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We investigate nonlinear transport properties of quantum conductors in response to both electrical and

thermal driving forces. Within the scattering approach, we determine the nonequilibrium screening

potential of a generic mesoscopic system and find that its response is dictated by particle and entropic

injectivities which describe the charge and entropy transfer during transport. We illustrate our model

analyzing the voltage and thermal rectification of a resonant tunneling barrier. Importantly, we discuss

interaction induced contributions to the thermopower in the presence of large temperature differences.
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Introduction.—Recent advances in nanoscale thermo-
electric materials suggest novel functionalities and highly
improved performances [1]. A key ingredient of thermo-
electric devices is the Seebeck effect, which depends on the
simultaneous existence of thermal and electric driving
forces. As a result, energy conversion from waste heat is
possible under the conditions of zero net current. The
Seebeck coefficient S measures the amount of thermovolt-
age generated across a conducting sample when a thermal
gradient is externally applied. Interestingly, the thermo-
electric figure of merit is proportional to S2. Therefore, it
is highly desirable to put forward new routes to increase
S. Electron-electron interactions may dramatically
enhance S in strongly correlated systems as in magneti-
cally diluted metallic hosts [2] and artificial Kondo
impurities [3].

On the other hand, large temperature drops give rise,
quite generally, to thermal rectification effects [4]. The
possibility to apply sharp thermal gradients seems to be
more feasible in nanostructured materials, as recently dem-
onstrated in superlattices with periods spanning a few
nanometers [5]. Strikingly enough, a self-consistent theory
of nonlinear thermoelectric transport valid for quantum
conductors is still lacking. This is the gap we want to fill
in this work.

Linear thermoelectric effects within the scattering
approach were discussed in Ref. [6]. At the same time,
pioneering experiments analyzed the main properties of the
thermopower at linear response in quantum point contacts
[7] and quantum dots [8]. Subsequent advances have
unveiled fluctuating thermopower in chaotic dots [9], large
S in Andreev interferometers [10] and thermoelectric an-
isotropies in multiterminal ballistic microjunctions [11].
The Seebeck coefficient can also help determine the con-
duction character of a molecular junction [12]. Only
recently has a clear observation of thermal rectification
effects in mesoscopic systems been possible [13]. Thus,
it is natural to ask how phase-coherent current and thermo-
power are affected in the nonlinear regime of transport.

In the isothermal case, all terminals are held at the same
background temperature T. References [14,15] then pro-
vide a convenient theoretical framework to include non-
equilibrium effects beyond linear response. The theory is
based on an expansion around the equilibrium point but,
importantly, the nonlinear transport coefficients are com-
plicated functions of the screening response of the conduc-
tor out of equilibrium. This purely interaction driven
response is described in terms of characteristic potentials
that measure how the internal potential counterbalance the
ensuing charge pileup due to a voltage shift. Hence, the
characteristic potentials depend on the particle injectivity
of those carriers originated in the shifted terminal. The role
of these particle injectivities is crucial because they deter-
mine departures from the Onsager-Casimir symmetry rela-
tions [16,17] ubiquitously found in nonlinear transport
experiments [18–22]. Here, we show that when the system
is perturbed with a temperature shift its response is dictated
by entropic injectivities, which quantify the entropy trans-
ported in the charge imbalance process. Below, we discuss
the role of both particle and entropic injectivities in two
conceptually simple but generic problems—the formation
of rectifying terms in thermally driven electric currents and
the differential Seebeck coefficient beyond linear response.
Theoretical model.—We consider a mesoscopic con-

ductor coupled to multiple terminals �;�; . . . character-
ized with bias voltages eV� ¼ �� � EF (�� is the
electrochemical potential and EF the Fermi energy) and
temperature shifts �� ¼ T� � T (T� is the reservoir tem-
perature). The electronic transport is completely deter-
mined by the scattering matrix s�� ¼ s��½E; eUð ~rÞ�,
which, in general, is a function of the carrier energy E
and the potential landscape inside the conductor Uð ~rÞ
[14,15]. In turn, Uð~rÞ is a function of position ~r and the

set of voltage and temperature shifts. Defining A�� ¼
Tr½��� � sy��s���, the electrical current is expressed as

I� ¼ 2e
h

P
�

R
dEA��ðEÞf�ðEÞ where f�ðEÞ ¼ 1=f1þ

exp½ðE� EF � eV�Þ=kBT��g is the Fermi distribution
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function in reservoir �. In the weakly nonlinear regime of
transport, the dominant terms appear up to second order in
an expansion of the electric current in powers of the driving
fields V� and ��:

I� ¼ X
�

G��V� þX
�

L���� þX
��

G���V�V�

þX
��

L������� þ 2
X
��

M���V���: (1)

The electrical and thermoelectric linear conductances are
[6] G�� ¼ �ð2e2=hÞR dEA��@Ef ’ ð2e2=hÞA��ðEFÞ and
L��¼�ð2e=hTÞRdEðE�EFÞA��@Ef’ð2e�2k2BT=3hÞ�
@EA��jE¼EF

, respectively, where the approximate expres-

sions correspond to a Sommerfeld expansion to leading
order in kBT=EF. Here, f is the Fermi distribution function
when all V� and �� are set to zero. We emphasize that the
linear conductances are evaluated at equilibrium and, as a
consequence, G�� and L�� are independent of the screen-

ing potential U. The situation is completely different for
the nonlinear coefficients. We find

G��� ¼ �e2

h

Z
dE

�
@A��

@V�

þ @A��

@V�

þ e���@EA��

�
@Ef;

(2a)

L��� ¼ e

h

Z
dE

EF � E

T

�
@A��

@��
þ @A��

@��
þ ������

�
@Ef;

(2b)

M��� ¼ e2

h

Z
dE

�
EF � E

eT

@A��

@V�

� @A��

@��
� ������

�
@Ef;

(2c)

where ��� ¼ ½ðE� EFÞ=T�@EA��. Notably, the nonlin-

ear responses depend on how the scattering matrix
changes, through the potential U, in response to a shift in
voltage or temperature. Because we are concerned with
small changes away from equilibrium, an expansion of U
up to first order suffices:

U ¼ Ueq þ
X
�

u�V� þX
�

z���; (3)

where u� ¼ ð@U=@V�Þeq and z� ¼ ð@U=@��Þeq are char-

acteristic potentials that describe the internal change of the
system to a shift of voltage and temperature, respectively,
applied to terminal �. In the sequel, we derive the self-
consistent procedure to determine the electrostatic poten-
tial in the presence of electrical and thermal forces.

The net charge response of the system away from its
equilibrium state can be decomposed into two terms,
namely, the bare charge injected from lead � and the
screening charge that builds up in the conductor due to
interaction with the injected charges: q ¼ qbare þ qscr. The
contribution to qbare due to a voltage imbalance in lead � is
given by the particle injectivity �p

�ðEÞ. This is a partial

density of states associated with scattering states that
describe those carriers originated from lead � [14]. In
addition, a shift of temperature in lead � also induces a
change in qbare. In contrast to the voltage case, however,
where every carrier with an energy E contributes positively
to qbare, in the thermally bias case the contribution of a
temperature shift in lead � gives rise to a heat addition or
removal depending on whether the carrier energy E is
larger or smaller than EF [23]. This crucial fact must be
reflected in the entropic injectivity denoted by �e

�:

�p
�ðEÞ ¼ 1

2�i

X
�

Tr

�
sy��

ds��
dE

�
; (4)

�e
�ðEÞ ¼ 1

2�i

X
�

Tr

�
E� EF

T
sy��

ds��
dE

�
: (5)

To be concise, we have assumed that the potential is
homogeneous (i.e., position independent) within the sam-
ple (the extension to inhomogeneous fields is straightfor-
ward [15]) and that the WKB approximation applies in
order to make the replacement �=�U ! �e@=@E. We
note that the factor ðE� EFÞ=T represents the entropy
transfer associated with adding a single carrier [24].
Then the accumulation or depletion bare charge imbalance
due to voltage or to temperature shifts becomes qbare ¼
e
P

�ðDp
�eV� þDe

���Þ where Dp
� ¼ �R dE�p

�ðEÞ@Ef, and
De

� ¼ �R
dE�e

�ðEÞ@Ef. Next, we obtain the screening
charge from the response of the internal potential, �U ¼
U�Ueq, to changes in the leads’ chemical potential and

temperature. Within the random phase approximation, one
has qscr ¼ e2��U. � is the Lindhard function which in
the static case (frequency-dependent effects are not
considered here) and in the long wavelength limit reads
� ¼ �P

�D
p
� ¼ �D at T ¼ 0 [D ¼ DðEFÞ is the sample

density of states] [25]. These approximations are excellent
for our purpose because (i) if T � 0 one can simply replace
the previous expression with � ¼ R

dEDðEÞ@Ef, and

(ii) the long wavelength limit amounts to carrier energies
well below the tunnel barrier heights that couple the con-
ductor to the external reservoirs. But this is precisely the
range of validity of the WKB approximation used to
express Dp and De in terms of energy derivatives only.
Our set of equations is closed when we relate the out-of-

equilibrium net charge with �U employing the Poisson
equation,r2�U ¼ �4�q. We use Eq. (3) and the fact that
V� and �� shifts are independent. We then identify a pair of
separated equations, r2u� þ 4�e2�u� ¼ �4�e2Dp

� and
r2z� þ 4�e2�z� ¼ �4�eDe

�, which become nonlocal in
the case of inhomogeneous fields.
The voltage and temperature derivatives, @��A�� and

@V�
A��, can be determined once the characteristic poten-

tials are known since @��A��¼z��A��=�U!�ez�@EA��

and @V�
A�� ¼ u��A��=�U ! �eu�@EA��. Thus, Eq. (2)

becomes
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G���¼e3

h

Z
dE½@EA��u�þ@EA��ðu�����Þ�@Ef;

(6a)

L���¼e2

h

Z
dE

�
���z�þ���

�
z��E�EF

eT
���

��
@Ef;

(6b)

M���¼e2

h

Z
dE½e@EA��z�þ���u���������@Ef:

(6c)

This is our central result. Importantly, Eq. (6) is not only of
formal interest but offers clearly practical advantages.

Quantum dot.—As an illustrative application of the for-
malism exposed above, we now investigate the nonlinear
thermoelectric transport properties of a quantum dot when
Coulomb interactions are treated within a mean-field ap-
proximation. Preliminary observations suggest interesting
nonlinear thermoelectric effects in quantum dots [26]. We
consider a single level with energy Ed coupled to two
reservoirs (1 and 2) via tunnel barriers (see inset of
Fig. 1). Thus, the level acquires a broadening given by � ¼
�1 þ �2. The corresponding Breit-Wigner line shape
depends, quite generally, on the internal potentialU, which
is self-consistently calculated through the Poisson equa-
tion. The dot charge is then

qd ¼ e

�

Z
dE

�1f1ðEÞ þ �2f2ðEÞ
ðE� Ed � eUÞ2 þ �2

: (7)

We expand Eq. (7) to leading order in V�, ��, and U. We
find �qd¼e2Dp

1V1þe2Dp
2V2þeDe

1�1þeDe
2�2�e2DU,

where �qd ¼ qd � qed denote the charge excess due to

voltage and temperature shifts and qed is the equilib-

rium charge given by Eq. (7) with f1 ¼ f2 ¼ f. Dp
�¼

���

�

R
dE 1

ðE�EdÞ2þ�2@Ef and De
� ¼ � ��

�

R
dE E�EF

T �
1

ðE�EdÞ2þ�2 @Ef are the integrated particle and entropic

injectivities of Eqs. (4) and (5) when the Breit-Wigner
representation is used.
In a discrete form, the Poisson equation is written in

terms of a geometrical capacitance C that electrically
connects the dot to an external gate terminal.
Accordingly, the charge excess of the dot obeys �qd ¼
CðU� VgÞ where Vg is the gate potential. Then,

U ¼ e2Dp
1V1 þ e2Dp

2V2 þ eDe
1�1 þ eDe

2�2 þ CVg

Cþ e2D
; (8)

from which the characteristic potentials follow,

u1ð2Þ ¼
e2Dp

1ð2Þ
Cþe2D

; ug¼ C

Cþe2D
; z1ð2Þ ¼

eDe
1ð2Þ

Cþe2D
: (9)

Rectification effects.—We consider the charge neutral
limit (C ¼ 0) because it applies to the experimentally
relevant case of strong interactions. Moreover, if the dot
is symmetrically biased (V1 ¼ V=2, V2 ¼ �V=2, T1 ¼
T þ �=2, and T2 ¼ T � �=2) then u ¼ @U=@V ¼ 	=2
and z ¼ @U=@� ¼ ðDe

1 �De
2Þ=½2eðDp

1 þDp
2 Þ� to leading

order in V and � with 	 ¼ ð�1 � �2Þ=� the tunneling
asymmetry [16]. In Fig. 1 we show the exact dot potential
obtained from a numerical calculation of Eq. (7) compared
to its approximate value [Eq. (8)]. We distinguish between
the isothermal case [� ¼ 0, Fig. 1(a)] and the isoelectric
case [V ¼ 0, Fig. 1(b)]. In the former, the self-consistent
potential is plotted for three values of the dot level
Ed ¼ �1, 0. The curves for the exact U agree with ap-
proximationU ¼ uV at low V, as expected. In the strongly
nonlinear regime and for Ed ¼ �1, higher-order terms (V2

or higher) make U depart from its linearity. We recall that
linear responses depend on Ueq only and they are insensi-

tive to the variation ofU with V. Only the nonlinear current
allows us to explore this regime. Interestingly, at resonance
(Ed ¼ 0) the contributions to U from even powers in V are
absent. In the isoelectric case [Fig. 1(b)], we present U in
response to a thermal shift for Ed ¼ �1, 0. Particularly
interesting is the particle-hole symmetry case Ed ¼ 0 for
whichU vanishes to all � powers. We also compare the full
calculation with the leading-order approximation U ¼ z�.
Notice that contrary to the isoelectric case z depends on
Ed. The agreement is quite reasonable at low-temperature
shifts.
The evolution of the current for an electrically and

thermally driven quantum dot is shown in Fig. 2(a) and
Fig. 2(b), respectively, for fixed Ed ¼ 1. For � ¼ 0 the
current first follows Ohm’s law at low V and then, at higher
voltages, acquires a V2 dependence leading to rectification
effects. The I-V curves can be approximated up to V2 with

FIG. 1 (color online). Self-consistent screening potentialU for
a quantum dot system with V1 ¼ V=2, V2 ¼ �V=2 (EF ¼ 0),
T1 ¼ T þ �=2, and T2 ¼ T � �=2 (see inset). We take kB ¼ e ¼
h ¼ 1 and EF ¼ 0. (a)U at � ¼ 0 for T ¼ 0:01, �1 ¼ 2�2 ¼ 0:2
and various dot level positions Ed. The dotted line corresponds to
the leading-order approximation U ¼ uV ¼ 	V=2 indepen-
dently of Ed. (b) U at V ¼ 0 for T ¼ 0:05, �2 ¼ 2�1 ¼ 0:2, and
Ed ¼ �1; 0. Dotted lines correspond to U ¼ z� with the
characteristic potential calculated from Eq. (9).
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I ¼ G11V þG111V
2 þOðV3Þ where the leading-order

nonlinearity in the Sommerfeld approximation, G111 ¼
e3

h @EA11jE¼EF
ð1� 2u1Þ, depends on the internal potential

response. The I-V curves in Fig. 2(a) correspond to three
values of 	 and show good agreement with the second-
order expansion except for very high voltages. In Fig. 2(b)
we show I driven by a temperature shift for V ¼ 0. We
compare the full I-� characteristics for different 	 values
with the second-order expansion, I ¼ L11�þ L111�

2 þ
Oð�3Þ, where the thermal rectification term is

L111 ¼ e�2k2B
3h

ð@EA11jE¼EF
� 2ez1T@

2
EA11jE¼EF

Þ; (10)

to leading order in the Sommerfeld approximation. First, I
grows linearly with � and then higher orders in � become
relevant above a threshold where L111 is large enough. We
plot L111 in Fig. 2(b) (upper inset) and find a nonmonotonic
behavior with the background temperature T. We also
show Fig. 2(b) (lower inset) the dependence of L111 for
various level positions and 	 ¼ 0. Interestingly, in the
particle-hole symmetry point L111 vanishes identically
(like L11) whereas for Ed ¼ �1, L111 presents an opposite
behavior as a function of T. It also follows from Eq. (10)
that for T ¼ 0 L111 is generally nonzero unlike L11.

Thermopower.—The thermopower S yields the voltage
generated across the sample in response to an applied
thermal bias at vanishing current condition. In the linear
transport regime and for a two-terminal conductor, the
Seebeck coefficient is S0 ¼ V=�jI¼0 ¼ �L11=G11. This
expression is correct in the limit � ! 0. At low tempera-
tures, it can be approximated to the Mott formula S0 ’
�ð�2k2BT=3eÞ@E lnA11jE¼EF

/ T whereas for high T we

find S0 ’ ðEF � EdÞ=eT / T�1 in the limit � � kBT. In
Fig. 3(a) we numerically calculate S0 for an electrically
biased quantum dot (V1 ¼ �V2 ¼ �V=2) when only one
reservoir is heated (�1 ¼ � and �2 ¼ 0). Our numerical
simulations reproduce the analytical T dependence both at
low temperature (Mott relation) and at high temperature
(infinitely narrow resonance). More interesing are the �
corrections to S when � is not small. Then, we can expand
S ¼ S0 þ S1�þOð�2Þ where the S1 is the thermopower
sensitivity, which measures the deviations of S from a
constant value. Importantly, a measurement of the differ-
ential thermopower dS=d� gives precisely S1 to leading
order in �. Specializing Eq. (1) to the two-terminal case
and setting I ¼ 0 we find

S1¼� 1

G3
11

½G111L
2
11þL111G

2
11þG11L11ðM121�M111Þ�;

(11)

valid when a single lead is heated. Inserting Eq. (2) in
Eq. (11), we compare the sensitivity with an exact calcu-
lation of S for a quantum dot as above. We observe in
Fig. 3(a) that excellent agreement is found for low � and
that departures depend on the particular value of T. It is
also noteworthy that in the low-T limit the second term in
brackets of Eq. (11) dominates because L11 / T2 and
L11ðM121 �M111Þ / T2 within a Sommerfeld expansion.
Then, according to Eq. (10) a low-temperature measure-
ment of the thermopower sensitivity would provide infor-
mation on the renormalization of the dot level due to a
temperature gradient.
Conclusions.—We have presented a general nonlinear

scattering theory for mesoscopic conductors that are driven
by electrical and thermal gradients. In the weakly nonlinear
regime, screening effects arise in response to charge
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try 	. (a) I-V characteristics for � ¼ 0 and T ¼ 0:01 along with
the leading-order nonlinearity I ’ G11V þG111V

2. The latter
correspond to the dotted lines. (b) I-� characteristics for V ¼
0 and T ¼ 0:5. Dotted lines correspond to I ’ L11�þ L111�

2.
Upper inset: L111 versus T as a function of 	 for Ed ¼ 1. Lower
inset: L111 for Ed ¼ �1, 0 and 	 ¼ 0.

0 0.025 0.05
Temperature difference θ

-1.4

-1.2

-1

-0.8

-0.6

-0.4

T
he

rm
op

ow
er

 S
 (

un
its

 o
f 

k B
/e

)

T=0.05
T=0.07
T=0.1

0 0.5 1 1.5
T

-2.5

-2

-1.5

-1

-0.5

0

S
0 (

un
its

 o
f 

k B
/e

)

(a) (b)

~1/T

~T

FIG. 3 (color online). (a) Linear-response thermopower S0 for
a symmetrically voltage biased dot and one heated contact
(�1 ¼ � and �2 ¼ 0) at Ed ¼ 1. Low and high temperature limits
of S0 are explicitly shown. (b) Thermopower S beyond linear
response for three different background temperature values.
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S0 þ S1� calculated from the sensitivity given by Eq. (11).

PRL 110, 026804 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

026804-4



pile-up due to voltage or temperature differences.
Importantly, the transmission probability becomes a func-
tion of the thermal gradient. We have found that the screen-
ing response can be described in terms of both particle and
entropic injectivities. We have illustrated our theory with
an application to a two-terminal quantum dot setup, eval-
uating the current-voltage and current-temperature charac-
teristics. Importantly, we have discussed thermopower
sensitivity in the nonlinear regime of transport. Our results
are relevant in view of recent advances in thermoelectrics
at the nanoscale.

We thank M. Büttiker and H. Linke for useful sugges-
tions. This work is supported by MINECO Grant
No. FIS2011-23526.
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[3] T.A. Costi and V. Zlatić, Phys. Rev. B 81, 235127 (2010).
[4] M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett.

88, 094302 (2002).
[5] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.

O’Quinn, Nature (London) 413, 597 (2001).
[6] P. N. Butcher, J. Phys. Condens. Matter 2, 4869 (1990).
[7] L.W. Molenkamp, Th. Gravier, H. van Houten, O. J. A.

Buijk, M.A.A. Mabesoone, and C. T. Foxon, Phys. Rev.
Lett. 68, 3765 (1992).

[8] A. A.M. Staring, L.W. Molenkamp, B.W. Alphenaar, H.
van Houten, O. J. A. Buyk, M.A.A. Mabesoone, C.W. J.
Beenakker, and C. T. Foxon, Europhys. Lett. 22, 57 (1993).
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Driscoll, and A. C. Gossard, Phys. Rev. Lett. 96, 126801
(2006).
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