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1 Abstract7

Single cell ATAC-seq (scATAC) shows great promise for studying cellular het-8

erogeneity in epigenetic landscapes, but there remain significant challenges in9

the analysis of scATAC data due to the inherent high dimensionality and spar-10

sity. Here we introduce scBasset, a sequence-based convolutional neural net-11

work method to model scATAC data. We show that by leveraging the DNA12

sequence information underlying accessibility peaks and the expressiveness of13

a neural network model, scBasset achieves state-of-the-art performance across14

a variety of tasks on scATAC and single cell multiome datasets, including cell15

type identification, scATAC profile denoising, data integration across assays,16

and transcription factor activity inference.17

2 Introduction18

Single cell ATAC-seq (scATAC) reveals epigenetic landscapes at single cell res-19

olution (Buenrostro et al., 2018). The assay has been successfully applied to20

identify cell types and their specific regulatory elements, reveal cellular hetero-21

geneity, map disease-associated distal elements, and reconstruct differentiation22

trajectories (Satpathy et al., 2019; Miao et al., 2021; Cusanovich et al., 2018).23

However, there still exist significant challenges in the analysis of scATAC24

data, due to the inherent high dimensionality of accessible peaks and sparsity25

of sequencing reads per cell (Bravo González-Blas et al., 2019; Chen et al.,26

2019). Multiple approaches have been proposed to address these challenges,27

which can be broadly categorized into two main classes: sequence-free and28

sequence-dependent methods. Starting from a sparse peak-by-cell matrix gen-29

erated through aggregation of reads and peak calling in accessible chromatin,30

most methods represent these annotated peaks as genomic coordinates and ig-31

nore the underlying DNA sequence. Principal component analysis (PCA) and32
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latent semantic indexing (LSI) perform a linear transformation of the peak-by-33

cell matrix to project the cells to a low-dimensional space (Pliner et al., 2018;34

Cusanovich et al., 2018). SCALE and cisTopic model the generative process of35

the data distribution using latent dirichlet allocation or a variational autoen-36

coder (Bravo González-Blas et al., 2019; Xiong et al., 2019). These sequence-free37

methods are able to detect biologically meaningful covariance to effectively rep-38

resent and cluster or classify cells. However, they ignore sequence information39

and rely on post-hoc motif matching tools to relate accessibility to transcription40

factors (TFs). In contrast, sequence-dependent methods such as chromVAR and41

BROCKMAN represent peaks by their TF motif or k-mer content and aggregate42

these features across peaks or other regions of interest to learn cell representa-43

tions (Schep et al., 2017; de Boer and Regev, 2018). While chromVAR directly44

associates peaks to TFs, emphasizing interpretability, it tends to perform worse45

in learning cell representations, potentially due to the loss of information from its46

simple implicit model relating sequence to accessibility through position weight47

matrices Chen et al. (2019).48

Here, we propose a more expressive sequence-dependent model based on49

deep convolutional neural networks (CNNs). CNNs can predict peaks from50

bulk chromatin profiling assays more effectively than k-mer or TF motif mod-51

els, exemplified by DeepSEA and Basset (Kelley et al., 2016; Zhou and Troy-52

anskaya, 2015). These models compute explicit embeddings of the sequences53

underlying peaks via the convolutional layers and implicit embeddings of the54

multiple “tasks” (which are sequencing experiments) in parameters of the final55

linear transformation. We extend the Basset architecture to predict single cell56

chromatin accessibility from sequences, using a bottleneck layer to learn low-57

dimensional representations of the single cells. We show that by making use of58

sequence information in a deep learning framework, we outperform state-of-the-59

art methods for cell representation learning, single cell accessibility denoising,60

scATAC integration with scRNA, and transcription factor activity inference.61

3 Results62

3.1 scBasset predicts single cell chromatin accessibility on63

held-out peaks64

scBasset is a deep CNN to predict chromatin accessibility from sequence. CNNs65

have demonstrated state-of-the-art performance for predicting epigenetic pro-66

files in bulk data and have been successfully used for genetic variant effect67

prediction and TF motif grammar inference (Kelley et al., 2016; Zhou and68

Troyanskaya, 2015; Kelley et al., 2018; Zhou et al., 2018; Agarwal and Shen-69

dure, 2020; Avsec et al., 2021). Here, we move the focus away from maximizing70

accuracy on held-out sequences and view the model as a representation learn-71

ing machine. When trained to achieve multiple tasks, the final layer of these72

models involves a sequence embedded by the convolutional layers and a linear73

transformation to predict the data in each separate task. The linear transfor-74
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Figure 1: scBasset architecture. A) scBasset is a deep convolutional neural
network to predict single cell chromatin accessibility from the DNA sequence
underlying peak calls. B) scBasset prediction performance on held-out peaks
evaluated by auROC per peak (top) and auROC per cell (bottom) for the Buen-
rostro2018 dataset.

mation matrix comprises a vector representation of each task (here, each single75

cell), which specifies how to make use of each of the sequence embedding latent76

variables to predict cell-specific accessibility. In a simple ideal scenario, one can77

imagine each latent variable representing various regulatory factors such as TF78

binding or nucleotide composition, and the final transformation specifying how79

much each cell depends on that factor. We propose that these single cell vec-80

tors serve as intriguing representations of the cells for downstream tasks such81

as visualization and clustering.82

We recommend that users first apply standard processing techniques to bring83

the raw data to a peak-by-cell binary matrix. scBasset takes as input a 134484

bp DNA sequence from each peak’s center and one-hot encodes it as a 4×134485

matrix. The input DNA sequence goes through eight convolution blocks, where86

each block is composed of a 1D convolution, batch normalization, max pooling,87

and GELU activation layers. Unlike most previous architectures, we follow these88

by a bottleneck layer of size h intended to learn a low-dimensional representation89

of the peak via the layer output and the cells via the parameters of the following90

layer. Finally, a dense linear transformation connects the bottleneck sequence91

embeddings to predict binary accessibility in each cell (Fig.1a). We apply the92

standard binary cross-entropy loss function and optimize model parameters with93

stochastic gradient descent (Methods).94

To benchmark our approach, we applied scBasset to three public datasets:95

a scATAC-seq FACS-sorted hematopoietic differentiation dataset (referred to as96

Buenrostro2018) with 2k cells (Buenrostro et al., 2018), 10x Multiome RNA+ATAC97

PBMC dataset with 3k cells, and 10x Multiome RNA+ATAC mouse brain98
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dataset with 5k cells. The first dataset provides ground-truth cell type la-99

bels from flow cytometry. We consider the multiome datasets to be a valuable100

resource to validate scATAC methods since they provide independent measure-101

ments of gene expression and chromatin accessibility in the same cells.102

First, we asked how well scBasset can predict accessibility across cells for103

held out peak sequences to ensure that the model has learned a meaningful104

relationship between DNA sequence and accessibility using the sparse noisy105

labels. For held out peaks, we computed the area under the receiver operating106

characteristic curve (auROC) across peaks for each cell and averaged across cells107

(referred to as “per peak”). To evaluate cell type specificity, we also computed108

auROC across cells for each peak and averaged across peaks (referred to as “per109

cell”). scBasset achieved compelling accuracy levels that indicate successful110

learning: 0.734 per peak and 0.740 per cell for Buenrostro2018 dataset (Fig.1b),111

0.662 per peak and 0.640 per cell for the 10x multiome PBMC, and 0.734 per112

peak and 0.701 per cell for the 10x multiome mouse brain dataset (Fig.S1).113

Although these statistics are slightly below the 0.75-0.95 range achieved for114

bulk DNase samples in the original Basset publication, this is inevitable due to115

the substantially increased measurement noise due to sparse sequencing for the116

single cell assay. In support of this claim, we observed that in the 10x multiome117

PBMC and mouse brain datasets, peaks with very high read coverage are easier118

to predict (Fig.S1). Given that ubiquitous accessible peaks are known to exist,119

these peaks are likely truly accessible in all cells and represent a rough upper120

bound on the achievable accuracy.121

3.2 scBasset final layer learns cell representations122

We propose that the h×cell weight matrix that connects the bottleneck layer to123

the predictions be used as a low-dimensional representation of the single cells.124

One requirement for an effective cell representation is removal of the influence of125

sequencing depth. Thus, we first verified that the intercept vector in the model’s126

final layer almost perfectly correlates with cell sequencing depth for all datasets127

(Fig.S2), suggesting that depth has been normalized out from the representa-128

tions. Next, we compared the cell representations learned by scBasset with129

other methods both qualitatively and quantitatively. For the Buenrostro2018130

dataset, we visualized the cell embeddings in 2D using t-distributed stochastic131

neighbor embedding (t-SNE) (Fig.2a) and observed differentiation trajectories132

in the t-SNE space. Compared to other popular methods for scATAC embed-133

ding, we observed that chromVAR and PCA have difficulty distinguishing CLP134

from LMPP, while Cicero, SCALE, cisTopic, and scBasset make the distinction135

(Fig.S4). Following previous work, we quantified the correctness of cell embed-136

dings by comparing Louvain clustering results with ground-truth cell type labels137

using the adjusted rank index (ARI) (Chen et al., 2019). scBasset outperforms138

the other methods according to this metric (Fig.2b,top). Since ARI is sensitive139

to the hyperparameter choice and stochasticity in the Louvain algorithm, we140

proposed an alternative method for evaluating cell embeddings. We computed141

a “label score” by building a nearest neighbor graph based on the cell embed-142
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Figure 2: scBasset performance at learning cell representations. A) Top,
hematopoietic stem cell differentiation lineage diagram in the Buenrostro2018
study; bottom, t-SNE visualization of cell embeddings learned by scBasset, col-
ored by cell types. B) Top, performance comparison of different cell embedding
methods evaluated by adjusted Rand index; bottom, performance comparison
of different cell embedding methods evaluated by label score (Methods). C) Per-
formance comparison of different cell embedding methods evaluated by neigh-
bor scores for the 10x multiome PBMC dataset. D) Performance comparison
of different cell embedding methods evaluated by neighbor scores for the 10x
multiome mouse brain dataset.

dings and asked what percentage of each cell’s neighbors share its same label.143

For each embedding method, we computed label scores across a range of neigh-144

borhoods and observed scBasset consistently outperforms the competitors at145

learning cell representations that embed cells of the same type near each other146

(Fig.2b,bottom). We also evaluated label scores for each cell type individually147

and observed that monocytes are learned best, whereas MPP cells are most148

difficult to distinguish (Fig.S3).149

For the multiome PBMC and mouse brain datasets, we computed an ana-150

logue to the label scores for cell embeddings. Since the ground-truth cell types151

for the multiome datasets are unknown, we used cluster identifiers from scRNA-152

seq Leiden clustering as cell type labels. Again, scBasset outperforms the com-153

petitors by this metric across a range of neighborhoods (Fig.S5). For these154

multiome datasets, we also computed a “neighbor score”, in which we built155

independent nearest neighbor graphs from the scRNA and scATAC and asked156

what percentage of each cell’s neighbors are shared between the two graphs.157

scBasset outperforms the competitors on both multiome PBMC and multiome158

mouse brain datasets when evaluated with neighbor scores across a range of159

neighborhoods (Fig.2c,d).160
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Figure 3: scBasset can be adapted to perform batch correction. A) Cell embed-
dings learned by scBasset without batch correction, colored by cell type (left)
and batch (right). B) Cell embeddings learned by scBasset with batch correc-
tion (scBasset-BC), colored by cell type (left) and batch (right). C) Performance
comparison of different cell embedding methods to scBasset-BC evaluated by
adjusted Rand index. D) Performance comparison of different cell embedding
methods to scBasset-BC evaluated by label score.

3.3 Batch-conditioned scBasset removes batch effects161

In the Buenrostro2018 dataset, HSCs cluster into two populations, regardless of162

which cell embedding method we apply (Fig.S4). As noted in previous studies,163

this is caused by a batch effect due to different donors (Fig.3a) (Buenrostro164

et al., 2018; Bravo González-Blas et al., 2019). To correct for this, and batch165

effects more generally, we explored modifications to the scBasset architecture.166

Specifically, after the bottleneck layer, we added a second fully-connected167

layer to predict the batch-specific contribution to accessibility (Methods, Fig.S6).168

We added the output of the batch layer and cell-specific layer before comput-169

ing the final sigmoid. Intuitively, we expect the batch-specific variation will be170

captured in this path, whereas the original h× cell weight matrix will focus on171

the remainder of biologically relevant variation.172

We compared the scBasset cell embedding results before and after batch173

correction. We observed an overall mixing of different batches in the t-SNE174

space after batch correction. For example, we can see that the two HSC batches175

(BM0106 and BM0828) merge into one cluster. In addition, pDC cells from176

BM1137 and BM1214 batches previously fell into two distinct sub-clusters, but177

are mixed together after batch correction (Fig.3ab). However, we noticed a small178

decrease in the cluster evaluation metrics after batch correction. We hypothesize179
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that this is caused by imbalances in cell type distribution from different donors,180

which are then learned by the batch layer rather than the cell-specific layer.181

This is also consistent with a recent study’s observation of a trade-off between182

mixing and cell type separation (Ashuach et al., 2021). Nevertheless, scBasset-183

BC still outperforms the competitors when evaluated by ARI and is among the184

top performers when evaluated by label scores (Fig.3cd).185

As an additional benchmark, we trained scBasset and scBasset-BC on a186

mixture of PBMC scATAC data from 10x multiome and 10x nextgem chem-187

istry (Methods). We observed that while there is a strong batch effect between188

the two chemistries when trained with naive scBasset, scBasset-BC successfully189

integrated the two datasets (Fig. S6).190

3.4 scBasset denoises single cell accessibility profiles191

Due to the sparsity of scATAC, the binary accessibility indicator for any given192

cell and peak contains ample false negatives, such that the data cannot be193

studied with true single cell resolution and is usually aggregated across cells.194

However, numerous methods deliver denoised (or imputed) numeric values to195

represent the accessibility status at every cell/peak combination. scBasset com-196

putes such values in its sequence-based predictions.197

From the Buenrostro2018 dataset, we sampled 500 peaks and 200 cells198

and directly visualized the raw cell-by-peak matrix versus the denoised matrix199

(Fig.4a). In the raw count matrix, we observed that cells and peaks clustered200

by sequencing depth, showing no biologically relevant patterns. However, we201

observed that after scBasset denoising, cells of the same cell type share simi-202

lar accessibility profiles and hierarchical clustering of cells matched well with203

ground-truth labels.204

Several published strategies aggregate scATAC counts in the region around a205

gene’s transcription start site to estimate its transcription (Granja et al., 2021;206

Pliner et al., 2018). We propose that effective denoising would improve the corre-207

lation between these gene accessibility estimates and the gene’s measured RNA208

expression in multiome experiments. Thus, we computed accessibility scores for209

each gene by averaging the predicted accessibility values at all promoter peaks210

before and after denoising (Methods). For both the 10x multiome PBMC and211

mouse brain datasets, we observed that scBasset denoising improves the con-212

sistency between gene accessibility and expression (P<2.2e-16, Wilcoxon signed213

rank test). As one would expect, the improvement is greater for cells with fewer214

scATAC UMIs (Fig.4b, Fig.S7).215

Covariance-based methods can also be used to denoise scATAC, and we216

compared scBasset to SCALE, a sequence-independent method for accessibility217

denoising using a variational autoencoder. We observed that SCALE gene ac-218

cessibility scores correlated better than scBasset with gene expression (Fig.S7).219

Because the two methods take independent approaches (sequence-dependent220

versus sequence-free), we hypothesized that combining the denoised values from221

both via a simple average would further improve concordance. Indeed, we ob-222

served that for both 10x multiome datasets, the combined prediction performs223
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Figure 4: scBasset denoising performance. A) Left, binary count matrix of 200
cells and 500 peaks sampled from Buenrostro2018 dataset, hierarchically clus-
tered by both cells and peaks. Cell type labels annotate the rows. Right, the
same matrix and procedure after scBasset denoising. B) Correlation between
gene accessibility score and gene expression for each cell before (x-axis) and
after denoising (y-axis) for the multiome PBMC dataset. Cells are colored by
sequencing depth. C) Comparison of denoising performance on multiome PBMC
dataset between raw data, scBasset, SCALE, and scBasset+SCALE combine,
evaluated by consistency in differential expression log2FC and differential ac-
cessibility log2FC. We performed Wilcoxon signed rank tests for performance
comparisons. D) Left, 10x multiome PBMC RNA (blue) and raw ATAC (red)
profile embeddings after integration. Right, 10x multiome PBMC RNA (blue)
and denoised ATAC (red) profile embeddings after integration. E) Distribu-
tion of the relative distances (Method) between each cell’s RNA and ATAC
embeddings after integration when using raw ATAC profiles (blue) or denoised
ATAC profiles (red). We performed Wilcoxon signed rank test for performance
comparison.

better than SCALE or scBasset alone when we evaluated consistency with base-224

line expression (Fig.S7).225

Studies have shown that changes in accessibility and expression correlate bet-226

ter with each other than their absolute values, and thus would be a more useful227

metric for validating accessibility denoising methods (Pliner et al., 2018). We228

evaluated scBasset and SCALE accessibility denoising for consistency between229

differential expression and differential accessibility. For each cell type cluster as230

defined by scRNA in the 10x PBMC dataset, we performed differential expres-231

sion and differential accessibility analysis against the rest of the cells. To assess232
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denoising quality, we evaluated the correlation between differential expression233

log2 fold change (log2FC) and differential accessibility log2FC before and after234

denoising (Fig.4c).235

We observed that expression log2FC and accessibility log2FC correlates236

well even for raw accessibility data (r=0.47). Still, consistency is significantly237

improved after scBasset denoising (r=0.54). Interestingly, we observed that238

even though SCALE correlation exceeded that of scBasset for baseline ac-239

cessibility/expression, scBasset significantly outperforms SCALE when evalu-240

ated by differential accessibility/expression (p<7.25e-05). We hypothesize that241

SCALE’s reliance on cell-cell covariance encourages cells to be more similar to242

each other than they actually are and over-smooths (Tjarnberg et al., 2021;243

Ashuach et al., 2021). scBasset will be less prone to over-smoothing since each244

peak is considered only through its sequence. As a result, SCALE performs245

better in denoising baseline accessibility, while scBasset performs better in de-246

noising differential accessibility, which emphasizes cell identity. As with baseline247

expression, combining scBasset and SCALE produces greater performance than248

either method alone (Fig.4c, Fig.S7).249

Integration of cells independently profiled by scRNA and scATAC into a250

shared latent space is a key step for many scATAC annotation and analysis251

methods (Stuart et al., 2019). We hypothesized that scATAC denoising would252

improve scRNA and scATAC integration performance. In order to evaluate inte-253

gration performance, we treated the 10x multiome scRNA and scATAC profiles254

as having originated from two independent experiments. For the 10x multi-255

ome PBMC dataset, we observed that when we integrated the scRNA profiles256

with the denoised scATAC profiles, the cells achieve better mixing compared to257

when we integrated scRNA with raw scATAC profiles (Fig.4d). Quantitatively,258

we measured the multiome rank distance between the RNA and ATAC em-259

beddings for each matching cell (Methods). We observed the RNA and ATAC260

profiles of the same cell are embedded significantly closer to each other when the261

ATAC profile is denoised compared to the raw ATAC profile (Fig.4e, P<2.2e-262

16). We observed similar results for the 10x multiome mouse brain dataset263

(Fig.S8).264

3.5 scBasset infers transcription factor activity at single265

cell resolution266

Transcription factor binding is a major driver of chromatin accessibility (Thur-267

man et al., 2012). Since scBasset learns to predict accessibility from sequence,268

we expect the model to capture sequence information predictive of TF binding.269

To query the single cell TF activity, we leveraged the flexibility of the scBasset270

model to predict arbitrary sequences. More specifically, we fed synthetic DNA271

sequences (dinucleotide shuffled peaks) with and without a particular TF motif272

of interest to a trained scBasset model and evaluated the activity of the motif273

in each cell based on changes in predicted accessibility (Methods) (Kelley et al.,274

2016). If a TF is playing an activating role in a particular cell, we expect to see275

increased accessibility after the TF motif is inserted.276
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Figure 5: scBasset infers single cell TF activity. A) UMAP showing annotated
PBMC cell types. B) Pearson correlation between TF expression and scBasset
or chromVAR-predicted TF activity for 203 differentially expressed TFs. The
example TFs that we examine in panel C are highlighted in red. C) UMAP
visualization of TF expression (left), scBasset TF activity (middle), and chrom-
VAR TF activity (right) for key PBMC regulators. Pearson correlation between
inferred TF activity and expression are shown in the title. D) ISM scores for
β-globin enhancer at chr11:5297158-5297258 for cells in HSC, MPP, CMP and
MEP cell types. Sequences that match GATA1 and KLF1 motifs are highlighted
in red boxes.

TF regulation in the hematopoeitic lineage profiled in the Buenrostro2018277

dataset has been studied in detail. We performed motif injection for all 733 hu-278

man CIS-BP motifs using the Buenrostro2018-trained model and recapitulated279

known trajectories of motif activity. For example, CEBPB, a known regulator280

of monocyte development, shows the highest activity in monocytes; GATA1, a281

key regulator of the erythroid lineage, is predicted to be most active in MEPs;282

HOXA9, a known master regulator of HSC differentiation, has highest predicted283
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activity in HSCs (Fig.S9) (Buenrostro et al., 2018).284

Previous sequence-based methods such as chromVAR are also able to quan-285

tify TF motif activity. To comprehensively compare scBasset and chromVAR286

on this task, we analyzed the 10x PBMC multiome dataset, in which TF ex-287

pression measured in the RNA can serve as a proxy for its motif’s activity. We288

inferred motif activity for all 733 human CIS-BP motifs using both scBasset289

and chromVAR. For the 203 TFs that are significantly differentially expressed290

between cell type clusters, we asked how well the inferred TF activity per cell291

correlates with its expression. We observed that overall scBasset TF activi-292

ties correlate significantly better with expression than chromVAR TF activities293

(P<3.38e-02, Wilcoxon signed rank test) (Fig.5b). This one-sided test is an294

underestimate of scBasset’s performance advantage over chromVAR, since we295

would expect TF expression and inferred activity to be negatively correlated296

for repressors. Thus, we evaluated scBasset and chromVAR on activating and297

repressive TFs separately. For 74 TFs which both methods agreed on a positive298

TF expression-activity correlation, scBasset predicted TF activities have signif-299

icantly greater correlation with expression than chromVAR predicted activity300

(P<7.38e-12, Wilcoxon signed rank test, Fig.S10). For 41 TFs which both meth-301

ods agreed on a negative TF expression-activity correlation, scBasset predicted302

TF activities have a significantly lesser correlation (more negative) with ex-303

pression than chromVAR predicted activity (P<1.62e-08, Wilcoxon signed rank304

test). This is also true for the 10x multiome mouse brain dataset (Fig.S10).305

Examining some of the key regulators of PBMC cell types, we observed306

that scBasset TF activities have better cell type specificity and correlate better307

with TF expression than chromVAR (Fig.5c). For example, PAX5 is a known308

master regulator of B cell development(Medvedovic et al., 2011). scBasset pre-309

dicts B cell specific activity of PAX5, which correlates with PAX5 expression310

(r=0.32), while chromVAR PAX5 activity did not have any cell type speci-311

ficity or significant PAX5 expression correlation (r=0.09). scBasset-predicted312

activity of the T cell differentiation regulator TCF7 highly correlates with ex-313

pression (r=0.89), while chromVAR TCF7 activity has lesser specificity and314

expression correlation (r=0.35). NK cells have greater expression of RUNX3315

and scBasset captures this elevated activity in NK cells (r=0.66) more effec-316

tively than chromVAR (r=0.42). For monocytes, both scBasset and chromVAR317

predicted specific activity of CEBPB, with scBasset activity correlating slightly318

better with expression (0.75 vs. 0.68, Fig.S11). Interestingly, while scRNA-319

seq suggests monocyte-specific expression of RXRA, scBasset and chromVAR320

strongly disagree, making opposite predictions for RXRA activity; scBasset pre-321

dicts RXRA as a repressor (r=-0.70) while chromVAR suggests an activating322

role (r=0.56). A literature review revealed stronger evidence that RXRA plays323

a repressive role in the myeloid lineage through direct DNA binding, which is324

more consistent with the scBasset prediction (Kiss et al., 2017).325

Unlike chromVAR, scBasset makes use of an accurate quantitative model326

that predicts cell type specific accessibility from the DNA nucleotides. Not only327

are we able to query scBasset for TF activity on a per-cell level, we can also328

infer TF activity at per-cell per-nucleotide resolution. As a proof of principle,329
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we examined a known enhancer for the β-globin gene that regulates erythoid-330

specific beta-globin expression (Tuan et al., 1985; Li et al., 2002). We performed331

in silico saturation mutagenesis (ISM) for this 100 bp sequence, in which we pre-332

dicted the change in accessibility in each cell after mutating each position to its333

three alternative nucleotides. We aggregated to a single score for each position334

by taking the normalized ISM score for each reference nucleotide (Methods).335

Fig.5d shows the average ISM score for each cell type in the erythroid lineage.336

We observed that the most influential nucleotides correspond to GATA1 and337

KLF1 motifs, which are TFs known to bind to this enhancer region and regu-338

late β-globin expression (Tallack et al., 2010). Interestingly, GATA1 and KLF1339

motifs contribute more to the accessibility as the cells differentiate in the ery-340

throid lineage. In comparison, these two motifs’ nucleotides have low scores in341

cell types outside of the erythroid lineage (Fig.S12). This experiment suggests342

that scBasset learns the accessibility regulatory grammar at single cell reso-343

lution and could be used to identify the TFs regulating specific enhancers in344

individual cells and lineages.345

4 Discussion346

In this study we present scBasset, a sequence-based deep learning framework347

for modeling scATAC data. scBasset is trained to predict individual cell ac-348

cessibility from the DNA sequence underlying ATAC peaks, learning a vector349

embedding to represent the single cells in the process. A trained scBasset model350

can strengthen multiple lines of scATAC analysis, and we demonstrate state-of-351

the-art performance on several tasks. Clustering the model’s cell embeddings352

achieves greater alignment with ground-truth cell type labels. The model out-353

puts can be used as denoised accessibility profiles, which improve concordance354

with RNA measurements. The model learns to recognize TF motifs and their355

influence on accessibility, and we designed an in silico experiment to inject mo-356

tifs into background sequences to query for TF motif activity in single cells.357

The model can also be applied to predict the influence of mutations, enabling358

in silico saturation mutagenesis of regulatory sequences of interest at single cell359

resolution. Compared to previous sequence-based approaches for scATAC anal-360

ysis such as chromVAR, scBasset achieves better performance at learning cell361

embeddings and inferring TF activity, because scBasset benefits from a more ex-362

pressive CNN model that learns more sophisticated sequence features, including363

non-linear relationships. Compared to previous sequence-free approaches such364

as cisTopic or SCALE, scBasset achieves better performance in benchmarking365

tasks and delivers a more interpretable model that can be directly queried for366

TF activity or identifying regulatory sequences.367

Sequence-based approaches have several limitations. First, we make use of368

the reference genome, but many samples will have variant versions, including369

copy number variations that could lead our models astray. Second, we assume370

that the regulatory motifs and their interactions generalize across the genome.371

This assumption may not be entirely true at some genomic loci for which evolu-372
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tion led to bespoke regulatory solutions, such as for X chromosome inactivation373

in females. However, since scBasset takes a completely independent approach374

to the covariance-based methods, one can always combine these two types of ap-375

proaches to further improve their analyses, as we showed for denoising (Fig.4).376

In addition, we foresee several paths to further improve our method. To377

improve scBasset memory efficiency in order to scale to extremely large datasets,378

one could sample mini-batches of both sequences and cells rather than only379

sequences in our current implementation. Methods such as TF-MoDISco could380

be applied to scBasset ISM scores for de novo motif discovery (Shrikumar et al.,381

2018; Avsec et al., 2021). All approaches to scATAC analysis depend on accurate382

peak calls, and predictive modeling frameworks have been proposed to help383

identify highly specific regulatory elements (Lal et al., 2021). We expect a384

neural network model would further improve scATAC peak calling by taking385

into account sequence information (and accounting for Tn5 transposition bias).386

Finally, we plan to explore transfer learning approaches in which models are387

pre-trained on large data compendia before fine-tune training on specific single388

cell datasets.389

5 Methods390

5.1 scATAC-seq preprocessing391

We downloaded the count matrix and peak atlas files for the Buenrostro2018392

dataset from GEO (Accession GSE96769) (Buenrostro et al., 2018). Peaks ac-393

cessible in less than 1% cells were filtered out. The final dataset contains 126,719394

peaks and 2,034 cells.395

We downloaded the 10x multiome datasets from 10x Genomics: https://396

support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/2.0.397

0/pbmc_granulocyte_sorted_3k for PBMC dataset, and https://support.398

10xgenomics.com/single-cell-multiome-atac-gex/datasets/2.0.0/e18_mouse_399

brain_fresh_5k for mouse brain dataset. Genes expressed in less than 5% cells400

were filtered out. Peaks accessible in less than 5% cells were filtered out.401

5.2 scRNA-seq preprocessing402

For the 10x multiome datasets, we processed the expression data with scVI403

version 0.6.5 with n layers=1, n hidden=768, latent=64 and a dropout rate of404

0.2 (Lopez et al., 2018). We trained scVI for 1000 epochs with learning rate of405

0.001, using the option to reduce the learning rate upon plateau using options406

lr patience of 20 and lr factor of 0.1. We enabled early stopping when there was407

no improvement on the ELBO loss for 40 epochs.408

To generate denoised expression profiles, we used the get sample scale()409

function to sample from the generative model 10 times and took the average.410

We used the learned latent cell representations to build nearest neighbor graphs411

and perform cell clustering.412
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5.3 Model architecture413

scBasset is a neural network architecture that predicts binary accessibility vec-414

tors for each peak based on its DNA sequence. scBasset takes as input a 1344415

bp DNA sequence from each peak’s center and one-hot encodes it as a 1344×4416

matrix. The neural network architecture includes the following blocks:417

• 1D convolution layer with 288 filters of size 17×4, followed by batch nor-418

malization, Gaussian error linear unit (GELU), and width 3 max pooling419

layers, which generates a 488×288 output matrix.420

• Convolution tower of 6 convolution blocks each consisting of convolution,421

batch normalization, max pooling, and GELU layers. The convolution422

layers have increasing numbers of filters (288, 323, 363, 407, 456, 512) and423

kernel width 5. The output of the convolution tower is a 7×512 matrix.424

• 1D convolution layer with 256 filters with kernel width 1, followed by batch425

normalization and GELU, The output is a 7×256 matrix, which is then426

flattened into a 1×1792 vector.427

• Dense bottleneck layer with 32 units, followed by batch normalization,428

dropout (rate=0.2), and GELU. The output is a compact peak represen-429

tation vector of size 1×32.430

• Final dense layer predicting continuous accessibility logits for the peaks431

in every cell.432

• (Optional) To perform batch correction, we attach a second parallel dense433

layer to the bottleneck layer predicting batch-specific accessibility. This434

batch-specific accessibility is multiplied by the batch-by-cell matrix to435

compute the batch contribution to accessibility in every cell. This vector is436

then added to the previous continuous accessibility logits per cell (Fig.S6).437

L2 regularization can be optionally applied to the cell-embedding path438

(with hyperparameter λ1) or the batch-specific path (with hyperparameter439

λ2) to tune the contribution of the batch covariate to the predictions.440

• Final sigmoid activation to [0,1] accessibility probability.441

The total number of trainable parameters in the model is a function of the442

number of cells in the dataset. Specifically, the model will have 4513960+33×n cells443

number of trainable parameters.444

5.4 Training approach445

We used a binary cross entropy loss and monitored the training area under the446

receiver operator curve (auROC) after every epoch. We stopped training when447

the maximum training auROC improved by less than 1e-6 in 50 epochs. This448

stopping criteria led to training for around 600 epochs for the Buenrostro2018449
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dataset, 1100 epochs for the 10x multiome PBMC dataset and 1200 epochs for450

the 10x multiome mouse brain dataset.451

We focused on training auROC instead of validation auROC for model selec-452

tion because we observed that the model continues to improve cell embeddings453

even after the point where the validation auROC has plateaued (Fig.S14). Since454

our goal in this application is to learn better representations instead of mini-455

mum generalization loss, we focused on the convergence of the training auROC.456

In addition, at the bottleneck size of 32, there was only a small drop in gen-457

eralization performance (validation auROC) when the training auROC reaches458

convergence (0.734 versus 0.742).459

We updated model parameters using stochastic gradient descent using the460

Adam update algorithm. We performed a random search for optimal hyperpa-461

rameters including: batch size, learning rate, beta1, and beta2 for the Adam462

optimizer. The best performance was achieved with a batch size of 128, learning463

rate of 0.01, beta 1 of 0.95, and beta 2 of 0.9995.464

We focused on the Buenrostro2018 dataset to select the optimal bottleneck465

layer size. We trained models with bottleneck sizes of 8, 16, 32, 64 and 128 and466

observed that bottleneck size 32 gives the best performance (Fig.S13).467

5.5 Alternative scATAC-seq methods468

5.5.1 PCA469

We performed PCA with the scikit-learn python package. We evaluated the per-470

formance of PCA cell embedding using 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 PCs,471

with or without the first PC, and reported the model with best performance to472

compare to scBasset.473

5.5.2 cicero474

We used Cicero via its R package (Pliner et al., 2018). We ran preprocess cds()475

function on the binarized peak by cell matrix with method=’LSI’, followed by476

reducedDims() function to learn a vector representation for each cell. PCs whose477

Pearson correlations with sequencing depth>0.5 are removed.478

5.5.3 cisTopic479

We used cisTopic via its R package (Bravo González-Blas et al., 2019). We ran480

runCGSModels() function on the binarized peak by cell matrix with a range of481

topic numbers (2, 5, 10, 20, 30, 40, 50, 60, 80 and 100) for 200 iterations with482

burn in periods of 120. For comparison with scBasset, we reported the cisTopic483

models with the best cell embedding performance.484

5.5.4 SCALE485

We used SCALE via its command line tool (https://github.com/jsxlei/486

SCALE) with parameters -x 0.05 and -min peaks 500 to filter low quality peaks487
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and cells to avoid exploding gradients (Xiong et al., 2019). We ran SCALE with488

a range of latent sizes (10, 16, 32, 64) and found that the default latent size489

of 10 gives the best cell embedding performance. We also added the –impute490

option allowing SCALE to estimate denoised accessibility values.491

5.5.5 chromVAR492

We used ChromVAR via its R package (Schep et al., 2017). We first created a493

summarized experiment object from the binary peak by cell matrix, followed by494

addGCBias() using the corresponding genome build. We featurize the sequences495

into motif space using Jaspar motifs or k-mer space using 6-mers. Next, we496

computed the deviation z-score matrices for motif and k-mer matches. For497

each of chromVAR-motif or chromVAR-kmer, we performed PCA on the motif498

deviation score matrix with 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 PCs and499

reported the best cell embedding performance to compare to scBasset.500

When using chromVAR for TF activity inference, we ran chromVAR mo-501

tif match using CIS-BP motifs instead of the default Jaspar motifs for a fair502

comparison with scBasset. Then we computed deviation z-scores as previously503

described.504

5.6 Cell embedding evaluation505

Adjusted rand index (ARI): We evaluated learned cell embeddings in the Buen-506

rostro2018 dataset by comparing the clustering to the ground-truth cell type507

labels. We first built a nearest neighbor graph using scanpy with default508

n neighbors of 15. Then we followed a previous study to tune for a resolu-509

tion that outputs 10 clusters (Chen et al., 2019). Finally, we compared the510

clustering outcome to the ground-truth cell type labels using ARI.511

Label score: We evaluated the learned cell embeddings using label score for512

all three datasets. For a given nearest neighbor graph, label score quantifies513

what percentage of each cell’s neighbors share its same label in a given neigh-514

borhood. For each cell embedding method, we computed label score across a515

neighborhood of 10, 50 and 100. Since the ground-truth cell types for the mul-516

tiome datasets are unknown, we used cluster identifiers from scRNA-seq Leiden517

clustering as cell type labels.518

Neighbor score: We evaluated the learned cell embeddings using neighbor519

score for the 10x multiome datasets. For a 10x multiome dataset, we built in-520

dependent nearest neighbor graphs from the scRNA (using scVI) and scATAC521

(using the cell embedding method we want to evaluate) and quantified the per-522

centage of each cell’s neighbors that are shared between the two graphs across523

neighborhoods of size 10, 50 and 100.524

5.7 Batch correction evaluation525

We evaluated scBasset-BC on additional scATAC datasets from mixed PBMC526

populations from 10x PBMC multiome chemistry (downloaded from https://527
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cf.10xgenomics.com/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_528

10k/) and 10x PBMC nextgem chemistry (https://cf.10xgenomics.com/samples/529

cell-atac/2.0.0/atac_pbmc_10k_nextgem/). We generated a shared atlas of530

21,017 peaks from the two datasets by resizing the 10x peak calls from the two531

datasets to 1000bp and took the intersection. We subsampled 2,000 cells from532

each dataset and merged them over the shared atlas. We ran scBasset-BC with533

hyperparameters λ1=1e-6 and λ2=0.534

5.8 Denoising evaluation535

To compute a denoised and normalized accessibility across cells for a query peak536

with scBasset, we ran a forward pass on the input DNA sequence to compute537

the latent embedding for the peak. Then we generate the normalized acces-538

sibility across all cells through dot product of the peak embedding with the539

weight matrix of the final layer. Notice that since sequencing depth informa-540

tion is entirely captured by the intercept vector of the final layer, we excluded541

the intercept term so that scBasset generates denoised profiles normalized for542

sequencing depth.543

Our evaluation is based on the hypothesis that effective denoising would544

improve the correlation between accessibility at genes’ promoters and the genes’545

expression in the multiome measurements (Granja et al., 2021; Pliner et al.,546

2018). For each gene, we computed a gene accessibility score by averaging547

the accessibility values for peaks at the gene’s promoter (±2kb from TSS). We548

evaluated denoising performance by computing the Pearson correlation between549

the gene accessibility score and gene expression (after scVI denoising) across all550

genes for each individual cell.551

Alternatively, we also evaluated scBasset accessibility denoising for consis-552

tency between differential expression and differential accessibility. We performed553

differential gene expression on scVI gene expression for each cell type cluster554

versus the rest. We also performed differential accessibility analysis on gene555

accessibility scores for each cell type cluster versus the rest. Then we evaluated556

performance by computing the Pearson correlation between the gene accessibil-557

ity score log2FC and gene expression log2FC across all genes for each cell type558

cluster.559

5.9 Integration evaluation560

In order to evaluate integration performance, we treated the 10x multiome561

scRNA and scATAC profiles as originated from two independent experiments.562

We summarize the accessibility profile to a gene level by computing gene acces-563

sibility score as described above and integrated the scRNA and scATAC data by564

embedding them into a shared space using Seurat FindTransferAnchors() and565

TransferData() functions (Stuart et al., 2019).566

In order to quantify the integration performance, we measured a “multiome567

rank distance” Rc between the RNA embedding and the ATAC embedding of568

each cell c. We use Rrna to represent the ranking of the Euclidean distance569
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between RNA embedding and ATAC embedding of cell c among all neighbors570

of c’s RNA embedding, and Ratac to represent the ranking of the same distance571

among all neighbors of c’s ATAC embedding. Rc is computed as the average of572

Rrna and Ratac.573

5.10 Motif injection574

We performed motif injection on scBasset to compute a TF activity score for575

each TF for each cell. Specifically, we first generated 1000 genomic background576

sequences by performing dinucleotide shuffling of 1000 randomly sampled peaks577

from the atlas using fasta ushuffle (Jiang et al., 2008). For each TF in the motif578

database, we sampled a motif sequence from the position weight matrix (PWM)579

and inserted into the center of each of the genomic background sequences. We580

ran forward passes through the model for both the motif-injected sequences581

and background sequences to predict normalized accessibility across all cells.582

We took the difference in predicted accessibility between the motif-injected se-583

quences and background sequences as the motif influence for each sequence. We584

averaged this influence score across all 1000 sequences for each cell to generate585

a cell level prediction of raw TF activity. Finally, we z-score normalized the raw586

TF activities to generate the final TF activity predictions across all cells.587

We used CIS-BP 1.0 single species DNA database motifs downloaded from588

https://meme-suite.org/meme/db/motifs for our motif analysis (Weirauch589

et al., 2014).590

5.11 In silico saturation mutagenesis591

We performed in silico saturation mutagenesis (ISM) to compute the importance592

scores of all single nucleotides on a sequence of interest. For each position, we ran593

three scBasset forward passes, each time mutating the reference nucleotide to an594

alternative. For each mutation, we compared the accessibility prediction to the595

prediction with the reference nucleotide to compute the change in accessibility596

for each cell. We normalized the ISM scores for the four nucleotides at each597

position such that they sum to zero. We then took the normalized ISM score598

at the reference nucleotide as the importance score for that position.599

6 Code Availability600

Code for training and using scBasset model can be found at: https://github.601

com/calico/scBasset.602
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Avsec, Å., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K.,619

Fropf, R., McAnany, C., Gagneur, J., Kundaje, A., and Zeitlinger, J. (2021).620

Base-resolution models of transcription-factor binding reveal soft motif syn-621

tax. Nature Genetics.622
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Figure S1: auROC on held-out peaks for 10x multiome PBMC and mouse brain
datasets. Top, scBasset prediction performance on held-out peaks evaluated by
auROC per peak (left) and by auROC per cell (right) for 10x multiome PBMC
dataset. Bottom, scBasset prediction performance on held-out peaks evaluated
by auROC per peak (left) and by auROC per cell (right) for 10x multiome
mouse brain dataset.
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Figure S2: Correlations of final layer intercepts with sequencing depth (log10
UMI) for Buenrostro2018, 10x multiome PBMC and 10x multiome mouse brain
datasets (from left to right).

Figure S3: scBasset cell embedding performance as evaluated by label scores
for each cell type with a neighborhood of 10, 50 and 100.
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Figure S4: t-SNE visualization of different cell embedding methods, including:
chromVAR motif, chromVAR kmer (k=6), PCA, cicero (LSI), SCALE, cisTopic
and scBasset.

Figure S5: Performance comparison of different cell embedding methods as
evaluated by label scores for 10x multiome PBMC (left) and mouse brain (right)
datasets.
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Figure S6: A, Model architecture of scBasset-BC. B) UMAP embeddings
of mixed PBMC populations from 10x multiome scATAC and 10x nextgem
scATAC chemistries. Left figure shows the embeddings learned by scBasset
model. Right figure shows the embeddings learned by scBasset-BC model, where
batch is encoded as a covariate.
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Figure S7: Additional denoising results for 10x multiome datasets. A) Com-
parison of denoising performance on the multiome PBMC dataset between raw
data, scBasset, SCALE, and scBasset+SCALE combined, evaluated by correla-
tion between baseline gene accessibility score and baseline gene expression. B) A
scatterplot showing a closer look at the performance comparison between scBas-
set+SCALE (y-axis) versus SCALE on multiome PBMC dataset, evaluated by
correlation between baseline gene accessibility score and baseline gene expres-
sion. C) Comparison of denoising performance on the multiome mouse brain
dataset between raw data, scBasset, SCALE, and scBasset+SCALE combined,
evaluated by correlation between baseline gene accessibility score and baseline
gene expression. D) Comparison of denoising performance on multiome mouse
brain dataset between raw data, scBasset, SCALE, and scBasset+SCALE com-
bine, evaluated by consistency in differential expression log2FC and differential
accessibility log2FC. We performed Wilcoxon signed rank tests for performance
comparisons.
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Figure S8: Integration results for the 10x multiome mouse brain dataset. Left,
RNA (blue) and raw ATAC (red) profile embeddings after integration. Mid-
dle, RNA (blue) and denoised ATAC (red) profile embeddings after integration.
Right, distribution of the relative distances (Methods) between each cell’s RNA
and ATAC embeddings after integration when integrating with raw ATAC pro-
files (blue) or denoised ATAC profiles (red). We performed Wilcoxon signed
rank test for performance comparison.

Figure S9: Motif activity inference using scBasset and chromVAR on the
Buenrostro 2018 dataset for known regulators. A) UMAPs showing scBasset-
predicted TF activity. B) Boxplots showing scBasset-predicted TF activity by
cell type. C) UMAPs showing chromVAR-predicted TF activity. B) Boxplots
showing chromVAR-predicted TF activity per cell type.
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Figure S10: TF expression and TF activity correlation for the 10x mulitome
datasets. Scatterplots of correlations between chromVAR-inferred activity and
expression (x-axis) versus correlations of scBasset-inferred TF activity and ex-
pression (y-axis) for activating TFs (left) and repressive TFs (right) in the 10x
multiome PBMC (top) and 10x multiome mouse brain (bottom). Activating
TFs are TFs which both scBasset and chromVAR agree on a positive correla-
tion between TF expression and activity. Repressive TFs are TFs which both
scBasset and chromVAR agree on a negative correlation between TF expression
and activity.
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Figure S11: Motif activity inference using scBasset and chromVAR on the 10x
multiome PBMC data. UMAP visualization of TF expression (left), scBasset
TF activity (middle), and chromVAR TF activity (right) for additional known
PBMC regulators. Pearson correlation between inferred TF activity and ex-
pression are shown in the titles.
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Figure S12: ISM scores for β-globin enhancer at chr11:5297158-5297258 for cells
in LMPP, CLP, pDC and GMP cell types. Sequences that match GATA1 and
KLF1 motifs are highlighted in red boxes.

Figure S13: Label scores as a function of scBasset bottleneck layer size in Buen-
rostro2018 dataset.
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Figure S14: Left, training (blue) and validation auROCs (red) per epoch for the
Buenrostro2018 dataset. Right, label scores per epoch.
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