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Scattering Transform for Intrapartum Fetal Heart

Rate Variability Fractal Analysis: a Case-Control

Study
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Doret(3)

Abstract—Intrapartum fetal heart rate monitoring, aiming at
early acidosis detection, constitutes an important public health
stake. Scattering Transform is proposed here as a new tool to
analyze intrapartum fetal heart rate variability. It consists of
a non linear extension of the underlying Wavelet Transform,
that thus preserves its multiscale nature. Applied to a Fetal
Heart Rate (FHR) signal database constructed in a French
academic hospital, the Scattering Transform is shown to permit to
efficiently measure scaling exponents characterizing the fractal
properties of intrapartum fetal heart rate temporal dynamics,
that relate not only to the sole covariance (correlation scaling
exponent) but also to the full dependence structure of data
(intermittency scaling exponent). Such exponents are found to
satisfactorily discriminate temporal dynamics of Healthy subjects
(from that of Non Healthy ones) and to emphasize the role of
the highest frequencies (around and above 1Hz) in intrapartum
fetal heart rate variability. This permits to achieve satisfactory
classification performance, that improves on those obtained from
the analysis of International Federation of Gynecology and
Obstetrics (FIGO) criteria, notably by classifying as Healthy
a number of subjects that were incorrectly classified as Non
Healthy by classical clinically-used FIGO criteria. Combined to
obstetrician annotations, these scaling exponents enables us to
sketch a typology of these FIGO-False Positive subjects. Also, they
permit to monitor the evolution along time of the intrapartum
health status of the fetuses and to estimate an optimal detection
time-frame.

Index Terms—Scattering transform ; Fractal ; Non linear ;
Multiscale ; Intrapartum fetal heart rate variability ; Health
status time evolution ; Classification.

I. INTRODUCTION

A. Motivation: Intrapartum fetal heart rate variability surveil-

lance and acidosis detection

In delivery wards throughout the world, cardiotocograms

(CTG) – combination of fetal heart rate (FHR) and uterine

contraction signals [1] – are monitored with the aim to detect

fetus hypoxia. Early detection enables obstetricians to act

accordingly and reduce the subsequent fetal and neonatal

mortality (cf. e.g., [1], [2]). In clinical routine, intrapartum

Work supported by ANR BLANC 2010 FETUSES 18535, HCL-HFME
PHRC, ANR-10-BLAN-0126, ERC InvariantClass 320959

(1) CNRS, ENS Lyon, Physics Dept., Lyon, France
firstname.lastname@ens-lyon.fr

(2) CNRS, ENS Paris, Math Dept., Paris, France
firstname.lastname@ens.fr

(3) Femme-Mère-Enfant Hospital, Lyon, France
muriel.doret@chu-lyon.fr

(4) Czech Technical University in Prague, Czech Republic

surveillance essentially relies on the visual inspection of

FHR signal, with a significant part of the final assessment

relying on the evaluation of fetal heart rate variability (F-

HRV). The health status of the fetus can be assessed using

International Federation of Gynecology and Obstetrics (FIGO)

guidelines [3], that essentially consist of a set of rules eval-

uating manually extracted temporal characteristics of CTG,

such as baseline level, variability level, number and type

of decelerations and their relation to contraction occurrence

times (cf. [4]). Departures from normality, as defined by

clinical guidelines, are regarded as sign of degradation of fetal

normoxy and practically result in actions from obstetricians

either aiming at improving the fetal state or at operating the

delivery. While application of the FIGO rules permits high

sensitivity to intrapartum acidosis detection, it also results

in a poor specificity: Strict application of FIGO rules leads

to a significant number of unnecessary operative delivery

decisions, where post-birth exams a posteriori indicate that

the fetus was efficiently coping with stress [4]. Operative

deliveries may result in either immediate or long-term severe

consequences for both the newborn and the mother. It thus

constitutes an important public health stake to reduce the

number of unnecessary operative deliveries, which motivates

significant research efforts i) to automatize the computation

of robust features from digitized CTG and ii) to produce

sound statistical characterization of CTG and F-HRV beyond

the essentially morphological (or geometric) FIGO criteria (cf.

e.g., [5], [6] or [7], [8] for tentative reviews).

B. Motivation: Related works: Intrapartum fetal heart rate

variability statistical characterization

To go beyond the clinically used static, temporal and

pattern-based description of F-HRV, it has naturally been

envisaged to use frequency based analysis. Following the

seminal work in [9] for adult heart rate characterization,

spectrum estimation tools were massively used for intrapartum

F-HRV analysis (e.g., [10] and references therein). However,

spectrum estimation for intrapartum F-HRV analysis suffers

from important shortcomings. First, because of the time-

evolving nature of the delivery process (baseline variations,

occurrence of decelerations), intrapartum F-HRV signals are

much less stationary than adult HRV signals are. This lead to

the use of joint time-frequency representations to account for

the time varying nature of the frequency content of intrapartum
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F-HRV [11], or, along another line, to adaptive (or data-driven)

characterization (cf. e.g., [12]). Second, spectrum estimation

only captures the (second order statistics) correlation of data –

thus neglecting higher statistical order forms of dependencies.

Tremendous research efforts were devoted to overcome this

limitation, often referred to as non linear analysis in the liter-

ature, to explicitly emphasize that the capture of information

beyond (linear) correlation is intended [13], [14], [6]. Entropy

rates, stemming from dynamical system modeling, and probing

partially the joint distribution function, thus higher order

statistics, have also been used (cf. e.g., [15]). Alternatively, to

describe F-HRV beyond correlation, the point process nature

of heart beat has been fruitfully explored [16]. The fractal, or

scaling, paradigm has also been involved into F-HRV analysis

[14], [17] and recently, multifractal analysis has been shown to

permit an efficient measure of statistical dependence beyond

the sole correlation [18], [19], [20].

C. Motivation: Goals and Contributions

The present contribution intends to explore the benefits

of using the Scattering Transform for intrapartum F-HRV

analysis. It consists of a recently proposed non linear and

multiscale transform [21], shown to be highly effective to

classify audio signals, image textures, and to analyze fractal

properties [22], [23]. The Scattering Transform is defined

in Section II. It is applied to a FHR database, described

in Section III, carefully constructed and well documented

by obstetricians at the Femme-Mère-Enfant (Woman-Mother-

Child) academic public Hospital (HFME), in Lyon, France. It

is shown, first, how the Scattering Transform enables to cap-

ture and quantify the fractal properties of intrapartum F-HRV

data, and how the extracted (correlation and intermittency)

scaling exponents enable to distinguish subjects suffering from

acidosis from healthy ones, and how these scaling exponents

emphasize the role of the highest frequencies (around and

above 1Hz) in F-HRV temporal dynamics (cf. Section IV-A).

Classification performance are then quantified and compared

against FIGO-based achieved ones (cf. Section IV-B). Further,

it is shown how these scaling exponents enable to track the

evolution along time of the fetus health status from Healthy

to Non Healthy (cf. Section IV-C). Finally, making use of the

documentation provided by the obstetricians, a typology of

the subjects misclassified as Non Healthy using the FIGO-

rules (FIGO-False Positive), compared to the classification

achieved using Scattering Transform based scaling exponents,

is performed in Section IV-D. This contribution elaborates on

a preliminary work presented at EMBC2013 [24].

II. METHODS

A. Scattering Transform

A scattering transform provides locally translation invariant

multiscale coefficients, which characterize the scaling proper-

ties of signals. They are computed by iteratively calculating

the modulus of complex wavelet coefficients [21], [22], [25].

Let X(t) denote the time series to analyze. The wavelet ψ(t)
is a complex analytic band-pass filter, whose transfer function

is thus supported over positive frequencies. Let ψj(t) =

2−jψ(2−jt) denote the dilated templates of ψ at scales a = 2j .

While the wavelet transform computes X ⋆ψj(t) for multiple

scales 2j , the scattering transform outputs locally translation

invariant coefficients by averaging the modulus of these com-

plex coefficients. Let φ(t) be a low-pass filter, which is dilated

to adjust the averaging support: φJ(t) = 2−Jφ(2−J t). The

first order scattering coefficients are thus defined as the average

amplitude of wavelet coefficients, for any 1 ≤ j ≤ J , over half

overlapping time windows of size 2J , centered at the points

t = k2J−1, k ∈ N:

SX(j, k) = |X ⋆ ψj | ⋆ φJ(t = k2J−1) . (1)

Averaging results in the loss of the high frequency contents

of |X ⋆ ψj1(t)|, which can be recovered by computing a new

set of wavelet coefficients |X ⋆ ψj1(t)| ⋆ ψj2(t). Averaging

their modulus defines the second order scattering coefficients

at each t = k2J−1, for any 1 ≤ j1 < j2 ≤ J :

SX(j1, j2, k) = ||X ⋆ ψj1 | ⋆ ψj2 | ⋆ φJ(t = k2J−1) . (2)

This iterative procedure can be extended to higher orders.

Third order coefficients are similarly defined for any 1 ≤ j1 <
j2 < j3 ≤ J by SX(j1, j2, j3, t) = |||X ⋆ ψj1 | ⋆ ψj2 | ⋆ ψj3 | ⋆
φJ(t). Only the two first order coefficients are exploited in the

present work.

By definition, the amplitude of second order coefficients

depends upon that of the first order coefficients. To remove

such dependency, it is convenient to introduce the normalized

second order scattering coefficients:

S̃X(j1, j2, k) =
SX(j1, j2, k)

SX(j1, k)
. (3)

In the sequel, the vector of scattering coefficients aggre-

gates, for each time position k, the first and normalized second

order coefficients:

SX(k) =
(
{SX(j, k)}1≤j≤J , {S̃X(j1, j2, k)}1≤j1<j2≤J

)
.

(4)

While providing a multiscale representation of X , the scat-

tering transform consists of a highly non linear transform, as

opposed to the underlying discrete wavelet transform.

In practice, in the present contibution, a complex wavelet

is used, consisting of the analytic part (restriction to positive

frequencies) of a Battle-Lemarié cubic spline wavelet [21].

The window φ is the cubic spline scaling function associated

to this wavelet. The ScatNet software is available at http://

www.di.ens.fr/data/software/scatnet/.

B. Fractal Dynamics

When computed from time series X possessing fractal

dynamics, or scale invariant, properties, as well as stationary

increments, the scattering coefficients have been shown [25]

to exhibit power law behavior with respect to scales:

SX(j, k) ≃ 2jz1(k) , (5)

S̃X(j1, j2, k) ≃ 2(j2−j1)z2(j1,k). (6)

As first order coefficients average amplitude wavelet coeffi-

cients, z1 directly provides an estimate of the Hurst parameter

http://www.di.ens.fr/data/software/scatnet/
http://www.di.ens.fr/data/software/scatnet/
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H , for fractional Brownian motion and is in general related to

the covariance function of data, it is thus referred to as the

correlation scaling exponent. The normalized second order

scattering coefficients provide an information beyond 2nd

order statistics [25]. Furthermore, for exactly scale invariant

processes, z2(j1) has been shown to be independent of j1:

z2(j1) ≡ z2,∀j1 [25]. For fractional Brownian motion, for

instance, z2 = −1/2. For multifractal processes, z2 has been

shown to be related to the intermittency or multifractality

parameter. In general, the z2(j1) captures the bursty or in-

termittent nature of data: The larger the z2(j1) the more

bursty in time the data. The z2(j1) are thus referred to as

the intermittency scaling exponents.

The scaling exponents z1 and z2(j1) thus provide features

characterizing the fractal dynamics of X , where z1 gives

a global regularity information which mostly depends upon

its second-order statistics, whereas the z2(j1) depend upon

higher-order statistics. Fractal properties in time series, in

general, and in HRV in particular, can also be analyzed using

other tools such as e.g., those developed and used in [18],

[19] . However, while the Scattering Transform is not primarily

intended for fractal analysis, but rather for non linear analysis,

it also formally offers an original manner to measure fractal

properties in data via non linear transformations. Such connec-

tions are made explicit in [25]. While theoretically formally

equivalent when applied to synthetic truly fractal processes,

the scattering based measurements of fractal property on real

world data may potentially differ from those obtained from

other fractal estimation tools.

C. Data preprocessing and Scattering Transform computation

As common practice for HRV analysis (cf. e.g., [14],

[26]), the lists {tn}n=1,...,N of R-peaks are transformed

into regularly sampled beat-per-minute (BpM) time

series, X(t), by linear interpolation of the measurements

{(tn/1000, 60000/(tn+1 − tn))}n=1,...,N . As F-HRV carries

by nature no information beyond 3 Hz, sampling frequency

is set to fs = 8 Hz, (using higher fs has been observed to

yield no improvement in classification).

To be able to follow the evolution along time of the health

status of the fetuses, the scattering transform is computed

in T-minute long sliding windows. For clinical practice,

obstetricians expect regular and short updates on the fetus

health status, with a typical update period of 5 to 10 min.

Thus, for this study, J = 12 is used so that 2J/fs = 512s

≃ 8.5min (as the optimal use of the current version of the

scattering transform used here requires power of 2 sample

size), with 50% overlap. Even though the database consists of

only 45 subjects, this sliding time-window analysis procedure

amounts to computing scattering coefficients, SX(k), for 507
different time windows, indexed by k, for each subject.

While studying the evolution along time, k, of the statistics

of SX(k) enables us to follow the time evolution of the

fetus health status, an average performed on the last-K-

windows before delivery can be assumed to measure the fetus

health status before delivery, and hence at the time when

obstetricians make the decision to operate delivery or not.

By construction of the BpM time series (interpolation at

8 Hz), octave j1, corresponding to frequencies ranging from

2 to 4Hz, contains no or little information related to F-HRV

temporal dynamics and is thus discarded from analysis.

III. DATABASE

A. Data measurement

Intrapartum CTG have routinely been monitored at HFME

over the last 30 years, with systematic STAN-based surveil-

lance for fetuses suffering from initial intermediate FHR

during labor or with high risk of fetal asphyxia (post-date

delivery, intra-uterine growth restriction, diabetes, occurrence

of abnomalies in CTG, . . . ). CTGs are measured using the

STAN, Neoventa Medical (Moelndal, Sweden) system (STAN

21 or 31 systems, 12bit resolution, 500Hz sampling rate for

the FECG signal), thus producing high quality data compared

to the less invasive but far less reliable ultrasound doppler-

effect based measurements. From CTG measurements, for

each subject, a list, {tn}n=1,...,N , of beat-by-beat R-peak

occurrence time (in ms) is available.

B. Database

Obstetricians have carefully selected subjects and annotated

files according to FIGO guidelines to create a documented

database. The following criteria were used for inclusion of a

subject into the database: The database must contain represen-

tative Healthy and Non Healthy subjects, which were correctly

diagnosed by FIGO-rules as such, as well as representative

Healthy subjects which were incorrectly diagnosed as Non

Healthy by FIGO-rules; For each subject, the F-HRV time

series are at least 30 minute long, many recordings last for

several hours; Data have good quality, i.e., there are in general

few outliers or missing beats in the R-peak occurrence time

list; Recordings are well-documented by obstetricians. The

documentation include umbilical cord artery acid-base (pH)

status describing fetal acid-status at delivery, AGPAR score,

delivery mode, delay from end-of-recording to delivery time.

It also includes description of further obstetrician motivations

for operative delivery, related to the occurrence of final brady-

cardia, shape of decelerations and their delay with respect to

contractions, level of variability and reactivity.

The database is organized into 3 classes:

i) FIGO-TN: 15 fetuses with normal fetal outcome (defined

as Apgar score of 10 at 5 minutes of life and arterial umbilical

cord pH > 7.30, hence non acidotic thus healthy) and CTG

classified as normal, thus referred to as FIGO-True Negatives ;

ii) FIGO-TP: 15 fetuses with fetal acidosis (arterial umbilical

cord pH < 7.05, hence abnormal) and CTG classified as

abnormal (hence correctly diagnosing fetal state as abnormal),

thus referred to as FIGO-True Positives ;

iii) FIGO-FP: 15 fetuses with normal fetal outcome (Apgar

score of 10, arterial umbilical cord pH > 7.30, hence healthy),

yet with pathological CTG (hence incorrectly diagnosed as

abnormal), thus referred to as FIGO-False Positives.

These 3 classes correspond to only two groups for fetal

health status: Non Healthy, equivalent to the FIGO-TP class;

and Healthy corresponding to the union of the FIGO-TN and
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FIGO-FP classes.

This three-class database provides us with a FIGO reference

benchmark reported in Table II. The goal of this case study

analysis is twofold: To improve performance, by decreasing

the number of false positives and ; To produce a typology of

these false positives to analyze why they were misclassified.

IV. RESULTS

A. Fractal dynamics and scattering transform: scaling range

and scaling exponents as discriminating features

Fig. 1. Fractal Dynamics. log2 SC(j) versus log2 2j = j (top left),

and log2 SC(j1, j2) versus log2 2j2−j1 = j2 − j1 for j1 = 2 (top right),
j1 = 3 (bottom left) and j1 = 4 (bottom right).

1) Fractal dynamics and scattering transform: It has often

been argued in the literature that fractal temporal dynamics

constitutes a relevant and fruitful model for F-HRV modeling

(cf. e.g., [14], [19], [17]). Eqs. 5 and 6 in Section II-B indicate

that, for time series with fractal dynamics and stationary

increments, the scattering coefficients are expected to show

power-law behaviors with respect to scales. To investigate such

behaviors on F-HRV BpM time series, let us compute SC(j)
and SC(j1, j2), corresponding respectively to the averages,

per class, for each class C = TP, TN,FP , of the first order

SX(j, t) and normalized second order SX(j1, j2, t) scattering

coefficients, over the last-3-windows. The choice K = 3,

which (given the overlap) corresponds to the last 17min before

delivery, and hence matches the decision time frame in clinical

situation, is further justified in Section IV-C.

Fig. 1 displays log2 SC(j) as a function of log2 2j = j
and log2 SC(j1, j2) as a function of j2 − j1, for different

j1 (95% confidence intervals, computed from within-class

standard deviations are superimposed). Linear behaviors in

such log-log plots (superimposed dashed lines) indicate that

power law behaviors such as those modeled in Eqs. 5 and 6

are observed in F-HRV BpM time series, and hold on average

across octaves 3 ≤ j ≤ 9 for SC(j) (top left plot) and for

3 ≤ j2 − j1 ≤ J − 2 − j1 for SC(j1, j2). These observations

validate the relevance of the concept of fractal to describe F-

HRV temporal dynamics across time scales ranging from 1s

≤ 2j ≤ 1min approximately (or equivalently for frequencies

in 0.01 ≤ f ≤ 1Hz). That range encompasses and slightly

enlarges the frequency range involved into the Low-Frequency

vs. High-Frequency band decomposition, classically used for

adult HRV analysis [9], [14] and much debated in the context

of intrapartum F-HRV (cf. e.g.,

Fig. 1 also clearly evidences that the log2 SC(j1, j2), as

functions of j2 − j1 do not overlap when computed for

various j1, and thus that z2(j1) do depend on j1, in con-

tradistinction with the theoretical results in [25] that show

that for processes with exact scale invariance and stationary

increments SC(j1, j2) and z2(j1) should not depend on j1.

These empirical observations clearly indicate that the z2(j1)s
for different j1s do not probe the same information beyond

correlation and also fractal constitutes only a global and

approximate model for F-HRV temporal dynamics, rather than

a strictly exact one.

These empirical observations (first, scaling behaviors of the

scattering coefficients over scales that range from 0.01 ≤
f ≤ 1Hz ; second, departures from exact scale invari-

ance) suggest to measure systematically the scaling exponents

{z1(k), z2(j1, k), j1 = 2, 3, 4}, for each subject of each

class and for each time window k, and for different j1, and

to investigate their potential as discriminating features for

acidosis detection.

2) Scaling exponent estimation: Estimation of the scal-

ing exponents {z1(k), z2(j1, k), j1 = 2, 3, 4}, per subject

and per time window, is achieved by linear regressions in

log2 SX(j, k) vs. j diagrams (for 3 ≤ j ≤ 8) and in

log2 S̃X(j1, j2, k) vs. j2 − j1 (for 3 ≤ j2 − j1 ≤ J − 3 − j1.

TABLE I
Discrimination. P-VALUES FROM WILCOXON RANKSUM TEST FOR THE

NULL HYPOTHESIS OF EQUALITY IN MEAN OF THE DISTRIBUTIONS.

TP vs. TN TP vs. FP FP vs. TN nonH vs. H

z1 <0.001 <0.001 0.320 <0.001

z2(j1 = 2) <0.001 <0.001 0.263 <0.001

z2(j1 = 3) 0.038 0.967 0.009 0.243

z2(j1 = 4) 0.901 0.047 0.010 0.284

3) Discriminating power of z1: Fig. 2 compares, by means

of BoxPlots, for the last-3-windows, the distributions per class

(TP, FP, TN) or health status (Non healthy; Healthy) of the cor-

relation scaling exponents z1 and z2(j1). It is complemented

by Table I, reporting the p-values obtained using the Wilcoxon

ranksum test, with equality in mean of the distributions as

null hypothesis. Both Fig. 2 and Table I clearly indicate that

scaling exponent z1 efficiently discriminates Healthy from

Non Healthy, and further also distinguishes the three pairs of

classes, with the distributions of z1 for the TN and FP classes

being much closer than they are from that of the TP class.

This is a clear indication that z1 sees the FIGO-FP as closer

to the FIGO-TN, than to the FIGO-FP and thus actually as

Healthy subjects. This is in close agreement with what has

been observed using Hurst parameter, or some multifractal

attributes as discriminative features (cf. [27], [19], [17].
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Fig. 2. BoxPlots comparing, for the last-K-windows, the distributions per
class (TP, FP, TN) and group (Non H, H) of the scaling exponents z1 (top
left) and z2(j1) for j1 = 2 (top right), j1 = 3 (bottom left) and j1 = 4
(bottom right). Central marks and box edges correspond to median and 25th-
75th percentiles, whiskers indicate extreme values that are not considered
outliers, while outliers are plotted individually.

4) Discriminating power of z2(j1): Fig. 2 and Table I show

that the intermittency scaling exponent z2(j1 = 2) achieves

a good discrimination between Healthy and Non Healthy and

between the three pairs of classes, and that the distributions of

z2(j1 = 2) for the TN and FP classes are much closer between

each other than they are from the distribution for TP class.

Interestingly, for z2(j1 = 3) and z2(j1 = 4), conclusions differ

as those two scaling exponents do not discriminate neither

Healthy from Non Healthy subjects nor the FP from the TP

classes, which constitutes the contribution major target.

This clearly indicates that the z2(j1) for different j1 do

not probe the same information, and thus confirms that F-

HRV BpM fractal dynamics are only approximately (and not

exactly) described by exact scale invariant processes.

5) Frequency band analysis: This analysis can be made

more precise in terms of frequency bands. Octave j1 = 2
represents frequencies ranging from 1 to 2Hz, i.e., around and

above 1 Hz (or equivalently time scales ranging from 0.5 to

1s), which correspond to the highest frequencies contributing

to F-HRV temporal dynamics ; z2(j1 = 2) thus measures

the temporal dynamics beyond correlation specifically at-

tached to that range that will be referred to as the highest

frequency, that thus turns out to be crucial to discriminate

Healthy from Non Healthy temporal dynamics. Note that

octave j1 = 2 corresponds to frequencies beyond the tradi-

tional High Frequency band, stemming from the adult-devised

High Frequency/Low Frequency band splitting, corresponding

respectively to [0.15, 0.40] and [0.04, 0.15] Hz. Conversely,

Octaves j1 = 3 and j1 = 4, ranging respectively from 0.5 to

1Hz and 0.25 to 0.5Hz, essentially match the High Frequency

band. The dependence structure for those frequency ranges,

measured by z2(j1 = 3) and z2(j1 = 4), is found to be non

discriminative between Healthy and Non Healthy.

Interestingly, this indicates that dependence information

beyond correlation, relevant to discriminate between the tem-

poral dynamics of Healthy and Non Healthy fetuses, must be

associated to the highest frequencies around and above 1 Hz of

F-HRV, beyond the classical HF band. This provides us with

new lights on the temporal dynamics of F-HRV.

From now on, further analyses are therefore focused on the

two scaling exponents, z1 and z2(j1 = 2), as they show the

largest powers in discriminating Healthy from Non Healthy

and FIGO-TP from FIGO-FP.

6) Interpretations in terms of frequency contents of F-HRV

and Good Variability: The boxplots in Fig 2, as well as the

scatterplot of z1, z2(j1 = 2) for the last-3-windows, in Fig. 3

(middle plot), reveal that z1 and z2(j1 = 2) for Healthy

subjects takes systematically lower values compared to those

of Non Healthy subjects.

From Eq. 5, lower z1 indicate larger contributions of high

frequencies (or fine scales) to F-HRV temporal dynamics,

compared to low frequencies (coarse scales) (where fine scales

refer to j1 = 3, hence to a ≃ 1s and to f ≃ 1Hz, and coarse

scales to j1 = 8, hence to a ≃ 1min or f ≃ 0.015Hz). This

High Frequency dominant contribution for Healthy subjects is

in agreement with earlier results obtained using multifractal

analysis (cf. [19], [17]).

Exponent z2(j1 = 2), computed from normalized second

order scattering coefficients and from Eq. 6 requires more

subtle interpretations: First, Figs 1 and 2 unambiguously show

that the log2 SC(j1, j2), and thus the z2(j1 = 2) for j1 = 2,

computed from the Non Healthy class, are systematically

larger than those obtained from the Healthy FIGO-FP subjects,

themselves larger that those produced by the Healthy FIGO-

TN subjects. This indicates that the temporal dynamics of

Non Healthy fetuses are more intermittent and bursty that of

Healthy fetuses. This can naturally be expected generically

via the interpretation that a biological system under stress

likely yields complicated reactions, materialized by bursty and

intermittent temporal dynamics. Second, resulting from the

dependence structure beyond the simple correlation structure,

z2(j1 = 2) measures the way the energy at high frequen-

cies (around 1 and 2Hz) is modulated along time: Smaller

z2(j1 = 2) for Healthy fetuses thus also indicate that such

modulations occur at higher frequency than they do for Non

Healthy subjects.

Such analyses renew the notion of good variability: Instead

of being defined as the amplitude of the fluctuations of the

BpM time series, at a a priori chosen scale, being larger than

a given threshold, it is proposed here that good variability

can be measured via the fractal paradigm, i.e., by the way

such fluctuations vary from one scale to the other, or, in

other words, by a scaling exponent. In this framework, good

variability is assessed by low correlation and intermittency

scaling exponents, that indicate a larger contribution of high

frequencies to temporal dynamics. High frequencies and low

frequencies are empirically (and not a priori) defined as the

upper and lower limits of the observed scaling behaviors

matching Eqs. 5 and 6 and corresponding to time scales of

the order of respectively, one second (or 1Hz) and one minute

(or 0.015Hz).
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Fig. 3. Classification. Left, scatterplot of z1, z2(j1 = 2) for the all time windows, for the three classes (FIGO-TP: red ’o’, FIGO-FP, black ’+’, FIGO-TN,
blue ∗), the spontaneous fluctuations of the FIGO-TN scaling exponents defines the Healthy Domain as the union of an ellipse level line, corresponding to
the largest achieved MCC, of the best fit bivariate Gaussian and z1 ≤ T1, z2(j1 = 2) ≤ T2 zones ; Middle, scatterplot of the median of z1, z2(j1 = 2) for
the last-K-windows (black numbers correspond to the identifiers s of the FIGO-FP subjects, as used in the typology in Section IV-D); ROC curve obtained
by varying ellipse level line, with best MCC shown as a (red) ’o’ (and compared to the ROC stemming from the use of the sole z1).

B. Classification performance

From the scatterplots in Fig. 3, it can be observed i) that

z1 and z2(j1 = 2) are, for the last-3-windows (middle plot)

systematically larger for Non Healthy subjects that thus live

in the upper right corner of the z1, z2(j1 = 2) plan ; and ii)

that the joint distribution of z1, z2(j1 = 2) for the FIGO-TN

class, for all time windows (left plot), can be well modeled by

a bivariate Gaussian law. This lead us to define the Healthy

Domain as the inside of the ellipse corresponding to the level

line of the fitted bivariate Gaussian law that maximizes the

Matthews correlation coefficient (MCC) of a classification

performed using the last-3-windows, complemented with the

union of the portions of the plan delimited by z1 ≤ T1,

z2(j1 = 2) ≤ T2, with Ti defined as the mean of zi for

the FIGO-TN class. That definition of the Healthy Domain as

well as the choice K = 3 is further justified in Section IV-C2.

From that definition of the Healthy Domain, each time

window can be classified as Healthy or Non Healthy. Then

a per subject majority vote procedure classifies each subject

as Healthy or Non Healthy. This is illustrated in Fig. 3 (center

plot) which shows the median last-3-window position for

each of the 45 subjects, compared to the Healthy Domain.

A Receiver Operational Characteristic (ROC) curve can be

computed by varying the bivariate Gaussian distribution el-

liptic level line. It is plotted in Fig. 3 (left plot) and shows

first that the ROC curve obtained from using jointly z1
and z2(j1 = 2) exhibits systematically better performance

than that obtained from the use of the sole z1 (see also

Table II). This clearly validates the empirical observation

reported along Section IV-A: z2(j1), related to higher order

dependence structure, captures temporal dynamics features

that are not already captured in z1 (related to the sole 2nd-

order correlation) and illustrates the benefits on the non-

linear nature of the scattering transform. Fig. 3 (left plot)

and Table II show, second, that the scattering transform based

z1, z2(j1 = 2) exponent classification procedure benefits from

excellent performance, and, at optimum (i.e., for the largest

MCC), yields significant improvements compared to results

obtained from a FIGO-criteria based classification.

TABLE II
Performance: SPECIFICITY, SENSITIVITY, POSITIVE PREDICTIVE VALUE,

F-MEASURE [28]) AND MATTHEWS CORRELATION COEFFICIENT [29].

Se Sp PPV F MCC

FIGO 1.00 0.50 0.50 0.67 0.50

z1 0.60 0.93 0.82 0.69 0.59

z1 & z2(j1 = 2) 0.93 0.97 0.93 0.93 0.90

C. Time evolution

1) Sample paths in the z1, z2(j1 = 2) plan: So far, focus

has been only on the last-3-windows before delivery. However,

the scaling exponents z1(c, s, k), z2(c, s, k, j1 = 2) can be

studied as functions of time k, to analyze the time evolution of

the fetus health status. A Healthy subject remains Healthy from

the beginning to the end of the recording, thus the correspond-

ing sample path remains quasi exclusively within the Healthy

Domain, as illustrated in Fig. 4, left plot. Conversely, for long

enough recordings, a Non Healthy subject starts evolution in

the Healthy domain and moves outside after a certain time,

as shown in Fig. 4, middle left plot. This can also be seen

on the scatterplot gathering the 507 time windows for the 3

classes: A large number of the Non Healthy subject early time

windows (when the subject is presumably still healthy) sit in

the Healthy Domain, while the late windows are outside. For

the FIGO-FP that are correctly identified as Healthy by the

scaling exponents z1, z2(j1 = 2), the corresponding sample

paths quasi-continuously remain within the healthy domain,

as illustrated in Fig. 4, middle right plot. For some FIGO-

FP that are either not correctly identified as Healthy by the

scaling exponents z1, z2(j1 = 2) or close to the border,

the corresponding sample path often leaves temporarily the

Healthy domain, before returning into it and leaving it again,

as illustrated in Fig. 4, right plot. Sample paths for all subjects

are available at perso.ens-lyon.fr/patrice.abry/SamplePaths.pdf.

These time evolutions can be further quantified. On average,

the FIGO-TP spend more than 50% of their time outside the

Healthy Domain, against less than 5% for the FIGO-TN and

FIGO-FP. Moreover, the FIGO-TP spend, on average, 6 time

perso.ens-lyon.fr/patrice.abry/SamplePaths.pdf
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Fig. 4. Sample paths in z1, z2(j1 = 2) plan. A Healthy subject (top left) performs a random walk in the Healthy Domain ; A Non Healthy subject
starts in the Healthy Domain but at some time leaves it definitely towards the upper left corner (top right) ; A FP subject correctly identified as Healthy by
the scaling exponents also remains in the Healthy Domain (bottom left) ; while a FP subject incorrectly classified as Non healthy by the scaling exponents
oscillates around the border of the Healthy Domain. Upper and lower triangles mark respectively the beginning and end of the sample paths.

windows, out of the last 7 (last ≃ 35 minutes before delivery)

outside the Healthy domain, against less than 1 for the FIGO-

TN and FIGO-FP. This clearly underlines a significant differ-

ence in the health status time evolution between the FIGO-TP

and FIGO-FP classes: While FIGO-TP subjects remain for

long periods of time outside of the Healthy Domain, FIGO-

FP subjects leave it only occasionally and for short periods of

time, before returning into it and possibly leave it again briefly.

The sample path of the scaling exponents z1, z2(j1 = 2) in

the corresponding 2D plan, can thus be considered as a time

evolving diagnostic tool for obstetricians.

2) Last-K-Windows and Healthy Domain: ROC curves

were computed from the last-K-windows vote procedure, for

different choices of K, 1 ≤ K ≤ 41, and compared in

Fig. 5, left plot. This clearly shows that optimal classification

performance are obtained for K = 3 (hence justifying that

choice for the design of the Healthy Domain). This indicates

that the last 17-minutes before delivery provide an optimal

time frame for scaling exponent based decision making. The

ellipse corresponding to the largest MCC for K = 3 has

thus been selected to define the Healthy Domain used for

classification. Fig. 5, right plot, shows how classification

performance degrade for other choices of K. Variance in

estimation of the scaling exponent is likely large enough to

explain that the use of the sole last window, K = 1, performs

worse than K = 3, despite corresponding to a shorter time

before delivery. For K = 5 (last 25 minutes), performance

degrade only slightly (compared to K = 3), in agreement with

the fact that FIGO-TP are found consistently Non Healthy as

early as 6 windows before delivery (cf. Section IV-C1). When

K is further increased, Sensitivity and MCC are monotonously

decreasing, a direct consequence of the fact that during early

windows, Non Healthy subjects are actually still Healthy, thus

the majority vote procedure involving early windows places

Non Healthy subjects into the Healthy Domain.

This time evolution analysis of z1, z2(j1) sample path con-

stitutes one of the rare quantitative measure of the departure

from Healthy to Non Healthy fetus and of the corresponding

departure time. Also, it quantifies objectively the optimal time

frame, K = 3 to 5, corresponding to 17 to 25min, within

which fractal dynamics must be measured to assess the health

status of fetuses and to permit an efficient detection of Non

Healthy subjects. An optimal time varying classification can

thus be constructed using a K = 3 majority vote procedure.

Fig. 5. Time Evolution. Left, ROC curves for different Ks, red ’∗’ indicate
for each K the largest MCC. It shows that K = 3 yields optimal performance.
Right, performance (Sensitivity, Specificity and MCC) as functions of K.

D. Typology for False-Positive subjects

Beyond the classification performance figures reported in

Table II, this database can be further analyzed using the

annotations provided by obstetricians, so as to determine

which FIGO-FP are actually correctly reclassified as Healthy

by scaling exponents z1, z2(j1 = 2).
Obstetrician annotations indicate that FIGO-FP subjects

FP1, FP2, FP4, FP7, FP8, FP10, FP12, FP13 and FP15 were

classified pathological by FIGO-rules because of a Long-

period of Low Variability, which precisely means that the

corresponding BpM time series show a variability of less than

5 BpM over at least 20 minutes. The scatterplot of the scaling

exponents z1, z2(j1 = 2) in Fig. 3, left plot, shows that all such

subjects remain in the Healthy Domain and are thus classified

correctly as Healthy. Obstetrician annotations also indicate

that FIGO-FP subjects FP2, FP3, FP4, FP5, FP7, FP8, FP10,

FP12 and FP15 were classified pathological because of Low

Reactivity, that is a weak reactivity of the fetus heart after

decelerations induced by contractions. Again, the scatterplot

shows that these subjects are correctly classified as Healthy

using the scaling exponents z1, z2(j1 = 2). This illustrates

that subjects annotated by obstetricians as suffering from

either low variability or low reactivity, essentially because they

present BpM time series with low amplitudes in fluctuations,

may actually very well exhibit temporal dynamics that very

much resemble that of Healthy subjects, rather than that of

Non Healthy ones. Interestingly, this confirms that scaling

exponents taking low values constitute a measure of good
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variability, that turns out to be more relevant and robust

than the sole thresholding of the amplitude of the BpM time

series fluctuations. Also, it is interesting to note that for low

variability subjects (FP2, FP5, FP7, FP8, FP12, FP15), the

sole exponent z1, taking a low value, is enough to classify

them as Healthy, while for low reactivity subjects (FP1, FP3,

FP10, FP13), z1 takes a large enough value to match the Non

Healthy subject values. However, for these subjects, exponent

z2(j1 = 2) takes a low value thus maintaining them into the

Healthy domain. There is hence a clear benefit in using jointly

the scaling exponents z1 and z2(j1 = 2).
Some FP subjects remain incorrectly classified by the scal-

ing exponents z1 and z2(j1 = 2) (FP9, FP11 and FP14).

For those subjects, obstetrician annotations indicate heart rate

decelerations, which are labeled either as complicated-shape,

or as deep or as delayed after contraction. Also, FP3, FP10

and FP12 (close to Healthy Domain border) are indicated to

suffer from delayed after contraction decelerations. Earlier

studies reported in [19] or [12] on the same database show that

these same subjects were also either not correctly classified or

close to the border, using multifractal attributes or adaptive

complexity measures as features.

These observations tend to suggest that the occurrence of

complicated-shape, or deep or late decelerations in F-HRV

accompanies an actual change in the temporal dynamics of the

BpM time series, which is thus feeled by the scaling exponents.

This change tends to occur jointly on z1 and on z2(j1 = 2)
and thus affects the entire dependence structure of the BpM

time series, and not only their sole correlation structure. Also,

this change corresponds to a reduction of the contribution of

high frequencies, in a manner that tends to resemble the tem-

poral dynamics of Non Healthy subjects. Therefore, Healthy

subjects presenting such types of decelerations have undergone

a change in their temporal dynamics that corresponds, though

less pronounced, to that of Non Healthy subjects. They are

thus less easy to disentangle from Non Healthy subjects.

V. DISCUSSIONS, CONCLUSIONS AND PERSPECTIVES

The potential of the two correlation and intermittency

scaling exponents measured from scattering transforms to

characterize intrapartum fetal heart rate variability has been

explored. Such exponents constitute quantitative measures of

the fractal nature of BpM time series temporal dynamics, with

the particular property, that they explore temporal dynamics,

beyond the sole correlation level (or second statistical order),

via the entire dependence structure of data (at all statistical

order) levels.

These scattering transform based scaling exponents permit

to first confirm that fractal dynamics is characteristic of F-HRV

BpM signal, in frequencies ranging from 10 mHz to 1Hz, but

also that exact scale invariance processes (such as fractional

Brownian motions of multifractal) constitute only approximate

models. Second, they enable to show clear differences between

the temporal dynamics of Healthy and Non Healthy fetuses

(for the former, high frequencies contribute more than for the

later), and thus to renew the practical measure of good vari-

ability. Further, computed from sliding short time windows,

the scaling exponents z1 and z2(j1 = 2) enable to characterize

the evolution along time of the fetus health status, to visualize

when and how fetuses depart from the Healthy Domain, thus

providing obstetricians with a potentially interesting tool to as-

sist forming diagnostics. Combined to obstetrician annotations,

these scaling exponents also enable us to draw a typology of

FIGO-FP subjects.

The results obtained from this case study and documented

database are promising and the present study will continue

along different lines, under current investigations. At the

methodological level, features extracted from scattering co-

efficients will first be compared, both in terms of nature

(what they actually measure in data) and of performance

(how well they classify), against other classical, or less clas-

sical, linear and mostly non linear features (FIGO-criteria;

entropy-rate [15]; fractal and multifractal [27], [19], [17],

. . . ). Notably, attention will be focused on whether, besides

overall classification performance, the misclassified subjects

are always the same or differ, when using different types

of features. Secondly, it will be investigated whether the

use of the entire collection of (54 per window) scattering

coefficients into supervised machine-learning type classifiers

(such as SVM) yields better or complementary classification

performance, compared to those achieved from the sole two

scaling exponents only, retained to achieve a non-supervised

classification. At the practical level, the results obtained on

this case-study database will be comforted and complemented

on the large database currently been constituted at HFME

(above 3000 subjects targeted). A large database should permit

to address two issues: How can the individual classification-

power of various features be compared (cf. [6], [30]) ? How

should supervised classification strategies (relying on sets of

selected features) be implemented and compared ?
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