
Scattering phase matrix for hexagonal ice crystals
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The scattering phase matrices for finite hexagonal cylinders oriented randomly in space were computed by
superposing the scattered intensities of Fraunhofer diffracted rays and geometrical optics rays. However,
the effect of interference is considered when the optical path lengths for two rays, split by some obstacle and
scattered in the same direction, are equal to each other. Single models (c/a = 2.5 and 0.4) for a hexagonal
column and a plate, resembling the corresponding crystals in atmospheric clouds, are used in the computa-
tions. Our results showed different values for the phase matrix elements, P3 3 and P 44 , from those obtained
previously by Cai and Liou. The backscattering linear depolarization ratios and the asymmetry factor for
hexagonal plates oriented horizontally were then computed. The backscattering linear depolarization ratios
exceeded 1.0 at certain orientations. Within the limitation of the use of single-crystal models for a hexago-
nal column and a plate, the results appear to agree well with most field and laboratory observations.

1. Introduction

The computational and theoretical studies on light
scattering properties for ice crystals have been devel-
oped by several researchers.1- 5 They used the geo-
metric ray tracing method which is approximately valid
when the crystal size relative to the wavelength is large.
These computations4 5 show that the phase matrix el-
ements, P 3 3 and P44, for finite hexagonal cylinders ori-
ented randomly in 3-D space are different from those
for spheroidal particles5 6 and from the measured ones
for artificial ice crystals. 7

In this paper, using the ray optics B technique pro-
posed by Takano and Tanaka,8 we extend the work of
Cai and Liou4 (CL) on the scattering phase matrix for
finite hexagonal cylinders oriented randomly in space.
Here ray optics B means that the scattered intensity of
the Fraunhofer diffracted rays, the intensity of the ex-
ternally reflected rays, and the intensities of the re-
fracted rays after some internal reflections are super-
imposed by ignoring their phases. However, the effect
of interference must be considered when the optical
path lengths for two rays, split by some obstacle and
scattered in the same direction, are equal regardless of
the size of the cylinder. As shown later, we can obtain
the backscattering linear depolarization ratios and the
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asymmetry factor for randomly oriented hexagonal
plates with vertical c axes when the phase matrix for the
plates oriented randomly in space is computed. The
computed backscattering linear depolarization ratios
can then be compared with the lidar observations9-"
and the laboratory measurements.121 3 These results
are applicable to remote sensing of atmospheric ice
crystals.

II. Ray Tracing and Amplitude Matrix

In this study, when we do not explain a term, the
notation of CL is being followed.

Let a plane wave be incident on a finite hexagonal
cylinder from a direction with zenith angle X = r/2 - a
and azimuth angle measured with respect to the
coordinate system fixed to the cylinder. The X and Z
axes of this coordinate system are directed, respectively,
along the a and c axes of the crystal, as shown in Fig.
1(a). Although CL have taken their X axis along the
b axis of the crystal, such a minor difference will not
affect the following discussion. As for the Cartesian
coordinate system OX'Y'Z', we apply a definition dif-
ferent from that of CL to reduce the number of inte-
gration for particle orientation. Although the axis OZ'
is taken along the incident direction, the axis OX' is
taken in the plane containing the axes OZ and OZ' as
also shown in Fig. 1(a). Then the matrix A which rep-
resents the direction cosine between the six axes of
OXYZ and OX'Y'Z' can be explicitly given by

-sina 0 cosa cos3 sink 0

A = 0 1 0 -sin: coso 0 .

-cosa 0 -sina 0 0 1

(1)
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Hereafter rays are traced by using the method of CL.
{However, their Eq. (24) has been erroneously written
and should be read as

| COSXn cosan

cos4'/ j = [<]?lDt+2 D . . . 44n- 1 ] * A cos/n A n 2 2. (2)

CosWn cOS-Yn

Here the matrix with the asterisk * represents the
transposed matrix.}

The electric field vector E rt obtained by CL has been
described in the coordinate system OX Y tZnt.
Specifically, the plane Zr'

tOnn in Fig. 1(b) is their ref-
erence plane to denote the electric field Ent. Onn rep-
resents the outward normal direction of a prism plane.
Here a prism plane refers to one of the rectangular sides
of a finite hexagonal cylinder. So that the plane con-
taining the propagation direction of the light ray and
the Z axis becomes the reference plane, we rotate the

coordinate system by the angle q5sn- When a light ray
emerges out of the basal planes of the crystal, their
normal directions are parallel to the Z axis, and,
therefore, frs = 0. Thus let us consider the case where
a ray emerges out of a prism plane as shown in Fig. 1(b).
Let the direction cosines of the three axes in the coor-
dinate system OX'tY' tZ',t relative to the coordinate
system OXYZ be

Bn = coso3'j, ij = 1-3.

Then the matrix Bn is given by

(3)

(4)= [ t]*A.

From Fig. 1(b), the angle On is expressed as
sin(ain Pn)

sinT nt

1

tan 3 3 tanTn

where

n= sgn(cosS3n2 ) cos'(cos 3 n/ 1 -COS
2 ln3)

it J, for n 1,
Itr, for n 2 2.

(5)

(6)

(7)

(8)

Thus the scattering amplitude matrix A' relative to the
plane containing the propagation direction of the ray
and the Z axis is expressed as

for n = 1,w lP.slRjPj

A'(n) = 2
WnPsnTn Pn nI Rk Pk TiPi,

I~~~~-
for n 2 2,

(9)

where

COST1,

sinO,

[w] COSTI COST' COSTI n1 
osn exp -2km E d1+1 1 )

sinOn COST COST1 1=1

for n = 1,

for n 2.

x Y
nn

(b)

Fig. 1. (a) Scattering geometry for an incident light ray and a scat-

tered light ray relative to a hexagonal ice crystal. (b) Scattering ge-

ometry for rotation of the coordinate system. All symbols are ex-

plained in the text.

(10)

In Eq. (9), Pn is the 2 X 2 matrix which represents the
rotation of the coordinate axis by the angle 0sn similar
to Pn. When n - 1 is smaller than 2,

2
H Rk Pk

k=n-1

in Eq. (9) should be regarded as the identity matrix. In
Eq. (10), the factor cosTr/sinOn is explicitly included.
This factor is derived from the fact that the fluxes of
incident radiant energy and scattered radiant energy
are proportional to cos-r' and sin0n, respectively. When
the incident ray grazes the cylinder, i.e., when 01 = 0 in
Eq. (10), w1 should be 1. As for n 2 2, w' diverges when
°n equals 0 or 7r as it does in the glory for large spherical
particles. In such a case, the scattered intensity cannot
be determined in the context of classical geometrical
optics, so that sinOn is then approximately given by
sin(AO/4), where AO is the numerical increment for the
scattering angle, say 2°.
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Next, as known from the configuration in Fig. 1(a),
the scattering amplitude matrix A n) in reference to the
scattering plane can be given by

A (n) = Ptn A' (n)P-,n. (11)

Here the angle Oen is expressed as
sin/3n sin(Pn - , 12

sinfen 3S-(nA (12)
sinOn

cos3 3 + sina coOS (13)
sinOn cosa

By interchanging 33 with 7r/2 - a in Eqs. (12) and (13),
we can obtain the expressions for the angle Ottn. For
singular cases, the limit should be considered as fol-
lows:

'Pen = tn = 7r/2 for On = 0 and 7r. (14)

11. Interference Between Two Rays

The scattering phase matrix G (n) of the ray for n can
generally be obtained from A (n) regardless of the phase,
as shown in the next section. However, let us consider
that a plane wave encounters an obstacle, and two rays
are split by the obstacle as shown in Figs. 2(b)-(d). The
effect of interference should be considered when the two
split rays are scattered in the same direction in space,

a0= 7 e=7-

z -

e=2a 8=0-
(a)

Asymmetrical Spatial
Skew Ray

and the optical path lengths are equal to each other
regardless of the crystal size. In fact, such a situation
can occur at 0 = 0, r - 2a, 2a, and r in the plane in-
cluding the Z axis and the incident direction as shown
schematically in Figs. 2(a)-(d). When a ray is reflected
at the basal planes an odd number of times, the ray is
scattered at 0 = r as in (b) or at 0 = 2a as in (c). When
a ray is reflected at the basal planes an even number of
times, the ray is scattered at 0 = 7r - 2a as in (b) or at
0 = 0 as in (c). Figure 2(d) represents a ray scattered
at 0 = 7r. This ray is reflected once at the basal plane
when a 0 or is not reflected at the basal plane when
a = 0. On the other hand, as in (e), two rays, which
overlap each other in the end view, are not split by an
obstacle. In this case, the effect of interference need
not be considered. Hereafter, for the sake of later dis-
cussion, we refer to the backscattered rays shown in
Figs. 2(b), (d), and (e), respectively, as the symmetrical

Symmetrical Spatial
Skew Ray

(b)

Plane Skew Ray

(c) (d) (e)
Fig. 2. (a) Schematic figure for the rays scattered at 0 = 0,2a,7r - 2a, and r in the plane containing the Z axis and the incident direction.
(b)-(e) End views of a hexagonal cylinder and its light rays drawn in Fig. 2(a). Dot and circle represent reflection and refraction, respectively.
Dot with parentheses denotes possible reflection. The left and right figures of (e), respectively, express a plane crystal and a columnar

crystal.
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spatial skew rays, the asymmetrical spatial skew rays,
and the plane skew rays. The nomenclature of Liou
and Lahore2 is followed and extended here. Figure 2(e)
corresponds to their Fig. 1.

In the case of the scattered light at 0 = 0, 2a, and 7r
- 2a in Figs. 2(a)-(c), the relation between the ampli-
tude matrices for the two interfering rays is the same as
the relation between the amplitude matrices14 for two
particles which are mutually the mirror image with re-
spect to the scattering plane. Thus the resultant am-
plitude matrix S (n) is given by

S) A$2) A)j + An) -AP)l IAn) °
S A+) A [-AV) A) 2 0 0 (15)

This is because the signs of the rotational angles, hi (i
= 1-n) and Oms, of the coordinate system for these two
interfering rays are opposite to each other similar to the
corresponding case of a circular cylinder. 8

On the other hand, in the case of 0 = 7r in Figs. 2(b)
and (d), the relation between the amplitude matrices
for the two interfering rays is the same as the relation
between the amplitude matrices14 of two particles which
are in the mutually reciprocal position with respect to
the bisectrix. Thus the resultant amplitude matrix S(n)
is given by

[A~) A)l [ ~) A)l

[Awn= A n)j 1-Aw") AAn) J

2A) An -A ) 
t-[A )-A (a)] 2A ) .l)

Equation (16) shows the inherent property14 in the
amplitude matrix at 0 = 7r, that is, St) -si'. The
physical ground for Eq. (16) is given in the Appendix.

In fact, when we consider the phase matrix for ice
crystals oriented randomly in space, many rays, whose
interference can be discounted, contribute to the scat-
tered intensities at 0 = 0, 2a, and 7r - 2a, whereas the
interfering rays exist only for a = 0/2 and (7r - 0)/2 at
each scattering angle 0. So we might not adopt Eq. (15)
for computation of the phase matrix at these directions
in the case of random orientation in space. On the other
hand, we should use Eq. (16) for the computation of the
phase matrix at 0 = 7r even in the case of random or-
ientation in space, since the spatial skew rays as well as
the plane skew rays exist for angles a.

IV. Scattering Phase Matrix for Finite Hexagonal

Cylinders Oriented Randomly in Space

At first, by using the amplitude matrix A (n) or S (n)
thus obtained, the phase matrix of the rays for n can be
expressed in van de Hulst's notation' 4 as

(16)

where the scattering angle is neither 0 nor 7r. Here we
consider the phase matrix to transform the incident
Stokes parameter (IoQoUoVo) to the scattered Stokes
parameter (I,Q,U,V). By applying the assumption of
rotational symmetry,14 the phase matrix elements at 0
= 0 can be expressed as follows:

(n) = /2[Man) + Mn) + MP)+ Mr)],

G2) = G~3)3 = 1/4[Mn)- M)- MP) + MI)]

+ 1/2[S) + SI,)1

GPn4) = Sin) - S),) (18)

and the other Gk1 values are 0. And at 0 = 7r, the non-
zero matrix elements can be expressed as

G(n) = 1/2 [M~n) + 2MP") + MMn)],

G) = -G) = 1/4 [M 4) + Mns)I - 1/2 S W,

Gin) = M,) + Sn2) 

(19)

The above explicit representations for the phase matrix,
Eqs. (17)-(19), are derived by following the method
outlined by van de Hulst.

Next let us assume that the phase matrix can be ap-
proximately obtained by superposing not the ampli-
tudes but the intensities when particles are oriented
randomly in space. Thus the phase matrix elements
can be expressed as the sum of the contribution from the
Fraunhofer diffracted rays and those from the geo-
metrical optics rays:

Gkl(m,ka,L/2a;a,;0,4) = 6kzGD(ka,L/2a;a,;0,ek)

+ E [ E(0 - n,k - en)GWP (mkaL/2a;a,3;0n,0n)X
q L=1 

kl = 1 - 4. (20)

The diffraction term GD for finite hexagonal cylinders
is computed by the method described by Takano and
Asano.15 The summation for q in Eq. (20) is over each
grid point on the finite hexagonal cylinder. If the ma-
terial of the cylinder is nonabsorbing, the geometrical
optics terms Gk'J) in Eq. (20) become independent of the
size parameter ha.

The phase matrix averaged over the angle : is ex-
pressed as

Gfl(m,ka,L/2a;a;0) =f- Gl(m,ka,L/2a;a,;0,4)d3 . (21)
7r .

Here the above integration is performed regardless of
the value of o. Thus Gfl can be regarded as the phase
matrix elements averaged not only over the angle : but
also over the azimuthal angle 0. This integration

1/2[MV + MPn) + MPn) + Mj"] 1/2[M' - MAiM]

G(n) = [ - MiI /2[M) - M)- M) + MjMJ

0 0

0 0

0 0
0 0

S'i2) + S,) -D~j),

D n1) St) -St)j
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method to obtain Gg1 is equivalent to the integration
scheme of CL which rotates the cylinder around the
incident direction. The backscattering linear depo-
larization ratios and the asymmetry factor for randomly
oriented plate crystals with vertical c axes are obtained
through Eq. (21). By integrating Ggl over the angle a,
the phase matrix elements Pkj for ice crystals oriented
randomly in space can be expressed as

Pkl(m;ka,L/2a;0) = J 2 Gj(m;ka,L/2a;a;0) cosada. (22)

V. Computed Results and Discussions

As several features of the computed scattering phase
matrix for finite hexagonal cylinders have been ex-
plained by CL, we will mention only the features which
are unexplained by them and different from them.

Figure 3 shows the phase function G01 averaged over
the angles /3 and 0. This phase function corresponds
to the azimuthally averaged one for randomly oriented
hexagonal plates with vertical c axes at the solar ele-
vation angle of 400. In this case, we have considered up
to five internal reflections, but the diffracted ray has not
yet been included. The peak y at 0 = 280 corresponds
to the 220 parhelia. The scattered intensity changes
abruptly at 0 = 1000. This does not correspond to a
certain peak but is only a discontinuity of intensity.
Rays which are incident on a prism plane and emerge
out of a prism plane after an even number of reflections
at the basal planes are confined on a solid cone. This
cone is the same as a parhelic circle. The angular di-
ameter of the parhelic circle is 7r - 2a. Hence there
appears the abrupt reduction of the azimuthally aver-
aged intensity at 0 = 1000. The peak at 0 = 2a = 800
corresponds to the subsun. The peaks and X at 0 =
86 and 1340 correspond, respectively, to the 220 sub-
parhelia and the 1200 subparhelia, since these peaks are
expected to appear, respectively, at 0 = 86.58 and
134.960 from simple geometry. Although the peak
corresponding to the 1200 parhelia would appear at 0
= 83.12°, the strong intensity of the 220 subparhelia
around 0 860 masks the weak peak corresponding to
the 1200 parhelia. Thus the appearances of these
well-known atmospheric optical phenomena indirectly
assure the validity of our computation scheme. In ad-
dition, according to Greenler,' 6 the 1200 subparhelion
has not yet been reported by anyone. However, the
contrast between its azimuthally averaged intensity and
the background intensity is stronger than the contrast
between the intensity for the secondary rainbow and its
background (e.g., Ref. 17). Therefore, we may be able
to detect the 1200 subparhelion from aircraft looking
down into ice clouds.

Figures 4 and 5 show the six nonzero phase matrix
elements for columns and plates oriented randomly in
space (3-D columns and 3-D plates), respectively. The
values of CL for wavelength X, crystal shape (L/2a), and
crystal size relative to the wavelength (27ra/X = ka) are
adopted for the sake of comparison. The inclusion of
four internal reflections (i.e., N = 6) accounted for 97%
of the total incident energy. The phase function is
normalized so as to satisfy the following condition:
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Fig. 3. Phase function averaged over the angles : and e for randomly
oriented hexagonal plates with vertical c axes (2-D plates) at the solar

elevation angle of 40°.
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Fig. 4. Scattering phase matrix elements for hexagonal columns
oriented randomly in space. The elements at the forward and
backward scattering angles are indicated by short horizontal bars.
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Fig. 5. Same as Fig. 4 except for hexagonal plates oriented randomly
in space.
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Table 1. Asymmetry Factors Computed from Geometrical Optics and

Backscattering Linear Depolarization Ratios for 3-D Columns, 3-D Plates,

and Spheresa

Column Plate Sphere

(cosO)G 0.5425 0.4169 0.8001

((COSO)R) (0.7712) (0.7084) (0.9001)

6HV(O = ) 0.577 0.386 0.0

a The asymmetry factors for sufficiently large particles (cosO)R are
approximately computed through the relation (cosO)R = [(cosO)G +
1]/2.

f P1 1dQ/47r = 1. (23)

Comparing these figures with those of CL and LCBH,5

we can see that the signs of the computed phase matrix
elements P3 3 and P44 are opposite from theirs except for
the forward scattering directions. As the behaviors of
the computed phase matrix elements P3 3 and P4 4 re-
semble those for spheroids 5 ,6 and artificial ice crystals, 7

the phase matrix elements P3 3 and P4 4 in this study
seem to be more accurate. In spite of the different size
parameter, the computed phase matrix elements are
closer to those of LCBH rather than those of CL at the
scattering angles >90° where diffraction does not occur.
They have computed the phase matrix for the mono-
disperse finite hexagonal cylinders by superposing the
amplitudes. On the other hand, we compute the phase
matrix by superposing the intensities under the as-
sumption that the effect of the interference will be
completely averaged out. Thus it turns out that the
integration over the particle orientation has the effect
of averaging out fluctuations on the scattered intensity
due to interference, as does the integration over the
particle size.8

In Figs. 4 and 5, we can see that P11(0 = 220 )/Pl(0
= 460) for 3-D plates is smaller than that for 3-D col-
umns as already pointed out by Pattloch and Trankle.18

Corresponding to this, the asymmetry factor (cosO)G
computed from geometrical optics for plates is smaller
than that for columns (see Table I). The (cosO)G values
are independent of size parameter in this nonabsorbing
case. Table I also shows that the asymmetry factors for
ice crystals are smaller than that for spheres. This is
because, in the case of finite hexagonal cylinders, the
rays for n = 2 which would be scattered at forward
scattering angles in the case of spheres' 4"17 are often
reflected totally and scattered at more backward scat-
tering angles. A similar explanation can be seen for the
asymmetry factor of smaller nonspherical particles.' 9

This smaller asymmetry factor for finite hexagonal
cylinders conforms with the fact that the observed cloud
albedo for cirrus at the visible wavelength is larger than
the cloud albedo computed under the assumption of
spherical cloud particles. 2 0

Next, let us consider the negative degree of linear
polarization at near backward scattering directions (0

178°) in Figs. 4 and 5. Here let us refer to the two
kinds of ray at near backward scattering directions as
the near plane skew rays and the near spatial skew rays

analogous to the corresponding rays at the backscat-
tering direction in Sec. III. As the scattering plane
hardly rotates in the case of near plane skew rays, I n) I

becomes greater than I Ajn) I because of the well-known
property of the Fresnel reflection coefficients (I Ryn I >

I Rxn l). On the other hand, in the case of near spatial
skew rays, even if the scattering plane rotates, IA In) is
likely to be greater than A In) , since IRyn : I Rxn I too.

The rotation of the coordinate system by Oen n-tn 

7r/2 causes I A Ln) I to be greater than I A n) I, and, there-
fore, the degree of linear polarization -P1 2 /P11 has
negative values as known from Eq. (17).

The nonzero phase matrix element P4 3 in Figs. 4 and
5 results from total reflection since P3) = D) =

Im[An)A~n)*]. Here the asterisk denotes the complex
conjugate. In the case of a = 0, PO) is always smaller
than or equal to 0 because of the property of the Fresnel
coefficients and the nonrotation of the incident plane.
Thus as the phase matrix element P4 3 has negative
values at a 'e 0, the element P4 3 for 3-D crystals is also
likely to have negative values. However, this element
P43 for 3-D columns has positive values at 1160 < 0 '
144° in Fig. 4. These positive values for P 4 3 are caused
by the rays shown in Fig. 6(a) for 14°' o a ' 260. In the
case of 3-D plates, the flatness of the hexagonal plates

T

(a)

(b)
Fig. 6. (a) End view of a hexagonal column and a light ray causing
the positive value of P 4 3 at 116° 5 0 S 1440 in Fig. 4. T denotes total

reflection. (b) End view of a hexagonal column and a light ray causing
the large values of 6H,V at 20 S 0 S 200 in Fig. 7. The digits 0 and 7
indicate the plane of incidence and plane of emergence,

respectively.
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Fig. 7. Linear depolarization ratios bH and 1 v for 3-D columns and
3-D plates. The adopted parameters are the same as those in Figs.

4 and 5.

Table 11. Main Contribution from Symmetrical Spatial Skew Rays to

Backscattering a

Column Plate

a(deg) Prism Basal a(deg) Prism Basal

1-9 4(1) 6(3)
•10 (Negligible) 10-34 4(1)
11-57 4(1) 36-57 6(3)
58-65 4(1) 58-76 6(1)
66-77 4(1) 6(3) >77 (Negligible)

a The digits 4 and 6 denote n. The digit in parentheses denotes
the number of total reflections. Prism and Basal mean the plane on
which the ray is incident. There are few contributions at a ' 780.

can cause a reflection from the basal plane of rays which
travel in the path shown in Fig. 6(a) so that this feature
does not appear in Fig. 5.

The matrix element P4 4 /P11 in Figs. 4 and 5 has a
maximum value at 0 = 1520, which results from the fact
that this element has a maximum value around there
when ao 0. These maxima at a 0 can be explained
as follows. The positive values of this element at a oe 
0 are caused by the rays for n = 4 and n = 5, which are
reflected totally once and reflected ordinarily once and
twice, respectively. As the incident angles for the or-
dinary reflections are larger than the Brewster angle,
the signs of Rxn and Ryn are the same. Hence Pr4)
Pt) Si2) = Re[Aln)At 4] has positive values when a

0. On the other hand, the background for P44 ,

caused by the externally reflected rays, has negative
values since their incident angles are smaller than the
Brewster angle. Therefore, the element P44/P1l has
maximum values around 0 = 152° when a 0.

Figure 7 shows the linear depolarization ratios H and
8 v, which are defined, respectively, as

= P11 -P2 2
Pl + 2P12 + P22

6V P11 - P2 2 (25)
Pi -2P12 + P22 (5

The linear depolarization ratio 5 v values for both 3-D
columns and 3-D plates exceed 1.0 at near backward
scattering directions (0 178°). The large values of
the depolarization ratios for 3-D columns at 2 0 
200 are caused by the rays as shown in Fig. 6(b) for 150
<a :5 45°. However, the experimentally obtained H

and 5V for columnar crystals (Fig. 3 of Ref. 21) do not
show this strong depolarization in the forward scattering
direction. This contradiction may be caused by the
difference in size of each column (L = 300 m and L 
5 um). Namely, the peak of 3

H,V in Fig. 7 would be
washed out by nondepolarized diffraction for small
crystals.

In Table I, the backscattering linear depolarization
ratios are also shown. These values are comparable
with typical values, 0.3-0.5 for pure ice crystals observed
by lidar.10,11 The computed backscattering linear de-
polarization ratio for columns is larger than that for
plates. This character can be explained as follows.
Appreciable backscattering depolarization comes from
spatial skew rays rather than from plane skew rays,
since the incident planes do not rotate in the latter case.
As shown in Table II, symmetrical spatial skew rays are
incident mainly on prism planes in the case of both
columns and plates. On the other hand, as shown in
Fig. 2(e), plane skew rays are incident mainly on basal
planes in the case of plates and on prism planes in the
case of columns. Thus the ratio of the number of plane
skew rays to the number of spatial skew rays for plates
is larger than that for columns. Hence, in general,
backscattering linear depolarization ratios for columns
is likely to be larger than those for plates. In addition,
we can explain this feature more specifically as follows.
As shown in Table II, in the case of columns, the sym-
metrical spatial skew rays for n = 4 with one total re-
flection mainly cause the backscattering depolarization.
On the other hand, in the case of plates, the symmetrical
spatial skew rays for n = 6 with one total reflection
cause the backscattering depolarization at a 2 58°.
Figure 8 shows typical ray paths for symmetrical spatial

SIDE VIEW END VIEW

(a)

SIDE VIEW

TV
END VIEW

(b)

Fig. 8. Geometrical paths of symmetrical spatial skew rays at an
orientation of a = 600 and = 300: (a) in the case of column (L/2a

= 2.5) and n = 4; (b) in the case of plate (L/2a = 0.4) and n = 6.
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skew rays which cause large depolarizations. From this
figure, we can see that there can easily occur two more
reflections at the basal planes in the case of plates since
the shape of plate crystals is flatter than that of co-
lumnar crystals. These two extra reflections make the
backscattered intensity of the symmetrical spatial skew
rays for plates weaker than that for columns. On the
other hand, plane skew rays for n = 4 contribute to
backscattering in the case of both columns and plates.
In fact, the backscattering linear depolarization ratios
6H(a) and 5v(a) for plates at each value of a behave as
shown in Fig. 9, and these ratios for columns behave
similar to those drawn in Fig. 9, but they take much
larger values than those for plates at a Ž 580. Then the
asymmetrical spatial skew rays for plates at a ' 41° and
those for columns at a $ 510 contribute to backscat-
tering. Thus the difference in the backscattering linear
depolarization ratios between 3-D columns and 3-D
plates in Table I stems especially from the difference
in the symmetrical spatial skew rays at a ' 58°. Sas-
sen13 experimentally obtained larger values for back-
scattering linear depolarization ratios for columns than
those for plates when strong intensities caused by single
crystals were measured, although he obtained the value
of -0.5 for randomly oriented ice crystals in any of the
crystal habits.' 2 We infer that the intense single spikes
in the former case' 3 would have been caused by well-
developed ice crystals which have clear optical faces in
accordance with the assumption of the present study.

Figure 9 shows the backscattering linear depolar-
ization ratios for randomly oriented plates with vertical
c axes. As the assumption of the rotational symmetry
is not valid, the depolarization ratios are then given
by

6H = Z Mn L Man)
n /n

6v= E Mn , )
n /n

Here we take the plane containing the c axis and the
direction of the incident light as the reference plane for
polarization. We can see five different regions on the
variation for 6H and 6v in this figure. These regions
correspond to the five categories in Table II. Both 6H

and 6v exceed 1.0 at 520 < a < 590. This is because the
sum of the rotational angles of the incident plane for the
symmetrical spatial skew ray,

n
E hi + Osn

i=1

is close to 900 at these angles a. There are maximum
values on 6H and 5v at a = 570. These maxima result
from the following two reasons. The sum of the rota-
tional angles for the incident plane,

n
E Oi + Om
i=1

is 900 at a - 590, so that the ratios M2,"/MI) and
M;)/Mp for the symmetrical spatial skew rays them-
selves decrease at both a < 590 and a > 590. At a Ž
580, the number of total reflections for the symmetrical
spatial skew rays decreases as shown in Table II, so that
the scattered intensity of the symmetrical spatial skew
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Fig. 9. Backscattering linear depolarization ratios tH and 5v for
randomly oriented hexagonal plates with vertical c axes as a function
of the incident light direction a. The lidar tilt angle from the zenith

is given by r/2 - a.

rays relative to that of the plane skew rays also de-
creases. As a result, we can also see that the gradient
of the decrease for 5H and 5v at a > 570 is steeper than
that at a < 57°.

Derr et al.9 obtained the backscattering linear de-
polarization ratio >100% for a virga with the lidar tilted
300 from the zenith during nonturbulent conditions. If
hexagonal plates with the c axes nearly vertical existed
in that virga, their observed backscattering linear de-
polarization ratio corresponds to 6v at a = 600 in Fig.
9. Although the value of 6v at a = 600 is 0.511, the
average values for 6v are, respectively, 1.36 and 2.02, if
6v is averaged over +2 and ±30 around a = 600. This
assumption approximately simulates the condition in
which horizontally oriented plates fall wobbling with
amplitudes between 2 and 30. These wobbling angles
are possible, since McDowell22 reported that plate ice
crystals, which cause the circumzenithal arc, undergo
oscillation of around 10 from equilibrium. Thus the
computed results shown in Fig. 9 fairly agree with their
lidar observation. Moreover, from Fig. 9, we can infer
that if Derr et al. had used a lidar tilt angle either
smaller or much larger than 300 from the zenith, they
might not have obtained a backscattering linear depo-
larization ratio of >100%.

On the other hand, Sassen'0 found anomalous 6 val-
ues at a = 10, 26, and 520 in virga. Although the ob-
served 3 at a = 520 is comparable with that in Fig. 9,
those at a = 10 and 260 are much larger than the com-
puted ones in Fig. 9. This difference may stem from the
effect of multiple scattering and/or the effect of crystal
shape. However, this problem is still open.

Platt et al. 23 and Sassen24 showed that the 3 values
rapidly increase as the lidar is scanned only 100 from the
vertical. This behavior is also at variance with Fig. 9.
However, a mixture of oriented and unoriented crystals
present in the lidar beam would account for the above
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difference. Figure 10 shows the corresponding varia-
tions in the parallel-polarized backscattered intensi-
ties,

M1,2 = E Mj

with the lidar elevation angle a. The strong intensity
at a = 900 is caused by the specular reflection at the
basal planes of the oriented plate crystals. Now let us
assume that the backscattered intensity by the unor-
iented crystals is in the hatched region in Fig. 10. This
value is generally determined by the ratio of the volume
scattering coefficients of the oriented and unoriented
crystals. Then, at a = 900, the lidar beam is scattered
mainly by the oriented plate crystals, which explain the
very small values of 6 and the high returned powers. At
a = 80° (or 820), the lidar beam is scattered mainly by
the unoriented crystals, which explain the observed
values of 6 (0.3-0.5) and the returned powers smaller
than those at a = 900 by about 1 order of magnitude.

Figure 11 shows the dependence of the asymmetry
factor cos0 of randomly oriented plates with a vertical
c axes on the solar elevation angle a. At smaller values
of a, say, a ' 350, the asymmetry factor decreases with
increasing a since the intensity of the 220 parhelion
weakens and its position moves to larger scattering
angles.' At 360 < a • 570, as is well known, neither the
circumzenithal arc nor the circumhorizontal arc appears
because of the total reflection for the ray for n = 2, so
that the asymmetry factor takes the smaller values. As
the circumhorizontal arc begins to appear at a = 580
corresponding to the reduction of the number of total
reflections, the asymmetry factor increases abruptly
there.
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Fig. 10. Parallel-polarized backscattered intensities, Ml and M2,
corresponding to Fig. 9 for randomly oriented hexagonal plates with
vertical c axes as a function of the incident light direction a. The
intensities at a = 0 and 90° are indicated by open circles. The
hatched region is the estimated backscattered intensities for the

unoriented crystals. 23,24
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Fig. 11. Asymmetry factor for randomly oriented hexagonal plates
with vertical c axes as a function of the solar elevation angle a. The
dashed line (cosO)R is obtained through the relation mentioned in

Table I.

VI. Conclusions

The scattering phase matrices for finite hexagonal
cylinders oriented randomly in space have been com-
puted on the basis of geometrical optics principles.
Computed results similar to those of Cai and Liou4 and
Liou et al.5 have been obtained except for the phase
matrix elements P33 and P44. The matrix element P44
is greater than or equal to the matrix element P33. The
comparison of our computed phase matrix with those
of CL4 and LCBH5 has also shown that the integration
of the phase matrix over the particle orientation has the
effect of averaging out the fluctuations on the scattered
intensity due to interference, as also does the integration
over the particle size parameter. However, the effect
of interference must be taken into account when the
optical path lengths for two rays, split by some obstacle
and scattered in the same direction, are equal to each
other regardless of the size of the crystal. The com-
puted asymmetry factors for ice crystals oriented ran-
domly in space have been smaller than that for the
corresponding spheres.

The computed backscattering linear depolarization
ratios for randomly oriented hexagonal plates with
vertical c axes depend strongly on the direction of the
incident light. And these ratios exceed 1.0 at certain
orientations. This can be regarded as one possibility
for the abnormally large values of 6v for a virga ob-
served by lidar.9 The asymmetry factor for horizontally
oriented plates varies considerably with the solar ele-
vation angle.

Several computed scattering characteristics can be
explained by atmospheric optical phenomena and in
terms of the total reflection inherent in nonspherical
particles. By using the computed phase matrix for 3-D
ice crystals, we will be able to compute the polarization
field as well as the intensity field in multiple scattering
and by extending this study further to investigate the
radiative properties of optically anisotropic ice
clouds.2 5
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Appendix

For the discussion below, let us express the amplitude
matrix of rays scattered at 0 = 7r as shown in Figs. 2(b)
and (d) as

= PSITnPn k R 5P 5)T 1 U4 U1]I (Al)

Here we may not necessarily consider the matrix A n),
since A(n) is simply related to A'(n) at 0 = or as known
from Eq. (14). If the above matrix is transposed, the
following relation can be obtained:

P1Tj (in' PkRk)PnTnPsn = 2 U (A2)

By using the property

Pn = P-n

and the aforementioned one, in which the sign of the
nondiagonal elements of the amplitude matrix changes
if the signs of rotational angles of the coordinate system
are reversed, we can get

P 1T ( PkRkPn TnPn = [_ U- U] (A3)

The left-hand side of Eq. (A3) is nothing other than the
amplitude matrix for the ray whose propagation direc-
tion is opposite to that of the original ray whose am-
plitude matrix is given by Eq. (Al). At 0 = gr, these two
rays can interfere since their scattered directions coin-
cide.
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