
CHAPTER 95 
SCATTERING OF WATER WAVES BY VERTICAL CYLINDERS 

WITH A BACKWALL 

Shohachi Kakuno *, Kazuki Oda*, and Philip L.-F. Liu ** 

Abstract 

The scattering of small amplitude water waves by an array of vertical 
cylinders with a solid vertical backwall is studied theoretically and ex- 
perimentally. In the theoretical study, a method of matched asymptotic 
expansions is developed without considering real fluid effects. The energy 
loss due to flow separation near cylinders is modeled by introducing a 
complex blockage coefficient. The theories are compared with laboratory 

data. 

1     Introduction 

The slit-type breakwater consists of a vertically slitted front wall and a solid 

backwall as shown in Figure 1. The closely spaced cylinders cause flow separation 

and hence energy dissipation. This type of device is particularly effective in 

reducing wave action inside a harbor. It has gained popularity in many countries, 

where either the materials for building rubble-mounted breakwaters are lacking or 

usable water space is limited. Many studies for the slit-type breakwater have been 

performed since Jarlan's original work(1961). Most recently a semi-analytical 

approach has been reported by Fugazza and Natale(1992). 

Figure 1. Slit-type breakwater. 

*Dept. of Civil Engrg., Osaka City University, Osaka, 558, Japan. 
"Joseph DeFrees Hydraulics Lab., School of Civil & Environmental Engrg. 
Cornell University, Ithaca, NY. 14853, USA. 

1258 



WATER WAVE SCATTERING 1259 

The purpose of this study is to consider rigorously the mechanics of the 

interactions of water waves with the slit-type breakwater. The effects of the cross- 

section of the cylinders and energy dissipation caused by flow separation behind 

the cylinders are taken into consideration. The present work is the continuation 

of a previous study by Kakuno and Liu(1992) with additional consideration of 

the backwall. 

2    Formulation of the Problem : Potential Flow Theory 

A train of small amplitude monochromatic waves incidents normally upon 

an array of vertical cylinders with a vertical backwall. The distance between 

the centers of two adjacent cylinders is denoted as 2J5 and water depth is a 

constant h. The distance between the center line of the array of cylinders and 

the backwall, we call it wave chamber width hereafter, is denoted as /. 

Ignoring the possibility of flow separation in the vicinity of the cylinders, a 

potential flow theory is first formulated. Defining the velocity potential for the 

periodic wave motion as 

HX,y,zJ) = ^,y)
C
°

S
lfk

+
h
Z

K-^ (2.1) 

where LO is the wave frequency, and k the wave number which is the solution of 

the well-known dispersion relation 

to
2
 = gkt&nhkh. (2.2) 

The velocity potential on the still water level, <j>(x,y), satisfies the Helmholtz 

equation 

V2^ + fcV = 0, (2.3) 

in the flow domain with the no-flux boundary condition 

dd> 

7T = °- (2-4) On v      ' 

on the perimeters of the cylinders and the backwall. 

The incident waves propagate in the positive s-direction and their potential 
is expressed as 

fee = e
ikx

. (2.5) 

The scattered wave potential, which is the difference between the total wave 

potential </> and the incident wave potential, must satisfy the radiation bound- 

ary condition at infinity. The radiation boundary condition, which requires the 
scattered waves be outgoing at infinity, can be stated as 

4> - fee —
y
 Re~'

kx
, as x —> -oo (2.6) 
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where R is the reflection coefficient. 

In the region of the wave chamber, two types of waves exist : waves propa- 

gating in positive and negative x-direction. Thus, 

<j> -> Te
ikx

 + Qe~
ikx

, as 0 < x < I (2.7) 

where T and Q are the ratios of amplitudes of these waves to that of the incident 

wave, respectively. If we apply the no-flux boundary condition on the front line 

of the backwall to these two waves, we obtain 

Q = e
2ik,

T. (2.8) 

3     A Method of Matched Asymptotic Expansions 

To find analytical solutions for the velocity potential, <j>, we develop a sys- 

tematic procedure using a method of matched asymptotic expansions. First, the 

flow domain, 0 < y < B, — oo < x < I is divided into two far-fields and a near- 

field. The near-field region is the flow domain in the vicinity of cylinders with 

the length scale of 0(B). The far-field regions are the flow domains far away 

from the cylinders, i.e. 0(\x\/B) ;> 1, in which the length scale is the wave 

length. A method of matched asymptotic expansions is developed based on the 

assumption that kB =e< 1. 

3.1     Far-Field Solutions 

If we match the far-field solutions and the near-field solution far away from 

cylinders, so that 0(\x/B\) >• 1 but 0(|fcx|) <C 1, then evanescent modes can be 

discarded. In terms of the near-field coodinates (x,y) = (x/B,y/B), (2.6) and 

(2.7) can be rewritten as: 

x<0 (3.1 a 

Te
i£X

 + e
2M

Te-
ieS

, x > 0. (3.1b) 

Expanding the reflection and the transmission coefficients in a power series 

of the small parameter e, we have 

oo 

R   =    2^ e
m
Rm, (3.2a) 

m=0 
oo 

T   =    ££mTm. (3.2b) 
m=0 

Substituting (3.2) into (3.1), we obtain the inner expansions of the far-field 

solutions: 
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2M
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(3.3b) 

The reflection and transmission coefficients, Rm and Tm, are to be determined 

by matching (3.3) with the outer expansions of near-field solutions. 

3.2    Near-Field Solutions 

In the near-field the potential function is also expanded in a power series of 

£, i.e. 

£ (3.4) 

In terms of the near-field coordinates (x,y) the governing equation, (2.3), can be 

rewritten as 

9
V ,  ^  , 

ox
1
      ay

1 

Substituting (3.4) into (3.5), we obtain a series of governing equations 

d
2

(f>m   ,  d2
(f>„ 

dx
2 

d
2
K 

+ 

+ 
d

2
<b„. 

= 0, 

+ . 

:0 and 1 

= 0, 

(3.5) 

(3.6a) 

(3.6b) 
dx

2
    '    dy

2 

The boundary condition requires that the no-flux condition be satisfied for 
all <j>m, i.e. d(f>m/dn = 0 (m = 0,1,2,...) along solid surfaces. 

The solution of the Laplace equation and the homogeneous solutions of Pois- 

son equation can be interpreted as a uniform flow passing an opening in a chan- 

nel. The dimensional velocity potentials for the uniform flow, </>', can be written 

asymptotically as 
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<j>' ~ U'(x ±C') + F' x^O (3.7) 

in which U' is the velocity intensity, F' is an arbitrary constant and C" is the 

blockage coefficient. The blockage coefficient depends on the geometry of the 

cylinder and is independent of the wave characteristics. A brief discussion on 

the blockage coefficient for the circular and rectangular cylinders is given in 

Kakuno and Liu(1992). Rewriting (3.7) in a dimensionless form in terms of the 

near-field coordinates, we have 

<l>~u(x±-)+F, x^O (3.8) 
e 

in which 

C = kC (3.9) 

is the dimensionless blockage coefficient and is of order of magnitude of one or 

smaller. The scales in (3.8) and (3.9) are used so that the dimensional block- 

age coefficient, C", can become large when the opening of the gap is small in 

comparison with the distance between two cylinders. 

The velocity intensity U and the constant potential F are also expanded in 

terms of the small parameter, e, i.e. 

OO OO 

U = J2 
£mu

m,    F = £ e
m
Fm. (3.10) 

771=0 777 = 0 

Substitution of (3.10) into (3.8) yields the outer expansions of the near-field 

potentials which are the solution of the Laplace equation. 

3.3     Matching 

After matching the far-field solutions of the leading order with the near-field 

solutions of the same order, the leading order coefficients may be obtained. The 

subsequent order coefficients may be calculated from the perturbation sheme 

with the known coefficients of the preceding order, that is, 

U0   =   0, (3.11a) 

1 - iC(\ - e2ikl
) + e

2M 

F
°    = l_iC(l-c»*')       ' (3Jlb) 

To
   

=
    l-iC(l-e««)' (3'11C) 

-iC{\ - e
2ikl

) + e
2M 

R
°    =        i_iC(l-e»«)     ' (3-Ud) 

Ux   =   »(1 - e2
'
kl

)T0, (3.12a) 

-iMiiC - e
2ikl

 - 1) 

*   =       i-iCd-e^)    *" (3'12b) 
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(i + C)M 

1 - »C(1 - e2 ^   =    ,    i:rJJ"      ^ (3.12c) 

^    =    l-iC(l-cH*') ^ (3-12d) 

"» =  i-,c(i-e^)f°' (3'13a) 

Fa   =    (1 + e272 + ^; (3.13b) 

{i + C)M 

1 - iC(l - e2 

[i + C - (C - Qe^'jAf 

1 - iC(l - e2<*<) 

^2   =   T^^^T/u (3.13c) 

where 2M, a net flux across the surface of the cylinder generated to compensate 

the flux by a symmetric part of the particular solution of the Poisson equation, 

is determined by 

2M = - f 4- (-—) ds = -4J (3-14) 
k dn \    2 J B

2 y
       ' 

where n is pointing outward from the fluid region, T is the surface of the cylinder, 

and 5 is the half of the cross sectional area of the cylinder. 

3.4 Reflection Coefficient 

Up to the 0(e
2
) the reflection coefficient can be expressed as 

R = R0 + eR1 + s
2
R2. (3.15a) 

The absolute value of the reflection coefficient of leading order is unity, which 

fulfill the energy conservation, regardless of the wave characteristics, the wave 

chamber width, and the porosity of the front wall, or C. The whole solution which 

includes higher-order terms, therefore, does not satisfy the energy conservation 

principle. In particular, the deviation of that solution from the principle become 

significant in the vicinity of region of l/X = 0.5, where A is the wave length. 

3.5 Free surface displacement inside and outside the wave chamber 

For design purpose, the free surface displacement in front of and behind the 

front wall, and in front of the backwall should be predicted. Knowing the phase 

difference in the free surface displacement inside and outside the wave chamber 

is helpful to get insight into the wave mechanics around the breakwater. 

From the linear wave theory the free surface displacement can be related to 

the velocity potential $ through the free surface boundary condition 
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77 = 3?e 
7sT 

(3.16) 

Substituting (2.1) into the above equation and collecting the real part of the 

resulting equation, we obtain 

ri = —Ja
2
 + j3

2
 sir 

9 

-1 " 
Lot + tan     — 

where 

a   =    -Ssm[(f>{x,y)], 

0   =   tlte[4>(x,y)]. 

(3.17) 

(3.18a) 

(3.18b) 

The phase difference in the free surface displacement inside and outside the wave 

chamber is, therefore, 

= tarT^ao/A)) - tan-1 (<*///?/) (3.19) 

where the subscript "0" and "7" stand for "outside" and "inside" of the wave 

chamber. 

4     Energy Dissipation Model 

As shown in (3.7) the outer expansions of the near-field solutions represent 

uniform flows with a difference in potential level. This difference denoted by the 

blockage coefficient, C", can be related to the pressure drop between the front 

and the rear of the front wall. In the dimensional form, the dynamic pressure is 

defined as 

9$      . cosh k(h + z)  _it 
(4.1) 

Substituting (3.7) into the above equation, we obtain the dynamic pressures in 

front of and behind the wall 

P = ,M^±n+n^±^-<, ^0 (4-2) 

If we neglect terms whose order are higher than 0(k
2
), the pressure difference 

between P+ and P_ is 

AP = P_ - P+ = 2pC'U 

where 

U = —• U = Lr/
coshfc

(
fe
 
+
 
g
)c-'u,< 

dt cosh kh 

(4.3) 

(4.4) 
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Therefore, the blockage coefficient C plays a role of a coefficient of inertia resis- 

tance which is proportional to the acceleration of the oscillating flow U, (4.4). 

To include the effects of energy dissipation due to flow separation in front of 

and behind the front wall, we assume that the flow separation is confined within 

the near field region. We assume that the energy dissipation causes an additional 

pressure drop, which is linearly proportional to the oscillating velocity U. Thus 

AP = 2pC'U + 2pC[uU (4.5) 

in which C\ can be considered as an empirical coefficient modeling the effects of 

energy dissipation. The simple model (4.5) can be derived in a different way. We 

introduce the blockage coefficient C" in (4.2) as a complex constant, i.e. 

C' = C'r + id (4.6) 

so that C'r is the actual blockage coefficient based on the potential flow theory. 

Substituting (4.6) into (4.2), we can derive (4.5) with C" being replaced by C'r. 

The significance of the simple relations stated in (4.5) and (4.6) is that when the 

energy dissipation is important, one can calculate the reflection coefficient (3.15) 

by replacing C by C". 

It is well known that the energy loss due to the flow separation is proportional 

to the square of the flow velocity through the opening, i.e. 

AP V
2 

where /' is the energy loss coefficient and V is the average velocity at the opening 

(x = 0). Because the dissipation model introduced in (4.5) is linear in the velocity 

field, we must ensure that the same total energy loss (work done) over a wave 

period is determined by the quadratic resistance law and by the linear model. 

By equating the work done (energy loss) calculated from the linear model and 

the one calculated from quadratic resistance law, we get 

C'i \r\(H/\)f 

B      97r/4(a/B)2(5/A) 

and 

sinh2 kh + 3 

sinh2kh + 2kh 
(4.8) 

/ = f'l (4.9) 

in which "a" denotes the half-width of the opening, "H" is the incident wave 

height, 7 is an empirical coefficient, and r is the ratio of the uniform velocity far 

away from the cylinder to the water particle velocity of the incident wave at the 
same position, and expressed as 

r = (1 - e
2
'
k!

)T. (4.10) 

Equation (4.8) relates C[ to the wave characteristics, H/X, r, kh, and the 

geometry of the cylinder, a/B and B/X. Only one dimensionless coefficient, /, 

need to be determined. The value of / may hold the same as that for the case 

without the backwall, say, 1.5 for rectangular cylinders. 
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5     Comparison Between Theoretical Solutions and Lab- 
oratory Data 

To validate the theoretical models with the value of / = 1.5 for rectangular 

cylinders, experimental data obtained in Osaka City University are compared 

with theoretical results. 

The cylinders used are square. The experiments are performed in a wave 

tank, which is 1.0m wide, 50m long and 1.75m deep. The side lengths of the 

square cylinders are 15cm for the case of B/l = 0.129 and 5cm for other cases. 

The water depth is kept constant at h = 50cm. The wave steepness H/X varies 

slightly around 0.01. The wave heights are measured in front of and behind the 
front wall and in front of the backwall. 

From Figure 2(a) to Figure 2(d), the laboratory data for the reflection coeffi- 

cients are compared with the theoretical results obtained for / = 1.5, for different 

parameters, a/J3(porosity), B/l, and h/B. The theoretical results obtained from 

the leading term only and from higher-order terms are shown in the figures. The 

discrepancy between these two types of the results is slight except the region of 

l/X = 0.5 where the higher-order solutions exhibit singular behavior. The agree- 

ment between data and theoretical results from the leading term only is good 

so that it is suffice for practical use to employ only the leading term. In Figure 

3, the all experimental data of the reflection coefficients are plotted against the 

theoretical results. Both are in good agreement except for the region where the 

values are close to unity. 

Figure 4 shows an example of the comparison in the free surface displacements 

at three locations inside and outside the wave chamber. The vertical displace- 

ments are normalized by the incident wave amplitude. Figure 5 plots the phase 

difference between the locations inside and outside the chamber. Both figures 

are the results based on the leading order approximation. The locations at which 

the free surface displacements are measured are indicated in the captions of each 

figure. The agreement between data and theory is again good for these results. 

Note that nodes appear behind the cylinders at a definite value of l/X. Sudden 

jumps shown in the phase difference, which is about it, are because that the 

location of the wave gauge behind the cylinder (x2) is in the vicinity of a nodal 

point. 
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Figure 2(a). Comparison between theoretical and experimental data for reflection 
coefficient. 

1.0 

5 0.5 

a/B=0.10 
B//=0.129 

h/B=5.96 

H/A=0.01 
f=1.5 

i 
0.1 0.2 0.3 

IIX 
0.4 0.5 

Figure 2(b).   Comparison between theoretical and experimental data for reflec- 
tion coefficient. 
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Figure 2(c). Comparison between theoretical and experimental data for reflection 

coefficient. 
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Figure 2(d).   Comparison between theoretical and experimental data for reflec- 

tion coefficient. 
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Figure 3. Comparison between measured and calculated reflection coefficients. 
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Figure 4. Comparison between theoretical and experimental data for free surface 

displacements, xt/l = -0.125, x2jl = 0.125, x3// = 0.917. 
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Figure 5. Comaparison between theoretical and experimental data for phase 

differences between inside and outside the chamber, X\jl = —0.125, x?/l = 0.125, 

x3/l = 0.917. 

6 Conclusion 

A modified method of matched asymptotic expansions has again been ap- 

plied to study the wave interactions with a slit-type breakwater. The energy 

dissipation caused by the flow separation behind the cylinders is considered in 

the theory. Theoretical results with the empirical coefficient for square cylin- 

ders determined in the previous study are verified by experimental data. It is 

shown that the leading order solutions are accurate and can be used to calculate 

reflection coefficients and the wave action in the vicinity of the breakwater. 
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