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Abstract—Problems of radiation pattern synthesis, sidelobe 

suppression, or back radiation suppression appear when using 

antennas with reflectors or ground planes. The use of a 

semitransparent surface allows the required shape of a radiation 

pattern to be synthesized efficiently through the variation of 

reflection and transmission coefficients. Effective radiation 

pattern synthesis is possible when using analytical formulae 

designed for the radiation patterns of antennas with 

semitransparent reflectors. In this paper, we present a model for 

the scattering of a toroidal wave of a general form by means of a 

semitransparent reflector of revolution. The model allowed us to 

simulate the radiation patterns of various kinds of axisymmetric 

antennas with semitransparent reflectors and ground planes. Two 

asymptotic expansions of the radiation pattern of the model were 

found in the physical optics approximation. The expansions allow 

the radiation pattern for the entire space to be determined. As an 

example of its application, we used the model to calculate the 

radiation patterns of a plane with Archimedean two-wire spiral 

antenna and a loop antenna above concave and convex reflectors, 

as well as an Archimedean slot spiral antenna with a ground plane. 

We synthesized the optimal profiles of perfectly conducting and 

semitransparent reflectors and ground planes to improve the 

front-to-back ratio of the antennas.  

 

Index Terms—Toroidal wave, semitransparent reflector, 

physical optics approximation, Archimedean spiral antenna, loop 

antenna.  

I. INTRODUCTION 

HE use of semitransparent surfaces is a novel trend in 
antenna engineering for applications in which special 

shapes of radiation patterns are required. Semitransparent 
ground planes provide back radiation suppression of 
omnidirectional antennas [1-4]. Reflectors with 
semitransparent edges provide a desirable sidelobe level and 
reduce a backscattering mainlobe [5, 6]. Semitransparent disk 
ground planes and reflectors of revolution are often used with 
axisymmetric antennas, such as loop antennas, circular patch 
antennas, monopoles, or conical horns. The optimization of the 
transparency distribution on the surface of a semitransparent 
reflector is the main issue in the synthesis procedure for 
obtaining the required shape of a radiation pattern. Therefore, a 
simple model that allows the radiation patterns of various 
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omnidirectional antennas with semitransparent reflectors to be 
calculated using analytical formulae is useful for the 
optimization issue. 

The radiation patterns of omnidirectional antennas in the 
absence of a reflector can be calculated using simple 
approximations of toroidal wave sources. For example, the 
radiation patterns of a loop antenna and a plane with an 
Archimedean two-wire spiral antenna working at the first 
harmonic radiation mode coincide with the radiation patterns of 
the annular electric current of a traveling wave [2, 7]. The 
radiation pattern of a circular patch antenna coincides with the 
radiation pattern of an annular magnetic current with a single 
azimuthal variation [8]. The radiation pattern of a monopole can 
be calculated as the sum of the radiation patterns of a set of 
discrete annular in-phase axial electric currents [2]. The 
radiation of the TE11 mode of an open-ended circular waveguide 
is a toroidal wave with a single azimuthal variation, while the 
radiation of a conical or coaxial horn can be expressed as the 
superposition of these toroidal waves [9]. Thus, a model of the 
scattering of the field of a toroidal wave by a semitransparent 
reflector of the revolution allows the radiation patterns of 
various types of omnidirectional antennas to be found using 
reflectors. 

Some particular cases of a toroidal wave scattering by 
perfectly electrically conducting (PEC) and semitransparent 
reflectors are investigated in [1, 2, 10-20]. In particular, the 
scattering of a field induced by an annular current on a PEC 
disk is investigated in [10-15]. Some asymptotic solutions for a 
scalar toroidal wave scattering by the PEC concave surface of a 
sphere are considered in [16-18]. A numerical solution for the 
scattering of an in-phase azimuthal annular electric current field 
by a PEC conical reflector is considered in [19]. A scalar 
toroidal wave scattering by a PEC bi-conical reflector is 
considered in [20], within which the first two terms of a non-
uniform asymptotic expansion of a radiation pattern are 
obtained. The scattering of a field induced by an annular 
magnetic current with a single azimuthal harmonic on a 
semitransparent disk is investigated in [1] using the numerical 
solution of an integral equation by the method of moments 
(MoM). Two-term asymptotic expansions of the radiation 
pattern of a toroidal wave scattered by a semitransparent disk 
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are available in [2]. 
In this paper, we considered the problem of the scattering of 

the field of a toroidal (particularly spherical) wave of a general 
form by a semitransparent (particularly PEC) arbitrarily shaped 
reflector of revolution. We used the physical optics (PO) 
approximation and the stationary phase method to obtain 
asymptotic formulae for the calculation of the radiation pattern 
of the considered problem. We used the asymptotic formulae to 
optimize the shape of a PEC reflector and the transparency of a 
semitransparent reflector for the purpose of the back radiation 
suppression of wire and slot Archimedean spiral antennas and 
a loop antenna. To verify the optimization results, we conducted 
a numerical simulation of these antennas using a MoM-based 
electromagnetic solver.  
 

II. STATEMENT OF THE TASK 

A. The Geometry of the Task 

If we consider the scattering of a toroidal wave with 
harmonic azimuthal dependence by a semitransparent reflector, 
this kind of wave is excited by an annular current of radius a 
with a dependence of j(z)cos(nφ+ψ) in the cylindrical 
coordinates (ρ, φ, z). The dimension of the annular current along 
the z-axis is Δh. The current is located at the distance h from the 
center of the reflector (Figs. 1 (a)-(d)). The center of the 
reflector is located at the origin of the coordinates. The reflector 
is the surface of revolution relative to the z-axis. The axis of the 
annular current coincides with the axis of the reflector. A 
smooth function z=f(ρ), ρ∈[0,L], determines the shape of the 
reflector. We assume that f(ρ) is a slowly varying function at a 
distance equal to the wavelength. It has a finite derivative 
f′(ρ)=d(f(ρ))/dρ. The derivative f′(ρ) can be positive (concave 
reflector (Fig. 1 (a),(b))), negative (convex reflector (Fig. 1 
(c))), or change the sign in the interval [0,L] (concavo-convex 
reflector (Fig. 1 (d))). In a general case, f′(ρ) can change the sign 
in the interval [0,L] several times. We assumed that each point 
of the source of the toroidal wave fully illuminates the surface 
of the reflector, and there is no multiple diffraction by the 
surface of the reflector for a reflected ray in the geometrical 
optics (GO) approximation.  

 

B. The Toroidal Wave  

The vector potential of the annular source of the toroidal wave 
in the free space is determined by integrating the product of the 
annular current and the Green function [2]: 
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Here, r(ρ, φ, z) is the position vector passing from the origin of 
the coordinates to an observation point; r′(ρ′, φ′, z′) is the 
position vector passing from the origin of the coordinates to a 
source point; n = 0, 1, 2, …; ψ is the initial phase; k = 2π/λ; λ is 

the radiation wavelength in vacuum; and i is the imaginary unit. 
The radiation patterns of the meridional Hθ(θ, φ) and azimuthal 
Hφ(θ, φ) components of the magnetic field intensity vector of 
the toroidal wave in the spherical coordinates (r, θ, φ) in the free 
space are calculated through the vector potential (1). Applying 
the stationary phase method to the exterior integral in (1) when 
the stationary point was far from the end of the integration [21], 
we obtained the following asymptotic expression of the vector 
potential: 
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Fig. 1. (a) the general view of the source of the toroidal wave above the 
concave reflector; (b) the side view of the source above the concave reflector; 
(c) the side view of the source above the convex reflector; (d) the side view of 
the source above the concavo-convex reflector. 
  



where rm′ = r′(a, φ+mπ, z′). Expression (2) is valid when an 
observation point is far from the z-axis. When the width of the 
annular current is much smaller that its radius (i.e., Δh << a), 
the vector potential can be simplified: 
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Here, D(θ) is the radiation pattern of the differential element of 
the annular current in the meridional plane. Thus, within the 
term “a toroidal wave,” we consider any wave that is created by 
the vector potential in the form (3) for observation points far 
from the axis of a source. Analysis of the term r±asinθ of the 
sum in (3) showed that the radiation of the toroidal wave is 
created by the two points Q1,2 located in one zρ-plane at 
opposite ends of the source (Fig. 2) when the observation points 
are far from the axis of the source. The radiation from the 
opposite ends of the source leads to the appearance of the factor 
Jn−1(kasinθ)±Jn+1(kasinθ) in the expression of the radiation 
pattern of the annular source. Here, Jn(kasinθ) is the Bessel 
function of order n and argument kasinθ. Thus, in accordance 
with (3), the radiation pattern of the source in the meridional 
plane is proportional to the production of the pattern D(θ) and 

the sum or difference of the Bessel functions. The radiation 
patterns of toroidal waves in the particular cases of the ring 
sources of radial, azimuthal, and axial electric and magnetic 
currents are presented in the appendix. 

It should be noted that a toroidal wave becomes a spherical 
wave when the radius of the source tends to zero (a→0). In this 
case, the annular source becomes a point source. Therefore, the 
theory presented in this paper for annular sources of toroidal 
waves is also applicable to dipole sources of spherical waves. 

C. The Boundary Conditions 

The infinitely thin semitransparent reflector is generally 
characterized by two reflection coefficients Rτ,φ, and two 
transmission coefficients Tτ,φ=1−Rτ,φ (for waves with tangential 
(τ) and azimuthal (φ) components of the magnetic field intensity 
vector on the surface of the reflector). A unit tangential vector 
τ0 on the surface of the reflector is calculated using the unit 
cylindrical radial ρ0 and axial z0 vectors as follows: 
τ0(ρ)=ρ0cos(θ′(ρ))+z0sin(θ′(ρ)), where θ′(ρ)=arctan(f′(ρ)). In the 

axisymmetric case, the reflection and transmission coefficients 
only depend upon radial coordinate ρ and the angle of incidence 
of a wave incident on the reflector at the point z=f(ρ). The 
boundary conditions on the surface of the semitransparent 
reflector are the following:  
1. The tangential and azimuthal components of an electric field 
intensity vector are continual: (n×E+)−(n×E−)=0. Here E+ and 
E− is the electric field intensity vector on the illuminated and 
shady surface of the reflector, respectively; n=(τ0×φ0) is the 
unit vector in the direction of the normal to the illuminated 
surface, while φ0 is a unit azimuthal vector.  
2. The tangential and azimuthal components of a magnetic field 
intensity vector have a discontinuity, which is equal to the 
electric current on the surface of the reflector je: 
(n×H+)−(n×H−)=je. Here H+ and H− is the magnetic field 
intensity vector on the illuminated and shady surface of the 
reflector, respectively. 
3. An impedance tensor Z associates the tangential and 
azimuthal components of the electric field intensity vector with 
the electric current on the surface of the reflector: 
(n×(n×E+))=−Zje. The first condition can be written for the 
components of E+ and je in the following form: 
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where respectively Eτ

+ and Eφ
+ are the tangential and azimuthal 

components of E+; jτe and jφe are respectively the tangential and 
azimuthal components of je; and Zττ, Zφτ, Zτφ, and Zφφ are the 
components of the impedance tensor. In general, these tensor 
components are complex numbers argued to be within the range 
of [−π/2, π/2].  

D. The Kirchhoff Integral 

The PO method was successfully used in [2] to determine the 
radiation pattern of a toroidal wave scattered by a 
semitransparent disk. Therefore, we used the PO method to 
determine the radiation pattern of a toroidal wave scattered by 
a semitransparent reflector of revolution. In accordance with the 
PO method and the boundary conditions, we assumed that there 
was no interaction between jτe and jφe, that is, Zφτ=Zτφ=0. The 
other components of the impedance tensor were associated with 
the reflection and transmission coefficients as follows: 
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Here, Z0=120π Ω is the free space wave impedance. The 
components of the electric current on the surface of the 
semitransparent reflector in the PO approximation were 
determined as follows: 
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where Hτ

surf and Hφ
surf are respectively the tangential and 

 
 
Fig. 2. Radiation from the opposite ends of the annular source. 
  



azimuthal components of the magnetic field intensity vector of 
the toroidal wave on the surface of the reflector, which is 
determined using the vector potential (1) in free space.  

We applied the PO method to the problem of the scattering 
of the toroidal wave created by the annular source, which is 
located above the semitransparent reflector. In the PO 
approximation, the meridional Hθ

PO and azimuthal Hφ
PO 

components of the radiation pattern of the magnetic field 
intensity vector of the considered problem are expressed 
through the following Kirchhoff integrals: 
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Here,  
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The first term of the sums in (7) is the radiation pattern of the 
toroidal wave in free space; the second term is the radiation 
pattern of the tangential component of the electric current on 
the surface of the reflector; and the third term is the radiation 
pattern of the azimuthal component of the electric current on 
the surface of the reflector. The meridional Hθ

τ(φ) and azimuthal 
Hφ

τ(φ) components from (8) are the radiation patterns in the 
meridional plane of a differential annular tangential (azimuthal) 

electric current of radius ρ on the surface of the reflector. They 
were calculated through the integration of the Green function 
along the azimuthal coordinate in the interval [–π, π]. 

III. ASYMPTOTIC FORMULAE IN THE PHYSICAL OPTICS 

APPROXIMATION 

We assumed that the reflection and transmission coefficients 
were slowly varying functions, and the number of azimuthal 
harmonics was much smaller than the electric size of the source 
(i.e., n << ka). The last assumption is justified since the vast 
majority of axisymmetric antennas work at the first azimuthal 
harmonic radiation mode. We found the asymptotic expansions 
of the integrals (7) and (8) using the stationary phase method. 
Because this method does not allow a uniform asymptotic 
expansion for all angles θ to be obtained, we considered two 
separate cases: the intervals of angles θ near to or far from the 
z-axis.  

A. The Observation Angles Near the Z-Axis 

We used the stationary phase method when the stationary 
point was far from the end of the integration [21] for the interval 
of observation angles θ near the z-axis. In this case, we 
separately calculated the contributions of the stationary point 
and the end of the integration into the asymptotic expansions of 
the integrals (7). As a result, we obtained the following two-
term asymptotic expansion of the total field near the z-axis for 
the meridional (azimuthal) polarization of the incident wave:  
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where Hθ

GO and Hφ
GO are respectively the meridional and 

azimuthal components of the radiation pattern in the GO 
approximation, and Hθ

s and Hφ
s are respectively the meridional 

and azimuthal components of the radiation pattern created by 
the electric current on the edge of the reflector at the point 
z=f(L). The first and the second term of the sum in (9) 
correspond to the contribution of the stationary point and the 
end of the integration in the asymptotic expansion of the 
integral (7), respectively. The meridional (azimuthal) 
component of the GO pattern was calculated as follows: 
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where ξθ(φ) is equal to −1 and 1 for the meridional and azimuthal 
components of the radiation pattern, respectively: 
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The following non-linear equations 
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determined the parameters ρR and ρT, which correspond to a 
certain angle θ. The first, the second, and the third term of the 
sum in (10) are respectively an incident wave, a wave reflected 
from the reflector, and a wave transmitted through the reflector. 
The Heaviside step function χ(θ) is equal to 1 or 0 in the regions 
of propagation or non-propagation, respectively, of the 
incident, reflected, and transmitted waves. The factors sinc and 
srefl are the eikonals of the incident and reflected waves, 
respectively. The components of the radiation pattern of the 
annular electric current on the edge of the reflector are the 
following: 
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where the functions from (8) are calculated using the integral 
representation of the Bessel function (see formula (A.4) in the 
appendix) as follows: 
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B. The Observation Angles Far from the Z-Axis 

 For the interval of observation angles θ far from the z-axis, 
we initially applied the stationary phase method for the case 
when a stationary point was far from the end of the integration 
to the integrals in (8). Following this, we substituted the first 
term of the obtained asymptotic expansion into (7). To 
determine the two first terms of the asymptotic expansion of the 
integrals in (7), we used the stationary phase method for the 
case of the possible closeness of a stationary point to the end of 
the integration [22]. As a result, the asymptotic expression of 
the meridional (azimuthal) component of the radiation pattern 
for the observation angles θ far from the z-axis was calculated 
as follows: 
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and function F(̃x) is the first term of the asymptotic expansion 
of the Fresnel integral F(x): 
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C. The Overlapping Sector of the Asymptotic Solutions 

The radiation patterns far from and near to the z-axis, which 
were obtained using the asymptotic formulae, overlapped in 
several sectors of angles θ. The particular case of the scattering 
of a spherical wave created by a dipole on a semitransparent 
disk is investigated in [23]. The asymptotic formulae obtained 
in that paper are equivalent to (9) and (13). In [23], it was shown 
that the curves of radiation patterns calculated using the 
asymptotic formulae near to and far from the z-axis overlapped 
in several sectors of angles θ. The overlapping region and the 
accuracy of the asymptotic formulae increase with the increase 
in the radius of the disk. Therefore, in the figures in Section IV 

of this paper, we plot a sole continuous curve through (9) and 
(13) when calculating the radiation patterns of the toroidal 
waves scattered by reflectors. The sole curve is based upon the 
overlapping of the radiation patterns near to and far from the z-
axis. 

IV. SPIRAL AND LOOP ANTENNAS WITH REFLECTORS 

As an example of the application of the asymptotic formulae, 
we investigated a plane with Archimedean two-wire spiral 
antenna working at the first harmonic radiation mode and a loop 
antenna above concave and convex reflectors (Fig. 3).  

A. The Modeling of the Antennas 

The Archimedean spiral antenna is made from infinitely thin 
strips of a width ws=0.01λ (Fig. 3a). The shape of the antenna 
in the polar coordinates (ρ, φ) is defined by the equation 
ρ(φ)=±ρs±asφ/(2π). To obtain the maximum radius of the spiral 
equal to ρmax=0.22λ, we defined the start point ρs=0.03λ and the 
parameter as=ρmax–ρs. The number of the spiral’s turns was 1.5. 
Each wire of the spiral was excited by a point source located 
near the start point of the antenna. We assumed that the antenna 
was perfectly matched. In [7], it is shown that the radiation 
pattern of the Archimedean spiral antenna in the case of the 
antiphase excitation of wires coincides with the radiation 
pattern of an annular azimuthal electric current of a traveling 
wave of radius λ/(2π) with the following distribution in the free 
space:  

 

    o
0( , , ) 2 e .i

e
z z

       j φ                                 (14) 

 
Here, δ(z) is the Dirac delta function. The radiation pattern of 
this azimuthal current was determined through the following 
components: 
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In [2], it is shown that the electric current distribution of a loop 
antenna of a radius al=λ/(2π) made from an infinitely thin strip 
of a width ws (Fig. 3b), which is excited by a point source, can 
be approximated by the annular azimuthal electric current of a 
traveling wave je°. Therefore, all the results obtained in Section 
IV for the spiral antenna are also applicable to the loop antenna. 

B. Back Radiation Suppression Using a Perfectly Conducting 

Reflector 

The spiral antenna was mounted on a reflector for the 
purpose of back radiation suppression. We firstly found the 
profile of a PEC reflector when Rτ=Rφ=1 and Tτ=Tφ=0, which 
are optimal for suppressing the back radiation. It follows from 
the asymptotic formula (9) that the back radiation near the z-
axis is created by the annular electric current on the edge of the 
reflector induced by the source current je°. To reduce the back 
radiation for a given radius of reflector L, we should reduce the 
magnitude of the excitation of the edge current. From formulae 
(15), we can see that Hφ=0 in the direction of θ=π/2, that is, the 
magnitude of the excitation of the current on the edge of the 
reflector is minimal when the edge of the reflector is located at 

 
 
Fig. 3. The geometry of (a) the Archimedean spiral and (b) the loop antenna; 
antenna above (c) the concave and (d) convex corner reflector. 
  



the same height as the current je° (f(L)=h). It also follows from 
the asymptotic formula (11) that the magnitude of back 
radiation near the z-axis does not depend upon the reflector’s 
shape f(ρ) in this case. Therefore, a concave PEC corner 
reflector (Fig. 3c) is the easiest geometry required to obtain the 
back radiation suppression of the spiral antenna.  

To prove that the placement of the spiral antenna at the level 
of the reflector’s edge improves the front-to-back ratio (FBR), 
we plotted the radiation patterns of the antenna above concave, 
disk, and convex PEC reflectors of radiuses L=1.5λ on the 
distance h=0.15λ using the asymptotic formulae (9) and (13), 
and numerical simulations of the structures in EDEM software 
[24]. This software uses the MoM to simulate the scattering of 
electromagnetic waves created by antennas on arbitrarily 
shaped scatterers. Figure 4 shows the meridional and azimuthal 
components of the radiation patterns of the structures plotted 
using the asymptotic formulae and the numerical simulation. 
From this figure we can see that the asymptotic formulae allow 
the radiation patterns of the spiral antenna above the PEC 
reflectors to be calculated with a high level of accuracy. Some 
mismatches between the calculated and simulated results were 
observed near angle θ=90˚ for the convex reflector and for 

angles θ>90˚ for the concave reflector. The mismatch for the 
convex reflector can be explained by the fact that the asymptotic 
solution was based on the PO method, which assumes that the 
electric current is induced on the surface of the reflector 
according to the GO laws. In reality, the electric current has a 
more complex distribution; an additional current occurs near 
the apex of the reflector, which has the form of a wave that 
quickly decreases in relation to the distance from the apex. 
Therefore, the accuracy of the asymptotic formulae near the 
angle θ=90º could be improved by adding the radiation pattern 
of the additional current, as well as taking into account one 
more term of the PO asymptotic expansion. The mismatch for 
the concave reflector appears at a level below -25 dB from the 
maximum, which results in an error in the radiation pattern 
calculation of less than 5%. The calculation error can be 
explained by the fact that the radiation pattern of the spiral 
antenna is not exactly the same as that of the current je°. The 
FBRs of the structure were 22.4, 26.6, and 31.2 dB for the 
convex, disk, and concave reflectors, respectively. Thus, the 
taper of the reflector significantly influences the FBR.  

C. Back Radiation Suppression Using a Semitransparent 

Surface 

Further improvement of the FBR of the spiral antenna above 
the concave corner reflector is possible through the creation of 
a semitransparent edge. In [3, 4] it is shown that the FBR of a 
patch antenna and a monopole with a semitransparent disk 
reflector is achieved through the use of a thin resistive layer 
based upon depositing carbon paste onto thin Kapton film. Such 
a resistive surface is characterized by a real isotropic impedance 
Zττ=Zφφ=ZST distributed uniformly at the edge of the reflector. 
Following the method of the aforementioned papers, we 
synthesized a semitransparent area with a uniform resistive 
isotropic impedance distribution at the edge of the reflector 
(Fig. 5). We assumed that the reflector had a central PEC area 
with a radius of LST (ZST=0 when 0≤ρ<LST), and a periphery area 
with the uniform isotropic resistive impedance distribution ZST 

when LST≤ρ≤L. There was a discontinuity in the impedance 
distribution along the reflector’s profile at the junction of the 
PEC semitransparent areas. The asymptotic formulae in Section 
III were obtained with the assumption of the slow varying of 
the impedance distribution along the reflector, hence, we could 
not directly apply the formulae for the synthesis of ZST. For the 
optimization of the FBR when the impedance distribution has a 
discontinuity, we can only use the asymptotic formula near the 
z-axis (9). The analysis of formula (9) shows that the radiation 

 
 
Fig. 4. The radiation patterns of the spiral antenna above (a) the convex, (b) 
the disk, and (c) the concave reflector. 
  

 
 
Fig. 5. The geometry of the reflector with the semitransparent edge and the ray 
propagation model. 
  



near the z-axis consisted of the GO pattern and the pattern 
created by the annular electric current on the edge of the 
reflector. When the central PEC area of the reflector is larger 
than the radius of the antenna (LST>ρmax), the back radiation in 
the direction of θ=180˚ is created only by the annular electric 
current on the edge of the reflector when ρ=L. In the considered 
case of the impedance distribution with the discontinuity, we 
assumed that the back radiation in the direction of θ=180˚ was 
created by the annular electric current on the edge of the 
reflector and an annular electric current, which appears at the 
point of discontinuity when ρ=LST. Figure 5 shows a model of 
GO rays propagated in the direction of θ=180˚ from these two 
annular electric currents. Thus, the asymptotic expansion of the 
total field at θ→180˚ when the impedance distribution has the 
discontinuity was calculated as follows for the meridional 
(azimuthal) polarization of the incident wave:  
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Here, the first term of the sum was calculated using formula 
(11). The second term is the component of the radiation pattern 
of the annular electric current at the point of discontinuity:  
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The value for the reflection coefficient at the point of 
discontinuity Rd was taken from the approximate solution of the 
scattering by a junction of PEC and semitransparent half-planes 
[25] and was calculated as Rd=1–Z0/(ZST+Z0). Figure 6 shows 
the back radiation suppression in the direction of θ=180˚ for the 
concave semitransparent corner reflector of the radius L=1.5λ 
as compared with the PEC reflector of the same radius with 
different values for the impedance ZST and radius LST. From Fig. 
6, we can see that for the improvement of the back radiation 
suppression, parameters LST and ZST should be within the range 

of 1λ-1.1λ and 120-170 Ω, respectively. The best back radiation 
suppression was observed for parameters LST=1λ and ZST=140 
Ω. However, due to the previously mentioned accuracy of the 
PO method and the approximation of the spiral antenna 
radiation pattern, the maximum back radiation suppression of 
the antenna with the semitransparent reflector was observed 
when LST=1.1λ and ZST=130 Ω, as an additional analysis using 
numerical simulations demonstrated. The radiation patterns of 
the spiral antenna above the concave semitransparent corner 
reflector with the parameters LST=1.1λ and ZST=130 Ω, which 

were obtained using a numerical simulation of the structure in 
EDEM software, are shown in Fig. 7. From this figure, we can 
see that the simulated FBR for the semitransparent reflector is 
41.9 dB. The improvement in back radiation suppression is 10.7 
dB as compared with the concave PEC corner reflector. The 
peak gain of the antenna was 7.65 and 7.89 dBi for the PEC and 
semitransparent reflectors, respectively. Therefore, the back 
radiation suppression appears to be due to the interference of 
the fields created by the electric current on the reflector’s 
surface but not due to any energy loss in the resistive surface. 
Such interference leads to the small peak gain increasing. The 
simulated FBR and the one calculated using formula (16) were 
41.9 and 46.4 dB, respectively, which correspond to the back 
radiation values of 0.008 and 0.0048 for a normalized radiation 
pattern. Thus, the proposed asymptotic formula (16) provides a 
calculation of the radiation pattern at θ=180˚ with an error of 
less than 1%. 

 

 
 
Fig. 7. The radiation patterns of the spiral antenna above the PEC and concave 
semitransparent corner reflectors.  
  

 
Fig. 6. The dependence of the back radiation suppression on the impedance of 
the semitransparent area for different radii of the PEC area. 
  



V. SLOT SPIRAL ANTENNA WITH A GROUND PLANE 

In this section, we investigate the radiation patterns of an 
Archimedean slot spiral antenna with PEC and semitransparent 
ground planes. We consider the antenna of the shape 
ρ(φ)=±ρs±asφ/(2π) made as a slot of a width ws on a disk ground 
plane as shown in Fig. 8. We assumed that the ground plane had 
a central PEC area with a radius of LST (ZST=0 when 0≤ρ<LST), 
and a periphery semitransparent area with the isotropic 
impedance ZST when LST≤ρ≤L. The number of the spiral’s turns 
was 1.5. Then, by analogy with the two-wire spiral antenna, the 
radiation pattern of the Archimedean slot spiral antenna located 
on an infinite PEC ground plane in the case of the antiphase 
excitation of the slots coincides with the radiation pattern of an 
annular azimuthal magnetic current of a traveling wave of 
radius λ/(2π) with the following distribution in free space:  
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The radiation pattern of this azimuthal current was determined 
through the following components: 
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Figure 9 shows the normalized meridional and azimuthal 
components of the radiation pattern of the annular magnetic 
current on a PEC ground plane of radius L=1.5λ. The radiation 
patterns in Fig. 9 were plotted using the asymptotic formulae 
(9) and (13) in the PO approximation, as well as some 
asymptotic formulae from [15] obtained in the physical theory 
of diffraction (PTD) approximation for the scattering problem 
under study. As shown in [15], the PTD approximation provides 
an accuracy of less than 2% as compared with the rigorous 
solution of the scattering problem for disk reflectors of radius 
L>λ. Thus, we used the PTD approximation to estimate the 
accuracy of the PO approximation. We noted that a small 
discontinuity appears at θ=90° for the curve of the azimuthal 
component of the radiation pattern in the PO approximation 
plotted using asymptotic formula (13). This discontinuity 
appears because in (13) we used only the first two terms of the 
asymptotic expansion of the integrals in (7). The discontinuity 
was smoothed by introducing one more term of the asymptotic 
expansion Hφ

2d, which describes a second order diffraction 
field. This field emanates from point P1 due to its illumination 
by the field scattered at P2, as shown in Fig. 8b. The term Hφ

2d 
was calculated as follows for the disk ground plane:  
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     (20) 

 
The curve of the azimuthal component of the radiation pattern 
in the PO approximation in Fig. 9 was plotted taking (20) into 
account. From Fig. 9, we can see that the curves obtained using 
the two methods coincide for most of the observation angles. 
The main difference is observed for θ>150˚ at the level below -
25 dB, which corresponds to a difference in the patterns of less 
than 5%. The FBRs were 17.2 dB and 15.1 dB for the PO and 
PTD approximations, respectively, which led to a 2.1 dB FBR 
difference. This result corresponds with the result from [2], 

 
 
Fig. 8. (a) the geometry of the Archimedean slot spiral antenna with the ground 
plane; (b) the determination of the second order diffraction field. 
  

 
Fig. 10. The dependence of the back radiation suppression on the modulus of 
the impedance of the semitransparent area for different radii of the PEC area. 
  

 
 
Fig. 9.  The radiation patterns of the slot spiral antenna with the PEC ground 
plane. 
  



where it was shown that the PO method provides an error of 
approximately 2 dB in the calculation of the back radiation for 
disk reflectors of radii more than λ. 

It was shown in [4, 15] that the magnitude of the back 
radiation of the annular magnetic current with the first 
azimuthal harmonic (18) located on a disk PEC ground plane is 
constant when the ground plane’s radius tends to infinity. 
Therefore, the FBR of the Archimedean slot spiral antenna 
cannot be improved by increasing the radius of the ground plane 
when it tends to infinity. To improve the FBR, we used a 
semitransparent surface with a capacitive isotropic impedance 
ZST distributed uniformly at the edge of the reflector. The 
capacitive character of the impedance assumes that the 
argument of ZST is equal to −π/2. Such a capacitive 
semitransparent surface can be implemented, for example, 
through perforated grids of slots on the PEC surface. Figure 10 
shows the back radiation suppression in the direction of θ=180˚ 
for the semitransparent ground plane of radius L=1.5λ as 
compared with the PEC one. The curves in Fig. 10 are plotted 
for different values of the impedance modulus |ZST| and radius 
LST. From this figure, we can see that for the improvement of 
the back radiation suppression, parameters LST and |ZST| should 
be within the range of 0.6λ-0.8λ and 200-350 Ω, respectively.  
 

VI. CONCLUSION 

We obtained the asymptotic formulae for the calculation of 
the radiation pattern of a toroidal (particularly spherical) wave 
scattered by a semitransparent reflector of revolution using the 
PO method. We used the asymptotic formulae to calculate the 
radiation patterns of the Archimedean two-wire spiral antenna 
and the loop antenna located above the concave and convex 
PEC corner reflectors. It was demonstrated that the placement 
of the antennas at the level of the edge of the concave PEC 
reflectors improved the FBRs of the antennas. Additional back 
radiation suppression can be obtained using a resistive 
semitransparent surface at the reflector’s edge. For the 
Archimedean slot spiral antenna with the ground plane, back 
radiation suppression can be obtained using a capacitive 
semitransparent surface at the ground plane’s edge. 

 

APPENDIX 

A ring of radial electric je
ρ or magnetic jm

ρ current of radius 
a in free space has the following form: 
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where Ie

ρ and Im
ρ is the magnitude of the radial electric and 

magnetic currents, respectively. The meridional and azimuthal 
components of the radiation pattern of the ring of radial current 
are calculated through the expressions: 

   

   

   

   

1 1

1 1

H , sin
4

J sin J sin ,

H , cos cos
4

J sin J sin ,

n e

n n

n e

n n

I ka
i n

ka ka

I ka
i n

ka ka









   

 

    

 

 

 

   

   

   

   

                      (A.2) 

 
for radial electric current, and 
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for radial magnetic current, where the Bessel function has the 
following integral representation: 
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A ring of azimuthal electric je

φ or magnetic jm
φ current of radius 

a in free space has the following form: 
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where Ie

φ and Im
φ is the magnitude of the azimuthal electric and 

magnetic currents, respectively. The meridional and azimuthal 
components of the radiation pattern of the ring of azimuthal 
current are calculated through the expressions: 
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for the azimuthal electric current, and 
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for the azimuthal magnetic current. A ring of axial electric je

z 



or magnetic jm
z current of radius a in free space has the 

following form: 
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where Ie

z and Im
z is the magnitude of the axial electric and 

magnetic currents, respectively. The meridional and azimuthal 
components of the radiation pattern of the ring of axial current 
are calculated through the expressions: 
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for axial electric current, and 
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for axial magnetic current. 
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