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Abstract. We study the scattering of nonlinear wavepackets in the form of envelope 
soli tons by a one-dimensional disordered system. We briefly review the features of the 
scattering for linear waves and obtain some results for linear wave packets to demonstrate 
their common exponential decay of the transmission coefficient, characterized by a 
localization length. We consider the same process for envelope solitons, and we show in 
the framework of the simplest model, that, above a certain threshold, strong non linearity 
allows undistorted propagation of these wavepackets. We describe how this behaviour 
can be obtained, for the nonlinear Schriidinger equation, by means of a simple 
independent scattering approach, using results of soliton perturbation theory to compute 
one-impurity reflection coefficients in the Born approximation. We derive equations to 
describe the transmission of the soli ton parameters and we analyse them in full detail. 
The main result of our study is the conclusion that a strong nonlinearity stipulates two 
spatial scales in the wavepacket scattering by disordered systems. The first spatial scale 
depends on the amplitude and it may be very large, and the second one is the usual 
localization length. As a consequence the non linear wavepackets or solitons are much 
more stable against disorder than linear ones. 

1. Introduction 

In the last few years nonlinear systems have increasingly attracted researchers from 
different areas. In particular, the problem of wave propagation in nonlinear disordered 
media has received considerable attention [1-7] because of its many applications not 
only in condensed matter physics but also in other very active fields. The main question 
that this investigation addresses concerns the simultaneous competition of disorder and 
nonlinearity on the wave dynamics, which may lead to complex properties in the system 
under consideration. Thus, while disorder in one-dimensional linear systems usually 
originates Anderson localization (e.g. see [8 ]), a phenomenon that is easily generalized 
to other waves like phonons, acoustic and electromagnetic waves, and so on, it has been 
found that nonlinearity may change the dynamics of these systems and give rise to 
qualitatively new effects. This is the case of the celebrated result that weak nonlinearity 
acting against disorder changes the length dependence of the transmission coefficient: 
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it still tends to zero as the size of the system increases, but following a power law (that 
can be either L -1/2 or L - 3/2, see [1,2,4 J) instead of the exponential one proper to the 
linear equation. 

The previous results apply to a nonlinear plane wave when transmitted through a 
medium governed by the reduced, time-independent nonlinear Schrodinger (NLS) 
equation. Nevertheless, it is well known that in the nonlinear system with 'focusing' 
nonlinearity plane waves are modulation ally unstable to formation of sidebands (the 
so-called Benjamin-Feir instability) and, as a consequence, they decay into localized 
objects, namely nonlinear wavepackets or solitons. Modulational instability is forced 
by disorder [9,1OJ, and, as a result, a nonlinear plane wave decays into a set of solitons 
much faster than in the homogeneous case [11]. In pure (homogeneous) systems, soli tons 
propagate without suffering changes in their shape or velocity, and their interactions 
result in phase shifts only. Attending to their properties, this kind of excitation is generally 
classified into three general types: dynamical soli tons (and kinks), topological kinks 
and envelope solitons. Solitons belonging to the first class, i.e. dynamical solitons and 
dynamical (non-topological) kinks, have an amplitude proportional to their velocity, and 
their scattering in a disordered system is similar to that of a linear wave packet [3]. The 
next type of solitary wave are topological kinks, which can only exist in nonlinear systems 
with two or more equivalent (or almost equivalent) ground states; in a number of 
situations, kink dynamics may be described by equations for an effective (classical or 
relativistic) particle, the particle coordinate being the kink position (e.g. see [12J). 
Subsequently, it turns out that topological kinks are less scattered by disordered systems 
than dynamical ones [7]. So far, these first two kinds of nonlinear excitations share 
the fact that they depend only on one parameter. The other one, envelope solitons, are 
two parametrical and demonstrate much more complex behaviour. Thus, as was first 
predicted in [6J, strong nonlinearity may compensate localization effects and the 
propagation of nonlinear wavepackets as solitary waves (envelope solitons) in disordered 
systems of rarified point impurities may be allowed in an almost undistorted form; it 
was also proved that there exists a threshold in the soli ton amplitude for this to happen. 
This paper is based in our letter [6J and aims to present detailed and extended results 
related to the scattering of envelope solitons in disordered systems. We also present 
new results about the scattering of linear wavepackets to compare them with the 
scattering of nonlinear pulses of similar shapes. 

To study the influence of nonlinearity on the properties of disordered systems we 
cannot use the previously developed techniques, which are suitable for linear systems 
[8]. So, we investigate the influence of non linearity on disorder from another viewpoint, 
considering essentially nonlinear, powerful perturbative procedures. In such an approach 
the main assumption that we make is that during the scattering the nonlinear wavepacket 
exists as a localized object with changing parameters; this persistence of the soliton is 
the very origin of the nonlinear character of the techniques that we use. 

The paper is organized as follows. Section 2 describes our model and presents the 
problem that we are going to deal with. In section 3 we briefly review the scattering of 
linear waves and obtain some new results for linear wavepackets in a disordered medium. 
These results are important to compare them to the outcomes of nonlinear scattering, 
especially for the same envelope of the nonlinear wavepacket. Analytical results based 
on the soliton perturbation theory and the independent scattering approach are obtained 
in section 4. In the same section we use numerical calculations to analyse the behaviour 
of the soli ton parameters described by the effective equations derived in the framework 
or the mentioned approximations. Our predictions about general properties of nonlinear 
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wavepacket scattering in disordered systems are contained in section 5, as well as a 
short discussion on the physics underlying our findings. 

2. Model 

We start from the nonlinear Klein-Gordon equation for the wave variable V(x, t), 

( 1 ) 

Wo being the frequency in the linear limit. Equation (1) arises in a number of different 
physical problems (e.g. see [13-16J), and it may also be obtained as an expansion of 
the widely applicated sine-Gordon equation with V « 1. In the framework of equation 
(1) we will consider the effects of the appearance of disorder related to changes of the 
frequency, in the form of random point impurities with intensities Sn and random positions 
Xn: 

W6 ...... W6+ S (x) (2) 
n 

With this change, equation (1) takes the form 

V tt - Vxx + W6V - /3V 3 = -s(x)V (3) 

and may be thought of as a perturbed nonlinear Klein-Gordon equation. To study the 
properties of nonlinear wavepackets in equation (3), we will obtain an equation for an 
envelope u(x, t), assuming 

V(x, t) = u(x, t)e iwot + u*(x, t)e- iwot (4) 
the asterisk denoting complex conjugation. In this way we are separating the system 
dynamics into relatively fast oscillations with linear frequency Wo, and a slowly varying 
nonlinear envelope u(x, t). Substitution of equation (4) into equation (3) leads, in the 
lowest order of the oscillations, to the equation (e.g. see [17J) 

(5) 

If we assume a slowly varying U, the inequality urt « WOu t is valid and, therefore, equation 
(5) may be transformed into the well-known NLS equation for the dimensionless envelope: 

(6) 

where 

(7) 

c(x) being the same as in equation (3). 
Equation (6) at s = 0 is the exactly integrable NLS equation (e.g. see [17J) and, aside 

from the application here considered, it is important in its own right, for it has a bearing 
on a number of problems related to solid state physics (e.g. see [12-19J). The function 
s(x) may then represent, for example, the structural disorder of the associated system. 
The most remarkable feature ofthe homogeneous nonlinear system described by equation 
(6) at s(x) = 0 is that it allows the distortionless propagation of localized excitations 
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in the form of envelope solitons: 

exp[ +iVx/2 - i( V 2 /4 - a2 )r] 
us(x, r) = a --==-------------

cosh[a(x - Vr)] 
(8) 

where a and V are the soliton amplitude and velocity, respectively. These are the objects 
we are interested in, and whose propagation along the disordered medium for e{x) #- 0 
we intend to describe in the following. 

3. Scattering of linear waves and wave packets 

First, neglecting the last term in the LHS of equation (6), we will restrict ourselves to 
the linear case. Furthermore, we will start considering the propagation of monochromatic 
waves in a randomly inhomogeneous medium. The study of this subject leads to the 
stochastic differential equation -Uxx + e(x)u = k2u, where k is the wavenumber (the 
relation ill = k2 is the dispersion law in the homogeneous medium). The most important 
phenomenon is the localization of states by random inhomogeneities due to scattering 
[8]. Localization implies that the transmission coefficient T decays exponentially with 
the system length L. If e(x) is a stationary, ergodic random process, then it can be 
proved that a positive finite number exists, the so-called localization length ),( k), such that 

(9) 

for large L and, hence, if L is significantly wider than Jc{k), it is obvious from equation 
(9) that very little transmission will be allowed. If, for the sake of simplicity, we set to 
the same value the intensities of the impurities, en = e, and introduce p - 1 as a parameter 
having the sense of a mean distance between impurities, the localization length for the 
linear Schrodinger equation has the form [8,20] 

).( k) = 4k2 / pe2 ( 10) 

provided that the following conditions hold: 

p«k ( 11 ) 

Linear wavepackets evolving under the linear equation also show a decay of the 
transmission coefficient. Let us consider the scattering of the wavepacket 

fdk ·k ·k' uwp(x, r) = 2n P(k)e l 
X-I -T (12) 

in the system of disordered point impurities, where P(k) has the sense of the spectral 
function of the wavepacket. To compare subsequent results with the scattering of the 
soli ton (8) in the same system, we have to choose the function P(k) in the form 

nI 
P(k) = ~------

cosh[(n/2a)(k - ko)] 
(13 ) 

the parameter ko == V/2 being the carrier wavenumber of the wavepacket. The reason 
for making this choice is that the soli ton (8), in the limit a ~ 0 (small-amplitude limit), 
exhibits the same shape described by the formulae (12) and (13). 
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The transmission coefficient of the wavepacket (12) may be presented in the form 

T = J~oodkT(k)IP(kW 

wp J~oo dklP(kW 
(14) 

If we compute the integral in the denominator of equation (14), inserting the function 
P(k) given by equation (13), we have the expression 

Twp = ~ foo dkT(k)SeCh2(~ (k - ko»). 
4a _ 00 2a 

(15) 

Using the result (15) we may define the mean value < Twp) for the whole packet as follows: 

g- == < Twp) = ~ foo dk < T(k» sech2(~ (k - ko») (16) 
4a _ 00 2a 

where 

n 5/2 
( L ) -312 ( L) 

<T(k» == 2 A(k) exp - 4A(k) (17) 

is the mean transmission coefficient with A(k) defined in equation (10), and under the 
restrictions (11) (see details in, for example, [8,20]). Further calculations yield the 
following results for the mean transmission coefficient g-: 

if ~ « 1 

if~ ~ 1 
(18) 

where we have noted 

(19) 

The meaning of ~ and k is the following: the parameter ~ describes corrections to the 
trivial result in equation (18), and the parameter k has the sense of the characteristic 
wavenumber stipulated by the disorder (see equation (19)). From equation (18), it can 
be seen that when ~ « 1 the mean transmission coefficient is defined by the contributions 
of wavenumbers in the vicinity of k = ko; on the other hand, when ~ ~ 1, this value is 
defined by the wavenumbers near the point k = k. In both of these cases conditions 
(11) must be valid for their respective characteristic values of k. 

Another important characteristic scattering parameter is the transmission coefficient 
defined for a unique realization of the random process. This transmission coefficient for 
a plane wave may be also defined asymptotically and has the form of equation (17) 
with the modified exponential multiplier exp( -L/A(k)). Using the asymptotic relation 
(9), the transmission coefficient of the wavepacket can be calculated (within logarithmic 
accuracy) starting from formula (15), and we obtain 

{

In T(ko) 

In Twp ~ 3n [_( 3/2 )] - exp k 1 - _v'_ £.C l/3 

a~ 3 

if ~ « 1 

if ~ ~ 1 
(20) 
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where ( and k are defined in equation (19). The formulae are very similar to equations 
(18). Therefore, it is clear that the general behaviour of the wavepacket scattering 
described by the mean transmission coefficient:Y = < Twp) or the transmission coefficient 
Twp defined on a realization is qualitatively the same and also qualitatively coincide 
with that of a plane (single) wave, i.e. an exponential decay of the transmission coefficient 
in the linear system characterizes both a plane wave and a wavepacket. 

4. Soliton scattering in a disordered system 

4.1. Independent scattering approach 

We next move to the nonlinear problem, i.e. the scattering of the soliton (8) by a random 
system of point impurities with equal intensities E. The soli ton is incident on the disordered 
layer from the left, scatters, and decomposes into reflected (r) and transmitted (t) parts. 
We assume that after passing through each impurity the wavepacket may be presented 
again as a soli ton plus some small-amplitude waves (radiation). To begin our approach 
to the calculation, we recall that the NLS system is characterized by two integrals of 
motion, namely the energy E and the 'number of quasi-particles' N defined by the 
standard expressions 

E = J:oo dx(lux l2 + 8(x)luI 2 -luI 4
) (21 ) 

N = J:oo dxlul
2

. (22) 

During the scattering the values of these quantities defined for the soliton, will change 
due to the emission of radiation, but they are conserved for the total system. So, we 
describe the scattering process through two magnitudes: the total energy transmission 
coefficient T(El = Etl Ei, that is, the transmitted energy Et over the incident energy Ei, 
and the 'number of particles' transmission coefficient T(Nl = Ntl Ni' N t and Ni defined 
analogously. It is to be understood that the constraints Ei = Et + Er = const and 
Ni = N t + N r = const must hold. 

When the concentration p of impurities is low, it is quite reasonable to suppose that 
the average distance between two neighbouring impurities is larger than the soliton size. 
In this limit we may treat the scattering by many impurities independently, defining a 
transmission coefficient for the whole layer as T ~ Dj 1), 1) being the transmission 
coefficient of the jth impurity. In this so-called independent scattering approach, 
back scattering interference effects are neglected, and hence the transmitted soli ton for 
the jth impurity is then the incident one for the (j + 1 )th scatterer, and we can write 
(cf. [3,6]) 

and 

Ej+! = Ej T)El(Ej' NJ 

N j+ 1 = NjT)Nl(E j, NJ 

IlEj+! = Ej + 1 - Ej = - EjR)El(Ej, N j) 

IlNj+! = N j+! - N j = -NjR)Nl(Ej, N j ) 

(23) 

(24) 

(25) 
(26) 
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where RjE.N) = 1 - TjE.N) stand for energy and 'number of particles' reflection coefficients. 
It is very important to note that, unlike the linear case, in the nonlinear problem we 
have to distinguish two independent characteristics of the scattering, e.g. two reflection 
coefficients. Since on the average there are (Ax)p impurities in the interval Ax, we can 
derive from equations (25) and (26) the following differential equations: 

dE - = -pE(x)R(E)(E(x), N(x)) (27) 
dx 

dN - = -pN(x)R(N)(E(x), N(x)) 
dx 

(28) 

assuming that during the scattering the soliton parameters have small changes. In order 
to deal with the system (27) and (28), it is now necessary to compute the exact soliton 
reflection coefficients R(N)(E, N) and R(E)(E, N) defined for a single inhomogeneity. We 
will address this point in the next subsection; to finish this one, we must stress the fact 
that, in spite of their aspect, equations (27) and (28) stili conserve the influence of 
randomness, through the use of mean transmission coefficients and a mean 'number of 
impurities in the interval'. Other choices for the spatial array of the impurities, as, for 
instance, a periodic lattice (like the one studied in [21 ]), could not be well described 
by these equations, because of correlations between lattice spacing and width of the 
propagating soli ton or coherence phenomena. 

4.2. Soliton reflection coefficients 

Soliton reflection coefficients may be calculated via soliton perturbation theory (e.g. see 
[12,22]). The reflection coefficients are defined by the reflected wavepackets in the form 
of linear waves emitted by the soliton during the scattering. The inverse scattering 
transform (rsT) gives the corresponding expression for the spectral density of emitted 
waves (see details in [12]), 

1 1, 2 
nrad (It, r) = - I b ()-, r) I 

n 
at IbU, rW « 1 (29) 

b(A, r) being the so-called Jost coefficient related to the [ST for the NLS equation. The 
spectral parameter )_ appearing in the [ST is connected with the wavenumber k()_) and 
the frequency meA) of generated linear waves by the relations mU) = k2 ()_) = 4,;,2. The 
influence of a perturbation P( u) leads to a change of the [ST spectral coefficients that 
also affects the lost coefficient b()_, r), which can be written in the form of the equation 
(e.g. see [12]) 

ab()_, r) . 2' fCO (1) (2) --- = 4[';' b(A, r) + (; dx(P(u)<l\ (x, r; )-)<1>2 (x, r; )_) ar - 'lJ 
- P*(U)<1>~1)(X, r; )_)<1>\2)(X, r; A)) (30) 

abU,r) 4"2b(' ) (; --- = U )_, r + -------ar [U + V/2)2 + a2/4] 

[
a2 f'lJ exp( -2ih - iVx + 2iA(r)) 

x - dxP(u s ) 2 
4 _ 'lJ cosh Z 

fco . ( V ia )2J 
- -oc dx P*(us)e- 21Ax 

)- + 4 - '2 tanh Z (31) 
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where Z = a{x - VI) and 11 = (V2 / 4 - a2)r. To describe the effects of a single impurity 
we have to use the perturbation P{u) in the form eb{x - xo)u, Xo being the position of 
the impurity. 

If before the scattering the wave is a soli ton, described by equation (8), the initial 
condition for equation (31) should be taken in the form bU, I = - CI)) = O. Having 
integrated this equation, one can find the radiative density after the scattering with the 
help of equation (29): 

(32) 

Expression (32) allows us to calculate the 'number of quasi-particles' and the energy 
of reflected waves, which are given by 

(33) 

and to define the soli ton reflection coefficients 

(34) 

Here Nand E are the 'number of particles' and the energy corresponding to the single 
unperturbed soliton (8): 

N = 2a (35) 

The exact results may be obtained in the Born approximation which is valid for small 
e and V 2 » I e I a. Using expressions (8), (31), (32) and (33) it is possible to arrive at the 
following equations for the soliton reflection coefficients: 

(36) 

(37) 

where 

(38) 

and a == N / v. As a consequence, equations (27) and (28) give rise to the following 
system of integrodifferential equations: 

dN 1 fcYj 
~ = - - dy F(y, a) 
dz V 0 

(39) 

dV 1 fcYj N fCD - = - - dy{y2 - 1 )F(y, a) - -2 dy F(y, a) 
dz 2N 0 2V 0 

(40) 

where the distance is measured in units of Xo = 64/npe 2
, i.e. z = x/xo. Notice that, for 

convenience, we have used relationship (35) to write down an equation for V instead 
of the one we previously have for E. 
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4.3. Evolution of the soliton parameters 

In the remaining part of this section we describe the variation of N and V along the 
z-axis. By carefully studying the system (39) and (40), it turns out that :1. is a very 
relevant parameter of the problem. This quantity is physically significant because it is 
related to the nonlinearity of the incoming soliton; the soli ton will be 'more nonlinear', 
so to speak, for large values of :1.. This can be understood by realizing that, for each 
given value of V(O), the greater :1. is the larger becomes the number of quasi-particles 
contained in the soli ton and, in addition, its spatial extent becomes narrower; this is 
obvious from formula (8). On the contrary, if:1. is small, it can be easily seen that the 
wave looks very similar to a linear wavepacket (cf. equation (8) and equations (12) and 
(13) ). 

Once we have clarified the physical meaning of :1., we begin the analysis of the two 
coupled integrodifferential equations (39) and (40). We first consider the linear limit, 
IX« 1; in this simplification, the system (39) and (40) can be solved analytically in an 
quite approximate fashion, yielding (note that if IX « 1 the derivative of V becomes 
negligible, for the integrals are never much greater than unity) V(x) = V(O) = const 
and, therefore, the two transmission coefficients are the same: 

T(N.E)(X) = N(x)/ N(O) = E(x)/ E(O) = e- x / ico (41 ) 

where),o == V2(0)/p82 = l/pR 1,R 1 == 82/V2(0) being the reflection coefficient ofa single 
impurity. This result demonstrates the exponential decay of the transmission coefficient, 
and it is a consequence of the quasilinear features of soli tons with small IX, which closely 
resemble those of linear wavepackets. As we can see, these equations again show the 
same dependence as that in equations (9) and (18), where A(ko) = )'0' and ko = V/2 
has the sense of a carrier wavenumber of the packet [see equation (8)]. The last term 
on the RHS of (18) reflects from this viewpoint the influence of the wavepacket width 
(a - 1) on the mean transmission coefficient acting against the disorder. 

In the opposite limit, IX ~ 1 or greater, the system of integrodifferential equations 
(39) and (40) was numerically solved. A simple rectangle method was chosen to compute 
the integrals, with a mesh size proportional to the value of :1., and recalculated at each 
time step, to maintain accuracy within the required limits. With regard to the differential 
equations themselves, they are rather well behaved, and it was enough to employ a 
Euler procedure to integrate them. Nevertheless, we repeated the solutions for several 
initial conditions with a more precise leap-frog scheme, always finding a fairly good 
agreement between the results from both methods. In this way we concluded that the 
possible evolution of the system can be described as follows: the dynamics depends 
essentially on the value of the parameter a(O) = N(O)/V(O), because the system given 
by equations (39) and (40) has a fixed point for a, namely the solution of the 
transcendental equation 

IX~ - 2 + G(:1.J = 0 G(IX) == Sody(y2 - I)F(y,lX) 
So dy F(y, IX) 

(42) 

We computed this value both by numerically solving this equation and by direct 
integration of the system (39) and (40), obtaining perfect concordance between both 
results, and concluding that IXc = 1.285 05( 4). Further, as is shown in the appendix, we 
have also found that IXc is an unstable fixed point. This fact allows us to be confident 
in the analysis we report below, which will remain true no matter how close we are to IXc' 
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A straightforward calculation of the derivative of IX(Z) is the only requirement to 
establish that only two kinds of behaviour are allowed for the system (39) and (40): 

(i) IX(O) < IXc' The system evolves to a final state in which N tends asymptotically 
to zero while V goes to a constant, non-zero value, and hence IX( 00) = 0, as imposed 
by the above-mentioned considerations. This behaviour corresponds to a decay of the 
transmission coefficient and, as we have seen before, for small enough IX this decay is 
exponential and is quite correctly described by formula (41) (see figure 1). If 1 ~ IX < IXc 
the decay of N(z), though still present, is more complicated: it is slow at first and, after 
an interval, it undergoes a crossover to a fast exponential decrease, faster than that 
which takes place when IX « 1 (see figure 2). 

(ii) IX(O) > IXc' This type of initial condition leads to solutions such that both nand 
V suffer a very rapid decay at first up to a point at which the two functions become 
constant for practical regions. Obviously, the same happens to IX, which tends to a value 
of about 10 when z goes to infinity. Figures 3-5 show some features of the asymptotic 
dynamics concerning the dependence on the initial values of N(O) or V(O). Each choice 
of initial conditions gives rise to different shapes of T(E)( z) and T(N)( z), even for the 
same values of IX (cf. figure 3), and we have found that the initial transients are very 

10 -1 

10 -2 

10 -3 

10 -, 

10 -5 

_L"LLLll_LLLL-U_" 1 0 -6 

0"00 0" 1 0 0"20 

Z 

Figure 1. The transmission coefficient TiN)(z) = N(z)j N(O) versus z when initial conditions 
are N(O) = 0.01 and V(O) = 0.5 (0:(0) = 0.02). The full line is obtained numerically, and the 
broken line is the approximate analytical solution. 
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10 -2 

10 -3 

10 -, 

10 -5 

-,-"-"--,-"I_Ll.~ j 10-6 

0.000 0"005 0.010 0.015 

Z 

Figure 2. The transmission coefficient TiN) (full line) and the function V(z)jV(O) (broken 
line) when initial conditions arc N(O) = 0.625 and V(O) = 0.5 (0:(0) = 1.25). 
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sensitive to the values of N(O) and V(O): the slope at small values of Z is steeper for 
smaller values of N(O) and V(O), and the asymptotic regime is reached in a shorter 
interval. This point is illustrated in figure 6; the transient usually arises in a interval 
too small to be appreciated in the long scale needed to show the persistence of the 
propagation, and slopes can reach values up to 105 . However, the general property of 
these curves is the same: both transmission coefficients tend to certain asymptotic values, 

~ 

0 
'--' > 
~ 
~ 

N 
'--' > 
~ 

N 

z 
~f-

~ o 
'--' > 
~ .----.. 

N 
'--' 

(a) 
-------------- - - 1.0 

0.5 

0.000 0.003 

Z 

(C) 
1.0 

> _____________________ =_ 0.5 

'---L---'---'--L......."--LI---,---,--'---J 0 . 0 
o 50 100 

Z 

(b) 
I I I I I I I 1.0 

~ 

0 
'--' > 
~ 
~ 

N 
'--' > ---------- 0.5 

~ 

N 
'--' 
z 
~f-

LLLI I I I I I 0.0 
0.0000 0.0015 0.0030 

Z 

Figure 4. As figure 2 but for ViOl = 0.1 and 
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and, henceforth, the rearranged wavepacket is transmitted without any reflection, i.e. 
localization is inhibited. For different sets of N(O) and V(O) the final dependences when 
they give rise to equal values of IX(O) are almost the same (see figures 4 and 5). 

5. Concluding remarks 

In conclusion, we have considered the NLS envelope soli ton scattering when it propagates 
along a disordered medium, with rarefied impurities located at random positions. We 
have shown how strong nonlinearity can provide a mechanism capable to inhibit the 
localization effects stipulated by the disorder for linear and weakly nonlinear waves. 
The most remarkable outcome of our calculations is that this effect only takes place 
when the nonlinear character of soli tons exceeds a threshold nonlinearity. This value 
is given by the nonlinear parameter, i.e. a ratio between the number of quasi-particles 
in the soli ton and its velocity around 1.28505 in proper dimensionless units. Below this 
threshold, the transmission coefficient tends exponentially to zero as the size of the 
system increases, either from the beginning (figure 1) or after a short, slower transient 
(figure 2). The result coincides qualitatively with the ones obtained in [1,2] for the 
time-independent NLS equation. Above the threshold value our model demonstrates 
almost undistorted motion of the nonlinear wavepacket along the disordered system, 
i.e. the transmission coefficient does not decay in the framework of this approximation. 
A possible reason for the destruction oflocalization can be the following: as IX increases 
for each fixed value of the initial soliton velocity V, N increases as well and the soliton 
becomes less extended, as we have already mentioned. We believe that it is more likely 
that narrow soli tons pass unaffected through each one of the delta impurities while, for 
wide solitons, internal interference effects can appear in the underlying carrier wave, 
giving rise to localization. 

In fact, the effect must be much more complicated. For instance, a rather curious 
point is that we have found no direct evidence for power law decay behaviour, which 
was predicted in [1,2]. The main difference between these works and our problem is 
the modulational instability of the monochromatic nonlinear plane wave, which, in fact, 
takes place in the model studied in [1,2]. In our analytical considerations we used a 
simple independent scattering approach and Born approximation of the perturbation 
theory. Of course, the unstable character of this fixed point and the localization decay 
would have to be proved by direct numerical simulations. We believe that taking into 
account the additional weak contributions, e.g. interference during the propagation, or 
direct numerical simulations of the model, will lead to the following picture of nonlinear 
scattering. The nonlinear transmission coefficient will slowly (probably logarithmically) 
decay as the size of the system increases, so that the decay length may be presented as 
the sum of two values, a nonlinear one, )'n, and a linear localization length, Al. The first 
value essentially depends on the amplitude and, in fact, is very large (it characterizes 
the decrease of soliton amplitude to a small value which should be much less than 
unity). The soliton transforms into a linear wavepacket due to scattering along a length 
of order of )'n, and then it scatters as a linear object, its transmission coefficient decaying 
exponentially. Since )'n » AI, the real scattering of nonlinear wavepackets for systems of 
length L < An must be very small. A greater effort is needed in order to clarify the real 
contributions of these neglected effects, as well as to obtain a complete understanding 
of the underlying basis for the disappearance of localization here reported. 

13



As the last point, we would like to mention the recent results by Bourbonnais and 
Maynard [23], who analysed numerically the energy transport in anharmonic lattices 
with disorder. They found that the regime of diffusion in the nonlinear case is 
characterized by an exponent which depends strongly on anharmonicity but is insensitive 
to disorder. That result is in agreement with our prediction of the nonlinear decay length 
).n, above which nonlinear propagation is insensitive to disorder. 
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Appendix. Behaviour of !X(z) near !Xc 

In this appendix we are going to prove the unstable character of the fixed point etc of 
equations (39) and (40) that we mentioned above. To this end, let us rewrite that 
system as 

where 

det I 
dz = N2 Gt(et) 

dN 1 
-=--G 2(o:) 
dz N 

Gj(et) == ~ (IX) dy y2F(y, a) + (et 2 - 3) IX) dy F(y, et») 

G2(et) == et I"" dy F(y, et). 

(AI) 

(A2) 

(A3) 

(A4) 

In this new notationetc is nothing but the solution of the equation Gj(etc) = O. Now, 
performing a Taylor expansion of equation (A 1) around et = etC' we obtain 

det = ~ [G 1(etJ + (et - etc)(dG 1
) + ... ] 

dz N det IY.=IY., 

(AS) 

and then substitute equation (A2) by 

dN 1 
dz = - N G2 (et c) (A6) 

which will be approximately valid provided we are not too far from et = etc. A 
straightforward calculation is now enough to show that, retaining only first-order terms 
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in the equation for IX, the solution of the system (A5) and (A6) is given by 

with 

( 
2B )-A I2B 

IX(Z) = IXc + (IX(O) - IXc) 1 - -2 - Z 
N (0) 

A=(dG l
) =25.2(4) 

dIX C(=cx, 

(A7) 

(A8) 

(A9) 

The values shown in equation (A9) are numerical estimates, obtained with an accuracy 
that is enough for our purposes, for we only want to show that both quantities are 
greater than zero. Now, consider expression (A 7) when the initial condition is very close 
to but greater than IXc; then, we are left with a solution of the form 

Cl 
IX(Z) = IXc + k 

(1 - c2 z) 
(AlO) 

and it turns out that, for such a choice of initial condition, IX will initially grow, moving 
away from IXc' because all the constants Cl' c2 and k are positive. Very much before z 
reaches values that make the denominator small, the analysis leading to this equation 
ceases to be valid, because IX(Z) is not near IXc anymore, so there are no problems of 
divergence. A similar calculation can be carried out for the initial condition that IX(O) 

is less than but near IXc; then Cl is negative, and IX(Z) decreases, again diverging from 
IXc' To obtain a clearer view of this point, we have plotted in figure 6 some solutions 
with initial conditions very near IXc' and they look very much the same as those obtained 
directly from the system (39) and (40). So c<c is an unstable fixed point, as we wished 
to prove. 
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