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Abstract We present the first direct N f = 2 lattice QCD

computation of two- and three-π+ scattering quantities that

includes an ensemble at the physical point. We study the

quark mass dependence of the two-pion phase shift, and

the three-particle interaction parameters. We also compare

to phenomenology and chiral perturbation theory (ChPT).

In the two-particle sector, we observe good agreement to

the phenomenological fits in s- and d-wave, and obtain

Mπa0 = −0.0481(86) at the physical point from a direct

computation. In the three-particle sector, we observe rea-

sonable agreement at threshold to the leading order chiral

expansion, i.e. a mildly attractive three-particle contact term.

In contrast, we observe that the energy-dependent part of

the three-particle quasilocal scattering quantity is not well

described by leading order ChPT.

1 Introduction

Quantum chromodynamics (QCD) describes the interac-

tion of quarks and gluons, while only hadrons (mesons and

baryons) are experimentally observable. They are low energy

bound states, or resonances of the former fundamental parti-

cles. Understanding the interactions of two or more hadrons is

highly relevant for several reasons. For instance, resonances

become visible only when studying the interaction of other

hadrons. And for understanding experimental signatures of

particle decays, the interactions of the final states need to be

understood.

a e-mail: fernando.romero@uv.es (corresponding author)

Lattice QCD, the formulation of QCD on a spacetime

lattice, offers the opportunity of first principles, numerical

explorations of few-particle scattering amplitudes. Maybe

the most obvious example for the importance of three-particle

interactions is the ω-meson, which decays predominantly

into three pions with J P = 1− [1]. Another one would be

the Roper resonance [2], with both Nπ and Nππ decay

channels. However, since the investigation of three-particle

interactions from lattice QCD is in its infancy, three weakly

interacting pions with isospin I = 3 is an interesting and

important benchmark system.

The extraction of two-particle scattering amplitudes in

Lattice QCD is by now well established for 2 → 2 systems,

both theoretically [4–16], and in practice [3,17–40] (see Ref.

[41] for a review). One of the most studied systems is isospin-

2 ππ scattering. To illustrate the state-of-the-art, we show in

Fig. 1 the ππ I = 2 scattering length Mπa0 as a function of

Mπ/ fπ comparing this work’s result to the N f = 2 + 1 + 1

results of Ref. [3]. The new N f = 2 point at a slightly less

than physical value of Mπ/ fπ as well as the other two new

points are compatible within errors with leading order (LO)

ChPT (dashed line).

Over the last few years, theoretical and numerical work

investigating three-particle scattering amplitudes from lattice

QCD emerged as a hot topic. The finite-volume formalism

exists following three different approaches: (i) generic rela-

tivistic effective field theory (RFT) [42–53], (ii) nonrelativis-

tic effective field theory (NREFT) [54–59], and (iii) (rela-

tivistic) finite volume unitarity (FVU) [60,61] (see also Refs.

[62–64] and Ref. [65] for a review). Lattice data [66–68] has

been confronted with both the FVU [61,67,68] and RFT [69]
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Fig. 1 I = 2 scattering length Mπ a0 as a function of Mπ/ fπ compar-

ing the N f = 2 + 1 + 1 ETMC twisted mass results [3] with this work.

The dashed line represents the leading order ChPT prediction

formalisms (see also [70,71]). For a related approach see also

Refs. [72–75].

In this article, we present results for scattering quantities of

two and three-pion systems with maximal isospin, including

for the first time an ensemble at the physical point. This

work breaks new ground on several fronts: the first direct

computation at the physical point of the I = 2 s- and d-

wave phase shift, and the chiral dependence of the three-π+

quasilocal interaction.

2 Scattering amplitudes from lattice QCD

The calculation of scattering amplitudes from lattice simu-

lations proceeds in an indirect way. The required physical

quantities from the lattice are the finite-volume interacting

energies of two and three particles – the finite volume spec-

trum. The mapping between the finite volume spectrum and

infinite-volume scattering quantities – the so-called quanti-

zation condition – is known but highly nontrivial. It is valid

up to effects that vanish exponentially with the pion mass,

∼ exp(−Mπ L).

The two-particle quantization condition (QC2) takes the

form of a determinant equation [4–6] (we assume two iden-

tical scalars):

det
[

F−1
2 (P, E∗, L) + K2(E∗)

]

= 0 . (1)

Here, F2 and K2 are both matrices in angular momen-

tum space ℓ, m. The matrix elements of F2 are kinemat-

ical functions (Lüscher zeta function) that depend on the

three-momentum of the system, P and the center-of-mass

(CM) energy, E∗. (K2)ℓm,ℓ′m′ = δℓm,ℓ′m′(K2)ℓ is simply the

infinite-volume scattering K-matrix projected to the corre-

sponding partial wave. In order to render the matrices finite-

dimensional, a truncation must be applied in ℓ, ℓ′ by assum-

ing that K2 vanishes for higher partial waves. Furthermore,

the relations between K2, the phase shift (δℓ), and the scat-

tering amplitude (M2) are trivial. More details can be found

in Ref. [41].

The three-particle quantization condition (QC3) for iden-

tical (pseudo)scalars in the RFT approach reads (G-parity is

assumed) [42]:

det
[

F−1
3 (E, P, L) + K3,df(E∗)

]

= 0. (2)

Even though this looks formally identical to Eq. 1, there are

some distinct features. First, the matrices in Eq. 2 live in

a larger k ℓ m space, where ℓ, m are the angular momen-

tum indices of the interacting pair, and k labels the three-

momentum of the third particle – the spectator. Next, F3

depends on geometric functions (like F2 itself), but also on

K2. Thus, two-particle interactions are a necessary ingre-

dient for three-particle scattering. Note that an analytical

continuation of K2 below threshold is needed for the QC3.

Finally, K3,df is a real, singularity-free, quasilocal, intermedi-

ate three-particle scattering quantity – which we aim to deter-

mine. As in the case of the QC2, Eq. 2 is infinite-dimensional,

and must be truncated. The truncation in k is due to a cut-off

function, whereas for ℓ, m one assumes that K3,df vanishes

above some value of ℓ, see Refs. [42,65] for details. Estab-

lishing the connection between K3,df and the physical scat-

tering amplitude, M3 requires a set of integral equations,

derived in Ref. [43] and solved in Ref. [47]. In this work, we

focus only on the extraction of K3,df.

In a finite volume, partial waves mix and, thus, F2 and

F3 are nondiagonal in ℓ, m. The correct labels are then

irreducible representations (irreps) of the discrete symme-

try group, which we label as Ŵ. The subduction of angular

momenta into irreps is known [76, Table 2]. Therefore, one

block-diagonalizes the quantization conditions into irreps,

see Refs. [16,49,58,69].

3 Lattice computation

This work uses Nf = 2 flavour lattice QCD ensembles gen-

erated by the Extended Twisted Mass collaboration (ETMC)

[80], including one ensemble at the physical pion mass –

see Table 1. For the ensemble generation the Iwasaki gauge

action [81] was used together with Wilson clover twisted

mass fermions at maximal twist [82]. The latter guaran-

tees scaling towards the continuum with only O(a2) arte-

facts in the lattice spacing a [83]. The presence of the clover

term (with coefficient csw) has been shown to further reduce

the O(a2) artefacts, in particular isospin-breaking effects of

the twisted-mass formulation, which have been empirically

found to be very small for masses and decay constants [80].
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Table 1 N f = 2 Ensembles used in this work. The lattice spacing is a = 0.0914(15) fm, and cSW = 1.57551. For the decay constant we use the

normalization fπ =
√

2Fπ . Mπ/ fπ has been corrected for finite-size effects according to Refs. [77–79]

Ensemble L3 × T Mπ/eV aMπ Mπ/ fπ # confs.

cA2.60.32 323 × 64 340 0.1578(1) 2.235(6) 337

cA2.30.48 483 × 96 242 0.11199(4) 1.705(1) 1403

cA2.09.48 483 × 96 134 0.06205(4) 1.022(1) 1604

For the two-pion scattering length with I = 2, discretisation

artefacts are only of order O(amq)2, with mq the up/down

quark mass [84]. Another possible source of O(a2) effects

that should be mentioned is the π0 contamination in the cor-

relation functions due to the breaking of parity in twisted

mass. However, it is also important to realise that at maxi-

mal isospin there is no mixing with other flavour states due

to broken isospin symmetry. Parametrically, O(a2) artefacts

are ∼ 2.5% and O(amq)2 ≤ 0.4% for this lattice spacing,

and thus well below our statistical uncertainty.

The two- and three-π+ energy spectrum is measured from

Euclidean correlation functions of operators with the corre-

sponding quantum numbers. By means of the single pion

operators (π+ = −ūγ5d), we construct two-particle opera-

tors as

Oππ (p1, p2) =
∑

x,y

ei p1x+i p2 y π+(x) π+(y), (3)

where pi labels the momentum of each single pion, and sim-

ilarly for three pions

Oπππ (p1, p2, p3) =
∑

x,y,z

ei p1x+i p2 y+i p3z

× π+(x) π+(y) π+(z).

(4)

Correlation functions are computed using the stochastic

Laplacian–Heaviside smearing [85,86] with algorithmic

parameters as in Ref. [87]. In addition, operators that trans-

form under a specific irrep of a discrete symmetry group are

constructed following Ref. [32]. In the two-pion case we use

the irreps A
(+)
1 , E (+), B1 and B2, in the three pion channel

A
(−)
1 , E (−), A2, B1 and B2, for all P2 ≤ 4 with P the centre-

of-mass momentum. We refer to Table 9 in the appendix

for an overview. We extract the spectrum in each irrep inde-

pendently using the generalized eigenvalue method (GEVM)

[6,88,89] and also the GEVM/PGEVM method [90], see the

appendix for more details.

A technical issue of lattice calculations with (anti)periodic

boundary conditions in the time direction is the presence of

so-called thermal states, i.e. effects from states that prop-

agate backwards in time across the boundary. They vanish

with Mπ T → ∞, but at finite values of T , these effects are

significant and need to be treated accordingly. In fact, thermal

pollutions are one of the major systematic uncertainties in our

calculation. We deal with them as follows: using the operators

discussed above we build correlator matrices which are input

to the GEVM/PGEVM which in turn have so-called principal

correlators as output. From the latter energy levels and cor-

responding error estimates are extracted from bootstrapped,

fully correlated fits to the data with fit ranges chosen by eye.

We use five different treatments to arrive from a correlator

matrix at an energy level. Details of those five treatments are

explained in Appendix A1.

As also explained in Appendix A1, the different energy

levels per principal correlator (up to five) are then combined

using a correlated weighted average. However, to account for

the spread between the different methods we use a procedure

discussed in Ref. [32] to widen the resampling distribution:

for energy level E we compute the scaling factor

w =

√

(δE)2 +
∑

Y (�EY )2

(δE)2
, (5)

where δE is the statistical uncertainty of the weighted aver-

age and �EY is the difference between method Y and the

weighted average. By scaling the resampling distribution of

the weighted average with w, we obtain a distribution that

reflects both the statistical and the systematic uncertainties,

while still being usable in the bootstrap analysis chain. The

energy levels are publicly available [91].

The finite-volume scattering formalism is applicable

under the assumption that exponential finite volume effects

are negligible. On the physical point ensemble, we have

Mπ L ≈ 3, which implies e−Mπ L ∼ 5% and might be con-

sidered to be at the edge of feasibility. However, based on a

ChPT analysis, finite-volume effects are also proportional to

[Mπ/(4π Fπ )]2, which at the physical point reduces finite-

volume effects sizably. Moreover, as argued in Ref. [74],

if the volume-dependent mass is used to analyze the multi-

particle energy levels, the leading finite-size effects cancel.

For the other two ensembles we have Mπ L > 5, which is

safe concerning finite volume effects.

4 Results

In the case of two pions, by keeping only s-wave interactions

in A1 irreps, the projected QC2 becomes a one-to-one corre-
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Table 2 s-wave fit results for the various ensembles using Eq. 6 with fixed z2
2 = M2

π . Here we use only the two-pion levels in the A+
1 and A1 irreps

1/B0 = Mπ a0 B1 B2 χ2/dof

cA2.60.32 − 0.2090(54) − 2.3(3) – 19.06/(16-2)

cA2.60.32 − 0.2110(57) − 3.1(6) 0.4(2) 15.96/(16-3)

cA2.30.48 − 0.132(16) − 1.4(5) – 27.15/(16-2)

cA2.09.48 − 0.0477(90) − 1.4(1.2) – 11.08/(10-2)

Fig. 2 s- and d-wave phase shift at the physical point (ensemble

cA2.09.48) compared to the fits to experimental data (KPY08) in Ref.

[92] and (CGL01) in [93]. For s-wave we use a model that incorporates

the Adler-zero, whereas for d-wave we fit to a constant in the region for

which we have data

spondence of an energy level to a phase shift point [6,7]. For

the analysis, we need an appropriate phase shift parametriza-

tion. We use a model that incorporates the expected Adler

zero [69,94]:

k

Mπ

cot δ0 =
√

s Mπ

(s − 2z2)

(

B0 + B1
k2

M2
π

+ · · ·
)

, (6)

with s the center-of-mass energy squared and k2 = s/4−M2
π .

We will fix the position of the Adler zero to its leading order

chiral perturbation theory (LO ChPT) value: z2 = M2
π . Even

though higher order corrections are to be expected, its value

has been seen to be compatible with LO ChPT when left free

[92,95,96]. Note that in Eq. 6 with fixed Adler zero, we have

Mπa0 = 1/B0.

We perform a correlated two-parameter fit to the energy

levels. The results for the three ensembles are shown in Table

2. In all cases, the magnitude of the Bi coefficients decreases

with increasing order, indicating that the expansion con-

verges quickly enough even at the heaviest pion mass. Still,

for the heaviest ensemble (cA2.60.32), we also attempt a fit

with a quadratic term in k2, B2 and observe a small, barely

significant value for B2 and no substantial change in B0 and

B1. Based on ChPT, better convergence is expected for lighter

pions.

The s-wave phase shift is visualised for the physical point

ensemble in the left panel of Fig. 2. In this plot we also

compare to other results in the literature. For the other two

ensembles the corresponding plots can be found in the left

panels of Figs. 9 and 10, respectively, in the appendix.

One interesting point to discuss is the suitability of the

δ0 parametrization. It has been customary to use a standard

effective range expansion parametrization (ERE) for isospin-

2 ππ scattering:

k

Mπ

cot δ0 =
1

Mπa0
+

1

2
Mπr

(

k

Mπ

)2

+ M3
π P

(

k

Mπ

)4

.

(7)

However, the presence of the Adler zero limits the radius

of convergence to k2 ∼ 0.5M2
π . For this reason, explicitly

incorporating the Adler zero must improve the radius of con-

vergence, and has been shown to provide a better description

of the data [69]. Here, we compare again the two fit models.

The ERE results are shown in Table 3. As can be seen, the
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values of χ2 in the case of the ERE fits are always larger

than their Adler-zero counterparts given in Table 2. This fur-

ther supports the usage of the Adler-zero parametrization for

I = 2 ππ scattering.

Similarly, the d-wave phase shift can be obtained from

most of the nontrivial irreps when neglecting ℓ > 2 waves

[15,16]. Since we have few data points, we attempt the fol-

lowing fit (see Table 4):

k5

M5
π

cot δ2 =
1

M5
πa2

. (8)

The best fit curve for the physical point ensemble is show in

the right panel of Fig. 2 and compared to Ref. [92]. Again,

for the other two ensembles the corresponding plots can be

found in the appendix in the right panels of Figs. 9 and 10,

respectively.

In the three pion case we need to parametrize K3,df. For

this, we expand K3,df about threshold up to linear terms of

relativistic invariants [49]:

K3,df = K
iso,0
df,3 + K

iso,1
df,3 �, � =

(E∗)2 − 9M2
π

9M2
π

, (9)

where K
iso,0
df,3 and K

iso,1
df,3 are the numerical constants to be

determined. This parametrization has no momentum depen-

dence, and thus receives the name “isotropic”. It is the three-

particle equivalent of keeping only s-wave interactions. At

the next order in the expansion, O(�2), three new parame-

ters arise, for which also the d-wave must be included [49].

This is beyond the scope of the present analysis (Table 5).

Following the strategy outlined in Ref. [69], we perform

a simultaneous s-wave only fit to two-π+ A1 levels, and all

three-π+ levels. For this, we use the δ0 model in Eq. 6 and

the K3,df parametrization in Eq. 9 – four parameters in total,

see Table 6. As can be seen the best fit values for B0 and B1

agree well between the two-particle and the global fit, with

even smaller errors in the case of the latter. For convenience,

we provide the full covariance matrices of the fits in Table 6

in the appendix, see Eqs. (B2) to (B4).

We have also performed fits including only the constant

term K
iso,0
df,3 , the results of which can be found in the appendix.

We observe that for the ensembles with larger than physical

pion mass value the inclusion of the linear term seems nec-

essary.

In Fig. 11 in the appendix we provide as an example for the

physical point ensemble the measured energy spectrum in the

two- and three particle sectors separately. In that figure we

also compare to the noninteracting energy levels. Moreover,

we give the energy levels predicted by our fits, see Tables 2,

4, 6

5 Discussion

Starting with δ0, we show in Fig. 2a all phase shift data

points, and include the best fit curve from the two- and three-

π+ global fit. As can be seen, the difference to LO ChPT is

small, and due to B1 
= 0. In addition, our results agree within

< 2σ with Refs. [92,93]. We obtain Mπa0 = −0.0481(86)

(see Table 6 and recall 1/B0 = Mπa0), which also agrees

well with all phenomenological determinations [92,93,95–

98], and other lattice results obtained indirectly by extrap-

olating to the physical point using ChPT [3,17,34,99–105],

see Fig. 1.

In Fig. 1 we also compare to results from N f = 2 + 1 + 1

calculations from Ref. [3] and with LO ChPT. Within the

uncertainties we do not observe a significant difference

between N f = 2 and N f = 2 + 1 + 1 results. Moreover,

as was found in all previous investigations of two pions at

maximal isospin, LO ChPT describes the mass dependence

extraordinarily well. At the physical point, LO ChPT predicts

Mπa0 ≃ −0.04438, which agrees within error bars with the

value we report here, see above. Unfortunately, our determi-

nation here suffers from relatively large statistical uncertain-

ties and, thus, cannot compete with determinations based on

chiral extrapolations. A summary of various determinations

from the literature is compiled in Table 5.

Regarding the d-wave phase shift, we have mild statistical

evidence that it is repulsive at the physical point in the consid-

ered energy region. We observe agreement within � 1σ with

Ref. [92], as shown in Fig. 2b. An interesting feature of the

phenomenological fits to δ2 is that there is a sign change near

threshold, which yields an attractive phase shift at threshold

[92,95,96,106]. We cannot confirm or deny such behaviour,

as the explored energy region is too far above threshold. For

larger pion mass values, we obtain a similar behaviour. The

d-wave phase shift is more repulsive for the two larger pion

mass values – see Table 4 and the appendix.

We show our results in the three-particle sector in Fig. 3.

As can be seen in Fig. 3a, there is significant evidence that

K3,df at threshold (K
iso,0
df,3 ) is positive (attractive). Even though

we find reasonable agreement with the LO ChPT [69] pre-

diction, the data suggests that NLO effects can be significant,

and it may be worth to extend the ChPT result to one loop in

future work. For K
iso,1
df,3 , the situation is somewhat different.

All evidence points to a negative value, very far from the

ChPT results. While one could conclude that a NLO ChPT

description is required, there is a subtlety in the LO ChPT

prediction: it assumes that the connection between K3,df and

M3 – which involves integral equations – is trivial in LO

ChPT [69]

K3,df = M3,df

[

1 + O(M2
π/F2

π )

]

, (10)
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Table 3 Two-particle fits to the standard effective range expansion (ERE) model in Eq. 7

Ensemble Mπ a0 Mπr M3
π P χ2/dof

cA2.60.32 − 0.2198(55) 1.1(2) – 28.12/(16-2)

cA2.60.32 − 0.2177(56) 2.1(5) − 0.16(8) 24.26/(16-3)

cA2.30.48 − 0.186(15) 1.5(4) – 31.98/(16-2)

cA2.09.48 − 0.064(11) 3.9(1.1) – 14.00/(10-2)

Table 4 d-wave two-pion fits to Eq. 8. Here we use only non-A1 two-pion levels. The last column shows the energy range for which data is used

M5
π a2 χ2/dof CM energy range

cA2.60.32 − 0.0037(08) 15.03/(12-1) [3.2Mπ , 4.4Mπ ]
cA2.30.48 − 0.0072(11) 23.78/(10-1) [2.8Mπ , 4.2Mπ ]
cA2.09.48 − 0.0005(03) 7.33/(4-1) [4.0Mπ , 6.3Mπ ]

Table 5 Summary of some lattice and phenomenological determina-

tions of the isospin-2 ππ scattering length at the physical point. Note

that the lattice determination of ETM (2015) is the only one with

chiral and continuum extrapolations. We list LO ChPT, ChPT and

Roy equations [93] denoted as CGL01, CCL11 [97], CP-PACS [99],

NPLQCD (2006) [100], NPLQCD (2008) [101], ETM (2013) [17],

ETM (2015) [3], Yagi et al. [103], Fu [104] and PACS-CS [105], and

GWU [34]

N f Mπ a0

LO ChPT −0.04438

CGL01 (2001) −0.0444(10)

CCL11 (2011) −0.0445(14)

CP-PACS (2004) 2 −0.0431(29)(−)

NPLQCD (2006) 2+1 −0.0426(6)(3)

NPLQCD (2008) 2+1 −0.04330(42)comb

ETM (2010) 2 −0.04385(28)(38)

ETM (2015) 2+1+1 −0.0442(2)(+4
−0)

Yagi (2011) 2 −0.04410(69)(18)

Fu (2013) 2+1 −0.04430(25)(40)

PACS-CS (2014) 2+1 −0.04263(22)(41)

GWU (2019) 2 −0.0433(2)

This work 2 −0.0481(86)(−)

where M3,df is the divergence-free three-to-three amplitude

[43]. As argued in Ref. [69], this induces large errors in K
iso,1
df,3

(up to 50% for 200 MeV pions). The situation is expected to

be more dramatic for heavier pions, like our two results at

242 and 340 MeV, for which the largest difference is seen.

In order to address this rigorously, the integral equation must

be systematically solved, which is beyond the scope of this

work.

6 Conclusion

We have presented the first N f = 2 lattice calculation of two-

and three-π+ scattering at the physical point. In the two pion

channel we observe very good agreement with other lattice

calculations and ChPT or ChPT combined with Roy-Steiner

equations for the s-wave phase shift. In particular, for the

whole range of pion mass values we have available here we

do not observe a significant deviation from LO ChPT or a

significant difference to N f = 2 + 1 + 1 lattice results. For

the d-wave our uncertainties are relatively large. However,

thanks to the physical point ensemble we can directly com-

pare to phenomenology and observe reasonable agreement.

For the d-wave phase shift smaller scattering momenta would

Table 6 Two- and three-pion fits using the Adler-zero form (z2 = M2
π , fixed). Since we only include s-wave interactions, we use two-pion levels

in the A1 irrep, and all irreps for three-pions. Recall that 1/B0 = Mπ a0

Mπ a0 B1 B2 M2
πK

iso,0
df,3 M2

πK
iso,1
df,3 χ2/dof

cA2.60.32 − 0.2061(49) − 1.9(2) – 4500(1500) − 6200(1800) 58.89/(43-4)

cA2.60.32 − 0.2070(52) − 2.2(5) 0.1(2) 4300(1500) − 6000(1800) 58.50/(43-5)

cA2.30.48 − 0.156(15) − 1.9(4) – 1800(3800) − 4300(3800) 46.18/(33-4)

cA2.09.48 − 0.0481(86) − 1.3(1.1) – 0(800) − 200(500) 19.06/(19-4)
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Fig. 3 Constant(left) and linear(right) terms of K3,df as a function of the s-wave scattering length. We also include the results of Ref. [69]

be desirable in order to be able to shed light on a possible

sign change at small k2-values.

For the three pion case, we observe reasonable agreement

with other lattice calculations, phenomenology, and ChPT.

By including two ensembles at heavier pion masses, we have

gained insight on the chiral dependence of three-π+ scatter-

ing quantities for the first time. We use an isotropic parametri-

sation of K3,df , the real, singularity free, quasilocal, inter-

mediate three particle scattering quantity. Here we find good

agreement to LO ChPT for the constant term in K3,df in an

expansion about threshold, but an opposite sign compared to

LO ChPT for the next-to-leading term. We have discussed

possible explanations for this. On the other hand, qualitative

agreement is found for both terms with the other available

lattice calculation of these quantities.

This letter represents a step towards exploring and under-

standing the hadronic spectrum of QCD, and shows that

three-particle quantities can be extracted with current tech-

niques. In the very near future we expect more lattice calcu-

lations of three-body observables with increasing accuracy

and describing systems with growing complexity – e.g. three-

particle resonances such as the ω.
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Appendix A: Extraction of the energy levels

In this section, we provide more details regarding the extrac-

tion of energy levels from the correlation functions of one,

two and three charged pions. All the required quark contrac-

tion diagrams are shown in Fig. 4. For the observables in

question we have determined the integrated autocorrelation

times using the method put forward in [120] and found that
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we can treat our measurements as decorrelated. The statisti-

cal analysis is performed via bootstrap.

A.1 Thermal pollutions

Given the individual pion momenta pi , i = 1, 2, 3, we adopt

the following convention to express the total momentum P =
∑

i pi and the relative momenta q j , j = 1, 2

p1 = P − q1 − q2, p2 = q1 , p3 = q2. (A1)

The spectral composition of a three-pion correlation function

(with periodic boundary conditions) reads

∑

m

∑

n

〈n| OŴ(P, q1, q2) |m〉 〈m| O
†
Ŵ(P, q3, q4) |n〉

e−En ·(T −t)e−Em t . (A2)

The double sum is over all states m, n with the correct

quantum numbers. The desired signal arises when m is the

vacuum, and n the three-pion state, or vice versa. Usually

one would expect that all other contributing to the spec-

tral decomposition are exponentially suppressed compared

to this ground state. Here this is not the case, because there

are nonzero contributions to the spectral decomposition for

finite T for instance when m is an intermediate two-pion state

and n is a one-pion state. Such so-called thermal pollution

states have a time dependence proportional to exp(−�E t),

with �E = E2π − Eπ , which can dominate the correla-

tion function for large enough t when �E < E3π . There

is an additional backward propagating part as well which

goes as exp(−�E · (T − t)). Together they either form a

cosh (sum) or a sinh (difference). For three pions we only

have time-even operators and therefore everything will have

a cosh-shape. The amplitude of the cosh will be proportional

to exp(−(E2π + Eπ )T ), which vanishes for T → ∞.

(a)
(b) (c)

(d) (e) (f)

Fig. 4 Quark contraction diagrams for the one-, two- and three-π+

correlation functions needed in this work

The size of the pollution will depend on the individual

momenta of the involved pions through the energy E2π and

Eπ . The most significant pollution will be the one leading to

the smallest �E , which usually corresponds to the smallest

involved momenta.

The thermal pollutions depend also on the frame and irrep.

Let us illustrate this for a specific example: assume that n is

a one-pion state |p1〉 and m a two-pion state |p2, p3〉 with

free energies given by the dispersion relation. In this specific

case only summands where 〈p1| OŴ |p2, p3〉 
= 0 contribute,

i.e. the three-pion operator OŴ must couple to the momenta

p1, p2 and p3.

The individual particle momenta that couple to a multi-

particle operator can be inferred from group theory. Consider

the frame P2 = 0, then the three-pion operator will be in some

irrep Ŵ−, and the single pion always in the A−
1 . Therefore,

the two-pion system needs to be in the opposite parity irrep

Ŵ+ such that A−
1 ⊗ Ŵ+ = Ŵ−. Note that only the irreps for

P2 = 0 have a parity index, that is, in moving frames parity

is not a good quantum number. In this situation, the momenta

of the two-pion system can only take the values that actually

couple to the irrep of the three-particle operator.

The allowed contributions are generated from all per-

mutations of the three-pion individual momenta. Using the

measured pion rest mass Mπ and the free particle disper-

sion relation (assuming weak interactions between the two

pions) we can thus estimate the relevant energies Eπ (p1) and

E2π (p2, p3). Using these together with the T -values we can

now estimate for every ensemble, irrep and total momentum

which thermal contribution is – up to unknown matrix ele-

ments – largest. Since we are able to remove only a single

thermal state, this is the only way to single out the rele-

vant parameters for the possible subtraction of these pollut-

ing states. Figure 5 shows the contributing thermal states

for two example cases, left the A−
1 irrep in the P2 = 0

frame, right the B1 irrep in the P2 = 2 frame. The differ-

ent correlators shown correspond to different combinations

of single and two pion momenta. For these cases the largest

contribution is coming from (p2
1 = 0, p2

2 = 0, p2
3 = 0) and

(p2
1 = 1, p2

2 = 2, p2
3 = 1), respectively. The other possible

contributions are suppressed by two orders of magnitude or

even exponentially.

To be precise, in order to find the dominating contribu-

tion for each irrep, ensemble and frame, we take the largest

thermal contribution at t = 10, from which we can estimate

�E . To illustrate this procedure further, we will look at irrep

Ŵ = B1 with P2 = 2. The three-particle momenta that cou-

ple to the operator below our threshold are listed in Table 7.

As the three particles are indistinguishable, we can partition

them at will into a one-pion and two-pion state. The two-

particle momenta must again be a valid two-particle system,

otherwise they cannot be an intermediate thermal state. Table

8 lists the two-particle contributions in the B1 irrep.
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(a) (b)

Fig. 5 Possible thermal contributions to the three-pion correlator matrix in the cA2.09.48 ensemble. Each line corresponds to a particular combi-

nation of the individual particle momentum magnitudes of the one-pion (p1) and the two-pion system (p2 and p3)

Table 7 Possible three-pion individual momenta in the Ŵ = B1 irrep

with total momentum P2 = 2

P2 Irrep p1 p2 p3

2 B1 (0, 1,−1) (0, 0, 1) (1, 0, 0)

2 B1 (1, 1, 0) (1, 0, 0) (−1, 0, 0)

2 B1 (−1, 1, 0) (1, 0, 0) (1, 0, 0)

Table 8 Possible two-pion individual momenta in the B1 irrep for dif-

ferent values of P2 of the two-pion subsystem

P2 Irrep p2 p3

1 B1 (−1, 0, 1) (1, 0, 0)

2 B1 (1, 1,−1) (0, 0, 1)

4 B1 (0,−1, 1) (0, 1, 1)

Thus, again for the example of the B1 irrep, we have to go

through the following possibilities:

• We take (0, 1,−1) for the one pion and (0, 0, 1) and

(1, 0, 0) for the other two. The two-pion system has

P2 = 2, but the lowest contribution in that irrep has

larger momenta. So this does not contribute.

• The single pion has p1 = (1, 1, 0) and the two-pion

system gets p2 = (1, 0, 0) and p3 = (−1, 0, 0). The

two-pion system therefore has total momentum P2 = 0,

but there is no contribution to B1 in that moving frame.

Therefore this example does not contribute to the thermal

states.

• A contribution is obtained using (1, 0, 0) for the one pion

momentum, and (−1, 1, 0) and (1, 0, 0) for the two-pion

system. In the latter, we have P2 = 1, which corresponds

to the first entry in Table 8 (albeit after an inconsequen-

tial global rotation). This contributes as a thermal state,

incidentally it is the largest one as shown in Fig. 5b.

Of course, there are many more possibilities to check for.

Using this method we determine the leading thermal state for

every correlator matrix and can use this as input for thermal

state treatments, detailed below.

A.2 General technicalities

Multi-particle correlators in general are contaminated with

excited states at early times, and with thermal pollution at

late time slices. Fitting too early will overestimate the energy,

while fitting too late may underestimate it. In order to obtain

a robust energy estimate, we use combinations of different

methods to attenuate these issues.

The order of application of these methods is illustrated

with a flow chart in Fig. 6. The detour arrows indicate optional

parts of the chain. We will explain the different methods in

order. First the correlator matrices can optionally be treated

with weight-shift-reweight [76] to suppress thermal states

at the cost of larger statistical uncertainty. Then we indepen-

dently use the original and treated correlator matrix and apply

the GEVM, which yields the principal correlators. These

principal correlators can be used to build ratios [17,31] or

left as-is. All variants can optionally be fed into the Prony

generalized Eigenvalue method (PGEVM) [90] with t0 = 2

fixed to suppress excited states (The PGEVM with δ0 fixed,

see Ref. [90] for details, turned out to not be reliable).

The resulting treated correlators are evaluated by looking

at the so called effective mass. The simplest definition of it
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Fig. 6 Treatment of correlator matrices before fitting

is the “log effective mass”

meff(t) = − log
C(t)

C(t + 1)
, (A3)

which assumes a signal proportional to exp(−Et) only. There

are generalizations that take back-propagation, shifting or

weighting into account. Depending on the treatment of the

correlator we choose the appropriate effective mass.

We do not use all of the possible treatments in our analysis,

but only the following five: no treatment (i.e. all optional parts

are left out), only PGVM, only ratio, only weight and shift

and finally the combination of weight and shift with PGEVM.

In more detail this means:

No treatment When no thermal states contribute (like

in E irreps in the two pion channel), a simple cosh-like

model is fitted:

C(t) = A0

[

exp(−E0t) + exp(−E0 · (T − t))
]

. (A4)

If thermal states are present in the given irrep, a two-state

model

C(t) = A0

[

exp(−E0t) + exp(−E0 · (T − t))
]

+ A1

[

exp(−E1 t) + exp(−E1 · (T − t))
]

,

(A5)

with constrained second energy E1 will be fitted to the

data (for how E1 and its error is determined, see Appendix

A1) The constraint is implemented by augmenting the χ2

function to be minimized by a term

χ2
add =

(

−
E1 − Ē1

δE1

)2

, (A6)

where E1 is the fit parameter, Ē1 is the determined cen-

tral value for the thermal energy and δE1 the statistical

uncertainty on E1.

PGEVM This method works well when there are no sig-

nificant thermal state contributions. We fit a simple expo-

nential model at early times.

Ratio We take the ratio of the principal correlator obtained

from the GEVP (no weight-and-shift applied) and form

ratios with the one-pion correlation function:

R2(t) =
C2π (t) − C2π (t + 1)

Cπ (t)2 − Cπ (t + 1)2
, (A7)

R3(t) =
C3π (t)/Cπ (t) − C3π (t + 1)/Cπ (t + 1)

Cπ (t)2 − Cπ (t + 1)2
.

(A8)

The ratio R3 is chosen as a double ratio such that in the

numerator, thermal state contributions ∝ exp(−�E t)

are removed, since �E ≈ Eπ . The resulting sinh-

like correlator needs to be divided by another sinh-like

expression, that’s why we take the difference also in the

denominator. Among different ratio expressions we have

tested, this one works best in the sense that the plateau is

longest. An exponential model is fitted to the ratios where

the signal behaves like R2(t) ∼ exp(−(E2π−2Eπ )t) and

R3(t) ∼ exp(−(E3π − 3Eπ )t). Note that for the ratios

we do not include backwards propagating parts and thus

do not extend fit ranges too far towards T/2.

Weight-shift The correlator matrix has the leading ther-

mal state removed [76] and, therefore, the principal cor-

relators can be fitted with a cosh-like model which incor-

porates the weight-shift-reweight procedure.

Weight-shift and PGEVM In general the additional sup-

pression of excited states by the application of the

PGEVM works well after weight-shift has been applied

beforehand. The resulting correlator is fitted with an

exponential model. Fit ranges can be chosen early enough

such that the neglect of backwards propagating parts is

not significant.

Figure 7 shows a comparison between no treatment,

weight-shift and the ratio R3 for a case with heavy thermal

pollution. One can see how the effective mass of the plain

correlator does not show any plateau due to the high degree

of thermal pollution. The effective mass of the weighted cor-

relator, however, exhibits a plateau between t1 = 12 and

t2 = 14, but still shows a drop beyond. However, this three

time slice plateau can only be identified when compared to

the effective mass given by the ratio R3. This likely stems

from the second leading thermal state as visible in Fig. 5a.

The ratio however has a long plateau that is compatible with

the weight-shift method a posteriori. In general we see that

with the ratio method it is possible to fit energy levels with

strong thermal pollution when other methods fail to produce

a plateau. The statistical uncertainty from the energy deter-

mination with the ratio is also lower than with other methods

in most cases.

In some cases the thermal states are so pronounced that no

plateau can be identified, even after applying the PGEVM.

In these cases the method is not used for that particular level.
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Fig. 7 Effective mass for the three-pion ground state (A−
1 , P2 = 0) on

the cA2.60.32 ensemble. Shown are in blue the plain correlator without

any thermal state treatment, in red the correlator treated with weight-

shift-reweight and in green the ratio R3 shifted upwards by 3Mπ . The

solid line marks the noninteracting energy

Fig. 8 Combination of artificial fit results from two different methods to a weighted average and finally the rescaled distribution. Columns show

different and same central values, rows show different and same statistical errors in the two measurements
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These cases work much better with either the multi-state

model, weight-shift-reweight or the combination of weight-

shift-reweight and the PGEVM. The ratio method seems to

be the most robust one, it shows plateaus even when other

methods fail to produce one. Also, the statistical uncertainty

seems to be lower compared to the other methods in general.

For every principal correlator we attempt to extract the

energy with all the five methods detailed above. If a plateau

can be identified, we use the extracted energy level. All such

determinations per principal correlator are combined with a

correlated weighted average. In order to incorporate the sys-

tematic spread between the central values, we also compute

a systematic error scaling factor as introduced in Ref. [32]:

for energy level E we compute the scaling factor w Eq. (5),

as mentioned in the main text.

To illustrate this method to incorporate the systematic

error into the resampling distribution, we use two artificially

generated data points with central values X1 and X2 and cor-

responding standard errors generated in four ways, where

either the central values and/or errors are chosen to be the

same or different. All combinations thus give four cases,

which are shown in the quadrants of Fig. 8 (upper left: differ-

ent mean, different errors; upper right: same mean, different

errors; lower left: different mean, same errors; lower right: all

the same). The central values with standard errors for X1 and

X2 are shown as the first two pairs of points in each quadrant.

The third pair shows the weighted average of the two esti-

mates and the fourth pair the result after the rescaling. One

can nicely see how the weighted average gravitates toward the

data point with the smaller uncertainty (hence higher weight)

and how the rescaling incorporates the spread between the

central values. The method works well for both bootstrap and

jackknife resampling.

In order to choose appropriate fit ranges for the different

methods, we proceed iteratively, selecting fit ranges by eye

guided by the p-value of the fit. Energy levels are included

in the further analysis only if a plateau of at least five time

slices length could be identified for the T = 96 lattices and

of at least four time slices for the T = 64 lattice. Some

energy levels show significant tension between the different

fitting methods after this first iteration. In these cases, we

re-evaluate the plateaus to arrive at our final choices.

Appendix B: Fitting the spectrum

Here, we aim to extend the discussion of the fitting procedure

of the spectrum to the quantization condition. The summary

of the frames, irreps and energies used in this work is shown

in Table 9.

Table 9 Summary of energy levels included in this work. The E/Mπ

range indicates in which energy range the energy levels from the various

principal correlators in that specific irrep where located

P2 Irrep E/Mπ range

(a) cA2.09.48, two pions

0 A+
1 [2.03, 4.85]

0 E+ [4.71, 6.31]

1 A1 [2.63, 6.64]

2 A1 [2.95, 5.79]

3 A1 [3.14, 4.29]

3 E [4.00, 4.00]

4 A1 [2.05, 4.79]

4 B1 [4.86, 4.86]

(b) cA2.09.48, three pions

0 A−
1 [3.09, 6.05]

0 E− [5.91, 5.92]

1 A2 [3.92, 3.92]

2 A2 [4.37, 4.99]

3 A2 [4.69, 6.40]

3 E [5.70, 8.06]

4 A2 [3.92, 6.42]

4 B2 [6.42, 6.42]

(c) cA2.30.48, two pions

0 A+
1 [2.01, 3.99]

0 E+ [3.09, 3.88]

1 A1 [2.29, 4.15]

1 B1 [3.28, 3.28]

1 B2 [4.09, 4.09]

1 E [3.31, 4.02]

2 A1 [2.46, 4.26]

2 A2 [3.50, 3.50]

2 B1 [3.45, 3.45]

2 B2 [4.22, 4.22]

3 A1 [2.59, 4.46]

3 E [2.84, 4.44]

4 A1 [2.03, 3.13]

4 B1 [3.12, 3.12]

(d) cA2.30.48, three pions

0 A−
1 [3.05, 4.26]

0 E− [4.16, 4.16]

1 A2 [3.39, 4.66]

1 B2 [4.43, 4.59]

1 E [4.43, 4.43]

2 A1 [4.69, 4.85]

2 A2 [3.66, 5.01]

2 B1 [4.81, 4.90]

2 B2 [4.59, 4.90]

3 A1 [5.14, 5.14]

3 A2 [3.83, 5.32]
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Table 9 continued

P2 Irrep E/Mπ range

3 E [4.11, 5.18]

4 A2 [3.42, 4.67]

4 B2 [4.41, 4.56]

4 E [4.57, 4.57]

(e) cA2.60.32, two pions

0 A+
1 [2.02, 4.20]

0 E+ [3.21, 4.08]

1 A1 [2.32, 4.38]

1 B1 [3.43, 3.43]

1 B2 [4.25, 4.26]

1 E [3.41, 4.26]

2 A1 [2.50, 4.44]

2 A2 [3.67, 3.67]

2 B1 [3.60, 3.60]

2 B2 [4.39, 4.39]

3 A1 [2.65, 4.66]

3 E [2.94, 4.68]

4 A1 [2.02, 3.28]

4 B1 [3.21, 3.21]

(f) cA2.60.32, three pions

0 A−
1 [3.06, 4.40]

0 E− [4.31, 4.31]

1 A2 [3.50, 4.86]

1 B2 [4.56, 4.74]

1 E [4.56, 4.56]

2 A1 [4.84, 5.01]

2 A2 [3.72, 5.23]

2 B1 [4.98, 5.13]

2 B2 [4.79, 5.06]

3 A1 [5.32, 5.32]

3 A2 [3.94, 5.58]

3 E [4.21, 5.42]

4 A2 [3.51, 4.86]

4 B2 [4.51, 4.71]

4 E [4.70, 4.70]

B.1 General technicalities

In both, the two and three-particle sector, we define the χ2

as:

χ2 =
∑

i j

(Edata
i − E

predicted
i ) (C)−1

i j (Edata
i − E

predicted
j ),

(B1)

where C is the covariance matrix of the energy levels, esti-

mated from the bootstrap samples. Best fit parameters are

obtained using the Levenberg-Marquardt algorithm.

The range of validity of the quantization conditions is

limited by the first inelastic threshold. This is E∗ = 4Mπ

(5Mπ ) for the two-particle (three-particle) quantization con-

dition. We generally include levels up to that threshold, how-

ever, for the physical point ensemble (cA2.09.48), we have

included levels higher up in energy. Since the 2π → 4π ,

and 3π → 5π couplings are very small, we expect this to

be a valid approximation. In fact, phenomenological stud-

ies set the first relevant inelasticity to be the ρππ channel

(E∗ ∼ 8Mπ for physical kinematics) [92,95,96].

As mentioned in the main text, we show here additional

two-pion phase shift plots: Fig. 9 for cA2.30.48, and Fig. 10

for cA2.60.32. In the case of the s-wave phase shift, we also

compare to LO ChPT. As can be seen, the ChPT prediction

describes less accurately the data at heavier pion masses –

compare to Fig. 2.

B.2 Additional discussion on three-pion fits

First, we perform a global fit to two- and three-particle levels

that includes only a constant term in K3,df. This is shown in

Table 10. As can be seen, the quality of the fit is significantly

worse for the heavier ensembles than in the linear fits of

Table 6 in the main text. For the ensemble at the physical

point (cA2.09.48), the value of χ2 is basically the same, but

in both cases K3,df is compatible with zero. We thus conclude

that the linear model of K3,df in Eq. 6 in the main text is more

appropriate for this system.

Next, the full covariance matrices of the fits in Table

6 in the main text are provided. We use the form C =
DRD, with D being a diagonal matrix with the stan-

dard errors of the parameters. We ordered the entries as:
(

1/B0, B1, M2
πK

iso,0
df,3 , M2

πK
iso,1
df,3

)

.

cA2.09.48: D = diag (0.0086, 1.1, 800, 500),

R =

⎛

⎜

⎜

⎝

1. 0.73 −0.37 −0.02

0.73 1. −0.25 0.11

−0.37 −0.25 1. −0.71

−0.02 0.11 −0.71 1.

⎞

⎟

⎟

⎠

,
(B2)

cA2.30.48: D = diag (0.015, 0.4, 3800, 3800),

R =

⎛

⎜

⎜

⎝

1.0 0.80 −0.55 0.41

0.80 1.0 −0.40 0.35

−0.55 −0.40 1.0 −0.93

0.41 0.35 −0.93 1.0

⎞

⎟

⎟

⎠

,
(B3)
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(a) (b)

Fig. 9 s- and d-wave phase shift for the ensemble cA2.30.48. For s-wave we use a model that incorporates the Adler-zero, whereas for d-wave

we fit to a constant in the region for which we have data. Two points have been omitted in the plot due to the very large errorbars

(a) (b)

Fig. 10 s- and d-wave phase shift for the ensemble cA2.60.32. For s-wave we use a model that incorporates the Adler-zero, whereas for d-wave

we fit to a constant in the region for which we have data. Two points have been omitted in the plot due to the very large errorbars

Table 10 Two- and three-pion fits using the Adler-zero form (z2 = M2
π , fixed). Here we assume that K3,df is given by a constant: K3,df = K

iso,0
df,3

1/B0 B1 M2
πK

iso,0
df,3 M2

πK
iso,1
df,3 χ2/dof

cA2.60.32 − 0.2050(49) − 1.7(2) 900(1000) – 71.08/(43-3)

cA2.30.48 − 0.149(14) − 1.7(4) − 2000(1400) – 47.59/(33-3)

cA2.09.48 − 0.0482(86) − 1.3(1.1) − 200(600) – 19.24/(19-3)

cA2.60.32: D = diag (0.0049, 0.2, 1500, 1800),

R =

⎛

⎜

⎜

⎝

1.0 0.36 −0.02 0.05

0.36 1.0 0.10 0.22

−0.02 0.10 1.0 −0.78

0.05 0.22 −0.78 1.0

⎞

⎟

⎟

⎠

,
(B4)

We observe a large correlation within the two and three-

particle sectors separately – the pairs 1/B0, B1, and

M2
πK

iso,0
df,3 , M2

πK
iso,1
df,3 are highly correlated. In contrast, the

correlation between the two- and three-particle sectors is

milder.
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(a) (b)

Fig. 11 The center-of-mass spectrum for two and three pions on the

physical point ensemble (cA2.09.48). The red data points are the energy

levels determined from the correlator. The black lines denote the pre-

diction from the quantization condition. For the two-pion A1 levels, and

all three-pion levels, we use the fit in Table 6 in the main text. For the

non-A1 two-pion levels, which are dominated by d-wave interactions,

we use the fit in Table 4 in the main text. The short dashed gray lines

denote the noninteracting energy levels. We also include the relevant

inelastic thresholds as long dotted gray lines

B.3 Two- and three-pion spectrum

We conclude the discussion by comparing the spectrum from

the lattice to the one predicted by the quantization conditions

using the best fits. This is shown in Fig. 11 for the ensemble

at the physical point.
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