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SCATTERING THEORY AND POLYNOMIALS ORTHOGONAL ON
THE REAL LINE
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J. S. GERÓNIMO AND K. M. CASE

Abstract. The techniques of scattering theory are used to study polynomials
orthogonal on a segment of the real line. Instead of applying these techniques to
the usual three-term recurrence formula, we derive a set of two two-term re-
currence formulas satisfied by these polynomials. One of the advantages of these
new recurrence formulas is that the Jost function is related, in the limit as n -» oo,
to the solution of one of the recurrence formulas with the boundary conditions
given at n = 0. In this paper we investigate the properties of the Jost function and
the spectral function assuming the coefficients in the recurrence formulas converge
at a particular rate.

I. Introduction. In our previous paper [7] the techniques of scattering theory were
applied to polynomials orthogonal on the unit circle (POUC). The natural equa-
tions satisfied by these polynomials are two two-term recurrence formulas instead
of the more familiar three-term recurrence formula satisfied by polynomials or-
thogonal on the real line (PORL). These two two-term recurrence formulas have
several interesting properties. For example, the Jost function, which has been
shown to be so useful in the theory of orthogonal polynomials [4], [7], is the limit of
a sequence of polynomials satisfying one of the recurrence formulas with the
boundary condition given at n = 0. It is natural to ask whether such a system of
recurrence relations exists for PORL.

In this paper we develop the theory of PORL along a line that parallels the
theory of POUC and delve deeper into the consequences of applying scattering
theory to PORL.

In §11 we define the polynomials and derive the familiar three-term recurrence
formula. Now, in analogy with POUC, a set of two two-term recurrence formulas is
derived. These formulas plus the appropriate boundary conditions are taken as the
fundamental equations defining the polynomials. From them the Christoffel-
Darboux formula and Wronskian theorem are derived.

In §111 the Jost function is defined and is shown to be the limit of a sequence of
polynomials satisfying one of the recurrence formulas with the boundary condi-
tions given at n = 0. Some of the properties of the Jost function are investigated.

Since we have started with the recurrence relations it is necessary to show that
the polynomials are indeed orthogonal. This is done in §IV. We also show how one
can calculate the Jost function directly from the weight function.
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468 J. S. GERÓNIMO AND K. M. CASE

Next (§V) the discrete analogs of the Marchenko equations are derived [3]. The
equations are then used to investigate the behavior of the Jost function at the
points z = ±1. The consequences of these results for the weight function are
discussed.

II. Preliminaries. Suppose we are given some nondecreasing p(X) [10] with
infinitely many points of increase on a segment of [a, b] of the real line such that

s„ = f X" dp(X) 01.1)
J a

exists for all n. We are to find polynomials p(X, n), such that
(i) p(X, n) is a polynomial of precise degree n in which the coefficient of A" is

positive,
(ii) IÍP(K n)p(\, m) dp(X) = 8(n, m), m, n = 0, 1, 2,-
Using standard orthogonalization procedures one finds

p(X,n)=[Hn_xH„] -1/2

•>0 •M        J2

S, S',        íi

3n-l        ùn

1 X

n > 0, (II.2)

where

H„ = °n+l

J2n-1

X"

n > 0. (II.3)

(Here we define H_x = \ thus p(X, 0) = H¿/2 = s0~1/2.) The coefficient of A" in
p(X, ri) can be determined from equation (II.2) and is1

k(n) = (Hn_x/H„)l/2,       n = 0, 1,. . . . (II.4)

From the orthogonality condition one can construct the well-known three-term
recurrence relation [10]

a(n + l)p(X, n + 1) + b(n)p(X, n) + a(n)p(X, n - 1) = Xp(X, n),
n■ - 1,2,

where

a(n) = A:(n - l)/*(/i)
and

•6
b(n) = f   V(X, «)2 dp(X).

(115)

(II.6)

(II.7)

Note that (II.j) can be extended to n = 0 provided we define

/»(A, - 1) = 0.
We shall also set

a(0) = 1.

(II.8)

(II.9)
1 The theory of positive quadratic forms tells us that the H„ are positive (see [10]). Results were

presented at the A.M.S. meeting #753 Columbus, Ohio, March 25, 1978.
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SCATTERING THEORY AND POLYNOMIALS ON THE REAL LINE 469

Thus we could take (II.5) and the initial conditions (IL8) and

p(X, 0) = k(0) (11.10)
as the starting point in our study of orthogonal polynomials. However one of our
purposes is to develop the properties of polynomials orthogonal on the unit circle
and those on a segment of the real line along similar lines. With this in mind
consider the following two two-term recurrence formulas,2

p(X, n) =

and

xP(z, n) =

a(°o)
a(n)

a(oo)

(z - B(n - \))p(X, n - 1) + -xp(z, n - 1)

n - 1, 2, (11.11)

a(n)
Mz,n-l)

+      1
a(ooY

where we assume that

n—»oo

and we have set

and

lim   a(n) = a(co) > 0,     lim  b(n) = b(co),
n—»oo

z - B(n- l)\p(X,n- 1)

n = 1, 2, ... ,

b(n) real,

B(n) =
b(n) - b(oo)

a(oo)

(11.12)

(11.13)

(11.14)

(11.15)X = a(oo)(z + \/z) + b(oo).
By solving (11.11) for \p and then substituting the result into (11.12) one easily
obtains (II.5).

Considering p(X, n) and \p(z, n) as two components of a function í> defined by

™-[&ï,
equations (II. 11) and (11.12) can be condensed to

$(z, n) = C(«)í>(z, n - 1)

where

CO.) = 
â(n)

z - B(n- 1)

a(nf1 - , ,z - B(n - 1)
a(oo)2 /

(11.16)

(11.17)

(11.18)

}j/(z, n) is a function of z and \/z.
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470 J. S. GERÓNIMO AND K. M. CASE

We will take the recurrence relations and the initial conditions

p(X, 0) = «K>, 0) = l/Vs~0 * 0 (11.19)
as the fundamental equations in our discussion of these orthogonal polynomials.

As a first application let us examine special cases of the following relation3

4>(1)(z, n) 0 -1
1 0 <D(2)(z', n)

= &l\z, n - \)CmT(n) 0 -1
1 0 C™(n)¥2\z', n - 1),     (11.20)

where $(1)(z, n) and 4>(2)(z', ri) satisfy (11.16), (11.17) and (11.18) for z and z\
respectively. Substituting in (11.18) yields

= <ï>(1)(z, n - 1)
a(°o)

a(n)2

z - B(n- 1)
a(oo)

0 -1
1 0

z' - B(n - 1)

a(nf
a(co)1

z' - B(n - 1)

z'

1 S»(2)(z', /j - 1),       (11.21)

which is

= $(1>(z, n - 1)
fi(« - l)(z - z')     -z/z'
z'/z 0

$(2)(z', /i - 1). (11.22)

Setting z = z' (Wronskian theorem) in (11.22) yields

$(1)(z, «) 0 -1
1 0

$(2>(z, n)

= 4>(1>(z, « - 1) 0 -1
1 0

$(2>(z, n - 1) = W[&x\ $(2)].       (11.23)

Thus the Wronskian W is independent of n.
With $(1) = $(2) (Christoffel-Darboux), it can be shown [6] after some manipula-

tion that

a(n)(p(X, n)p(X', n - 1) - p(X', n)p(X, n - 1))
= (X - X')p(X', n - l)p(X, n - 1)

+ a(n - l)(p(X, n - l)p(X', n - 2) - p(X, n - 2)p(X', n - 1)).   (11.24)

C   means transpose here.
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SCATTERING THEORY AND POLYNOMIALS ON THE REAL LINE 471

III. Jost function. Let us look at equation (11.18) for large n. Using (11.13) and
(11.14), we have

z     \/z
0     1/z

Proceeding formally we introduce two auxiliary solutions

•♦<*'">-(î*^) (IIL2)
\xp + (z,n)j

C° =  lim   C(n) = (III.l)

and

•-(••">- (*",'" "¡) (,IL3>
\iP_(z,n)J

satisfying (11.17) and (11.18) with boundary conditions

lim   \p + (z,n)- z±n|=0,        |z|< 1,
n—»oo   '    — ' i    i -*

lim   |^ + (z,«)|=0,        |z|< 1, (III.4)

and

lim   U_(z, n) - (1 - z2)z-"1 = 0,        \z\ > 1.

From (11.23)

rV[®_,<í>+]  =   -(Z2-  1). (III.5)

Therefore í>+(z, n) and <&_(z, «) are linearly independent except at z = ±1 and

(z - l/z)$(z, n) = C+<3> + (*> «) - C_$_(z, n),       \z\ = 1,        (III.6)
where

C± = W[$, $±] (III.7)
which is

C+ = /> + (z, «)^(z, «) - p(X, n)^+(z, n) (III.8)
and

C_ = />_(z, »)*(*, n) - p(X, n)^_(z, n). (III.9)
Since (III.8) and (III.9) are independent of n we can evaluate them for large n.
Thus

C+ = lim  zn^(z, n)= lim  ¡p*(z,n) (III. 10)
/l—»OO /I—»oo

where
^*(z, n) = z"4>(z, n) (III. 11)

and

C_(z) =  Tim (z-^*. «) - (1 - z2)z-"p(X, n)). (111.12)

Letting z -* 1/z in (II. 11) and subtracting it from the original equation gives us

(1 - z2)(\/z)p(X, n-\) = (l/zMz, n - 1) - z^l/z, " - 1).   (HI.13)
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472 J. S. GERÓNIMO AND K. M. CASE

Substituting this result into (III. 12) yields

C_(z) = lim  z2z-"^(l/z, «). (III. 14)
n—»oo

Now define

'♦«HfëM-&•»[*•.] <»'-'5>
and

'-»-^-«-^IM-l ou.«
Equation (III.6) now becomes

(z - l/z)*(z, n) = -Ä- [/_(*)*+(*. n) - /+(z)*_(z, «)],        |z| = 1.
0(00)

(III. 17)
Using (III. 10) and (III.l 1) it is easy to see that4

/+(z)=/+(l/z)=/_(z) (111.18)
for \z\ = 1.

If one uses (II. 11) to eliminate \p(z, n) and ip+(z, n) in (III.8), one finds5

/+(z) = a(l(o)l) [p(Kn + l)p+{z'n) "p+(z'n + l)p(x'n)] (IIL19)

or

f+(z)=p + (z,-\). (111.20)

We shall call/+(z) the Jost function for polynomials orthogonal on a segment of
the real line.

In order to investigate the properties of the Jost function, we will find it
convenient at this point to introduce the techniques of Banach algebras. Thus, let A
denote the class of functions integrable on — w < 0 < w such that if g is an element
of A then

*(»)«   2   *(*)**• (III21)
k= — OO

with

11*11-    2     |*(*)|<°°- (111-22)
A:= —oo

Let A + and A ~ denote those functions in A of the form

g(0) « I   g(k)eike (111.23)
*-o

4 Note from (II. 11) and (11.12) that the coefficients of/+(z) are real.
5 This corresponds to Case's definition, see [2],
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SCATTERING THEORY AND POLYNOMIALS ON THE REAL LINE 473

and
0

A(ff)»    2     h(k)eike (111.24)
k= — oo

respectively.
Let ||g|| be the norm on A, A+ and A", then A, A+ and A ~ are Banach

algebras [3].

Theorem 1. //

+ \B(n - 1)|    < oo (111.25)

then
(i)6 zf+(z) is analytic inside and continuous on the unit circle,
(ii) zf+(z) is an element ofA+,
(iii) iff+(z) has zeros inside the unit circle they are

(a) real,
(b) simple,
(c) finite in number,
(d) the points where the orthogonal polynomials are square summable.

Finally
(iv) iff+(z) has zeros on the unit circle

(a) they must be at z = +1 and/ or z = -1,
(b) they must be simple.

Property (iii) is proved in Appendix A. Properties (i) and (ii) are proved in
Appendix B. Property (iv, b) is proved in §V. Property (iv, a) is a consequence of
(III.17) and (III. 18) and the fact that the zeros of p(X, n) alternate with those of
p(X, n - 1) [4].

In Appendix B the following is also proved:

Theorem 2. // (111.25) holds then p + (z, n) is analytic inside the unit circle,
continuous on it, and is an element of A+.

Lemma 1. p_(z, n) is analytic outside the unit circle, continuous on it, and is an
element of A~.

From the boundary conditions and recurrence formulas one finds that

P + (z,n) = p_(\/z,n).

The above formula and Theorem 2 prove the lemma.

Lemma 2. Iff+(z) = Oat z = 1, then

tf+« = 0 - *)"*(*) (in.26)
where a < 1 and g(z) is bounded at z = 1, continuous everywhere else on the unit
circle, and analytic for \z\ < 1.

6 Properties (i), (iii) and (iv) have been independently proved by Guseinov, see [8]. Property (i) has
also been proved by Nevai, see [9].

2   n
n = l

a{n)2

«(oo)2
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474 J. S. GERÓNIMO AND K. M. CASE

Proof. The lemma follows from Theorem l(i), Theorem 2, Lemma 1 and
(III. 17).

Throughout the rest of this paper we will assume that the coefficients in the
recurrence formulas satisfy (11.13) and (111.25).

IV. Consequences. Having defined the Jost function and listed some of its
properties in the prevous section, we now investigate the role it plays in various
properties of orthogonal polynomials.

Theorem 3 (orthogonality condition), if (II. 13) and (111.25) hold then
/oo p(X, n)p(X, m) dp(X) = S(n, m) (IV. 1)

where

dp(X)
a(X) dX, b(oo) - 2a(oo) < X < b(oo) + 2a(oo),

2  PiO(X — \) dX,    X not as above, A, =£ Xjfor i ¥=j, N < oo,
i=i

with

and

a(X) dX = a(oo)sin 0 dX

Pi =

^(0)2|/+|2

/>+(;„ 0)
*(o)2/;(\) '

X = a(oo)(z + 1/z) + ¿(oo), z = e", (IV.2)

X = a(oo)(z,. + 1/z,) + ¿(oo), |z,| < 1. (IV.3)

Here A, denote the roots of f+(z)for \z\ < 1.

Theorem 4 (relation to weight function). If (11.13) and (111.25) hold then

d(z)TT+(z¡ - z)tt_(z - z,)
/+(*) =

•exp   -

zII^O - zzj)

(z — z ')    /•¿(oo)+2g(oo) dX' In        / ■nk(0)2\d(z')\2a(X')
4ir        A(oo)-2o(oo)    sin 0'(X' - X) \       a(oo)sin 0'

X = a(a)(z' + 1/z') + b(oo), z' = eie\ \z\ < 1.

(IV.4)

Here {z,} are the roots of f+(z) for \z\ < 1 and ir± means the product of z, in the
unit circle subject to z, § 0. d(z) is equal to

(1) 1 if f+(z) * 0 for z = ±1,
(2) 1 - z if f+(z) = 0 only at z = 1, for z = eie,
(3) 1 + z if f+(z) = 0 only at z = -1, for z = eiB,
(4)1 - z2if/+(z) = 0atz = ±1.
To prove Theorem 3 examine the following integral

j_ J_ r£z-iP + (z,n)p(X, m)
9*TTI     J2m C+(z) dz,       m < n, \z\ = 1. (IV.5)
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SCATTERING THEORY AND POLYNOMIALS ON THE REAL LINE 475

The existence of the integral is a consequence of Theorem l(i) and (iv, a), Theorem
2, and Lemma 2. Solving (111.17) for p + (z, ri) then substituting this and (111.15) into
the above equation yields

1    rß   -2   P + (z>n)P(^m)        ,
l<mJZ    (*(0)/a(oo))/+(z)   Z

-    1   ^     z-2p(X,m)p(X,n) _ ^

^'T\k(0)2/a(oo)2)\f+(z)\2

+ ^-$n I'm ^w' ?\ dz>        W-l.*>«. (IV.6)2m f (k(0)/a(oo))zf_(z) ' ' v       '

Letting 0 —» -0 in the second term on the right-hand side and combining it with the
left-hand side gives

1   Xz-2p(X,n)p(X,m)(z- 1/z)

™*     (k(0)2/a(nf)\f+(z)\2
dz

2m ' (*(0)/a(oo))/+(z)

where we have used (III.18) and the fact that p+(z, ri) = p_(\/z, ri) for \z\ = 1.
Now changing over to real variables in the integral on the left-hand side of the
above equation

= J_ r   p(X,m)p(X,ri)2ism0e-ie d0        g = ßi9 (iy g)
2*J-«       (k(0)2/a(oof)\f+(z)\2

Breaking up the range of integration to /jj and f°_v letting 0 —> — 0 in the second
integral then recombining

r» 2p(X, m)p(X, ri) sin2 0 d0        ^ = g0 ^y ^

(k(0f/a(<x)2)\f+(z)\2
1    /•«
it Jo

Finally using (11.15), equation (IV.9) becomes

= r(0O)+Moo)„(X, m)p(X, n)(    ai^Sin9   ) dX. (IV.10)
■V)-M«0 W*(0)2|/+(z)|2/

In order to continue we need the following limits for z = 0.

(a) /+(z) = z-a(oo) fi   ^.
i-i    a(i)

(b) /»(A,ii)-z-fc(0)n'£^, (IV.ll)
/-i    a(i)

(c)   /> + (z,i,)-z"   fi     ¿g£.

These limits are easily obtained from the recurrence relations and boundary
conditions satisfied by the functions above (see Appendix B).
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476 j. s. GERÓNIMO AND K. M. CASE

Returning to (IV.7) we evaluate the integral on the right-hand side using the
above limits, Theorem l(iii) and the residue theorem. Thus

1   XP + (z,n)p(X,m)(l - 1/z2)— <f>2m ?        (k(0)/a(oo))f+(z)
dz

z<        \      ^    P + (Zi,n)p(X,m) nvttx
= 8{n> m) - £ (.(0)/a(oo))/;(z,) <" - l'*> <IV"12>

where {z,} refers to the zeros of/+(z) for \z\ < 1. From Appendix A

P + (Kn)=P+^)°)p(Xi,n) (IV.13)

at a zero of f+(z) for \z\ < 1. Substituting this equation into (IV. 12) and using the
fact that

= /;(\) (iv.i4)
a(oo)(l - 1/z,2)

(' refers to differentiation with respect to the variable of which /+ is a function)
yields

= 8(n, m) - 2 p(h n)p(\, m) P + V" n > m, (IV.15)
k(0)2f'+(\)

or

/•6(oo)+2a(oo) a(oo) sin 0
j p(X, n)p(X, m)—■*—*- dX

Jb(X)-2a{X) ^(0)2|/+(z)|2

+ 2 P(K ")P(K w) P+V"        = S(n, m),       n > m.      (IV. 16)
£(o)/;(\)

For m > n examine the integral

_L¿      p_^1m)pQ^tl
2mY C+(z)

The result is the same as (IV.15) giving us the orthogonality relation. With the
above relations the spectral function can be identified with the Jost function in the
following way:

dp(X) « a(X) dX,       2a(oo) - b(oo) < X < 2a(oo) + b(oo),
N

« 2 P,S(A - X¡) dX,       X not as above, \ ¥= Xj for i =£j, N < oo,

(IV. 17)
where a(X) and p, are given in (IV.2) and (IV.3).

However, usually the weight function is given and one must determine the Jost
function. This can be done using the Poisson integral formula. For f+(z) =£ 0 at
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SCATTERING THEORY AND POLYNOMIALS ON THE REAL LINE 477

z = ±1 the proof follows essentially that given in [4]. If f+(z) has a zero on the
unit circle then /+ (z) must be modified in a way exhibited in §V.2. The proof given
in [4] may then be applied to f+(z)/d(z) yielding (IV.4).

V. Inverse scattering theory. We now introduce the techniques of inverse scatter-
ing theory. In particular the discrete analogs of the Marchenko equations are
derived. These equations are then used to prove property l(iv, b) of §111. The
consequences for the weight function of these results is discussed. In this section we
assume that properties l(i), (ii), (iii) and (iv, a) have been proved.

1. Derivation of the Marchenko equations. We are given a comparison system of
orthogonal polynomials {p'(X, n)} with

a(n) = a(oo) (V.l)
and

B(n) = 0 (V.2)
for all n. From the recurrence formulasp'+(z, ri) = z" a.ndp'(\ ri) are Tchebycheff
polynomials of the second kind. From Theorem 2 and Lemma 1 (see Appendix B)

P + (z,n)=^  A(n,i)z< (V.3)
(' — n

and therefore

P-{z,n)= 2  A{H,i)z-' (VA)
i"n

where

2   \A(n,i)\< oo. (V.5)

Dividing (111.17) by/+(z) yields

h7)ii|-S1-'-,I'")tî(!K(I'")1'   |z|-'' <v-6)
where

S(z)-/^r7^r   |Z|=L (v-7)
Substituting (V.3) and (V.4) into (V.6) then multiplying by (a(oo)/A:(0))(zm/2'»)
with  m > n and integrating around the unit circle yields

J_¿p(X,n) z-f(°o),        1/z) ^
2mT f+(z) k(0)K <  }   z

= -2   A(n,ri)±-6z"-»^2m

1
2m

+  2   A(n,ri)^-.<$S(z)zn'+m —,       m>n>-\.    (V.8)
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478 J. S. GERÓNIMO AND K. M. CASE

From (II.8) the L.H.S. is equal to zero when n = -1. Otherwise, we can evaluate
the L.H.S. using the residue theorem and (IV.13), (IV.14), (IV.3) and Theorems l(i)
and l(iii). Thus for m > n > 0

1   Xp(X,ri)    ma(oo) /        \\dz      ^ .      .   „
^udz m (''"/T.-,?, p^(z"M)z"   m>n>0-

(V.9)
p¡ is defined in (IV.3). For m = n there is a residue at zero which is equal to
- l/A(n, ri) [3], [5]. Substituting (V.3) and (V.9) and combining it with (V.8) gives
the discrete analogs of the Marchenko equations

OO

a(n, m) + w(n, m) +     2     a(n, n')w(ri, m) = 0,       m > n > 0, (V.10)
n' = n+l

and
oo

l/A(n, ri)2 = 1 + w(n, ri) +     2      «(«, n')w(ri, n),        m = n > 0, (V.ll)
n' = n+l

where
a(«, w) = A(n, m)/A(n, ri) (V.12)

and
1   x dz       Nw(n, m) = - -—(I)5(z)z',+m — + 2  PA"""* (v-13)

2mJ z       ._ j

For « = — 1 we have
OO

a(-l,»i) +w'(-l,m)+  2   a(-l,/i')w'(n'. «) = 0,       w > - 1, (V.14)
n' = 0

where a(— 1, m) is defined as above and

w'(n, m) = - ^$S(z)z"+m —. (V.15)
¿mJ z

From (V.7)
|S(z)|=l. (V.16)

The manipulations leading to (V.10), (V.ll) and (V.14) can be justified using
(V. 15), (V. 16) and the fact that p+(z, m) is an element of A +.

The {a(i)} in the recurrence relation are related to {A(i, i)} in the following way

[5], [6]7:

^\= A( A{n:n) n»   »><>■ (V17)
a(co)      A(n — 1, n — 1)

2. The properties of f+(z) at z = ±1. Equation (III. 17) shows us that if /+(z) = 0
atz = 1 then

f+(z) = (1 - zfg(z) (V.18)

7 This can be easily seen using (V.3) and (IV. 11).
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where a < 1 and g(z) is bounded at z = 1. This is also true if f+(z) = 0 at z = -1.
We show here that a = 1 and g(±\) ¥= 0.8 Summing (V.14) from m = n to oo
gives9

where

a(n) +     S     «'í»+   2   «(-!.»')     2      <o'(m) = 0,10       (V.19)
m = n — 1 n'=0 m = n' + n

a(n) =   2   a(-l,m). (V.20)
m = n

Summing by parts gives

0 = ~¿(ñ)+    2     «'(«) + 2   «(-i,«0    2     «'(»»)
m = n— 1 n' = 0 m — n —1

+  2   ^Öö(     2      «'(m)-       2        «'(*)) (V.21)
n' = 0 \m = n' + n m = n' + n — l I

which is

= a(n) + (1 + o(0))    2     «'(w) -   2   o(n')«'(«' + « - 1).  (V.22)
m — rt + 1 n'— 0

Assuming that/+(z) = 0 at z = 1, equations (II.9), (111.20), (V.3), (V.12) and (V.17)
say that

,.-3»     g(0K(l,-1) /+(!)
1 + a(0) =   fl(ooM(a 0)   = a(ooM(0, 0) = °- (V-23)

Therefore

a(n) -   2   « («') «'(«' + » - 1) - 0. (V24)
n' = 0

From (B.54)

2 |«'(»)| < ».
Therefore there exists ic(n), w(n) and N such that

u(n) = w'(n) — w(n),        w(«),     w(«) 9* 0,        n < N,

u(n) = w'(»),       n > A, (V.25)

and

2    | «(«') | < 1- (V.26)
n'=-l

Substituting these results into (V.24) gives
OO OO

«(") -   2    a(n')u)(ri + n - 1) +   2    «("') «("' + « - 1) = 0.   (V.27)
n' = 0 n' = 0

8 This proof is adopted from the book of Agranovich and Marchenko, see [1].
9 All operations are justified in Appendix B.

10 Note that from (V.15) ut(n, m) = u'(n + m).
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Summing from n = 0 to oo yields
OO OO 00

2    a(n) - 2    «(«' + » - 1)   2    «(«')
n=0 n = 0 n' = 0

oo N + 2   _
= - 2   «(«' + « - O 2    «(") (V.28)

n=0 n'-O

or

Thus

Defining

2 I «(«) |(i -    2   I «(»') |) <  2 |û(n)| 2  | «(«') |- (V.29)
n = 0 V n'-1 / n = 0 n'-=0

2îf.olû(»)|2ï:2ol «(»')21«(«)i < -,  ::' ",-^r < «o- (v.30)«-0 1 - S"__,| w(«) |

Jt(z)- 2    «(«)*" (V.31)
n = 0

equation (V.30) tells us that k(z) is an element A + and k(z) is continuous at z = 1.
For z 7^ 1 integrating (V.31) by parts gives

00 00

k{z) = -Ä + 2    2 **( «(«) - «(« - 1) ) (V.32)
1        z        „=1   y_n

which

= T37 + 2  t^tC «(») - «(» - 0 )• (VJ3)
Using (V-20) gives

k(z) = yrr^i1 + «W -1-2   z"«(-l, « - 0) (V.34)

or using (V.23), (111.20), (V.3) and (V.12)

— "¡-   l/z +  i,   ^ a( — 1, n)   =-- —;—.  , .^ ^.    . (V.35)
1 - * \ '        „to 'j      I - *     o(ooM(0,0)

Thus

/+(*)
1 - z   a(oo)^(0, 0) '

Therefore z/+(z)/(l — z) is an element of A +.
If /+(- 1) = 0 then applying 2~_„(- l)m to (V.19), defining

(V.36)

«(")=   2 (-l)ma(-l,m) (V.37)
m — n

and using the previous techniques shows that z/+(z)/(l + z) is an element of A +.
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Finally if /+(z) = 0 at z = ± 1 then the previous results show that z/+(z)/(l —
z) and z/+(z)/(l + z) are elements of A+. One now uses the local Weiner-Levy
theorem [10] to show that z/+(z)/(l - z2) is an element of A +. Thus zf+(z)/d(z),
z = e'e, is an element of A +. d(z) is defined following (IV.4). This proves property
(iv, b). (zf+(z)/d(z)) is an element of A ~,therefore \zf+(z)/d(z)\2 is an element of
A. Since \f+(z)/d(z)\2 ^ 0 for \z\ = 1 an application of the Wiener-Levy theorem
tells us that

In |/+(z)Mz)|2
is an element of A. Equation (IV.2) now implies the following:

Theorem 5. If equations (11.13) and (111.25) hold then

In / ^(0)V(z)|2q-(a) \
\      «(oo) sin 0      J

is an element of A.

VI. Conclusion. In this paper the techniques of scattering theory have been used
to study polynomials orthogonal on a segment of the real line. Since one of our
aims was to try to parallel the theory of polynomials orthogonal on the unit circle,
a set of two two-term occurrence formulas satisfied by polynomials orthogonal on
a segment of the real line was derived. One of the advantages of these two two-term
recurrence formulas is that the Jost function is just the limit of a sequence of
polynomials satisfying one of the recurrence formulas with the boundary condition
given at n = 0. This, of course, simplifies the discussion of the analytic properties
of the Jost function. In this paper we have assumed that a particular sum of the
coefficients in the recurrence converges. The consequences of this assumption on
the Jost function and weight function were discussed.

Appendix A. In this appendix some of the properties of the zeros of *p*(z, ri) and
f+(z) are discussed. First it is shown that for |z| < 1 the zeros of \p*(z, ri) are real,
simple, and alternate with those ofp(X, n — 1). Equations (III. 10) and (III. 15) then
imply that the zeros of f+(z) are real and simple11 for \z\ < 1. It is also shown that
p(X, ri) are square summable at a zero of/+(z) for \z\ < 1. Finally a proof is given
showing that if the coefficients in the recurrence formula satisfy (111.25) there are
only a finite number of points where f+(z) = 0 for |z| < 1.

I. Zeros of\j/*(z, ri). We begin our study with the following formula:

^\[p\X, n)p2(X', n - 1) - p2(X', n)p\X, n - 1)]

= (z + 1/z - z' - 1/z') 2  P\X, Í)P\K i)
i-O

• -Ä [p\X, 0)p2(X', - 1) - p\X, - l)p2(X', 0)]. (A.1)

This is true under conditions weaker than (111.25); see Appendix B.
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This equation can be derived from (II.5) [4] or (11.22) [6]. Solving for (a(oo)/a(n))(z
— B(n - l))p(X, n — 1) in (11.11) and then substituting the result into (11.12) yields

p(X, n) - xp(z, n) = ^\zp(X, n - 1). (A.2)
a(oo)

Sincep](X, i) &ndp2(X, i) satisfy (11.11) they also satisfy (A.2). Therefore substitut-
ing (A.2) into the L.H.S. of (A.l) yields

p\X,n)^2(z',n)-p2(X',n)^(z,n)

= (z + 1/z - z' - 1/z') 2 /(A', i)p\X', i)
/-0

+ 4% A*. 0)P2(X', - 1) - p2(X', 0)p\X, - 1)]. (A.3)a(oo) L J '

Setting/>' = p = p2,\p2 = \p = ¡p1 and z' = z yields

(1/z)/»(A, n) ^(z, n) - (l/z>(A, n) *(z, ri)

= (z + 1/z - z- - 1/z") 2 \P{\ i)\2 + (\/z - 1 A>(A, n)\2.     (A.4)
i-0

Thus the zeros of \p(z, ri) for \z\ < 1 are real.
Now setting/?2 = px = p, \¡>2 = \pl = ip in (A.3) and letting z' ^> z gives

((l/z)*(z, «))>(A, n) - (l/z)^(z, «)/>'(a, n)

= - (l/z)2/>(X, «)2 + (l - 1/z2) 2 P(K if- (A.5)
i-O

From the above equation we see immediately that the zeros of >p(z, ri) are simple.
Using an argument similar to that given by Szegö [10] proving that the zeros of
p(X, ri) and p(X, n — 1) alternate, we can show that [6] the zeros of \¡/(z, ri) and
p(X, n — 1) alternate for \z\ < 1. Also if z, is the smallest positive zero of p(X, ri),
ip(z, ri) will have a zero at z0 where 0 < z0 < z,. Likewise let z, be the negative zero
of p(X, ri) with smallest magnitude then ¡p(z, ri) will have a negative zero zx where
0 < |z,| < \zj\. Now using (III. 10), (111.15), (B.12) and (B.17) we see that the zeros
°f f+(z) f°r lzl < 1 are real and simple.

Setting a(n + 1) = a(oo) and B(n) = 0 for n > n0 in (II. 11) and (11.12) gives
p"°(X, n + l) = zp"«(X, n) + (l/z)^"»(z, n),       n > n0. (A.6)

and
xP"o(z, n + 1) = (l/z)«T»(z, n),       « > «o,

or
4>*n°(z, n+\) = ^*"°(z, ri) = *«(z, n0),       n > n0. (A.7)

It is easy to see from (II. 11) that

p"°(X, ri) = p(X, ri),       n < n0, (A.8)
and

^"»(z, ri) = xp(z, ri),       n < n0.
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From (III.10), (111.15) and (A.27)

/+(z,n0)=-^V(z,%> (A.9)

where/+(z, n0) is the Jost function for the system whose coefficients reach their
asymptotic value for n > n0. Substituting these results into (III. 17) yields

$"°(z' M> "    (    v(0)i/ Jj-(z' "o)n°(^ rt) - f+(z, n0)*"o(z, »)],
a(oo)(z — 1/z)

|*|-1.    (A.10)
In particular

P"°(K n) = __ML_[/_(,, „0)^:o(Z; n) _ /+(Z; n ^«„(^ „)],
a\oo){z — 1/z)

(A.11)
From (A.6) it is easy to see that

m — n0— 1

p"°(X, m) = zm~n<p(X, n0) + zm-n°-\(z, n0)     2     *~*.        m > "o-
/-o

(A. 12)
Therefore as m —» oo p"°(X, m) is unbounded for \z\ < 1 except at a zero (z0) of
^(z, /i0). In this case for \z\ < 1,

/>"»(Ao, m) = z^-XV «o)- (A13)
Since/_(z0, n0) is a polynomial in 1/z it can be continued inside the unit circle.
Thus at a zero of/+(z, n0) for \z\ < 1,

Pn"(K n) =    ,       *i0) . ,   r/-(% «o)/»?(^ «).        |*| < 1.      (A.14)
a(oo)(z0 - l/z0)

or
pn°(X0,ri) = Cn<pl°(z0,n) (A15)

where

c„„    p(KQ) _    k(0)

At a zero of t/-(z, n0) equation (A.5) tells us that

(l/z0)r°(^ nfr-iXo n)

= - (l/z0V°(Ao, n)2 + (1 - 1/z2) 2 pn"(K i)2,       n > n0.     (A.17)
i-0

Substituting in the previous results gives
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Letting n —» oo, using (A. 13) and changing the differentiation of/+ from z to X
yields

i^^)-f^X.,f. (A,9,
If we now let n0 —* oo and use (III. 10), (III. 15) and (B.17) we see that at a zero z,,
(\) of/+(z) where |z,.| < 1,

p(\,n)- ak(®   p+(z,,n) (A.20)
P + (zi> 0)

and

1      k(0ff'+(\) = 2 P\\J) < oo. (A.21)
Pi       P + (z¡> 0)       7=o

Here p, is the same as in (IV.3).
II. The number of zeros of f+(z) for \z\ < 1. We now prove12 that if the

coefficients satisfy (111.25) then/+(z) will have only a finite number of zeros inside
the unit circle. Here we will find it convenient to use a version of (II.5)

a'(n + \)p(X', n + 1) + B'(n)p(X', ri) + a'(ri)p(X', n - 1) = X'p(X', ri)    (A.22)

where

a'(n) = a(n)/2a(oo),       X' = Uz + 1/z) (A.23)

and
B'(n) = B(ri)/2.

Thus the continuous spectrum occurs for |X| < 1 and the eigenvalues (points where
the polynomials are square summable) occur for |A| > 1.

The boundary value problem (A.22) and (II.8) is equivalent to finding solutions
y = {y}-i to the equation

J(y) = X'y (A.24)
with the boundary condition _y(-l) = 0. This in turn is equivalent to finding
solutions y = {y}™ to the equation

5'(0>y(0) + a'(\)y(\) = X'y(0),
a'(n)y(n - 1) + B'(ri)y(ri) + a'(n + \)y(n + 1) = X'y(n),       n = 1, 2, 3_

(A.25)

Let J' denote the minimal closed operator induced by (A.25) in /2(0, oo). It
follows from (11.13) that J' is selfadjoint [2]. The domain of J', Dj,, consist of all
functions^ G /2(0, oo) satisfying the following conditions:

(l)^(n + 1) and^(« - 1) must exist for all finite n > 1,
(2) J'(y) E l\0, oo).

12 This proof has been adapted from the book of Agranovich and Marchenko (see [1]).
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We must show that the equation

J'y = X'y (A.26)
has only a finite number of eigenvalues.

To this end we introduce two additional selfadjoint operators JXm and J2m for
m > 0 defined in /2(0, m) and l\m + 1, oo).

Where the equation for JXm is

B'(0)y(0) + a'(l)y(l) = X'y(0),
a'(n)y(n - 1) + B'(n)y(n) + a'(n + \)y(n + 1) = X'y(n),

n = 1,. . . , m — 2,
a'(m - \)y(n - 2) + B'(m - l)y(n - 1) = X'y(m - 1) (A27)

and the equation for J2m is

B'(m + \)y(m + 1) + a'(m + 2)y(m + 2) = Xy(m + 1),
a'(n)y(n - 1) + B'(n)y(n) + a'(n + \)y(n + 1) = X'y(n),

n = m + 2, m + 3,. . ..

(A.28)
The domains Dj    and Dj   consist of functions satisfying the following conditions.
Forj- G DJt ,

(\)JXm(y)El2(0,m),
(2)y(n + 1) and y(n - 1) exist for 1 < n < m — 1.

For>> G Dj2 ,
(\)J2m(y)El2(m+\,cc),
(2)y(n + 1) and y(n - 1) exist for all finite n, n > m + 2.
Equations (A.27) and (A.28) are equivalent to equation (A.24) with the boundary

conditionsy(— 1) = y(m) = 0, and.y(m) = 0 respectively.
We now show that J2m has no eigenvalues for large enough m. First let us note

that since (A.25) is equivalent to (A.24) with the boundary condition y(—l) = 0.
We know from Appendix A that the eigenvalues of / and therefore J' occur at the
zeros of f+(z) for \z\ < 1. Thus the equivalence of J2m, and / with the boundary
condition y(m) = 0, allows us to associate the eigenvalues of J2m with the zeros of
Jost function /+_1(z) where

fr '(z) = a'(m)p + (z, m-1) (A.29)
forO < \z\ < 1, z real.

From (B.37) and (B.41)
00 j

P + (z, m)~zm    u      ;r—r
, = m+i   2a (i)

< C'|z|m+1    f     <'{|1 - 2a'(« + 1)2| + \2B'(n)\}. (A3°)
i — m+l

Consequently for large enough m = m0,p+(z, m0) has no zeros for 0 < \z\ < 1 and
J2m has no point spectrum.
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We now show that JXm has only a finite number of eigenvalues. Now JXm is
equivalent to J' with boundary condition y(m0) = 0. Since JXm is a finite dimen-
sional Jacobi matrix, it is easy to see that the eigenvalues of JXm occur at the zeros
of p(X', m0). Since p(X', m0) is a polynomial it has only a finite number of zeros. Let
k be the number of zeros of p(X', m0) with |X'| > 1 (|z| < 1). It follows that the
number, N, of eigenvalues of J' with |X'| > 1 (number of zeros of f+(z) with
\z\ < 1) is

N < k + 1. (A.31)
To prove this let us assume that N > k + 1 and let

g\n), g2(n), . . ., gk+2(n) (A.32)

denote the k + 2 linearly independent eigenvectors of /' corresponding to k + 2
different eigenvalues whose magnitudes are greater than one.13

Turning our attention to J'2, JXm and J2m and their respective domains Dji,
Dj2 we note that from (A.26) g'(n) are also linearly independent eigenvectors of
J'2. Now combine the eigenvectors to form k + 1 linearly independent combina-
tions xx(n), x2(ri), . . . , xk+1(n) such that

jc'(/n0) = 0,       i < k + 1. (A.33)

Consequently the x' belong to both Dj%   and D,2 . Since the zeros of p(X', m0) are
llHQ 2«iQ

simple it is possible to form a nontrivial linear combination of the x'(n),

f(n) = 2   *,*'(«) (A.34)
Í" 1

such that f{ri) is orthogonal to all the eigenvectors of j}m   corresponding to
0

eigenvalues with magnitude greater than one. Since the xl(ri) are in Dj2   we can
llHQ

use the orthogonality condition on that space to impose k conditions on k + 1
unknowns. Denoting the scalar product 2^/(«)g*(«) in l2(a, ß) as </, g)(a, ß),
the vector/(«) satisfies the following relations:

<JLjf\o. ^- o - <//>(o, „-.) = <{JL0 - 0//>(o, m«- 1) < 0       (A.35)
since f(n) is orthogonal to all the eigenvectors of JXmo with eigenvalues greater than
1, and

VLjD^+i, oo) - <//>(mo+1, oo) = <(JL0 - !)//>(»*+1, oo) < 0 (A36)

since J2m has no eigenvectors corresponding to discrete eigenvalues. But

</'2//>(o, oo) - <//>(o, oo) = <(J'2 - l)//>(o, oo) > 0 (A.37)

because f(n) is just a linear combination of the eigenvectors of J'2 with eigenvalues
greater than 1. But

<(J'2 - l)//>(o, oo) = <(JL0 - ly/W-i) + <{JL0 - 1)//Wi, »o    (A.38)

and we have a contradiction.

13 Note from Appendix A that the zeros of f+(z) for |z| < 1 are simple.
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Appendix B. Analytic properties and bounds. In this appendix we investigate the
analytic properties of f+(z), p(X, ri) andp+(z, ri). We prove that if the coefficients
in the recurrence formula satisfy (11.13) and (111.25) then zf+(z) andp+(z, ri) are
analytic inside the unit circle and continuous on it (see (B.17) and (B.42)). Under
the above condition z/+ a.ndp + (z, ri), z = e'a, are both elements of A + (see (B.19)
and (B.33)). Bounds onp(X, ri) and \¡/(z, ri) are also derived (see (B.14) and (B.16)).

(A) Properties of p(X, ri) and f+(z). Multiplying (11.12) by z" and iterating down
yields

a(n) =o
1 - «C + *>   \t2

«(oo)2
B(i)z .//»(A, 0

«(/)
where

a(j) = k(0)Jl   ^TT,        «(0) = A:(0).
,= i    a(i)

(B.l)

(B.2)

Now increasing (III. 13) by 1, then multiplying by z" + 1 and substituting in (B.7)
gives

znp(X, ri) =
n-\i+ 2 i
/ = 0

a{i + I)3

a(oo)2
z2 - B(i)z   z ,p(K 0

«(0
n-\

/=0

a(i + O2
«(oo)2

B(i)z-l\z
a(i)

1
1-z2

(B.3)
which is

— z
1 -z2

2n + 2        n -+ 2|i
i-O

aO + l)2       /l-z2"-2-2\   .^Q
a(oo)2   J    \      1-z2      J      «(«)

,=o \    1-z2    /    «(0
(B.4)

To get a bound on z"p(X, n)/a(n) we use the technique of successive approxima-
tions. Write

where

*(*, «)° =
1

(B.5)

(B.6)

and

g(x,„y=2(,_£ii±i)!)Wi^i!U,iy-.
i-o \ a(oo)2   /    V       1-z2      /

n-l /  1   _   ,2n-2,\

2 *o> '     2   g(x,/y-'-
/-o V    1 - z¿    J (B.7)
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Now there exists a constant C such that

1 - z1

1 -z2

Cn
1 + Il - z2|«

n > 0, \z\ < 1.

Therefore from (B.6),
C(n + 1)

2\(n +

Settings = 1 in (B.7) and substituting in (B.9) yields

g(A, n)    <-—'-
1 '      1 + II - z2\(n +

(B.8)

(B.9)

n-l

\g(\ n)\l <   2
1 = 0

a(i + l)2

a(oo)

.2 C(n -i-l)
' ' 1 + |1 - z2\(n -i-l)

+ \B(i)\
C(n - i)

1 + |1 - z2|(« - /) \g°(K i)|

(B.10)
which is

"2   ,    l1C(¿+2l?)    tMi,*)>     W < »>    (B11>1 + |1 - z>   /To   1 + |1 - z2|(/ + 1)

where

Thus by induction

y(¡,z) =
,      a(i + I)2

«(~)2
|z2| + |fi(0||z|.

i*ov «)r Cn 1
1 + II - z2|n ß ,-o   1 + |l-z2|(i + l)

(B.12)

(B.13)

Substituting these results into (B.5) and summing gives

z"p(X, n)
a(n)

C(n + 1) "¿} C(i + 1) ,.    .—^     - exP 2   . . ,. —,„. . - y('<z)-
i + |i - z2|(« + i)       ,r0 i + |i - z2|(; + i)

(B.14)

It is obvious that

z"p(X, n) n-l

«(«)

Substituting (B.14) into (B.l) yields

**{z, ri)

< C(n + l)exp  2   C(i + l)y(i, 1),       z = e*.       (B.15)
i-0

a(n)
-=,»     c(i + ih(i, i)   rirn '«' CQ + 1) , .   ,< l + 2  t~-?„. . ^exP 2 -——;-?l/. . ,, *(/>*)•,r0 i + |i - z2i(/ + i)     -0 i + |i - z2io +1)

(B.16)
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Now using (III. 10) and (B.l) gives

C+(z)      t*(z, n)
ct(oo) a(n)

OO

< 2 C(i+1) ,.   ,      'vy(i, z)exp 2 CÜ + O
,--„   1 + |1 -z2|(/ + 1) "o   l+|l-z2|0+l)

y(j,z)-

(B.17)

Therefore if (111.25) is satisfied then C+(z) and, through (III. 15), zf+(z) are
analytic inside the unit circle and continuous on it. If

2   YO". 0 < oo
i-0 (B.18)

then zf+(z) is analytic inside the unit circle and continuous on it except perhaps at
z = ±1. Notice that using (B.l5), equations (B.16) and (B.17) are norm inequali-
ties with |z| = 1 on the L.H.S. and z = 1 on the R.H.S. of (B.17). Thus

C+(e")      r(eW, n)
a(oo) a(n)

i-l
< 2   C(i + l)y(i, l)exp 2   C(j + \)y(j, 1) (B.19)

y-o

and we see that C+(eM), and through (III. 15), ei9f+(ei9) are elements of A +.
(B) Properties ofp + (z, ri). Let us define

*<->-LTD' •>   1,

satisfying (11.17) with initial conditions

Q(X, 1) = ^(z, 1) = \/a(\)k(0).

Since 4> satisfies (11.17) we define

C±a(z)= W[&,*±]

which in component form is

C+a(z) = P + (z, n)^a(z, ri) - p(X, n)*p+(z, ri)

and

C-Âz) = P-(z, »HÂ2' ») - P(x> n)yp^(z, n).

Letting n -» oo in (B.23) using (III.4) yields

C+a(z) = lim  zn^a(z, ri).

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)
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Since i¡/a(z, ri) and Q(X, n) satisfy (III.13) we can write

z"Q(X,ri) _        z(\-z2n)

«(")      " a(oo)A:(0)2(l - z2)

n-l+ 2ii=i
n-l

Applying the procedures that led to (B.14), (B.l5), and (B.17) yields

a(oo)z    J     \       1-z2      /
/   j   _  22n-2,\

(B.26)

znQ(X, n)
a(ri)

Cn
a(oo)k(0)\\ + |1 - z2|n)

•exp
V Ciy(i, z)
, = i   a(oo)A:(0)2(l + |1 - z2\i)

(B.27)

«(*» ")
a(n)

I    H    )
\a(œ)k(0)2)

v'   _ Ciy(i, z)
(oo)A:(0)2/ ,= i   a(oo)fc(0)2(l + |1 - z2|i)

•exp  2 Cjy(j, z)

y-l   a(oo)A:(0)2(l + \\ - z2|y)
(B.28)

and
C+a(z)      if£(z, h)
a(oo) a(n)

< 2 C/y(/', z)
, = «   a(oo)A:(0)2(l + |1 - z2|i)

/-i
•exp 2 Qy(j,z)

(B.29)
j~\   a(oo)k(0)2(l + |1 - z2U)

Therefore C+a(z) has analytic properties similar to those of C+(z). Setting \z\ = 1
on the L.H.S. and z = 1 on the R.H.S. makes (B.27), (B.28) and (B.29) norm
inequalities thus making C+a(z) an element of A +(z).

Multiplying (B.23) by Q(X, ri) and (III.8) byp(A, ri) then subtracting one from the
other yields

(C+(z)Q(X,n)-C+a(z)p(X,n))

= p + (z, n) [ *(z, n) Q(X, n) - *a(z, n)p(X, n) ] (B.30)

Now
x¡,(z, n)Q(X, n) - ^(z, n)p(X, n) = W[<b, Ô] (B.31)

which is

-|>(z, \)Q(X, 1) - ipa(z, l)p(X, 1)] = -z/a(oo). (B.32)
Thus (B.30) becomes

a(oo)
p + (z,n)=^[C+a(z)p(X,n)-C+(z)Q(X,n)],       n> 1, \z\ = 1.

(B.33)
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Using similar procedures the following equation for ip+(z, n) can be derived

*+(z, n) = ^ [ C+(Z)UZ> n) - C+a(z)4,(z, ri)],       n > 1.     (B.34)

Letting n -+ oo in (B.l) using (III. 10) and (B.25) gives

ç^.i!(^+|i/1_fiL+_f£\2_       J /£(M
a(oo) a(«) /t'4\ a(oo)2   / J       «(0

and

C„W _*(«,.) + | ¡|, _ £(L±ir)zi .„¡4«.  (,.„)
«(oo) a(n) , = „[\ a(oo)

Substituting these equations into (B.33) yields

pt{z, ») - I"íí|0 ^[+.(1, n)p{\, n) - +(z, „),>(*, „)]

2 «.-«+'! l\ a(oo)2   / J «(')
•[ß(A,i>(A,»)-^(A,00(A,»)]

which is using (B.32)

-*" n a(oo)      a(oo)a(oo)
, = „+i    a(i) i = n + 1

1  - a(/-H)2,

«(oo)2
B(i)z

-^ [ Q(K 0p(K n) - p(X, i)Q(X, ri)}.

Notice that

and
g(X, i, n) = (Q(X, i)p(X, n) - p(X, i)Q(X, ri))

(B.37)

(B.38)

(B.39)g(z, i, n) = [>a(z, i)p(X, n) - *(z, i)Q(X, ri)}
satisfy (11.17) with initial conditions

g(X, n+ l,n) = g(z, n+ \,n) = \/a(n + 1).
Therefore z'~"~1g(X, i, ri) and z'~"~ig(z, i, ri) are polynomials in z of degree
2(i — n — 1). Since g(X, i, ri) and g(z, i, ri) satisfy (III. 13) we can use the proce-
dures leading to (B.4) to derive the following formula

.¡-,-1^'» 1
a(i) a(n + l)a(i)

1 - z2('-">

1-z2

+  2  (i-'^'fU1-'*-'->-■
y=„+i\ a(oo)2    )    \      1-z2      J

j-n + i \      1-Z2      } Ot(j)

«(/)

(B.40)
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Applying the same procedures that led to (B.14) we find

«('•)
1 C(i-n)

a(n + l)a(i)   \ + \1 - z2\(i - n)
i-l

exp    2 U - n)
, = „ + i   «(" + 0«0)   1 + |1 - z2|(7 - n)

y{j,z).

(B.41)
Substituting (B.41) into (B.37) yields

\p + (z>n)\<
a(oo)f n,_„+i    a(t)

«i00)      ,.n+l,      V «(°°)+1| 2
«(" +   1) , = n+l      «(0

+15(01

C(i - n) i-l
exp    2

«0 + I)2
«(oo)2

C(j - n)y(j, z)
1 + |1 - z2|(/ - n) , = „+1   a(n + l)a(j)(l + |1 - z2|0' - ri))

(B.42)

Since the right-hand side of (B.33) and (B.34) satisfy (II.7) with boundary condi-
tions (III.4) p + (z, ri) has analytic properties similar to those of C+(z) and C+a(z)
and is also an element of A +. It is easy to see that (B.42) becomes a norm
inequality if one follows the procedures leading to (B.19).

Once having found dp(X) it is clear that

•b (p(X,ri)-p(X',ri))Q(K n)=f
J n A-A' dp(X'),        n > 1, (B.43)

and

*„(*,«)•/
b xp(z, ri) - xp(z', n)

X-X' dp(X')

+ ^)Ja(z-z)   X-X'     dp{x)'

Since the boundary conditions (B.21) are equivalent to

ß(X,0) = 0,    Q(X,\)=l/a(l)k(0),
we can apply the steps that led to equation (111.20). Thus

/..ei-I^w

n > 1. (B.44)

(B.45)

a(n + 1)
¿(0)

[Q(X,n + l)P + (z,n)-p + (z,n+ l)Q(X, n)],       n > 0,

which is

= l/k(0)2P + (z,0).

(BM)

(B.47)
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Substituting (V.3) into (B.42) yields the following bound
CO /        \ 00

2     |a(n,m)|<-^r     2     y(/, l)C(i - n)
m-n + 1 «(* + 1)   ,_n + ,

exp    2      CH " a)¿U;? (B.48)
;-«+i     a(n+l)a(i)

where a(n, m) is defined in (V.12). From (V.10)
00

¡u(n,m)\<\<x(n,m)\+     2     \a(n, n')\ \u(ri, m)\. (B.49)
«' = «+ 1

Summing on m from / to oo, / > n + 1
00 00 00

2 K«, m)|<   2 |«(",w)|+  2       2    \a(n,n')\\u(ri,m)\.    (B.50)
m —/ m — / m — I   n' = n + \

From (B.45) there exists an A such that

2    \a(n,n')\<l (B.51)
n'-n + l

for all n > N. From (V.13) w(«, m) = w(/i + m). Thus (B.50) can be rewritten as

2    |«(«)|<   2 \<*(n,m)\+     2     |«i»0|    2    |«(«, «')|      (B-52)
m^l+n m = l m — l+n' n' —n + 1

which is

< 2 |«(»,«)| +   2   H«)|   2   |«(«,«')|- (B.53)
m = I m = l+n n' — n + l

Combining the second term on the right-side with the left-hand side yields

^    Km)<-i-y=-\n(„ „x. ■ (B-54)
m-/+n 1  - •¿-m-n+ll«(". W)l

From (V.16), w(w) is bounded for all m and therefore summable. These techniques
can be applied to (V.14) with similar results.
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