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With the development of medical technology, image semantic segmentation is of great

significance for morphological analysis, quantification, and diagnosis of human tissues.

However, manual detection and segmentation is a time-consuming task. Especially for

biomedical image, only experts are able to identify tissues and mark their contours. In

recent years, the development of deep learning has greatly improved the accuracy of

computer automatic segmentation. This paper proposes a deep learning image semantic

segmentation network named Spatial-Channel Attention U-Net (SCAU-Net) based on

current research status of medical image. SCAU-Net has an encoder-decoder-style

symmetrical structure integrated with spatial and channel attention as plug-and-play

modules. The main idea is to enhance local related features and restrain irrelevant

features at the spatial and channel levels. Experiments on the gland dataset GlaS and

CRAG show that the proposed SCAU-Net model is superior to the classic U-Net model

in image segmentation task, with 1% improvement on Dice score and 1.5% improvement

on Jaccard score.

Keywords: deep learning, semantic segmentation, attention mechanism, medical image, gland

1. INTRODUCTION

In clinical practice, biomedical image analysis (Litjens et al., 2017) provides doctors with digital and
quantitative medical information, and helps doctors make objective and accurate diagnosis. Image
segmentation is a basic problem in medical image analysis. In short, it is to identify the target
area in an image and distinguish the research object from the background. For instance, glands
are important tissues of the human body that secrete special proteins and hormones. Malignant
tumors caused by glandular differentiation, i.e., adenocarcinoma, is a common form of cancer.
Different grades of differentiated glands have various morphological structures. In pathological
examination, pathologists usually use Hematoxylin and Eosin (H&E) to stain glandular tissues,
then evaluate the malignancy of adenocarcinoma and determine the grade of cancer (Niazi et al.,
2019). Early detection of glandular differentiation can greatly improve the cure rate of patients,
and these treatment methods often require detailed gland information, such as the size, shape and
location of the glands before and after treatment, in order to propose a suitable treatment plan. At
present, this work is mainly performed by expert pathologists. However, the morphology of glands
in different histological differentiation grads is quite complex, and the texture and size vary from
patient to patient. It is still a very challenging task.

Manually detecting and segmenting medical images consumes a lot of energy and time of
doctors. In recent years, with the deepening cooperation between artificial intelligence and medical
image analysis, the research of computer-aided medical image segmentation have exploded.
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Computer automatic segmentation enables doctors to quickly
and easily obtain image markers related to the disease treatment
process, detect malignant tumors early in time. Especially for the
automatic segmentation of H&E gland images, pathologists can
quickly extract important morphological features from massive
histological images. This work helps pathologists to provide
services to more patients while ensuring diagnostic accuracy. To
some extent, it can solve the problem of imbalanced distribution
of medical resources and lack of expert pathologists.

In this paper, we propose a deep learning network named
Spatial-Channel Attention U-Net (SCAU-Net) for gland
segmentation. The contributions of this paper are as follows:

1. Our model has a symmetrical structure. It exploits skip
connections to concatenate outputs of encoder to the decoder
in corresponding level. Multi-level features are fused to
improve segmentation results.

2. We introduce spatial attention and channel attention as plug-
and-play modules for the basic encoder-decoder structure.
The module exploits hidden layer neural network to
capture the non-linear relationship between spatial-wise
and channel-wise feature, and essentially introduces a self-
attention mechanism. The attention module performs feature
recalibration to enhance local related features and restrain
irrelevant features at the spatial and channel levels.

2. RELATED WORK

2.1. Biomedical Image Segmentation
Computer automatic image segmentation algorithms are
categorized as traditional algorithms based on manual features
and deep learning algorithms based on Convolutional Neural
Networks (CNNs) (Krizhevsky et al., 2012).

The main idea of traditional image segmentation algorithms
is to segment the image into regions with similar properties, such
as color and texture (Sharma and Aggarwal, 2010). Divided in
principle, including the following types of methods: (1) Edge
based segmentation. Algorithm exploits discontinuity principle
such as grayscale and color to detect boundaries between regions
(Hancock and Kittler, 1990; Liow, 1991). Fuzzy boundaries and
noise can easily affect the performance of the method. (2) Region
based segmentation. Pixels with similar properties are aggregated
to form a complete object regions. Wu et al. (2005) proposed a
intestinal gland images segmentation based on iterative region
growing. The segmentation results of this method are sensitive
to the number of clusters and regions initialization. (3) Textural
feature based segmentation. This method divides the image
regions according to texture properties (Sirinukunwattana et al.,
2015).

In recent years, deep learning has become the main research
method inmany fields, and CNN is widely used inmany different
computer vision tasks. Unlike previous traditional methods,
CNN is a data-driven method that can automatically learn
advanced features from image without the need for artificial
feature design and prior knowledge. In the medical field, CNN
has also achieved good results in the detection and segmentation
of cells (Raza et al., 2017), pancreas (Roth et al., 2015), liver

tumors (Dou et al., 2016; Christ et al., 2017), glands (Chen et al.,
2016; Xu et al., 2016; Yang et al., 2017; Graham et al., 2019), and
other human tissues.

The full convolutional network (FCN) (Long et al., 2015) is
the first method for image semantic segmentation using end-
to-end deep neural networks. The innovation is that the fully
connected layer is replaced by fully convolutional layer. This
important innovation enables the network to adapt to the input
of any resolution.

Datasets containing large amounts of labeled images have
been established in other fields, such as ImageNet, COCO,
etc. However, in the field of medical images, due to the high
annotation cost, it is almost impossible to provide such a large
dataset. Therefore, how to train a good model in the case of
small datasets is a difficult research point. U-Net (Ronneberger
et al., 2015) is based on the FCN structure, and exploits skip
connections to transfer and fuse the output of feature maps
with different resolutions to obtain more accurate outputs. It
is firstly used for segmentation of neuron and cell images and
has excellent performance on many medical image datasets. In
the last few years of medical image segmentation, many works
have been developed and improved on the basis of the U-Net
(Çiçek et al., 2016; Milletari et al., 2016; Gordienko et al., 2018;
Zhou et al., 2018). Unlike many recent studies focus on instance
segmentation (Xu et al., 2016; Graham et al., 2019; Yu et al.,
2020), SCAU-Net proposed in this paper extends U-Net as basic
model in order to improve the accuracy of segmentation while
retaining the original advantages. In addition, our method can
be easily extended to other medical image segmentation such as
liver, cell, etc.

2.2. Vision Attention
When looking at a scene, we often firstly scan the whole scene
quickly and focus on the region of interest (ROI). This selective
attention mechanism that mimics the Human Visual System
(HVS) has been widely used in computer vision (Itti and Koch,
2001; Wang and Shen, 2017). There is no strict mathematical
definition of the attention mechanism. Oktay et al. (2018)
proposed a network of encoder-decoder-style called Attention U-
Net, which exploits a Attention Gates control. Another modular
attention mechanism is called self-attention. The computation
and parameter overhead of the feature map’s attention generation
process is much smaller, which can be used as a plug-and-play
module of the existing basic CNN architecture. This method
introduces additional neural network modules, which can assign
different weights to spatial-wise or channel-wise.

Spatial attention learns to focus on spatial location (where),
and weights are assigned to each pixel. Therefore, the form of
weights is aH×W 2D matrix. Jaderberg et al. (2015) introduced
a learnable Spatial Transformer module, which can learn the
location of object regions by the input feature map.

Channel attention learns to select important feature
dimensions (what), and weights are assigned to each channel.
Therefore, the form of weights is a 1D vector. Hu et al. (2018)
proposed the Squeeze-and-excitation (SE) module, which learns
the non-linear relationship between channels and performs
dynamic channel-wise feature recalibration.
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In addition, spatial and channel attention modules can
be combined in a parallel or sequential manner. e.g., Dual
Attention Network (Fu et al., 2019) parallels spatial and channel
attention and fuses output features of attention module. Woo
et al. (2018) proposed Convolutional Block Attention Module
(CBAM), which sequentially builds the channel and spatial
attention modules. Non-Local attention (Wang et al., 2018)
computes the response at a position by capturing long-range
dependencies at all positions. Bottleneck attention module (Park
et al., 2018) generates a 3D attention map in two streams, i.e.,
spatial stream and channel stream.

3. METHOD

Inspired by U-Net network structure and attention mechanism,
we propose a deep learning network named SCAU-Net. The
entire structure is shown in Figure 1.

We define “Block(x)” which executes a 3×3 convolution
followed by a batch normalization and ReLU activation, two
times. x refers to the output channel number. The role of the
encoder part is to extract features from the image and obtain
compressed expression of the image features at multi-level.
Down-sampling is performed by 2 × 2 max-pooling operation.
During each down-sampling, the image size is reduced and the
number of feature channels is doubled. The role of the decoder
part is to gradually restore the details and spatial dimensions of
the image according to the image features, and obtain the result of
image segmentation mask. Up-sampling is performed by bilinear
interpolation. Finally, a 1 × 1 convolutional layer is applied to
predict the class of each pixel, denoted as Conv(1 × 1, C), where
C is the number of classes. For image semantic segmentation, C
is set to 2. The decoder part has a symmetrical structure to the
encoder part. The copy operation links the corresponding down-
sampling and up-sampling feature maps. The feature map is a
combination of high-level and low-level features, and multi-level
features are fused.

The medical image structure is simpler and more fixed than
other images. For gland slices, the shooting angle and position
are fixed, and the glands of approximate differentiation degree
are often similar in shape. Inspired by the work of SE (Hu et al.,
2018) and CBAM (Woo et al., 2018), we propose spatial attention
module and channel attention module, which are used as plug-
and-play modules in the network. Attention will focus on the
objects and ignore the cluttered background. Especially, model
will pay more attention on the edges of the glands because the
fuzzy edge is the most worthy of the segmentation task.

3.1. Spatial Attention
Attention in the spatial-wise ignores the information of the
channel, and treats the features of different channels equally. We
add the spatial attention module to the low-level feature map
since the low-level feature map mainly extracts the spatial feature
such as contour, edge, with fewer channels. The module self-
learns the interaction of spatial points, enhance key areas, and
restrain irrelevant areas. The structure of the spatial attention
module is shown in Figure 2. Firstly we pass the feature map
U ∈ R

C×H×W to the aggregation operation, which generates a

spatial descriptor p ∈ R
H×W by aggregating the feature map in

its channel dimension (C). It generates a global distribution of
spatial features:

phw = Fac(uhw) =
1

C

C∑

i=1

uhw(i) (1)

where uhw ∈ R
C refers to the local feature at spatial position

(h,w). The aggregate function Fac uses global average pooling for
channel dimension.

This is followed by a weight self-learning operation. It is
implemented by convolutional layers. The function Fl(p, f ) aims
to fully capture the spatial correlation and adaptively generates
the spatial weights map t ∈ R

H×W . The calculation formula is
as follows:

t = Fl(p, f ) = σ (g(p, f )) = σ (f2δ(f1p)) (2)

where f1 refers to 3 × 3 convolution, denoted as Conv(3×3,
m), and f2 refers to 3 × 3 convolution, denoted as Conv(3
× 3, 1). m refers to the channel number of hidden feature
map. δ refers to activation function ReLU, and σ is a sigmoid
activation function used to generate spatial weight thw ∈ (0, 1),
at position (h,w). In essence, the convolution operation that
takes the original spatial descriptor as input can be considered
as a spatial-wise self-attention function, and it can capture the
non-linear inter-spatial relationship.

The weights calculated in the previous step are applied to
the feature map U . By spatial-wise recalibration Fre(uhw, thw),
the feature values of different position in U are multiplied by
different weights to generate the output U ′ of the SA module:

u′hw = Fre(uhw, thw) = uhw · thw (3)

3.2. Channel Attention
Similarly, we add the channel attention module at the last
layer of the encoder, since the hight-level feature map mainly
expresses complex feature with large receptive field and more
channels. This mechanism allows the network to perform feature
recalibration, through learning to exploit global information to
selectively enhance useful features and restrain useless features.
The structure of the channel attention module is shown in
Figure 3. Firstly we pass the feature map U ∈ R

C×H×W to
the aggregation operation, which generates a channel descriptor
q ∈ R

C by aggregating the feature map in its spatial dimension
(H ×W). It generates a global distribution of channel features:

qc = Fas(uc) =
1

H ×W

H∑

i=1

W∑

i=j

uc(i, j) (4)

where uc ∈ R
H×W refers to the local feature of channel

c. The aggregate function Fas uses global average pooling for
spatial dimension.

This is followed by a weight self-learning operation. It is
implemented by fully connected layers. The function Fl(q,w)
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FIGURE 1 | The structure of SCAU-Net. The entire structure is divided into four parts: encoder, decoder, spatial attention module, channel attention module. Given an

input feature map of size D×H×W, the output size of Block(x) is x×H×W. W, width; H, height of feature map; D, input channel number; x, output channel number.

FIGURE 2 | The structure of Spatial Attention (SA) module. The aggregate function Fac generates a spatial descriptor p ∈ R
H×W . Self-learning function Fl implemented

by two convolutional layers generates the spatial weights map t ∈ R
H×W . Finally, function Fre uses t to generate the output of the SA module.

aims to fully capture the dependencies between channels and
adaptively generates the channel weights map v ∈ R

C. The
calculation formula is as follows:

v = Fl(q,w) = σ (g(q,w)) = σ (w2δ(w1q)) (5)

where w1 ∈ R
K×C, w2 ∈ R

C×K . K refers to number of
hidden neurons. σ is a sigmoid activation function used to
generate channel weights vc ∈ (0, 1), at channel c. With fully-
connected hidden layers, it can capture the non-linear interaction
between channels.
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FIGURE 3 | The structure of Channel Attention (CA) module. The aggregate function Fas generates a channel descriptor q ∈ R
C. Self-learning function Fl implemented

by two fully connected layers generates the channel weights map v ∈ R
C. Finally, function Fre uses v to generate the output of the CA module.

The weight calculated in the previous step is applied to
the feature map U . By channel-wise recalibration Fre(uc, vc),
the feature values of different channels in U are multiplied by
different weights to generate the output U ′ of the CA module:

u′c = Fre(uc, vc) = uc · vc (6)

4. EXPERIMENTS AND RESULTS

4.1. Dataset
The two gland datasets used in the experiments are provided by
a team of pathologists at the University Hospitals Coventry and
Warwickshire, UK. (1) Gland Segmentation Challenge Contest
(GlaS) (Sirinukunwattana et al., 2015) in MICCAI 2015. (2)
The colorectal adenocarcinoma gland (CRAG) (Graham et al.,
2019) dataset. The images are Haematoxylin and Eosin (H&E)
stained slides of a variety of histologic grades. The GlaS dataset
is split into 85 training images (benign/malignant = 37/48) and
80 testing images (benign/malignant = 37/43). We random split
from 165 images using 80% images as the training set and the
remaining 20% for testing. Images are mostly of size 780 × 520
pixels. The CRAG dataset is split into 173 training images and
40 test images. Images are mostly of size 1,510 × 1,510 pixels.
And the ground truth annotations of the glands are provided by
expert pathologists.

All the images processed by the network have fixed size
of 512×512 pixels. Since the dataset is small, the training
data is extended by using the data augmentation method in
our experiments, i.e., a series of random changes such as
rotation, scaling, cropping, etc., to increase the robustness and
reduce overfitting.

4.2. Experimental Setting
The proposed network was implemented using Pytorch (Paszke
et al., 2019) deep learning framework. Experiments are carried

out on Ubuntu 16.04 operating system, NVIDIA Tesla K80 GPU,
CUDA 10.1.

4.3. Training Process
The loss function defined in experiment is a combination of
cross-entropy loss and dice loss:

CELoss = −
1

n

∑
y ∗ log(y′)+ (1− y) ∗ log(1− y′) (7)

DiceLoss =
2
∑

(y′ ∗ y)∑
y′ +

∑
y

(8)

Loss = λ ∗ CELoss+ (1− λ) ∗ DiceLoss (9)

where y is the ground truth of each pixel, and y′ is model
prediction. Dice loss function (Milletari et al., 2016) is based on
dice coefficient and helps to establish the loss balance between
foreground and background pixels. The loss function allocates
the cross-entropy loss function and the dice loss function with λ.
We set λ to 0.5 in the experiment. We use the Adam optimization
(Kingma and Ba, 2014) and set initial learning rate to 0.0001. The
input mini-batch size is 4. The total epoch is set to 100 with the
learning rate decay strategy. Every 30 epochs, the learning rate
is reduced to 1/10 of the previous value. For spatial attention
module, we set the channel number of hidden feature map to
16. For channel attention module, we set the number of hidden
neurons to 32.

4.4. Quality Measures
In order to evaluate the performance of the proposed method, we
use the quality metrics commonly used in the field of medical
image. Metric applies to the semantic segmentation of binary
values which only considers glands as foreground, and everything
else as background. Given A a set of pixels annotated as a ground
truth object and B a set of pixels segmented as a gland object.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 July 2020 | Volume 8 | Article 670

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhao et al. SCAU-Net

TABLE 1 | Our method’s segmentation results compare with U-Net on dataset GlaS and CRAG.

GlaS CRAG

Method Dice Jaccard RVD Dice Jaccard RVD

U-Net 0.8963 0.8175 0.0079 0.9003 0.8243 −0.0042

SCAU-Net(CA) 0.9004 0.8242 0.0190 0.9069 0.8333 −0.0072

SCAU-Net(SA) 0.9054 0.8322 −0.0166 0.9067 0.8330 −0.0033

SCAU-Net(SA+CA) 0.9063 0.8332 0.0197 0.9100 0.8381 −0.0074

DeepLabv3+ 0.8866 0.7994 −0.0203 0.8672 0.7691 −0.0492

SegNet 0.7930 0.6643 −0.0582 0.8990 0.8209 −0.0030

U-Net++ 0.8952 0.8166 0.0256 0.8870 0.8010 −0.0182

CA refers to channel attention module, SA refers to spatial attention module. We also compare with the network SegNet, U-Net++, DeepLabv3+. Significant results are highlighted in

bold font.

Dice Similarity Coefficient (Dice):

2(A ∩ B)

A+ B
(10)

Jaccard Coefficient (Jaccard):

A ∩ B

A ∪ B
(11)

Relative Volume Difference (RVD):

|B| − |A|

|A|
(12)

In order to save the best model parameters during the training
process, we use the Dice coefficient as themain evaluationmetric.
The larger the coefficient, the better the method performance.
When the coefficient is 1, the predict result is consistent with the
ground truth.

4.5. Results and Discussions
The experimental results are shown in Table 1. We compare our
method with the baseline model U-Net. When our network using
the channel attention (CA) alone, in the dataset GlaS, Dice score
has a 0.4% improvement, and the dataset CRAG has a 0.6%
improvement.When our network using the spatial attention (SA)
alone, in the dataset GlaS, Dice score has a 0.9% improvement,
and the dataset CRAG has a 0.6% improvement. Combining
spatial and channel attention (SA+CA), there is 1% improvement
on Dice score and 1.6% improvement on Jasccard score in the
dataset GlaS. There is 1% improvement on Dice score and 1.4%
improvement on Jasccard score in the dataset CRAG. Besides,
compared with the network SegNet (Badrinarayanan et al., 2017),
U-Net++ (Zhou et al., 2018), DeepLabv3+ (Chen et al., 2018),
the overall performance of SCAU-Net is excellent, and it is more
robust to different datasets.

As shown in Figure 4, we compare the training process
between the U-Net and SCAU-Net. It can be observed that the
SCAU-Net with spatial and channel attention (SA+CA) achieves
the highest accuracy on validation sets. For the dataset GlaS, the
SCAU-Net slightly over-fits after about the 60th epoch, while

FIGURE 4 | The training process of different model. Figure shows dice curve

of the U-Net and SCAU-Net with different settings (CA, SA, CA+SA) on

validation sets. CA, channel attention module; SA, spatial attention module.

dataset CRAG doesn’t. We analyze the results and believe that
the added attention mechanism makes the model parameters
increase, and the model is more likely to over-fit with less
data amount.

Figure 5 shows the visualization results of the method. As
shown in Figures 5A,B, for some gland objects, the U-Net
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FIGURE 5 | Comparison of segmentation results. Examples (A,B) are from the GlaS dataset, and examples (C,D) are from the CRAG dataset. The red boxes indicate

areas with poor segmentation results.

network misclassifies the white area inside the gland as the
background, while SCAU-Net performs better. It shows that
our method has better object connectivity. For some complex
scenes, SCAU-Net can accurately distinguish background noise,
as shown in Figure 5C, and can distinguish the edges of
multiple gland objects well to prevent “sticking,” as shown in
Figure 5D. On the whole, SCAU-Net outperforms U-Net in the
segmentation of glands.

In order to explore how the attention mechanism works,
we visualize the effect of the model with the spatial attention
mechanism added. For visual display, we extract the encoder
output feature map of Block(64). Compared with the basic
U-Net network, SCAU-Net exploits spatial attention weights
to recalibrate the feature map. As shown in Figure 6, the
feature maps extracted show the differences between the two
methods. The contrast of the feature map by SCAU-Net

is more prominent, indicating the wider range of values.
The spatial attention weights map learned by SCAU-Net has
different weight assignments in different regions, as shown
in weights map. Spatial attention assigns lower weights
on easily distinguishable backgrounds, non-glandular noise
tissue areas, obvious contours, etc. The fuzzy boundaries of
the indistinguishable contours are assigned higher weights,
indicating that the network pays more attention to these difficult-
to-classify regions.

5. CONCLUSION

In this paper, we extend the U-Net encoder-decoder framework,
propose a new network named Spatial-Channel Attention U-Net
(SCAU-Net) for image semantic segmentation. We perform
the segmentation tasks on GlaS and CRAG gland dataset. The
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FIGURE 6 | Visualization the output feature activations after Block(64). Compared with the basic U-Net network, SCAU-Net exploits spatial attention weights to

recalibrate the feature map. Weights map by SCAU-Net is shown in the last column. Examples (A,B) are from the GlaS dataset.

experiment results and comparisons with classic U-Net model
demonstrate that our proposed model can achieve a better
segmentation performance, with 1% improvement on Dice score
and 1.5% improvement on Jaccard score. We also visualize the
effect of attention mechanism on feature extraction to explain
how the mechanism works.

In the future, the spatial and channel attention modules
proposed in this paper need further exploration for
the number of convolutional layers, the number of
fully connected layers, and the location settings of the
module embedding.
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