the smallest number of terms that could con- 
ceivably model the solution adequately, since the far field (5.13) is of order &’. In 
practice, equations (5.12) and (5.13) should provide a good approximation to the 
solution when E < 0.1, although this cannot be justified rigorously. In the following 
section, it will be demonstrated that (5.13) predicts the far field within 10 per cent 
when E is as large as 0.3, in the one case for which an exact solution is available for 
comparison. 

If we introduce the real coefficients aM and a,, which depend exclusively on the 
shape of the topography, defined by 

aM = s, (5.14) 

ib B , ( l )  a,=-- 
2 cos* ’ (5.15) 

the expression (5.13) becomes as E -+ 0 

ws(x) &’[iaM Ho’’’(r) + 0, H1‘”(r) cos 8 cos $1 (5.16) 

and aM, a, have the significance of monopole and dipole source amplitudes. An 
expression similar to (5.13) or (5.16) is obtained in Appendix A under the assumption 
that the slope of the irregularity is small. If we write (A. 5) in outer variables, we have 

(5.17) 
Comparing (5.16) with (5.17) we see that the coefficient of H&’)(r) is the same in 
both cases in spite of the fact that the latter is derived under a stronger restriction 
than that of the former, namely, it assumes a very small slope. On the other hand, 
the coefficient of H1(2’(r)  differs in general. 

ws(x) = E’ S[iH,,(2)(r)+H1(2)(r) cos 0 cos I + ~ ] + O ( E ~ ) .  

6. Examples 

Although the major part of this section will relate to irregularities of polygonal 
shape, a simple solution exists for a surface irregularity, consisting of a semi-circular 
groove. To fix ideas, therefore, this will be examined first. The function 

c = z+l/z  (6.1) 
maps the grooved half-plane into the upper half of the <-plane (Morse & Feshbach 
1953, p. 1227). First, it is readily obtained from (5.14) and (5.15) that 

I aM = 4 2 ,  
a, = rc, 

having evaluated B,( l )  from (4.23). The displacement of the groove itself is also of 
interest, and this can be obtained directly from the inner solution. Equation (5.12) 
gives, when z = exp(iOo), 

0 

C O S ~  Blnlcose-cose,lde 
n 

n 
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694 F. J. Sabina and J. R. Willis 

The total displacement W is the sum of Wi, W, and W,, where the former two are given 
by equations (4.5). Expanding Wi + W, to order E’ gives, when z = exp (iO0), 

W ,  + W, N 2 [ 1 + ie cos II/ cos 8, - ( E ~ / ~ ) ( c o s ~  t,b cos’ 8, + sin’ II/ sin’ O,)]. (6.4) 
Hence, from (6.3) and (6.4), the change in amplitude induced by W, is of order E’. 

The change in phase is of order E ,  except that, at the bottom of the groove, 8, = 7112 
and this term vanishes. When t,b = 7112, so that the incident wave is normal to the 
plane free surface, the total displacement at the bottom of the groove is given by 

in which the integral has the value - n(2 In 2+ 1)/4, precisely. 
The problem of scattering by a semi-circular groove has been solved exactly by 

Trifunac (1973), by separation of variables. The solution was in the form of an 
infinite series like (3.6) whose coefficients were determined directly from the boundary 
conditions on surface r = 1 of the groove. When r is large, the scattered field is given 
asymptotically by the first two terms in the series, and so has the form (5.16). In 
our notation, Trifunac’s results become 

2i J, ( E )  -4i[&Jo(&)- J1(&)] 
a D  = 

EZH1(2)(&) ’ &Z[EHO(’)(&) -H1‘”(E)] 
a, = 

which agree precisely with (6.2) as E + 0, and which are within 10 per cent of (6.2) 
when E -= 0.3. Unfortunately no such simple check can be made on ( 6 . 9 ,  because 
each term of Trifunac’s series is of order E’, so that the integral in (6.5) would need 
to be compared with the sum of the series. Also, the smallest value of E considered 
by Trifunac was n/4, so that (6.5) cannot be compared directly against his computed 
results. 

We shall now consider examples for which the shape of the surface Y = F ( X )  
is piecewise linear. The conformal transformation Z = g ( [ )  of the upper half of the 
[-plane into D can be effected by means of the Schwartz-Christoffel transformation 
(see for instance Kantorovich & Krylov 1958, p. 521), i.e. 

c 

where g,, g, and Lo are complex constants, I z i  ( i  = 1,2, ..., p )  are points on the real 
axis of the [-plane which correspond to the vertices Ai ( i  = 1 , 2, . . . , p )  of the polygon 
in the 2-plane and cli n (i = 1,2, ..., p )  are the magnitudes of the interior angles of 
the polygon, as shown in Fig. 1. They satisfy the equality 

P 

i = l  
c di = P. 

The points Ai are chosen so that they lie in a finite interval. Also we select the 
origin of co-ordinates so that -Al =.A,. The points outside the interval [A1, A,] 
on the real axis are mapped into the points on Y = 0 exterior to the irregularity. 

We shall now show that (6.6) has an expansion in the neighbourhood of the 
point at idnity of the form (4.13). 

Rewrite the integrand of (6.6) in the form 

fi (1- +)“’-’. 
i = l  
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Scattering of SH waves 695 

FIG. 1. Illustration of a polygonal irregularity, with p = 4. aOfn is the angle made 
by the side A, with the X-axis and is shown for i = 3. 

Here we used the relationship (6.7). Applying the binomial theorem we obtain the 
following expansion for (6.8) in the neighbourhood of the point at infinity 

valid for 111 > 11,1. After integration the right-hand side of (6.6) follows as 

bc+ b* In 5+ bo + 5 b, 5-". (6.10) 
n = l  

Clearly 

and 
b = g 1  

P 

i = l  
b* = g1 C (1-ai)li. 

(6.11) 

(6.12) 

The expansion (6.10) is of the same type as (4.13) provided b* = 0. Since three of 
the parameters l i  ( i  = 1,2, ..., p )  are at our disposal (Kantorovich & Krylov 1958, 
p. 524), this can always be achieved, and our formalism is applicable. 

Now let &,Hi) be the co-ordinates of the ith vertex of the polygon, so that 
H ,  = H p  = 0 and let (Lo, H,) correspond to the point c = lo. If the normalizing 
factor I' is chosen as lL2-L11, it follows that 

g1 = m 2  -LA2 +H221f/Jo(4, 1219 (6.13) 

g2 = Lo +iHo 
and 

(6.14) 

P- 1 
B ~ ( ~ '  = 21gll cos$ c sing,' Z . J ~ ( A ~ ,  Ai+l ) ,  (6.15) 

i = l  
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696 F. J. Sabina and J. R. Willis 

where 
di+ 1 

for i = 1,2, ..., p -  1 ,  j = 0, 1. cloi n is the angle formed between the side AjAi+ '  
of the polygon and the X-axis. (See Fig. 1.) 

Now we shall examine some particular examples and compare the coefficient a, 
derived by the regular perturbation technique (RPT) for the case where the slope of 
the topography is assumed to be small, and that derived by the method of matched 
asymptotic expansions (MAE) where the magnitude of the slope is arbitrary. 

As a first example we consider a surface irregularity in the form of an isosceles 
triangle with vertices at the points A l ( -  1,0), Az(O, H ) ,  A3(l, 0) and interior angles 
crn, (3 - 20071, an at each vertex respectively; H >< 0 according to c( 5 1. We map the 
points - 1,O and I on the real axis of the c-plane into the points A,, A, and A, of 
the Z-plane. The condition b* = 0 is thus satisfied. Choosing Lo = 0, the mapping 
function takes the form 

(6.17) 

where 
1 

B(&, p z )  = f tP1-'(l-t)@z-'dt (pi, p2 > 0) (6.18) 
0 

is the Beta function. 
Hence 

a, = 4H[1 +HZ]f B(2-a, a)[B(Q-a, a)]-'. (6.19) 

We plot a, against H in Fig. 2. We recall that H is normalized with respect to 
one half of the triangle base, so, in other words, in Fig. 2 a, is plotted against a 
measure of the slope of the irregularity (i.e. (dF/dX) = H ) .  We distinguish two cases: 
(a) a grooved surface or H > 0 and (b) a ridged surface or H < 0. For the former 
case, a, obtained by MAE is approximately linear in the range from H = 0 to about 
H = -0.1 where both theories agree. Outside this region, RPT and MAE disagree; 
a, derived from MAE appears to tend to the value -0.57 well below the values 
predicted by RPT. For the latter case, a, obtained by MAE is approximately linear 
from H = 0 to about H = 0.4 where both theories agree. Outside this range, the 
coefficient a, derived from MAE increases monotonically very rapidly with values 
above the ones predicted by RPT. We note that laM] < laD[ for MAE. 

As a second example we shall consider an isosceles trapeziform topography with 
vertices at the points A'(- 1,0), A,(-L, H ) ,  A3(L, H ) ,  A4(l, 0) and interior angles 
an, (2-cl)n, (2-a)n, an at each vertex respectively. The value of L is taken to be 
positive while H >< 0 according to a 3 1. We map the points - 1/K, - 1, 1 and 
l/K, where 0 < K < 1, of the real axis of the I-plane, into the points A,, A,, A3 
and A4 of the Z-plane. Again b* = 0 is satisfied. The value of K remains to be 
determined by solving an equation which relates the known ratio of the lengths of two 
sides of the trapezium, i.e. 

Jo(-l, 1) = PJo(1, 1/K) 
where 

(6.20) 

(6.21) 

and J o (  - 1, 1) and Jo(l, 1/K) are defined in (6.16). This equation may be solved 
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I I 

1 2 H  

' -3  

FIG. 2. The coefficient aD plotted against normalized height H for a triangular 
irregularity. A groove corresponds to H > 0 whereas a ridge is for H < 0. The 
results from the regular perturbation technique (RPT) and the method of matched 
asymptotic expansions (MAE) are shown. Note the agreement of both theories 

only when H (or the slope) is small, as expected. 

numerically for K by, for instance, an iterative procedure such as the Newton- 
Raphson method. 

The mapping function becomes 

(6.22) 

AA 
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I I 

-1 

-2 w 
-3 

FIG. 3. As in Fig. 2 but for a rectangular irregularity. Observe that RPT is not 
valid here even for small H.  MAE yields values which RPT cannot produce. 

Hence 
= 2H[(1-L)2+H2] '  JI(1, l/K)[JO(l, 1/K)I2. (6.23) 

We now consider two trapezia: (a) a rectangle with L = 1 and (b) a trapezium 
somewhat in between a rectangle and a triangle, so to speak, with L = 1/4. 

The RPT cannot strictly apply for the rectangular irregularity, since the slope can 
never be small. Fig. 3 shows plots of U, against H for this case, obtained from both 
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FIG. 4. As in Fig. 2 but for a trapeziform irregularity. The common region of 
coincidence of RPT and MAE is even smaller than that of the triangular irregu- 

larity. 

MAE and from the formal application of RPT and shows a discrepancy, even when 
H is small. But we can compare the U,’S for the other trapezium, whose slope may be 
very small when its height is very small. The curve describing U, against H ,  shown in 
Fig. 4, is very similar to that obtained for the triangular irregularity. The common 
region of validity of RPT and MAE is smaller than that for the triangular shape. For 
MAE the magnitude of a, is never smaller than the one for uM save in the range 
[-0.55,0], more or less. This range becomes approximately [-0*5,0] for the 
rectangular ridge. 
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The results show that laD/ is the greatest for the rectangular irregularity and the 
smallest for the triangular one. 

Finally, the scattered field W, has been evaluated on the surface of the irregularity 
when this has the form of an isosceles triangle. In this case, equation (5.12) reduces 
to the form 

2He2 4He2 s2 i s  2Hie2 
In s + 2 [In(+) + 7 ] + P(O + -Q(O t- -, (6.24) 

n n n W,(O - - n 
where 

b = 2(1 +H2)*/B(+-a, a) (6.25) 

and the functions P([), Q ( [ )  are given below, for the case [ = 5 ,  corresponding to 
points on the free surface. 

(6.29) 

I \ 

-04142 I 

FIG. 5.  Plots of the real part of W,, as given by equation (6.24), for a range of 
heights H, against the corresponding co-ordinate X ,  when # = ~ / 4  and E = 0.1. 
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FIG. 6. Plots of the imaginary part of W,, as given by equation (6*24), for a range of 
heights H, against the corresponding co-ordinate X, when = 714 and E = 0.1. 

and 

(6.30) 

the variable x being taken just above the real axis. The co-ordinates ( X ,  Y )  corre- 
sponding to 5 = t can be obtained from (6.17); they are given as 

(6.31) 

Y = H(1- 1x1) 
when 151 < 1. 

It may be noted that, as for the semi-circular groove, the amplitude change 
induced by W, is of order e2,  while the phase change is of order E ,  except near the 
vertex X = 0 or when $ = 742. Values of P(5), Q(5) and the corresponding ( X ,  Y )  
have been calculated for a range of values of a(or H )  and angles of incidence I). 
Representative plots of the real and imaginary parts of the scattered field W, are 
given in Figs 5 and 6 respectively, for I) = n/4 with E = 0.1. 

7. Conclusions 

We have obtained explicit expressions for the far- and near-scattered fields when 
the slope of the isolated surface irregularity is arbitrary and its amplitude is small in 
comparison with the wavelength of the incident wave. This contrasts with earlier 
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work, employing regular perturbation techniques, which also requires slopes to be 
small. 

The far-scattered field agrees with that derived from regular perturbation theory 
when the irregularity has small slope but differs in the general case. The amplitude 
of the scattered wave, far from the irregularity, is of second order in the ratio charac- 
teristic dimension of irregularity: wavelength, as is the perturbation of the amplitude 
of the field in the vicinity of the irregularity, but the phase of the latter is of first 
order in this ratio. 
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Appendix A 
In this appendix we consider, by an alternative method, the two-dimensional 

problem of the scattering of plane harmonic SH waves incident upon the surface of a 
homogeneous, isotropic, elastic half-space with an approximately plane surface 
y’ = f ’ ( x ’ ) ,  where the magnitude of f ’ ( x ’ )  compared with the wavelength of the 
incident wave and the slope df’(x’)/dx‘ are both assumed to be small. 

Following the regular perturbation technique (see, for instance, Gilbert & Knopoff 
1960) we replace the topography by an equivalent stress distribution p T’(x’) applied 
to the plane y’ = 0, where 

to the first order. The stress distribution pLT’(x’) is chosen to correspond to the 
loading of the plane y’ = 0 due to the SH wave incident and reflected upon the 
original irregular topography y’ = f’(x’).  We then solve 

V$ y,  w,’+k2 w,’ = 0, in y’ > 0, 
aw,’ 
aY‘ 
-- - T’(x‘),  on y‘ = 0, 

by the Green function technique. Our problem has the formal solution 
I’P 

w,‘(x’, y‘) = - 1 Hd2’(kR) T’(x*)dx*, (A. 3) 
1’1 

2 

where R = [ ( x ’ - x * ) ~ + ~ * ~ ] * ,  since the irregularity is of finite extent. 

we may write 
We now find the far-field scattered displacement. Assuming that [x*[/[x’[ is small, 

x’ . x* 
R = I x ’ I -  - 

lx‘l 
to the first order, and hence 

w,’(x‘, y‘) = k2 s’[iH,(’)(kr’) +H1(’)(kr’) cos 8’ cos $ 1  +0(k3) (A. 5)  

after expanding the resulting integrals in powers of k. Here s’ is the area under the 
curve y’ = f ’ ( x ’ ) .  
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