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Abstract
The scattering of graphene surface plasmons from an arbitrary, one-dimensional discontinuity in
graphene surface conductivity is treated analytically by an exact solution of the quasi-static
integral equation for surface current density in the spectral domain. It is found that the reflection
and transmission coefficients are not governed by the Fresnel formulas obtained by means of the
effective medium approach. Furthermore, the reflection coefficient generally exhibits an
anomalous reflection phase, which has so far only been reported for the particular case of
reflection from abrupt edges. This anomalous phase becomes frequency-independent in the
regime where the effect of inter-band transitions on graphene conductivity is negligible. The
results are in excellent agreement with full-wave electromagnetic simulations, and can serve as a
basis for the analysis of inhomogeneous graphene layers with a piecewise-constant conductivity
profile.
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1. Introduction

Surface plasmons on graphene, a mono-atomically thick layer
of carbon [1], have recently attracted much attention due to
their strong spatial confinement and long lifetimes. Graphene
plasmons (GPs), which propagate on doped or gated layers,
are essentially electromagnetic surface waves bound to waves
of surface charge density [2]. Because of their short wave-
lengths, they are promising candidates for the realization of
miniaturized THz and optical devices such as absorbers [3],
waveguides [4], optical circuit elements [5], and antennas [6].

An attractive feature of GPs is the tunability of their
properties by local modulation of surface conductivity. This
feature forms the basis of graphene-based transformation
optics [7] and tunable planar lenses [8, 9]. Yet, the analysis of
such devices requires a thorough understanding of the effect
of variations in surface conductivity on the propagation
of GPs.

Although the scattering of GPs in some special cases,
e.g., line defects [10] and abrupt edges [11], have been stu-
died, less is known about their scattering from an arbitrary,
one-dimensional (1D) discontinuity in surface conductivity.
Once computed, the scattering parameters of a discontinuity
can be used in scattering or transfer matrix calculations to

analyze inhomogeneous graphene layers with piecewise-
constant, but otherwise arbitrary, conductivity profiles. For
such structures, many authors currently use a simple model
for GP scattering in which each part of the graphene layer is
modeled by an effective medium characterized by the com-
plex effective index of the propagating GP mode [7–9, 12].
Based on this assumption, whose relative success is numeri-
cally demonstrated, reflection and transmission from a dis-
continuity can be obtained [12].

In this paper, we present an analytical calculation of the
scattering parameters of GPs normally incident on a 1D dis-
continuity in graphene surface conductivity. By analytically
solving the quasi-static integro-differential equation for sur-
face current density in the spectral domain, closed-form
results are found for the reflection and transmission coeffi-
cients. The presented analysis is rigorous, and the results are
in excellent agreement with full-wave electromagnetic simu-
lations as long as the quasi-static approximation is valid. Our
analytical calculations show that the reflected and transmitted
power from a discontinuity are correctly predicted by the
aforementioned effective medium model. However, the
reflection and transmission coefficients themselves are not
governed by the Fresnel formulas obtained by means of the
effective medium approach.
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Moreover, the reflection coefficient generally exhibits an
anomalous reflection phase that had so far only been reported
for the particular case of reflection from abrupt edges [11].
This anomalous phase, which is due to the evanescent fields
generated near the discontinuity, becomes frequency-inde-
pendent in the regime where the effect of inter-band transi-
tions on graphene conductivity is negligible.

2. Scattering of GPs by an abrupt change in surface
conductivity

The electromagnetic properties of graphene are described by a
frequency-dependent surface conductivity sσ which, within
the random-phase approximation [13], is given by
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Here e is the electron charge, EF is the Fermi energy, ℏ is the
Plank constant, H is the Heaviside step function, τ is the
relaxation time, and ω is the radial frequency (a time
dependence of e i tω− will be assumed throughout this paper).
Strictly speaking, equation (1) is only valid when E k TF B≫
and E k T2F Bω− ℏ ≫ where kB is the Boltzmann constant
and T is the temperature. A more general expression for sσ can
be found in [14].

At frequencies where E2 F
1τ ω≪ < ℏ− , sσ is pre-

dominantly a positive imaginary quantity. The graphene sheet
thus exhibits an inductive surface impedance, which, in
combination with the electromagnetic interaction between its
charge carriers through the surrounding environment, leads to
the propagation of GPs. The wavelength of GPs depends on sσ
and, therefore, the Fermi energy. Local variation of EF, e.g.,
by doping or applying a gate potential, results in a position-
dependent surface conductivity, which affects the GP
propagation.

In order to study the propagation and reflection of GPs in
the presence of inhomogeneities in sσ , consider a sheet of
graphene covering the x y− plane and surrounded by
dielectric half-spaces with the permittivities 0ϵ (z 0> ) and 1ϵ
(z 0< ) as in figure 1. It is assumed that the graphene layer is
described by a position-dependent surface conductivity x( )sσ .
Moreover, for later purposes, we initially assume the presence
of external sources, which are uniform in the y-direction and,
in the absence of the graphene layer, produce a p-polarized
electric field E x zE Eˆ ˆx

ex
z
ex= + . Within the quasi-static

approximation [5], the equation governing the behavior of the
induced surface current J xJ x( ) ˆs x= is [15]

( )J x

x
E x

i x x

dJ x

dx
dx

( )

( )
( )

1

2

1
, (2)x

s
x
ex

e

x∫σ π ωϵ
= + −

− ′
′

′
′

−∞

∞

where ( ) 2e 0 1ϵ ϵ ϵ= + . The integral is of the Cauchy
principal-value type. Equation (2) simply states that at any
point on the graphene surface, Jx equals sσ times the total

electric field, which consists of the external field Ex
ex and the

field due to the surface charge density i dJ dx( )s x
1ρ ω= − (the

second term on the right hand side of (2)).
Before using (2) to treat the scattering of GPs from a

discontinuity in sσ , it is instructive to investigate its solution
for a uniform graphene layer with a constant surface con-
ductivity x( )s 0σ σ= . After applying a Fourier transform to
(2), and using the relationship
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one finds the Fourier transform of the surface current density
induced by the external sources on a uniform layer to be given
by
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where k i2P e 0ωϵ σ= . The latter quantity is, in fact, the
propagation constant of the plasmonic wave in the quasi-static
approximation: the solution given by (4) has a pole at
k kP= ± which implies that in the absence of sources, waves
propagating with the wave number kP are the natural solutions
of the system.

Let us next return to equation (2) and focus on a gra-
phene layer where x( )sσ undergoes an abrupt change at x = 0
due to an abrupt transition in Fermi energy. We shall denote
the surface conductivity on the two sides of the junction by

x( ) ,s L Rσ σ σ= for x 0< and x 0> , respectively (figure 1).
The local values of the GP propagation constant are

k
i

k
i2

,
2

(5)L
e

L
R

e

R

ωϵ
σ

ωϵ
σ

= =

in these regions.
Due to the position dependence of sσ , application of a

Fourier transform to (2) does not directly yield the solution as
in the case of a uniform graphene sheet. Therefore, one has to
resort to a more elaborate mathematical technique whose
details are presented in appendix A. It turns out that despite
the non-uniformity of sσ , equation (2) can still be solved

Figure 1. A graphene layer surrounded by two semi-infinite media
with the dielectric constants 0ϵ and 1ϵ . The graphene surface
conductivity is Lσ and Rσ for x 0< and x 0> , respectively. A
plasmonic wave traveling with the wavenumber kL in the region
x 0< is scattered by the discontinuity at x = 0.
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analytically in the spectral domain for the conductivity profile
defined earlier. The results obtained are then used to analyze
the scattering of a current density wave

J x Ae( ) , (6)x
i ik xL=

that is produced by external sources in the region x 0< and is
incident on the junction at x = 0 from the left (see appendix C
for the full description of the electromagnetic field accom-
panying a GP). It is shown that well away from the
discontinuity at x = 0, the scattered current density is given
by the reflected and transmitted waves
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are the coefficients of reflection and transmission, respec-
tively. The phase ϑ is given by
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The scattering parameters for a wave with the wave number
kR, incident on the junction from the right, can simply be
found by exchanging kL and kR in (8). Using (9), it can be
shown that ϑ would then acquire a minus sign. Note also that,
under quasi-static approximation, the reflected and trans-
mitted powers of GP are r 2∣ ∣ and t 2∣ ∣ , respectively, as shown
in appendix C.

It is worth mentioning that the reflection and transmis-
sion coefficients obtained from the effective medium model
by using Fresnel equations are:
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Obviously, the transmission amplitude and the reflection
phase in this equation are different from those derived in (8).
Take notice, however, that the results of the effective medium
model for the reflected and transmitted powers, respectively,
rFresnel

2∣ ∣ and t k kFresnel R L
2∣ ∣ [12], are exactly the same as

those obtained in this work, namely r 2∣ ∣ and t 2∣ ∣ , respectively.
It is important to bear in mind that (7) equals the scat-

tered field only sufficiently far away from the discontinuity.
The exact expression for the scattered field is given by the
inverse Fourier transform of (A.17), (A.20) in appendix A and
contains evanescent fields that decay rapidly away from the
junction at x = 0. Mathematically speaking, the reflected and
transmitted waves in (7) correspond to the poles of (A.17),
(A.20), whereas the evanescent fields are related to their
branch cuts. These evanescent modes are generally respon-
sible for the anomalous reflection phase ϑ in (8) [11].

It is particularly interesting to examine the limit 0Rσ →
(E 0F R, → , kR → ∞), which corresponds to the situation
where the graphene sheet on the right side of the junction
vanishes and the plasmonic waves on the left side are
reflected by an abrupt edge. While the magnitude of r will
then equal unity, equation (9) yields 4ϑ π= , which results in

an overall reflection phase of 3 4π− . The extra phase of 4π
has been reported in [11] and stems from the excitation of the
aforementioned evanescent modes near the edge.

3. Discussion of the results

Figures 2 and 3 show the magnitude of r and t and the phase
of r as a function of EF R, for several values of EF L, at a
frequency of 10 THz. In order to validate the results obtained,
full-wave simulations were also performed using Ansoftʼs
high frequency structure simulator (HFSS) for a free-standing
graphene layer in a vacuum. Excellent agreement can be
observed. The error in the transmission coefficient increases
slightly for higher values of Fermi energies, which is caused
by the reduced accuracy of the quasi-static approximation as
the corresponding plasmonic wavelength becomes compar-
able to the electromagnetic wavelength in the surrounding
environment. The distribution of the x-component of the
electric field near the junction is shown in figure 4 for
E 0.3 eVF L, = and E 0.15, 0.3, 0.6 eVF R, = . As mentioned
in the previous section, in addition to reflected and

Figure 2.Magnitude of the reflection (top) and transmission (bottom)
coefficients of GPs as a function of EF R, for E 0.2, 0.3F L, = and
0.4 eV. The calculations were carried out at 10 THz. Results of full-
wave electromagnetic simulations, which were carried out by using
corresponding values of Rσ and Lσ , are shown by markers. For these
simulations, a relaxation time of 5 10 sec12τ = × − was assumed.
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transmitted waves, the scattered field contains evanescent
terms, which are visible near the junction, but decay rapidly
as one moves away from x = 0.

Equations (8) and (9) show that in the quasi-static
approximation, the scattering parameters of GPs that are
incident on a discontinuity in surface conductivity only
depend on the ratio k kR L L Rσ σ= [see (5)]. In the regime
where E E2 ,F L F R, ,ωℏ ≪ , the second term on the right-hand
side of (1), which stems from inter-band transitions in gra-
phene, becomes negligibly small so that E EL R F L F R, ,σ σ ≈ .
As a result, the reflection and transmission coefficients will
only depend on the ratio of the Fermi levels on the two sides
of the junction. The reflection phase, as well as the magni-
tudes of r and t, thus become frequency-independent.

4. Conclusion

We presented analytical results for the scattering parameters
of graphene plasmons normally incident on a 1D dis-
continuity in graphene surface conductivity by exactly sol-
ving the quasi-static integro-differential equation for surface
current density. The results are in excellent agreement with
full-wave electromagnetic simulations. It was found that
unlike transmitted and reflected power, the reflection and
transmission coefficients are not governed by the Fresnel
formulas obtained by means of the effective medium models.
Besides, the reflection coefficient generally exhibits an
anomalous reflection phase, which is due to the evanescent
fields generated near the discontinuity, and becomes fre-
quency-independent in the regime where the effect of inter-
band transitions on graphene conductivity is negligible.

The scattering parameters obtained can be used to ana-
lyze inhomogeneous graphene layers with 1D (approxi-
mately) piecewise-constant surface conductivity profiles by
means of conventional scattering or transfer matrix methods.
A necessary condition here is that adjacent discontinuities are
not too close to each other to avoid the overlap of their

evanescent fields. These evanescent fields, which result from
the branch-cut integrals in the inverse Fourier transform of
(A.17), (A.20), decay rapidly on both sides of a discontinuity,
within a fraction of the plasmonic wavelength.

The method outlined can be extended to graphene layers
on more complicated, multi-layered substrates, by replacing
the kernel of the integral in (2) by the electric-field Greenʼs
function of the multi-layered configuration. Equation (2) can
also serve as a basis for the treatment of arbitrary (not
necessarily stepwise) conductivity profiles. However, since
the analytical method outlined in appendix A is only applic-
able to an abruptly changing surface conductivity, (2) has
then to be solved numerically. The same equation can, in
principle, be used to investigate the scattering of GPs by
inhomogeneities in the substrate dielectric constant, although
the corresponding Greenʼs function is rather complicated to
compute. Note also that the method outlined in appendix A is
well capable of handling complex propagation constants,
even though the results presented were obtained by assuming
real-valued k k,L R. The latter simplification was only made to
allow analytical calculation of the integrals involved.

Acknowledgments
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Appendix A. Exact solution of the current density
integral equation for a surface conductivity with a
step profile

In this appendix we present the steps required for the deri-
vation of the exact solution of (2) for the structure depicted in
figure 1. Let us introduce the one-sided Fourier transforms

F J x e dx( ) ( ) , (A.1)L x
i x

0∫ξ = ξ
−∞

−

F J x e dx( ) ( ) , (A.2)R x
i x

0
∫ξ = − ξ

∞
−

in which FL, FR are analytical functions of ξ in the upper and
lower halves, respectively, of the complex ξ-plane. After
applying a Fourier transform to (2), using (3), and rearranging
the resulting terms, one obtains

F k k F k s k( ) ( ) ( ) ( ), (A.3)L Rν= +

where F k( )L , F k( )R are the limiting values of (A.1), (A.2) as
the real axis ( kξ = ) is approached from above and below,
respectively, and

k
k k

k k
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L
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−
−

s k
i

k k
E x e dx( )

2
( ) , (A.5)e

L
x
ex ikx∫ωϵ

=
− −∞
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where k k,L R are given by (5). For later purposes, take notice
that s k( ) is the Fourier transform of the surface current

Figure 3. Reflection phase of GPs (dashed line) as a function of EF R,

for E 0.2, 0.3F L, = and 0.4 eV. Results of full-wave electromagnetic
simulations are shown by markers (circles). The transmission phase
is identically zero (not shown).
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density,

J k J x e dx F k F k˜ ( ) ( ) ( ) ( ), (A.6)x x
ikx

L R∫= = −
−∞

∞

that external sources induce on a graphene layer with a
uniform surface conductivity Lσ . This can be shown by direct
comparison of (A.5) with (4).

The problem has thus been reduced to that of finding the
functions F ( )L ξ and F ( )R ξ , which are analytical in their
respective halves of the complex ξ-plane and satisfy (A.3) on
the entire real axis. This is an inhomogeneous Hilbert pro-
blem, which is frequently encountered in the solution of
singular integral equations [16]. The solution is formulated in
terms of the functions
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The solution for F F,L R is then expressed as
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The inverse Fourier transform of these functions results in the
current density in the regions x 0< and x 0> , respectively,
as can be seen from equations (A.1) and (A.2).

Let us examine equation (A.10) in more detail. By simple
algebraic manipulations, this equation is rewritten as

F k
s k

i

s q dq

q k
J k( )
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2

1

2

( ) ˜ ( ), (A.12)L x
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s L, ∫π
= − −

−−∞

∞ + +
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For x 0< , the inverse Fourier transform of the first two terms
on the right-hand side of (A.12) yields the current density
induced on a layer with the uniform conductivity Lσ . (It yields
zero in the region x 0> .) This follows from the earlier
remark about s k( ) and equation (3). Therefore, J k˜ ( )x

s L, is the

Figure 4. Distribution of the x-component of the electric field (real part) in the vicinity of a free-standing graphene layer for E 0.3 eVF L, =
and E 0.15 eVF R, = (top), E 0.3 eVF R, = (middle), and E 0.6 eVF R, = (bottom). The incident plasmonic wave travels towards the
discontinuity at x = 0 from the left. The calculations were carried out at 10 THz.
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Fourier transform of the scattered current density due to the
discontinuity at x = 0. Note also that the integral in (A.13) is a
conventional one since the integrand has no singularity
at k = q.

Although the method outlined is of general applicability,
we neglect the losses and take k k,L R to be real. (In order to
ensure causality, kL and kR are actually assumed to possess
infinitesimal, positive imaginary parts in the calculations.) A
simple expression can then be found for X+ (see appendix B),

X k e
k k

k k

k k

k k
( ) , (A.14)i k L

R

R
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( )
1 2⎛
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When analytically continued into the complex k-plane, X k( )+

has a pole at kL− and a branch cut along the negative

imaginary axis, across which both k k2∣ ∣ = and k( )Ψ are
discontinuous. (Their effects cancel out across the positive
imaginary axis.) On the other hand, X k( )− , which is related to
X k( )+ by (A.9), has a pole at kR and a branch cut along the
positive imaginary axis (see figure A.1 ).

Let us next assume that, in the absence of the dis-
continuity at x = 0, i.e., on a graphene layer with a uniform
conductivity Lσ , the external sources generate an incident
current wave J x Ae( )x

i ik xL= . The Fourier transform of this
function is

( )s k A k k( ) 2 , (A.16)Lπ δ= −

which, after substitution in (A.13) gives

( )
( )

J k
iA

X k

X k X k

k k
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( )
. (A.17)x

s L

L

L

L

, =
−
−+

+ +

The scattered current in the region x 0< is found by taking
the inverse Fourier transform

J x J k e dk( )
1

2
˜ ( ) , (A.18)x

s L
x
s L ikx, ,∫π

=
−∞

∞

which can be evaluated by deforming the path of integration
into the lower half of the complex k-plane (figure A.1).
Because of the presence of X k( )+ in (A.17), J k˜ ( )x

s L, has a
pole at k kL= − and a branch cut along the negative
imaginary axis. The residue of the pole yields the reflected
wave

J x e
k k

k k
Ae( ) , (A.19)( )

x
r i k L R

L R

ik x2 L L=
−
+

Ψ − −

where we have used k k( ) ( )Ψ Ψ= − − . The branch cut
produces an evanescent field that decays rapidly away from
the junction at x = 0.

To calculate the current density in the region x 0> ,
equation (A.11) is first recast into a form similar to (A.12).
Using s k k( ) ( ) 0L Lν = , which is a consequence of (A.4),
(A.16), the Fourier transform of the current density is written
as

( )
( )

J k F k
iA

X k

X k X k

k k
˜ ( ) ( )

( )
. (A.20)x

s R
R

L

L

L

, = − = − −
−+

− −

This function has a pole at k kR= and a branch cut along the
positive imaginary axis, both due to X k( )− . After taking the
inverse Fourier transform of J k˜ ( )x

s R, by deforming the path of
integration into the upper half of the complex k-plane
(figure A.1), the residue of the pole yields the transmitted
current wave

( )
J x

k k

k k
Ae( )

2
. (A.21)x

t L R

L R

ik x
1 2

R=
+

Here we have used k k( ) ( )R LΨ Ψ= , which follows from
(A.15) after changing the variable of integration to 1 τ.

Therefore, for an incident current wave J x Ae( )x
i ik xL= ,

the scattered current well away from the discontinuity at x = 0
equals (A.19) for x 0< and (A.21) for x 0> . The coeffi-
cients of reflection and transmission are given by (8).
Equation (9) is obtained by noting that k2 ( )Lϑ Ψ= − and
using (A.15) in which the variable of integration is changed to

k uLτ = .

Appendix B. Derivation of X +

In order to derive (A.14), (A.4) is substituted into (A.8) and
the resulting principal value integral is decomposed into its
real and imaginary parts, taking into account the infinitesimal,

Figure A.1. Integration paths for the calculation of current density.
CL and CR are used for x 0< and x 0> , after taking account of the
poles at kL− and kR, respectively. The contribution of the semicircles
vanishes as their radii approach infinity, leaving the branch-cut
integrals along the negative and positive imaginary axes for the two
cases.
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After using the pair of integrals (Hilbert transforms)
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in which θ is the Heaviside step function, and combining the
results, it is found that
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Substitution of (B.4) into (A.8) and (A.7), followed by simple
algebraic manipulations, leads to (A.14). Equation (B.5) can
be transformed into (A.15) by deforming its path of
integration into the imaginary axis in the complex k-plane.

Appendix C. Power carried by graphene plasmons in
the quasi-static approximation

In this appendix, we show that the power carried by a GP is
proportional to the square of the surface current density
amplitude, and thus the reflected and transmitted powers are
r 2∣ ∣ and t 2∣ ∣ , respectively. Let us assume that graphene is
embeded in a medium with permittivity eϵ . The electro-
magnetic fields of the GP mode are

E Ae e , (C.1)x
z ik xP= α−

H z
i

Ae esgn( ) , (C.2)y
e z ik xP

ωϵ
α

= α−

E z
k

i
Ae esgn( ) , (C.3)z

P z ik xP

α
= α−

where kP is the GPʼs propagation constant,
k c( )P e

2 2 2α ω ϵ= − and c is the speed of light in a
vacuum. The time-averaged power per unit length is then
obtained as

( )
P E H dz A

k
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2
Re

Re

2 Re( ) 2
,

(C.4)

z y
e P e* 2

2
2

2
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⎞
⎠∫ ωϵ

α α
ωϵ

α
= = ≈

−∞

∞

where it is assumed that kPα ≈ under quasi-static approx-
imation. On the other hand, the surface current density on
graphene is

J E z
i

Ae( 0)
2

. (C.5)x x
e ik xPσ

ωϵ
α

= = ≈

Therefore, from (C.5) and (C.4) and for constant eϵ and ω we
have

P J , (C.6)x
2∝

which is the sought-after relation.
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