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Abstract

Motivation: Visualization approaches transform high-dimensional data
from single cell RNA sequencing (scRNA-seq) experiments into two-dimen-
sional plots that are used for analysis of cell relationships, and as a means
of reporting biological insights. Yet, many standard approaches generate
visuals that su�er from overplo�ing, lack of quantitative information, and
distort global and local properties of biological pa�erns relative to the orig-
inal high-dimensional space.
Results: We present scBubbletree, a new, scalable method for visualization
of scRNA-seq data. �e method identi�es clusters of cells of similar tran-
scriptomes and visualizes such clusters as “bubbles” at the tips of dendro-
grams (bubble trees), corresponding to quantitative summaries of cluster
properties and relationships. scBubbletree stacks bubble trees with further
cluster-associated information in a visually easily accessible way, thus facil-
itating quantitative assessment and biological interpretation of scRNA-seq
data.
Availability and Implementation: the R package scBubbletree is freely
available at: h�ps://bioconductor.org/packages/scBubbletree/
Contact: simo.kitanovski@uni-due.de, daniel.ho�mann@uni-due.de
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1 Introduction
Single cell RNA sequencing (scRNA-seq) data can convey an unprecedented rich-
ness of biological information, which has led to an explosion of scRNA-seq ex-
periments [Svensson et al., 2018]. However, the complexity of scRNA-seq data
makes analysis also notoriously di�cult: the transcriptome of each cell is charac-
terized by a high-dimensional vector of gene expressions, and we have many cells
and hence many vectors. How can we visually present such complex data so that
essential biological information becomes easily accessible? Standard work�ows
perform reduction of the high-dimensional transcription data into printable two
dimensional sca�erplots [McInnes et al., 2018, Van der Maaten and Hinton, 2008]
with each cell corresponding to one dot and the geometric arrangement of the
dots re�ecting aspects of transcriptional similarity of cells. While this approach
works reasonably well for small samples, visualization of large and complex sam-
ples runs into the well-known problem of overplo�ing [Carr et al., 1987], i.e.
massive piling up of dots on top of each other severely hampers user’s ability to
identify pa�erns in the plo�ed data. �is issue is compounded by distortions in
the sample’s distance structure [Huang et al., 2022] that arise as we squeeze high-
dimensional transcription data into two dimensions. �us, visuals produced with
the standard work�ow are in general inept for presenting quantitative informa-
tion, including also transcriptional similarity.

Here we present scBubbletree, a method for quantitative visual exploration of
scRNA-seq data. When designing scBubbletree our guiding question was: Which
properties of scRNA-seq data should be visualized? We identi�ed three classes
of properties: i) local and global transcriptional structure, ii) cell density distri-
bution and iii) cell a�ributes (marker gene expressions, biological condition, cell
type labels, etc.). Furthermore, scalability was an important factor in the design
of scBubbletree, i.e. our method was developed to avoid overplo�ing. �ese goals
were achieved by integrating in scBubbletree state-of-the-art methods for clus-
tering of scRNA-seq data and for visualization. scBubbletree is available as an
R-package that is open-source, easy-to-use and simple to integrate with popular
approaches for scRNA-seq data analysis.

We demonstrate the added value of visual exploration with scBubbletree com-
pared to popular methods, such as UMAP and t-SNE, by analyzing two public
datasets.
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2 Materials and methods
scBubbletree is implemented as an R package that provides an easy-to-use work-
�ow for visual exploration of single cell RNA-seq data. A typical application, as
presented here with two scRNA-seq samples (studies A and B), runs in less than
one hour on a standard personal computer. Furthermore, scBubbletree can be in-
tegrated seamlessly with the R package Seurat [Hao et al., 2021], a popular tool
for scRNA-seq analysis. In the next we describe the implementation of scBub-
bletree in detail.

2.1 Input
�e pipeline takes as �rst input a matrix An× f that represents a low-dimensional
projection of the high-dimensional scRNA-seq data, with n rows as cells and f
columns as low-dimensional features. scBubbletree works directly with An× f

and is agnostic about the initial data processing protocol. For the generation of
the low-dimensional projection, we recommend the use of linear techniques that
approximately conserve pairwise distances between cellular transcriptome vec-
tors. Example techniques are principal component analysis (PCA) [Hotelling,
1933], non-negative matrix factorization [Paatero and Tapper, 1994], or multi-
dimensional scaling [Kruskal, 1964]. Non-linear dimensionality reduction tech-
niques, such as t-SNE [Van der Maaten and Hinton, 2008] and UMAP [McInnes
et al., 2018], should be avoided as these approaches tend to distort long-range
distances [Becht et al., 2019]. In the present work we used PCA for the low-
dimensional projection.

2.2 Algorithm
In short, the algorithm of scBubbletree identi�es clusters of transcriptionally sim-
ilar cells, and then visualizes these clusters as leaf-nodes (bubbles) of a hierar-
chical dendrogram (bubbletree). �e work�ow comprises four steps (Fig. 1A): 1.
determining the clustering resolution, 2. clustering, 3. hierarchical cluster group-
ing, and 4. visualization. We explain each step in the following.

2.2.1 Determining the clustering resolution with gap statistic

scBubbletree can cluster scRNA-seq data in two ways, namely by graph-based
community detection (GCD) algorithms such as Louvain [Blondel et al., 2008]
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or Leiden [Traag et al., 2019], and by k-means [Mac�een et al., 1967]. Bench-
marking studies have demonstrated that approaches for GCD, such as Louvain,
perform well with scRNA-seq data and have relatively short runtimes [Duò et al.,
2018]. �ese �ndings were independently veri�ed by our benchmarking study
of the impact of clustering algorithm on biological cluster homogeneity (Sup-
plementary Section 1). We recommend using the original Louvain algorithm
for clustering of large scRNA-seq datasets. For smaller and simpler scRNA-seq
datasets k-means generates comparable results.

Each clustering approach requires a resolution as input. In k-means, the clus-
tering resolution is speci�ed by the parameter k (k ∈ N) that determines the
number of clusters in the data, whereas Louvain (or Leiden) uses a resolution
parameter r (r ∈ R>0), where higher r lead to more clusters and lower r lead to
fewer clusters. Hence, r can be mapped onto a number k′ of communities, with
a range of r values of mapping onto the same value of k′. �e choice of k and
r should be guided primarily by the sample heterogeneity: the higher the cellu-
lar diversity in the sample, the higher the clustering resolution needed to resolve
that diversity. �e choice of k and r is also impacted by the research objective, for
instance, high clustering resolution might be necessary to identify e.g. rare T cell
subsets in a large sample of immune cells, whereas lower clustering resolution
might be su�cient to characterize canonical immune subsets of that sample.

To determine k and r, scBubbletree relies on the gap statistic method [Tib-
shirani et al., 2001] as implemented in the R-package cluster (function clusGap,
version 2.1.2). �is functionality is implemented in scBubbletree’s functions get k
and get r. �e gap statistic compares the within cluster sum of squares (WCSS)
to its expectation under an appropriate null reference distribution for di�erent
values of k and r. To estimate k and r we need to examine the gap curve for a)
clear maximum or b) an ‘elbow’ (a bend in the curve from high to low slope). �e
functions get k and get r report the average gap and its 95% con�dence interval
for each clustering resolution computed based on Bgap simulations.

Many complementary approaches for determining the clustering resolution
are available in the literature [Yu et al., 2022], and these can be used alongside the
gap statistic. Furthermore, we recommend that the estimated k′ (associated with
r) and k be compared against prior biological knowledge about the cellular com-
position based on data from e.g. the human protein atlas (h�ps://www.protein-
atlas.org) or from relevant publications.
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2.2.2 Determining the clustering resolution with Gini impurity

For some scRNA-seq datasets it is possible to assess the subtypes of individual
cells by mapping their transcriptional pro�les onto reference atlases [Aran et al.,
2019]. scBubbletree quanti�es the homogeneity (or ‘purity’) of individual clus-
ters i of ni cells in terms of the their composition of subtype labels with the Gini
impurity (GI) index:

GIi =
L

∑
j=1

πij(1− πij), (1)

where L is the total number of subtype labels, and πij the relative frequency of
label j in cluster i. In homogeneous clusters, GI takes on a small value close to
zero, and in mixed clusters GI can approach 1− (1/L). Given a clustering result
with k clusters, get gini also computes the weighted Gini impurity (WGI) index
by calculating the weighted average of the GIs:

WGI =
k

∑
i=1

GIi
ni

n
, (2)

with n = ∑i ni. We expect low WGIs for clustering results at optimal cluster-
ing resolutions, and higher WGIs for clustering results at insu�cient resolutions.
Hence, the WGI can be used like the gap statistic to identify appropriate resolu-
tions.

2.2.3 Clustering

For clustering, scBubbletree uses as main inputs matrix An× f , a clustering algo-
rithm, and the clustering resolution (k or r) estimated from the previous step of
this work�ow. Four algorithms for GCD are available via the function get bubble-
tree graph, including, the original Louvain algorithm [Blondel et al., 2008], the
Louvain algorithm with multilevel re�nement (LMR) [Ro�a and Noack, 2011],
the smart local moving (SLM) algorithm [Waltman and Van Eck, 2013], and the
Leiden algorithm [Traag et al., 2019]. In addition to this, k-means [Mac�een
et al., 1967] clustering can be performed with the function get bubbletree kmeans.
Auxiliary input parameters can be used to employ a speci�c variant of the clus-
tering algorithms and to �ne-tune their performance. To perform GCD, scBub-
bletree �rst constructs a shared nearest neighbor (SNN) graph using the function
FindNeighbors (R-package Seurat, version 4.1.0). GCD is applied with Seurat’s
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function FindClusters and k-means clustering by the function kmeans (R-package
stats, version 4.2).

�e output of the clustering step is a vector c = (c1, c2, . . . , cn) of cluster
assignments for the n cells, with ci ∈ {1, 2,. . . , k}. �e clustering result allows
us to partition An× f into k data subsets Cn1× f

1 , Cn2× f
2 , . . . , Cnk× f

k , with ni as the
number of cells in cluster i and n = ∑i ni. �ese matrices are used to compute
inter-cluster distances in the next step of this work�ow.

To facilitate the use of novel clustering approaches [Kiselev et al., 2019],
scBubbletree provides the function get bubbletree dummy, which allows the user
to provide as input matrix An× f and vector c of cluster assignments (Fig. 1A,
green input) and proceed with hierarchical grouping of the clusters. �is en-
ables seamless integration of scBubbletree with computational pipelines that em-
ploy other clustering approaches, such as PhenoGraph [Levine et al., 2015] or
TooManyCells [Schwartz et al., 2020].

2.2.4 Hierarchical grouping of clusters

Clusters of cells are arranged in a dendrogram by performing agglomerative hi-
erarchical clustering with average linkage [Hastie et al., 2009] (function hclust, R-
package stats, version 4.2). Starting at the lowest level with k clusters (or commu-
nities) of cells, the clustering procedure selects pairs of clusters with the smallest
inter-cluster Euclidean distance and groups them at the next higher level of the
hierarchy. �is is repeated until a complete dendrogram is built with only one
cluster at the highest level that contains the full data. Other commonly used
linkage functions and the Manha�an distance metric are also implemented in
scBubbletree.

�e distance between clusters i and j can be computed by estimating the
average Euclidean distance between all pairs of cells in Cni× f

i and C
nj× f
j . Hence,

the complete hierarchical clustering procedure has time complexity O(n2) and
requires approximately Ω(n2) memory to store the resulting distance matrix.
Assuming that each matrix cell takes up 8 bytes of memory, for a dataset of
106 cells this operation requires 7,450 gigabytes of memory, and considerable
computational cost.

To avoid such high memory demands scBubbletree employs a bootstrapping
approach with B iterations (Supplementary Algorithm 1). In iteration b, the al-
gorithm draws with replacement a random subset with n′i = min(ni, Ne�) and
n′j = min(nj, Ne�) number of cells from cluster i and j, respectively, where Ne�
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is a user-de�ned parameter that controls the maximum number of cells to be
drawn from each cluster. �e algorithm computes the average distance between
cluster i and j based on n′in

′
j inter-cell Euclidean distances, and stores the result

in distance matrix Dk×k
b :

Dij
b =

1
n′in
′
j

∑
∀x∈X
∀y∈Y

√
(x− y)2, (3)

where Xn′i× f and Yn′j× f are subsets drawn from Cni× f
i and C

nj× f
j , respectively,

and x and y are cell transcriptome features (row vectors) from each matrix. At
the end of bootstrap iteration b, the distance matrix Dk×k

b is provided as input
for hierarchical clustering with average linkage to generate the dendrogram Hb.

From the collection of B distance matrices we compute an average distance
matrix (D̂k×k), and use D̂k×k to generate a consensus hierarchical dendrogram
(bubbletree; Ĥ) by hierarchical clustering with average linkage. �e collection of
bootstrap dendrograms are used to assess the robustness of the bubbletree topol-
ogy by quantifying the number of times each branch in Ĥ was found among the
topologies of the bootstrap dendrograms (function prop.clades, R-package ape,
version 5.6.2). Branches can have variable degrees of support ranging between
values close to 0 (no support) and B (complete support). Distances between in-
dividual bubbles are visualized quantitatively as sums of branch lengths in root-
to-leaf direction between these bubbles.

2.2.5 Visualization of the bubbletree

�e main visual output of scBubbletree is a bubbletree (Fig. 1D and Fig. 2C).
�e bubbles represent clusters of cells of similar transcriptomes, and the tree
describes hierarchical relationships and distances between the bubbles. Bubble-
trees are visualized with ggtree (R-package, version 3.2.1), which o�ers a rich
syntax for visualization of dendrograms [Yu, 2020]. ggtree extends the �exible
ggplot2 (R-package, version 3.3.5) visualization framework [Wickham, 2016], and
thereby allows multiple layers of annotations to be a�ached to the bubbletree.

scBubbletree scales the bubble radii linearly as the number of cells in the cor-
responding bubbles. As linear increase in bubble radii leads to quadratic increase
in bubble areas, this scaling visually emphasizes bubbles with higher numbers of
cells. Each bubble is labelled with an identi�er and its absolute and relative num-
bers of cells.
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In summary, a bubbletree gives a quantitative visual summary of scRNA-seq
data in terms of transcriptome cluster sizes and relationships.

2.2.6 Visualization of cell attributes

To make bubbles biologically interpretable, bubbletrees facilitate addition of fur-
ther information, including numeric cell a�ributes, such as expression levels of
marker genes, number of unique molecular identi�ers (UMIs), or prevalence of
UMIs from mitochondrial genes; or categorical cell a�ributes, such as predicted
subtype labels, treatment groups (cancer vs. control cell), sample name, or cell
cycle phase. For visualization of numeric and categorical cell a�ributes scBub-
bletree relies on the R-package ggplot2. Assembly of plots from multiple cell
a�ributes is done with the R-package patchwork (version 1.1.1), which enables
a�aching of user-generated ggplot2 �gures to the bubbletree.

scBubbletree provides two functions for visualization of numeric cell a�ributes:
the function get num tiles computes statistical summaries (mean, median, sum,
number of zero/nonzero values, etc.) of numeric cell a�ributes in each bubble
and visualizes them with tile plots; the function get num violins visualizes the
distributions of numeric cell a�ributes in each bubble with violin plots.

Categorical cell a�ributes are visualized using a matrix of tiles in which columns
represent speci�c a�ribute categories. Tile colors and annotations can be con�g-
ured for two types of interpretation using the logical parameter integrate vertical.
For integrate vertical=T the tiles will show the relative frequencies of each at-
tribute label across the di�erent bubbles, which answers questions such as: are
cells carrying a speci�c label (e.g. ‘T cell’ or sample label ‘S1’) enriched in a par-
ticular set of bubbles? Alternatively, for integrate vertical=F the tiles will show
the within-bubble relative frequencies of di�erent labels. With this information
we can answer questions such as: what is the label composition in a particular
bubble?

2.3 Evaluation of scBubbletree using publicly available data
scBubbletree was evaluated with two publicly available scRNA-seq datasets, which
we call A and B; for detailed descriptions of datasets and work�ow see Supple-
mentary Section 2.

Dataset A contains 3,918 cell transcriptomes from �ve human lung adeno-
carcinoma cell lines (HCC827, H1975, A549, H838 and H2228) [Tian et al., 2019].
�e predicted cell line labels for each cell are available as part of the meta data.
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Dataset B contains transcriptomes of 161,764 peripheral blood mononuclear cells
(PBMCs) from eight healthy volunteers enrolled in an HIV vaccine trial [Hao
et al., 2021]. PBMC subtype predictions are available for each cell at two levels
of resolution: annotation set l1 and l2 with 8 and 31 subtype categories, respec-
tively.

In both datasets we saw that the �rst 15 principal components capture most
of the variance in the data, and the proportion of variance explained by each sub-
sequent principal component was negligible (Supplementary Fig. S1A-B). �us,
we used the single cell projections in 15-dimensional feature space, A3,918×15

and A161,764×15, as input of scBubbletree.

3 Results

3.1 Study A: Exploring sample of �ve cancer cell lines
3.1.1 Generating the bubbletree

We know that dataset A contains a mixture of �ve cancer cell lines. Hence, we
expect k = 5 cell clusters or communities. To verify this we computed the gap
statistic for the Louvain method with resolution parameter r = 10R, where R
was initialized using a sequence of values from -4 to 1 in increments of 0.1. At
each resolution r we recorded the number k′ of identi�ed communities (Supple-
mentary Fig. S2). WGIs were computed based on the cluster assignments and the
vector of predicted cell line labels.

�e gap curve had a distinct ‘elbow’ at k′ = 5 (r ∈ [0.0025, 0.12]) (Fig. 1B).
In line with these observations, we saw a steep drop in the WGIs to a value close
to 0 at k′ = 5 (r = 0.0025) (Fig. 1C) �ese results suggested that there is li�le
bene�t in using clustering resolutions that yield more than �ve communities.

In the next step of the scBubbletree work�ow we applied clustering with the
original version of Louvain [Blondel et al., 2008] (function get bubbletree graph)
and resolution parameter r = 0.0025 (k′ = 5). For input, we constructed a
SNN graph based on A3,918×15, where each vertex (cell) was connected to its
50 nearest neighbors. Clustering was performed with 20 random starts and up
to 100 iterations in each run. �e clusters were organized in a bubbletree by
hierarchical clustering with average linkage (tree in Fig. 1D). We ran B = 200
bootstrap iterations and drew samples with up to Ne� = 200 cells from each
cluster to estimate inter-cluster distances and their robustness.
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3.1.2 Examining the bubbles

Bubble sizes range from the smallest (bubble 4, 437 cells, 11.2% of the sample
cells) to the largest (bubble 0, 1,253 cells, 32% of the sample cells). By visualizing
the cell lines as categorical a�ributes, we saw clear mapping between di�erent
cell lines and bubbles (heatmap in right part of Fig. 1D), i.e. cells from a speci�c
cell lines were enriched in speci�c bubbles. For instance, 100% of the cells in
bubble 0 and 4 belonged to cell line A549 and H1975, respectively, and between
99.5% and 99.8% of the cells in bubbles 1, 2 and 3 belong to cell lines H838, H2228
and HC827, respectively.

By visualizing in each bubble the mean (normalized) expression (Fig. 1E) and
the expression distributions (Fig. 1F) of �ve marker genes (one per cell line),
we were able to con�rm that bubble 0 was not only enriched with cells from
cell line A549, but also had high ALDH1A1 expression which is a known A549
marker [Park et al., 2017]. Similarly, bubble 4 had high expression of CT45A2
which is a marker of H1975 [Yang et al., 2019]. Bubbles 1, 2, and 3 were associ-
ated with high expression of SLPI, S100A9, and PIP4K2C, respectively, and based
on data from the Cancer Dependency Map Portal (h�ps://depmap.org; accessed
23.06.2022) we were able to con�rm that these genes are typically over-expressed
in cell lines H838, H2228, and HCC827, respectively.

3.1.3 Examining the tree

�e distance between bubble 3 and 4 was smaller than that of any other pair
of bubbles in the bubbletree (Fig. 1D). �is hinted at relatively higher transcrip-
tional similarity between the corresponding cell lines HCC827 and H1975. Fur-
thermore, bubble 3 and 4 were in a robust sub-tree that was found in all 200
bootstrap dendrograms. �e sub-tree of bubbles 0, 3, and 4 was less robust (178
of 200 bootstrap dendrograms).

�e robust sub-tree of bubbles 3 (cell line HCC827) and 4 (cell line H1975) with
the relatively short distance between these bubbles indicates transcriptional sim-
ilarity of these cell lines. We checked this aspect of the tree by comparison with
a set of independently measured transcriptional pro�les of 69 adenocarcinoma
cell lines from the Cancer Cell Line Encyclopedia [Barretina et al., 2012], includ-
ing HCC827 and H1975 (Supplementary Section 3). Euclidean distances were
computed between the vectors of normalized gene expressions of all pairs of cell
lines. �e distance between HCC827 and H1975 was the 6th lowest among 2,346
pairwise comparisons (Supplementary Fig. S3), whereas the distances between
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the remaining cell lines of dataset A fell well within the general distribution of
distances between the di�erent adenocarcinoma cell lines. �is result is con-
sistent with the structure of the bubbletree, especially the robust closeness of
bubbles 3 and 4.

Dataset A had been measured with an arti�cially mixture of �ve distinct cell
line populations, which explains the simple structure of the resulting bubbletree.
�e recovery of the ground truth of �ve cell lines (Fig. 1), was a sanity check
for scBubbletree. In this simple case, even UMAP and t-SNE were able recover
aspects of the overall structure (Supplementary Fig. S6A,B). �e advantage of
bubbletrees over these standard methods was the quantitative visualization of
tree structure and cluster sizes. However, scBubbletree has been developed for
the analysis of more complex scRNA-seq data that are typically observed with
real tissue samples, as in the following study B.

3.2 Study B: Exploring a sample of human PBMCs
3.2.1 Clustering resolution

To determine the clustering resolution of dataset B we computed the gap statistic
for the Louvain method with resolution parameter r = 10R, where R was ini-
tialized using a sequence of values from -4 to 1 in steps of 0.1 (Fig. 2A). At each
resolution we recorded the number k′ of identi�ed communities (Supplementary
Fig. S4).

�e gap increased rapidly between k′ = 1 and k′ = 11, followed by a dip
at k′ = 12 and a further ascend to about 4 at k′ = 24 (r ≈ 0.79) (Fig. 2A), and
a much slower, approximately linear increase at higher k′. �e increase in the
gap between k′ = 22 and k′ = 24 was about two-fold larger than that in the
interval between k′ = 24 and k′ = 57, even though only two communities were
added in the �rst interval and 23 communities (about 10-fold more) were added
in the second interval. �is suggested that there is li�le bene�t in using values
of r larger than 0.79 (k′ = 24).

�e value of k′ = 24 is close to the number of 18 canonical cell populations
identi�ed in PBMCs in the Human Protein Atlas (HPA) database (h�ps://www.
proteinatlas.org/humanproteome/immune+cell).
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3.2.2 Clustering resolution analysis based on WGI

To compute WGI curves we used as inputs the PBMC subtype labels from anno-
tation set l1 and l2 and the Louvain clustering assignments generated for the gap
analysis. We saw that annotation set l1 (Fig. 2B) was associated with lower WGIs
compared to l2. �e relatively lower WGIs of l1 are likely due to the fact that l1
contains labels of 8 major PBMC subtypes that have distinct transcriptional pro-
�les. Hence, in each bubble of dataset B we expect a low degree of mixing in
terms of di�erent l1 labels (Fig. 2D). In contrast to this, annotation set l2 con-
tains labels of 31 PBMC subtypes including, for instance, 13 T cell subtypes with
comparable transcriptional pro�les. Hence, we expect relatively higher degree
of mixing of di�erent l2 labels in common clusters (heatmap in Supplementary
Fig. S5A) in comparison to the l1 labels.

�e WGI curve converged to low WGIs at k′ ≈ 20 for both annotation sets.
�is is similar to the clustering resolution of k′ = 24 identi�ed with the gap
curve.

3.2.3 Clustering and generating the bubbletree

For clustering of dataset B we chose the original Louvain method and a resolution
parameter r = 0.79 (k′ = 24). First, we constructed a SNN graph based on
A161,764×15, where each vertex (cell) in the SNN graph was connected to its 50
nearest neighbors. Clustering was performed with 20 random starts and up to
100 iterations in each run. �e clusters were organized in a bubbletree using
hierarchical clustering with average linkage (Fig. 2C). For this we used B = 200
bootstrap iterations and drew samples with up to Ne� = 200 cells from each
cluster to compute inter-cluster distances.

�e resulting bubbletree (Fig. 2C) had 24 bubbles with sizes ranging from
19,400 cells (12%, cluster 0) down to 300 cells (0.3%, cluster 23). �e bubbletree
had two major clades and two small outgroup bubbles (Fig. 2C). Clade ‘a’ con-
tained 15 bubbles that accounted for about 65% of the cells in the sample, whereas
clade ‘b’ contained seven bubbles that accounted for about 32% of the cells in
the sample. Nearly all branches in the bubbletree were completely robust. �e
branches between bubble 4 and 6 and between bubble 1 and 7 had lower branch
support as they were found in only 161 (80.5%) and 182 (91%) out of 200 bootstrap
dendrograms, respectively. A biological interpretation of the di�erent clades and
their within-clade branching pa�erns are provided in the following.
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3.2.4 Bubbletree evaluation with annotation set l1

To determine which PBMC subtypes are enriched in each bubble we visualized
the within-bubble relative frequencies of 8 major PBMC subtypes from anno-
tation set l1 (heatmap in Fig. 2D). Note that Figs. 2C and 2D demonstrate that
bubbletrees (Fig. 2C) can be easily and coherently stacked with additional quan-
titative information (Fig. 2D), thus facilitating biological interpretation (see Sup-
plementary Fig. S5 for more extensive stacking).

Fig. 2D shows that most bubbles are enriched with cells from either one
PBMC subtype or a combination of related subtypes (e.g. CD4+ and CD8+ T cells).
Furthermore, bubbles enriched with cells from related PBMC subtypes are close
to each other in the bubbletree; for instance, bubbles 10, 11, and 22 are enriched
with B cells and constitute a robust subclade of the bubbletree. Similarly, bub-
bles 7, 1, 3, 13, 19, 12 and 15 form clade ‘b’ and are enriched with monocytes and
dendritic cells (DCs).

�e bubbles of clade ‘a’ are mostly enriched with lymphocytes, and robust
subclades within clade ‘a’ are formed by sets of bubbles that are enriched with
speci�c lymphocyte subtypes, including T cells, B cells, and NK cells. �e small
outgroup bubble 21 contains a mixture of di�erent lymphocytes. Clade ‘b’ has
seven bubbles that are enriched in monocytes and DCs. �e branches in that
clade form a ladder-like topology in contrast to the more complex nested topol-
ogy of clade ‘a’. �e simpler topology in ‘a’ may be due to the lower heterogene-
ity of circulating monocytes compared to lymphocytes, with classical monocytes
constituting about 85% of all circulating monocyte pool in humans [Patel et al.,
2017].

Clearly separated from clades ‘a’ an ‘b’ is the small outgroup of bubbles 20 of
DCs and 18 consisting of a mixture of cells (‘other’).

Supplementary Section 4 contains a bubbletree analysis based on the more
detailed annotation set l2, revealing enrichment of speci�c PMBC subtypes in
the di�erent bubbles.

3.3 Comparison with known approaches
We compared scBubbletree with UMAP, t-SNE and other popular methods for
scRNA-seq data visualization with respect to visualization clarity, conservation
of local and global data structure.
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3.3.1 Conservation of local structure: qualitative analysis

In the following we compare the ability of the Louvain method to preserve local
structure with those of UMAP and t-SNE. For this analysis we generated conven-
tional UMAP and t-SNE �gures for datasets A and B (Supplementary Fig. S6A-D).

In each �gure, the di�erent bubbles in dataset A and B were represented by
heavily overplo�ed groups of dots in 2D UMAP and t-SNE space so that group
size cannot be discerned from the �gure. To our surprise, some cell lines from
dataset A were split by UMAP and t-SNE into multiple subclusters; for instance,
the cell line H1975 (bubble 4) had three distinct subclusters. �e apparent dis-
tances between these subclusters in the drawing plane was more pronounced in
t-SNE space (Supplementary Fig. S6B). Similarly, cell lines A549 (bubble 0) and
H838 (bubble 1) were split into at least two subclusters of cells (Supplementary
Fig. S6A-B). We realized that the cells from the smaller subclusters of A549 and
H838 had systematically lower numbers of detected RNA molecules compared to
the cells from the larger subclusters (Supplementary Fig. S7C-F). In contrast to
this, the three subclusters in H1975 had comparable numbers of detected RNAs
(Supplementary Fig. 7A-B), i.e. the subcluster structure of cell line H1975 could
not be explained by di�erences in the number of detected RNA molecules. By
using higher clustering resolution as input of Louvain we recovered these sub-
clusters (data not shown). However, this was associated with negligible improve-
ment in the gap and WGI (Fig. 1B-C).

Several conclusions can be drawn from this qualitative analysis. First, vi-
sualization of the local structure of scRNA-seq data with UMAP and t-SNE can
be challenging even for relatively small samples. Second, UMAP and t-SNE are
prone to generating clearly separated visual clusters despite few underlying bi-
ological di�erences [Huang et al., 2022]. Furthermore, UMAP and t-SNE use a
number of hyperparameters, which can have severe impact on the 2D projec-
tion [Huang et al., 2022, McInnes et al., 2018] (Supplementary Fig. S8). Taken
together, it is di�cult to ascertain whether the subclusters in dataset A represent
biologically distinct subpopulations of the main cell lines or technical artifacts
resulting from biological/technical noise.

3.3.2 Preservation of distance structure

Users of conventional methods such as UMAP or t-SNE are tempted to interpret
distances between dots or apparent clusters as indicators of transcriptional sim-
ilarity of the corresponding cells. Yet, several studies [Kobak and Linderman,
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2021, McInnes et al., 2018] have warned that while both, UMAP and t-SNE, con-
sistently preserve distances on a small-scale, accurate preservation of large-scale
distances is not always guaranteed.

To highlight the challenge in preserving large-scale distances with conven-
tional methods, we analyzed UMAP and t-SNE plots of a dataset with over 1.3
million mouse brain cells (Supplementary Fig. S9A-B). �e UMAP and t-SNE plots
su�er from excessive overplo�ing, which hinders visual evaluation of the dis-
tances between cells and clusters. In addition to this, we see large spread (indi-
cated by the wide and overlapping error bars in Supplementary Fig. S9C-D) in
the distances between cells in 20D PCA space over the entire range of distances
in 2D UMAP and t-SNE space, which indicates ambiguous mapping of distances
in 2D UMAP and t-SNE space relative to distances in 20D PCA space. We saw
similar pa�erns in the 2D UMAP and t-SNE plots of dataset B (Supplementary
Fig. S6G-H), even though dataset B is about one order of magnitude smaller than
the dataset of mouse brain cells. As currently available work�ows for scRNA-seq
are able to generate data at similar scale and complexity as in these examples, we
conclude that inference of transcriptional relationships between cells and clus-
ters from UMAP and t-SNE will in general not be reliable.

Bubbletrees by construction should be�er re�ect distances in PCA space in
the dendrogram distances. In fact, Supplementary Figs. S6I-J and 10B demon-
strate that bubbletree distances are consistent with the average distances in PCA
space between cells from the corresponding bubbles. �is was true for distances
on all scales except for intra-bubble distances, which correspond to bubbletree
distance = 0 (distances between bubbles to themselves). For bubbletree distances
equal to 0 we saw consistently small average distances between cells in PCA
space. It is noteworthy that the spread of distances between dots in PCA space
was not uniform over all pairs of bubbles, presumably because the underlying
clusters deviate more or less from homogeneous spherical shapes in PCA space,
leading to the dispersion of inter-bubble cell distances.

3.3.3 Visualization clarity

We assessed the visualization clarity of scBubbletree with respect to two aspects:
1) scalability: the ability to handle large RNA-seq datasets; 2) �exibility: the ease
of incorporating diverse cell a�ributes as part of the main visuals.

Scalability We investigated scalability in the context of the overplo�ing prob-
lem. A high degree of overplo�ing was observed in the 2D UMAP and t-SNE
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maps generated based on dataset A and B (Supplementary Fig. S6A-D). �e over-
plo�ing was particularly excessive in the 2D UMAP and t-SNE maps of dataset
B, where individual dots (cells) were barely visible and clusters of cells appeared
as colored blobs. �ere are several consequences of such massive overplo�ing:
1. failure to grasp data’s local and global structure; 2. inadequate description of
cluster homogeneity in terms of di�erent cell a�ributes; 3. loss of information
about the density of cells across the di�erent clusters; and 4. visual biases, i.e.
users can deliberately or inadvertently emphasize or de-emphasize speci�c cell
a�ributes by assigning the corresponding cells to the top of the cell piles [Freytag
and Lister, 2020].

Various techniques have been proposed to mitigate the overplo�ing problem,
such as, reducing the size of the dots, adding an alpha channel for point trans-
parency, data subse�ing [Hao et al., 2022], hexagonal cell binning [Freytag and
Lister, 2020], applying density-preserving dimensionality reduction [Narayan
et al., 2021] or exploring the data with interactive graphical tools [Hillje et al.,
2020]. However, as the scale of scRNA-seq datasets continues to increase these
countermeasures are of limited help, and most of them even have a negative im-
pact on the clarity of the resulting �gures.

Instead of visualizing individual cells, scBubbletree uses a high-level abstrac-
tion (bubbletree) to summarize scRNA-seq datasets and thereby avoids the over-
plo�ing problem. To demonstrate the high degree of scalability of scBubbletree
in comparison to UMAP and t-SNE, we visualized with each approach a dataset of
over 1.3 million mouse brain cells (Supplementary Fig. S9A-B and S10A). While
both visuals are complex, the bubbletree approach at least o�ers an opportu-
nity to understand the dataset, whereas the UMAP and t-SNE visuals lump all
cell clusters into densely packed areas, making it impossible to understand the
structure of the data. scBubbletree is not the only approach that employs trees to
visualize scRNA-seq data, i.e. approaches such as TooManyCells [Schwartz et al.,
2020] and clustree [Zappia and Oshlack, 2018] use similar strategies to mitigate
the overplo�ing problem.

Flexibility �e �exibility of scBubbletree was compared with that of UMAP,
t-SNE, TooManyCells and clustree. Speci�cally, we assessed the ease with which
each tool is able to integrate and combine multiple cell a�ributes.

Cell a�ributes are visualized in UMAP and t-SNE plots by color-coding each
point according the value of a particular a�ribute (e.g. expression level of a marker
gene). For simultaneous visualization of two or more cell a�ributes, it is current
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practice to generate multiple and o�en small copies of the UMAP or t-SNE plots
in which the individual a�ributes are visualized [Stuart et al., 2019]. Although
this method of integrating and presenting scRNA-seq data is widely used, it suf-
fers from the same and even more shortcomings than individual UMAP and t-
SNE plots.

TooManyCells is more �exible as it uses multiple facets to visualize cell at-
tributes alongside its dendrogram e.g. by adjusting the color-code or the widths
of its branches to for visual summaries (e.g. averages) of continuous cell at-
tributes. TooManyCells can also a�ach pie charts to each leaf-node to visualize
the within-leaf composition of a categorical a�ribute. Similarly, clustree visu-
alizes cell a�ributes as part of its main dendrogram by adjusting the di�erent
visual elements such as colors, sizes, shapes and labels of the leaf-nodes. Plots
that encode information in such a diverse set of visual elements make it di�cult
for the viewer to decode and discover relationships. With scBubbletree we have
therefore limited the number of types of visual elements (dendrogram, bubbles,
and annotations) but made it easy to a�ach to the tree simple, matrix-like plots
(heatmaps, violins) with one matrix row for each bubble (e.g. Fig. 1D or Fig. 2D).
So the tree can be virtually read from le� to right or top to bo�om in a consistent
way. Several of these matrix-like elements can be combined without hampering
analysis by visual overloading (Supplementary Fig. S5).

4 Discussion
To avoid some of the common problems associated scRNA-seq data visualiza-
tion, we designed scBubbletree to convey key properties of cells in ways that
are visually easily accessible and scalable. �ese properties include quantitative
information about local and global similarity of transcription pa�erns and cell
density. �e properties can be �exibly linked to stacks of visually easily acces-
sible additional information, e.g. on marker gene expression, cell type, or infor-
mation from multiomics experiments such as immune cell receptors, surface-
protein expression or methylation levels. �e quantitative nature of its output
lends scBubbletree to applications not only to research but also to quality control
(Supplementary Section 2.4).

Yet, scBubbletree has clearly limitations. For instance, as a part of computing
the dendrogram, the user has to choose a resolution. Although scBubbletree pro-
vides tools that support this choice, some familiarity with the underlying clus-
tering concepts is required which precludes use of scBubbletree in a black-box
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manner. Furthermore, estimating the clustering resolution with get k and get r
can be challenging in terms of computing times and memory for datasets of mil-
lions of cells, as these functions perform repetitive clustering simulations for a set
of clustering resolutions. While the computational burden can be mitigated by
parallelization, scBubbletree does not yet implement data representations that
minimize memory requirements. In terms of its visualization capabilities, the
current version of scBubbletree provides only the most essential functions for
visualization of cell a�ributes. Future developments of the code will enrich its
visualization repertoire in accordance with new developments in single-cell mul-
tiomics.
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Figure 1: scBubbletree analysis of dataset A. (A) scBubbletree work�ow with
main and alternative inputs shown with red and green labels, respectively. (B)
Gap statistic for clustering solutions generated by the Louvain method with vary-
ing clustering resolutions. Vertical error bars are 95% con�dence intervals of the
gap statistic. (C) WGI for clustering solutions in panel B and the predicted cell
lines of dataset A. (D) bubbletree (tree structure, le�) annotated with a heatmap
(right) displaying as rows the within-bubble relative frequencies of di�erent cell
lines. �e bubbletree has �ve bubbles (white points) shown as leaves. Bubble
radii scale linearly with the number of cells in the bubbles. Bubble identities, ab-
solute and relative cell frequencies are shown as labels between bubbletree and
heatmap. Red labels are branch bootstrap support values. Rows in the heatmap
integrate to 100%. (E) Mean normalized expression of �ve marker genes (x-axis)
in each bubble (y-axis). (F) Density distribution of �ve marker gene (column
panels) with normalized expressions of the cells in each bubble shown as violins.
Numbers in heatmap tiles are rounded to the nearest tenth.21
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Figure 2: scBubbletree analysis of dataset B. (A) Gap statistic for clustering solu-
tions generated by Louvain clustering algorithm with varying clustering resolu-
tions. Vertical error bars are 95% con�dence intervals of the gap statistic. (B) WGI
index for clustering solutions by Louvain algorithm and the cell type annotation
sets l1 (gray points and lines) and l2 (black points and lines). (C) bubbletree with
24 bubbles (white points) shown as leaves. Bubble radii scale linearly with the
number of cells in the bubbles. Bubble identities, absolute (in thousands) and rel-
ative cell frequencies are shown as labels. Red branch labels are branch bootstrap
support values. Clades of lymphocytes and monocytes are labeled with symbols
‘a’ and ‘b’. (D) Within-bubble relative frequencies (%) of cell types (l1; x-axis)
rounded to the nearest integer. Rows integrate to 100% (up to rounding error).
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