
SCC: A Service Centered Calculus

Roberto Bruni

Dipartimento di Informatica
Università di Pisa

WS-FM 2006
Wien, Austria, September 8–9, 2006

A joint work with:

M. Boreale, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,

U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos, G. Zavattaro,

Please raise your hand and ask questions any time

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 1 / 58

SCC: A Service Centered Calculus

Roberto Bruni

Dipartimento di Informatica
Università di Pisa

WS-FM 2006
Wien, Austria, September 8–9, 2006

A joint work with:

M. Boreale, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,

U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos, G. Zavattaro,

Please raise your hand and ask questions any time

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 1 / 58

Outline

1 Introduction & Motivation

2 Informal Description

3 Basics & PSC

4 Termination handlers & SCC

5 Concluding Remarks

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 2 / 58

Service Oriented Computing

Features
Service-oriented computing is an
emerging paradigm where services are
understood as

autonomous

platform-independent

computational entities that can be:

described

published

categorised

discovered

dynamically assembled for
developing massively distributed,
interoperable, evolvable systems.

Widespread success

Large companies invested a lot of
efforts and resources to promote
service delivery on a variety of
computing platforms.

e-Expectations

Tomorrow, there will be a plethora of
new services as required for
e-government, e-business, and
e-science, and other areas within the
rapidly evolving Information Society.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 3 / 58

Service Oriented Computing

Features
Service-oriented computing is an
emerging paradigm where services are
understood as

autonomous

platform-independent

computational entities that can be:

described

published

categorised

discovered

dynamically assembled for
developing massively distributed,
interoperable, evolvable systems.

Widespread success

Large companies invested a lot of
efforts and resources to promote
service delivery on a variety of
computing platforms.

e-Expectations

Tomorrow, there will be a plethora of
new services as required for
e-government, e-business, and
e-science, and other areas within the
rapidly evolving Information Society.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 3 / 58

Service Oriented Computing

Features
Service-oriented computing is an
emerging paradigm where services are
understood as

autonomous

platform-independent

computational entities that can be:

described

published

categorised

discovered

dynamically assembled for
developing massively distributed,
interoperable, evolvable systems.

Widespread success

Large companies invested a lot of
efforts and resources to promote
service delivery on a variety of
computing platforms.

e-Expectations

Tomorrow, there will be a plethora of
new services as required for
e-government, e-business, and
e-science, and other areas within the
rapidly evolving Information Society.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 3 / 58

Sensoria (http://www.sensoria-ist.eu)

IST-FET Integrated Project funded by the EU in the GC Initiative (6th FP).

Industrial consortia are developing orchestration languages, targeting the
standardization of Web services and xml-centric technologies, but they lack clear

semantic foundations!

Aim
Developing a novel, comprehensive approach to the engineering of software
systems for service-oriented overlay computers.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 4 / 58

http://www.sensoria-ist.eu

Sensoria (http://www.sensoria-ist.eu)

IST-FET Integrated Project funded by the EU in the GC Initiative (6th FP).

Industrial consortia are developing orchestration languages, targeting the
standardization of Web services and xml-centric technologies, but they lack clear

semantic foundations!

Aim
Developing a novel, comprehensive approach to the engineering of software
systems for service-oriented overlay computers.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 4 / 58

http://www.sensoria-ist.eu

Sensoria (http://www.sensoria-ist.eu)

IST-FET Integrated Project funded by the EU in the GC Initiative (6th FP).

Industrial consortia are developing orchestration languages, targeting the
standardization of Web services and xml-centric technologies, but they lack clear

semantic foundations!

Aim
Developing a novel, comprehensive approach to the engineering of software
systems for service-oriented overlay computers.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 4 / 58

http://www.sensoria-ist.eu

Sensoria Consortium

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 5 / 58

A General Theory of Services

The strategy of Sensoria

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi

A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining services.

Core calculi (WP 2)

We seek for a small set of primitives that might serve as a basis for
formalizing and programming service oriented applications over global
computers.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 6 / 58

A General Theory of Services

The strategy of Sensoria

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi

A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining services.

Core calculi (WP 2)

We seek for a small set of primitives that might serve as a basis for
formalizing and programming service oriented applications over global
computers.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 6 / 58

A General Theory of Services

The strategy of Sensoria

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi

A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining services.

Core calculi (WP 2)

We seek for a small set of primitives that might serve as a basis for
formalizing and programming service oriented applications over global
computers.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 6 / 58

Service Centered Calculus: General Principles

As an outcome of an initial study pursued during the first months of
Sensoria, we propose a process calculus that features explicit notions of

service definition

service invocation

session handling

Sources of inspiration

We have integrated complementary aspects from

π-calculus (naming primitives)
Orc (pipelining and pruning of activities)
webπ, cjoin, Sagas (primitives for LRT and compensations)

All relevant to the SOC paradigm, but so far

not available in a single calculus
not used in a fully disciplined way when available

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 7 / 58

Service Centered Calculus: General Principles

As an outcome of an initial study pursued during the first months of
Sensoria, we propose a process calculus that features explicit notions of

service definition

service invocation

session handling

Sources of inspiration

We have integrated complementary aspects from

π-calculus (naming primitives)
Orc (pipelining and pruning of activities)
webπ, cjoin, Sagas (primitives for LRT and compensations)

All relevant to the SOC paradigm, but so far

not available in a single calculus
not used in a fully disciplined way when available

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 7 / 58

Service Centered Calculus: Key Aspects

Syntax and Semantics Design

service definition exposes: protocol + generic termination handler

service invocation exposes: protocol + specific termination handler

service sessions are: two-party + private

interaction between protocols: bi-directional

nested sessions: values can be returned outside sessions (one level up)

local sessions termination: autonomous + on partner’s request

session termination activates partner’s termination handler (if any)

operational semantics: reduction-based

Variants

Discussed during the presentation and at the end

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 8 / 58

Service Centered Calculus: Key Aspects

Syntax and Semantics Design

service definition exposes: protocol + generic termination handler

service invocation exposes: protocol + specific termination handler

service sessions are: two-party + private

interaction between protocols: bi-directional

nested sessions: values can be returned outside sessions (one level up)

local sessions termination: autonomous + on partner’s request

session termination activates partner’s termination handler (if any)

operational semantics: reduction-based

Variants

Discussed during the presentation and at the end

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 8 / 58

In This Talk

Advice

The formal presentation of SCC involves some key notational and
technical solutions.

Roadmap

We will give a gentle, step-by-step presentation of the various ingredients:

1 first a reduced fragment, called Persistent Session Calculus (PSC),
then full Service Centered calculus (SCC)

2 a number of programming samples that demonstrate flexibility of the
chosen set of primitives (we follow the “everything is a service”
paradigm)

3 we show the implementability of Orc primitives (not available in
π-calculus) and, as a consequence, of van der Aalst’s most common
Workflow Patterns

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 9 / 58

Outline

1 Introduction & Motivation

2 Informal Description

3 Basics & PSC

4 Termination handlers & SCC

5 Concluding Remarks

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 10 / 58

Service Invocation, Graphically

P

Q v

u

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 11 / 58

Bidirectional Session, Graphically

Q

P

v

Pu Qu

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 12 / 58

Intra-Session Communication, Graphically

v R

w

s s

u

T

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 13 / 58

Intra-Session Communication, Graphically

v R

s s

u

T w

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 13 / 58

Intra-Session Communication, Graphically

v R

s s

T wu

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 13 / 58

Nested Services and Multi-Sessions, Graphically

v

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 14 / 58

Nested Services and Multi-Sessions, Graphically

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 14 / 58

Returning Values, Graphically

s s

T
return u

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 15 / 58

Returning Values, Graphically

s s

T

u

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 15 / 58

Returning Values, Graphically

s s

T u

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 15 / 58

Outline

1 Introduction & Motivation

2 Informal Description

3 Basics & PSC

4 Termination handlers & SCC

5 Concluding Remarks

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 16 / 58

Service Definition

Service definition

s ⇒ (x)P

s is the service name

x is the formal parameter

P is the actual implementation of the service.

Examples: Successor and prime teller

succ ⇒ (x)x + 1

Received an integer communicates back its successor.

prime ⇒ (n)P

Received an integer n communicates back the n-th prime number.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 17 / 58

Service Definition

Service definition

s ⇒ (x)P

s is the service name

x is the formal parameter

P is the actual implementation of the service.

Examples: Successor and prime teller

succ ⇒ (x)x + 1

Received an integer communicates back its successor.

prime ⇒ (n)P

Received an integer n communicates back the n-th prime number.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 17 / 58

Service Invocation

Service invocation

s{(x)P} ⇐ Q

each new value v produced by the client Q will trigger a new
invocation of service s (like Orc sequencing Q > x > P)

for each invocation, a suitable instance P{v/x} of the process P ,
implements the client-side protocol

Example: A sample client

prime{(x)(y)return y} ⇐ 5

Shorthand notation

The client side makes no use of the formal parameter x : we abbreviate it as
prime{(−)(y)return y} ⇐ 5

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 18 / 58

Service Invocation

Service invocation

s{(x)P} ⇐ Q

each new value v produced by the client Q will trigger a new
invocation of service s (like Orc sequencing Q > x > P)

for each invocation, a suitable instance P{v/x} of the process P ,
implements the client-side protocol

Example: A sample client

prime{(x)(y)return y} ⇐ 5

Shorthand notation

The client side makes no use of the formal parameter x : we abbreviate it as
prime{(−)(y)return y} ⇐ 5

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 18 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 19 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 19 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 19 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 19 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 20 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 20 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 20 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 20 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 20 / 58

Session Returning Values

Session returning values

r ⊲ (P | return u.Q) → u | r ⊲ (P |Q)

Values can be returned outside the session to the enclosing environment
and used for invoking other services.

Example: Returning the 5th prime number

(νr)
(

... r ⊲ 0 ... | ... 11 | r ⊲ 0 ...
)

A taste of structural congruence

Terminated protocols are immaterial

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 21 / 58

Session Returning Values

Session returning values

r ⊲ (P | return u.Q) → u | r ⊲ (P |Q)

Values can be returned outside the session to the enclosing environment
and used for invoking other services.

Example: Returning the 5th prime number

(νr)
(

... r ⊲ 0 ... | ... 11 | r ⊲ 0 ...
)

A taste of structural congruence

Terminated protocols are immaterial

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 21 / 58

Session Returning Values

Session returning values

r ⊲ (P | return u.Q) → u | r ⊲ (P |Q)

Values can be returned outside the session to the enclosing environment
and used for invoking other services.

Example: Returning the 5th prime number

(νr)
(

... r ⊲ 0 ... | ... 11 | r ⊲ 0 ...
)

A taste of structural congruence

Terminated protocols are immaterial

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 21 / 58

Functional Flavour

A “functional” protocol

A common pattern of service invocation is:

s{(−)(y)return y} ⇐ P

where s is invoked on every value that P produces

Shorthand notation

s ⇐ P

Example: Successor of a prime

We write
succ ⇐ (prime ⇐ 5)

instead of succ{(−)(w)return w} ⇐ (prime{(−)(y)return y} ⇐ 5)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 22 / 58

Functional Flavour

A “functional” protocol

A common pattern of service invocation is:

s{(−)(y)return y} ⇐ P

where s is invoked on every value that P produces

Shorthand notation

s ⇐ P

Example: Successor of a prime

We write
succ ⇐ (prime ⇐ 5)

instead of succ{(−)(w)return w} ⇐ (prime{(−)(y)return y} ⇐ 5)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 22 / 58

Functional Flavour

A “functional” protocol

A common pattern of service invocation is:

s{(−)(y)return y} ⇐ P

where s is invoked on every value that P produces

Shorthand notation

s ⇐ P

Example: Successor of a prime

We write
succ ⇐ (prime ⇐ 5)

instead of succ{(−)(w)return w} ⇐ (prime{(−)(y)return y} ⇐ 5)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 22 / 58

Blind Invocation

Vacuous protocol

If no reply is expected from a service, the client can employ a vacuous
protocol

a{(−)0} ⇐ P

Shorthand notation

a{} ⇐ P

Example: Printing values

A client invokes the service prime and then prints the result:

print{} ⇐ (prime ⇐ 5)

In this case, the service print is invoked with vacuous protocol (z)0

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 23 / 58

Blind Invocation

Vacuous protocol

If no reply is expected from a service, the client can employ a vacuous
protocol

a{(−)0} ⇐ P

Shorthand notation

a{} ⇐ P

Example: Printing values

A client invokes the service prime and then prints the result:

print{} ⇐ (prime ⇐ 5)

In this case, the service print is invoked with vacuous protocol (z)0

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 23 / 58

Blind Invocation

Vacuous protocol

If no reply is expected from a service, the client can employ a vacuous
protocol

a{(−)0} ⇐ P

Shorthand notation

a{} ⇐ P

Example: Printing values

A client invokes the service prime and then prints the result:

print{} ⇐ (prime ⇐ 5)

In this case, the service print is invoked with vacuous protocol (z)0

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 23 / 58

A Taste of SCC: Session Termination

Handling interruption

A protocol (on both sides of a session) can be interrupted (e.g. due to the
occurrence of an unexpected event), and interruption can be notified to a
suitable handler at the partner site.

Example: Printing values with faulty printers

Below, a suitable service fault handles printer failures:

print{} ⇐fault (prime ⇐ 5)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 24 / 58

PSC Syntax

Grammar

We presuppose a countable set N of names a, b, c , ..., r , s, ..., x , y , ..., with
a bijection · on N s.t. a = a for each name a.

P ,Q ::= 0 Nil
| a.P Concretion (pass a to session partner)
| (x)P Abstraction (take from session partner)
| return a.P Return Value (out of current session)
| s ⇒ (x)P Service Definition
| s{(x)P} ⇐ Q Service Invocation
| r ⊲ P Session Side
|P |Q Parallel Composition
| (νa)P New Name

(operators are listed in decreasing order of precedence)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 25 / 58

PSC Structural Congruence

Axioms

P ≡ Q if P =α Q

(P |Q) |R ≡ P | (Q |R)
P |Q ≡ Q |P
P |0 ≡ P

(νx)(νy)P ≡ (νy)(νx)P
(νx)0 ≡ 0

P | (νx)Q ≡ (νx)(P |Q) if x /∈ fn(P)
r ⊲ (νx)P ≡ (νx)(r ⊲ P) if x 6∈ {r , r}

s{(x)P} ⇐ (νy)Q ≡ (νy)(r{(x)P} ⇐ Q) if y /∈ fn((x)P) ∪ {r , r}

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 26 / 58

PSC Operational Semantics

Active contexts

C, D ::= J·K | C |P | a{(x)P} ⇐ C | a ⊲ C | (νa)C

An active context is a process with a hole J·K in an active position.
We denote by CJPK the process obtained by filling the hole in C with P

Reductions

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

CJ r ⊲ (P |u.Q) K | DJ r ⊲ (R |(z)S) K → CJ r ⊲ (P |Q) K | DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

r ⊲ (P |return u.Q) → u | r ⊲ (P |Q)

CJPK → CJP ′K if P ≡ Q, Q → Q ′, Q ′ ≡ P ′

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 27 / 58

PSC: A Brief Discussion

Persistency

We call it PSC for persistent session calculus:

sessions can be established

a session can be garbage collected when the protocol has run entirely,

but sessions can neither be aborted nor closed by one of the parties

A note on well-formedness

A process is well-formed if (assuming by α-conversion that all its bound
names are different from each other and from the free names):

each session name r occurs only once (r ⊲ 0 is immaterial)

it is allowed to have both sessions r ⊲ Q and r ⊲ Q ′.

The use of dual names is not stricly necessary, but we prefer to keep this
distinction to make evident that once the protocol is started there might
still be some reasons for distinguishing the two side ends (e.g., types).

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 28 / 58

PSC Examples: Recursion - I

Shorthand notation

We presuppose a distinct name • to be used as a unit value.

Clock (service side)

Service invocations can be nested recursively inside a service definition:

clock ⇒ (−)

(

return tick

| clock{} ⇐ •

)

Invoked with clock{} ⇐ •, produces an infinite number of ticks...
but just on the service-side!

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 29 / 58

PSC Examples: Recursion - I

Shorthand notation

We presuppose a distinct name • to be used as a unit value.

Clock (service side)

Service invocations can be nested recursively inside a service definition:

clock ⇒ (−)

(

return tick

| clock{} ⇐ •

)

Invoked with clock{} ⇐ •, produces an infinite number of ticks...
but just on the service-side!

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 29 / 58

PSC Examples: Recursion - II

Clock (client side)

To produce the ticks on a specific location different from the service-side,
the service to be invoked can be written as

remoteClock ⇒ (s)

(

s{} ⇐ tick

| remoteClock{} ⇐ s

)

and a local publishing service

pub ⇒ (t)return t

must be located where the ticks must be produced.
Then invoke the service as below:

remoteClock{} ⇐ pub

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 30 / 58

PSC Examples: Stream Connection - 1

Observation

If P is a process that produces a stream of values then the composition
q ⇐ P invokes q infinitely often.

Question

The service seen at the end of the previous example produces an
unbounded stream of values.
Is it possible to deploy some sort of pipeline between two services p and q

in such a way that q is invoked for each value produced by p?
Or equivalently, is it possible to design a client-side protocol for collecting
all the values returned by p?

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 31 / 58

PSC Examples: Stream Connection - II

Trivial recursion does not work!
One might think to exploit recursion to deploy local receivers of the form
(x)return x , but the implicit nesting of sessions would cause all such receivers to
collect values only from different sessions than the original one.

No Replicator!

Extending the syntax with π-calculus like replicator !P :

pipe = (−)!(x)return x

No Code Passing!

Extending the syntax with return P .Q, whose semantics is:

r ⊲ (R |return P .Q) → P | r ⊲ (R |Q)

Replication can then be coded as follows:

!P = (ν rec)
(

rec ⇒ (−)(return P | rec{} ⇐ •) | rec{} ⇐ •
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 32 / 58

PSC Examples: Stream Connection - II

Trivial recursion does not work!
One might think to exploit recursion to deploy local receivers of the form
(x)return x , but the implicit nesting of sessions would cause all such receivers to
collect values only from different sessions than the original one.

No Replicator!

Extending the syntax with π-calculus like replicator !P :

pipe = (−)!(x)return x

No Code Passing!

Extending the syntax with return P .Q, whose semantics is:

r ⊲ (R |return P .Q) → P | r ⊲ (R |Q)

Replication can then be coded as follows:

!P = (ν rec)
(

rec ⇒ (−)(return P | rec{} ⇐ •) | rec{} ⇐ •
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 32 / 58

PSC Examples: Stream Connection - II

Trivial recursion does not work!
One might think to exploit recursion to deploy local receivers of the form
(x)return x , but the implicit nesting of sessions would cause all such receivers to
collect values only from different sessions than the original one.

No Replicator!

Extending the syntax with π-calculus like replicator !P :

pipe = (−)!(x)return x

No Code Passing!

Extending the syntax with return P .Q, whose semantics is:

r ⊲ (R |return P .Q) → P | r ⊲ (R |Q)

Replication can then be coded as follows:

!P = (ν rec)
(

rec ⇒ (−)(return P | rec{} ⇐ •) | rec{} ⇐ •
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 32 / 58

PSC Examples: Stream Connection - III

We can use a publisher!

Without extending the syntax of the calculus, a solution is to install a
local publishing service like pub above, which must be passed to p (and
properly used therein).

Conference announcements

For instance, if EATCS and EAPLS return streams of conference
announcements on the received service name, then

emailMe{} ⇐





pub ⇒ (s)return s

| EATCS{} ⇐ pub

| EAPLS{} ⇐ pub





will send you all the announcements collected from EATCS and EAPLS .
More concisely, this can be equivalently written as

EATCS{} ⇐ emailMe | EAPLS{} ⇐ emailMe.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 33 / 58

PSC Examples: Stream Connection - III

We can use a publisher!

Without extending the syntax of the calculus, a solution is to install a
local publishing service like pub above, which must be passed to p (and
properly used therein).

Conference announcements

For instance, if EATCS and EAPLS return streams of conference
announcements on the received service name, then

emailMe{} ⇐





pub ⇒ (s)return s

| EATCS{} ⇐ pub

| EAPLS{} ⇐ pub





will send you all the announcements collected from EATCS and EAPLS .
More concisely, this can be equivalently written as

EATCS{} ⇐ emailMe | EAPLS{} ⇐ emailMe.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 33 / 58

PSC Examples: Stream Connection - III

We can use a publisher!

Without extending the syntax of the calculus, a solution is to install a
local publishing service like pub above, which must be passed to p (and
properly used therein).

Conference announcements

For instance, if EATCS and EAPLS return streams of conference
announcements on the received service name, then

emailMe{} ⇐





pub ⇒ (s)return s

| EATCS{} ⇐ pub

| EAPLS{} ⇐ pub





will send you all the announcements collected from EATCS and EAPLS .
More concisely, this can be equivalently written as

EATCS{} ⇐ emailMe | EAPLS{} ⇐ emailMe.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 33 / 58

More on PSC

If you want to see more on PSC...

The paper in the proceedings includes:

a bookRoom service, that exploits a more elaborated (two-way)
client-side protocol

the encoding of lazy λ-calculus in PSC

the encoding of PSC in π-calculus

the vice versa is not easy because of sessioning
note also that service definition and invocation are not prefixes

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 34 / 58

Outline

1 Introduction & Motivation

2 Informal Description

3 Basics & PSC

4 Termination handlers & SCC

5 Concluding Remarks

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 35 / 58

From PSC to SCC - I

Once the two protocols r ⊲ P1 at client-side and r ⊲ P2 at service-side are
activated, the session is garbage collected by the structural congruence
only when the protocols reduce to 0.

Many sessions can never reduce to 0, e.g., those containing service
definitions!

Also, one may want to explicit program session termination, for instance in
order to implement cancellation workflow patterns or Orc’s asymmetric

parallel or to manage abnormal events.

Termination handler

The termination handler service is associated to sessions on their
instantiation. The intuition that we follow is that the termination of the
session on one side, should be communicated to the opposite side.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 36 / 58

From PSC to SCC - I

Once the two protocols r ⊲ P1 at client-side and r ⊲ P2 at service-side are
activated, the session is garbage collected by the structural congruence
only when the protocols reduce to 0.

Many sessions can never reduce to 0, e.g., those containing service
definitions!

Also, one may want to explicit program session termination, for instance in
order to implement cancellation workflow patterns or Orc’s asymmetric

parallel or to manage abnormal events.

Termination handler

The termination handler service is associated to sessions on their
instantiation. The intuition that we follow is that the termination of the
session on one side, should be communicated to the opposite side.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 36 / 58

From PSC to SCC - I

Once the two protocols r ⊲ P1 at client-side and r ⊲ P2 at service-side are
activated, the session is garbage collected by the structural congruence
only when the protocols reduce to 0.

Many sessions can never reduce to 0, e.g., those containing service
definitions!

Also, one may want to explicit program session termination, for instance in
order to implement cancellation workflow patterns or Orc’s asymmetric

parallel or to manage abnormal events.

Termination handler

The termination handler service is associated to sessions on their
instantiation. The intuition that we follow is that the termination of the
session on one side, should be communicated to the opposite side.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 36 / 58

From PSC to SCC - II

Extending sessions

A service name k, identifying the so-called termination handler

service, can be associated to each session: r ⊲k P

The first time the protocol P running inside the session invokes such
a service k, the session is closed

Extending services: A slight asymmetry

The syntax of clients becomes: a{(x)P} ⇐k Q

(we added the name k of the termination handler service to be
associated to the session instantiated on the service-side)

Services are now specified with the process a ⇒ (x)P : (y)T
(an additional protocol (y)T is specified which represents the body of
a fresh termination handler service that will be associated to the
corresponding session on the client-side).

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 37 / 58

From PSC to SCC - II

Extending sessions

A service name k, identifying the so-called termination handler

service, can be associated to each session: r ⊲k P

The first time the protocol P running inside the session invokes such
a service k, the session is closed

Extending services: A slight asymmetry

The syntax of clients becomes: a{(x)P} ⇐k Q

(we added the name k of the termination handler service to be
associated to the session instantiated on the service-side)

Services are now specified with the process a ⇒ (x)P : (y)T
(an additional protocol (y)T is specified which represents the body of
a fresh termination handler service that will be associated to the
corresponding session on the client-side).

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 37 / 58

SCC Syntax

Grammar

P ,Q,T , . . . ::= 0 Nil
| a.P Concretion
| (x)P Abstraction
| return a.P Return Value
| a ⇒ (x)P : (y)T Service Definition
| a{(x)P} ⇐k Q Service Invocation
| a ⊲k P Session
|P |Q Parallel Composition
| (νa)P New Name

A special name close is reserved for the specification of session protocols.

Shorthand notation

We write a ⇒ (x)P for a ⇒ (x)P : (y)0.
We also omit k in a{(x)P} ⇐k Q and a ⇐k Q when it is not relevant.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 38 / 58

SCC Operational Semantics - I

Structural congruence and active contexts

As before (but over the extended syntax).

Termination names

An auxiliary function tn is defined on active contexts that keeps track of
the termination names associated to sessions that enclose the hole:

tn(J·K) = ∅ tn(C|P) = tn(a{(x)P} ⇐s C) = tn(C)
tn(a ⊲s C) = tn(C) ∪ {s} tn((νa)C) = tn(C) \ {a}

This function is used to check whether a service invocation should be
interpreted as a closing signal for some of the enclosing sessions.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 39 / 58

SCC Operational Semantics - II

CJ s ⇒ (x)P : (z)T K |
DJ s{(y)P ′} ⇐k (Q|u.R) K → (νr , k ′)

0

B

B

B

B

B

B

@

C

u
v

s ⇒ (x)P : (z)T |

r ⊲k

„

k ′ ⇒ (z)T{k/close } |

P{u/x}{
k/close }

«

}
~ |

D

s
r ⊲k′ P ′{u/y}{

k′/close } |
s{(y)P ′} ⇐k (Q|R)

{

1

C

C

C

C

C

C

A

if s 6∈ tn(D), r , k ′ are fresh and u, s, k not bound by C,D

r ⊲s DJ s{(y)P} ⇐k (Q|u.R) K → s{} ⇐k u

if s 6∈ tn(D) and u, s, k not bound by D

CJ r ⊲k (P|u.Q) K |
DJ r ⊲k′ (R|(z)S) K →

CJ r ⊲k (P|Q) K |
DJ r ⊲k′ (S{u/z} |R) K

if u, r not bound by C,D

r ⊲k (P|return u.Q) → u | r ⊲k (P|Q)

CJ P K → CJ P ′ K if P ≡ Q, Q → Q ′, Q ′ ≡ P ′

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 40 / 58

SCC Examples: Closure Protocol

A typical usage of termination handler services is the closure of the current
session .

A typical service-side closure protocol

s ⇒ (x)P ′ : (y)close {} ⇐ y

A typical client-side closure protocol

End , close {} ⇐ (end ⇒ (x)return x))

End is designed to be included in the client-side protocol:

(ν end)s{ (y)
(

P |End
)

} ⇐end v

Closing the client-side session will in turn activate the service-side
termination handler.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 41 / 58

SCC Examples: Closure Protocol

A typical usage of termination handler services is the closure of the current
session .

A typical service-side closure protocol

s ⇒ (x)P ′ : (y)close {} ⇐ y

A typical client-side closure protocol

End , close {} ⇐ (end ⇒ (x)return x))

End is designed to be included in the client-side protocol:

(ν end)s{ (y)
(

P |End
)

} ⇐end v

Closing the client-side session will in turn activate the service-side
termination handler.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 41 / 58

SCC Examples: Closure Protocol

A typical usage of termination handler services is the closure of the current
session .

A typical service-side closure protocol

s ⇒ (x)P ′ : (y)close {} ⇐ y

A typical client-side closure protocol

End , close {} ⇐ (end ⇒ (x)return x))

End is designed to be included in the client-side protocol:

(ν end)s{ (y)
(

P |End
)

} ⇐end v

Closing the client-side session will in turn activate the service-side
termination handler.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 41 / 58

SCC Examples: Service Update

Soccer world champion

SWC ⇒ (−)brasil

When a team becomes the new world champion then the service must be updated!

In PSC there is no way to cancel a definition and replace it with a new one.

By contrast, in SCC we can define the termination handler

new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

to be run in parallel with

r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)

For example, consider the recent invocation

update{} ⇐ italy

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 42 / 58

SCC Examples: Service Update

Soccer world champion

SWC ⇒ (−)brasil

When a team becomes the new world champion then the service must be updated!

In PSC there is no way to cancel a definition and replace it with a new one.

By contrast, in SCC we can define the termination handler

new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

to be run in parallel with

r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)

For example, consider the recent invocation

update{} ⇐ italy

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 42 / 58

SCC Examples: Service Update - II

And the winner is...





update{} ⇐ italy

| new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

| r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)





→ (νa)

(

update{} ⇐ 0 | ā ⊲ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | a ⊲ return italy)
)

)

→ (νa)

(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | italy | a ⊲ 0)
)

)

→
(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| new{} ⇐new italy
)

→

(νb)





update{} ⇐ 0 | new ⇒ (z)
(

...
)

| b ⊲new

(

SWC ⇒ (−)italy | new{} ⇐new (update ⇒ (y)return y)
)

| new{} ⇐new 0 | b̄ ⊲ 0





Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 43 / 58

SCC Examples: Service Update - II

And the winner is...





update{} ⇐ italy

| new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

| r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)





→ (νa)

(

update{} ⇐ 0 | ā ⊲ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | a ⊲ return italy)
)

)

→ (νa)

(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | italy | a ⊲ 0)
)

)

→
(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| new{} ⇐new italy
)

→

(νb)





update{} ⇐ 0 | new ⇒ (z)
(

...
)

| b ⊲new

(

SWC ⇒ (−)italy | new{} ⇐new (update ⇒ (y)return y)
)

| new{} ⇐new 0 | b̄ ⊲ 0





Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 43 / 58

SCC Examples: Service Update - II

And the winner is...





update{} ⇐ italy

| new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

| r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)





→ (νa)

(

update{} ⇐ 0 | ā ⊲ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | a ⊲ return italy)
)

)

→ (νa)

(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | italy | a ⊲ 0)
)

)

→
(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| new{} ⇐new italy
)

→

(νb)





update{} ⇐ 0 | new ⇒ (z)
(

...
)

| b ⊲new

(

SWC ⇒ (−)italy | new{} ⇐new (update ⇒ (y)return y)
)

| new{} ⇐new 0 | b̄ ⊲ 0





Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 43 / 58

SCC Examples: Service Update - II

And the winner is...





update{} ⇐ italy

| new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

| r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)





→ (νa)

(

update{} ⇐ 0 | ā ⊲ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | a ⊲ return italy)
)

)

→ (νa)

(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | italy | a ⊲ 0)
)

)

→
(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| new{} ⇐new italy
)

→

(νb)





update{} ⇐ 0 | new ⇒ (z)
(

...
)

| b ⊲new

(

SWC ⇒ (−)italy | new{} ⇐new (update ⇒ (y)return y)
)

| new{} ⇐new 0 | b̄ ⊲ 0





Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 43 / 58

SCC Examples: Service Update - II

And the winner is...





update{} ⇐ italy

| new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

| r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)





→ (νa)

(

update{} ⇐ 0 | ā ⊲ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | a ⊲ return italy)
)

)

→ (νa)

(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | italy | a ⊲ 0)
)

)

→
(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| new{} ⇐new italy
)

→

(νb)





update{} ⇐ 0 | new ⇒ (z)
(

...
)

| b ⊲new

(

SWC ⇒ (−)italy | new{} ⇐new (update ⇒ (y)return y)
)

| new{} ⇐new 0 | b̄ ⊲ 0





Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 43 / 58

SCC Examples: Encoding Orc in SCC - I

SCC as a service orchestration language

To evaluate the expressiveness and usability of SCC as a language for
service orchestration, one has to challenge its ability of encoding some
frequently used service composition patterns.

Workflow patterns

A library of basic patterns, called the workflow patterns, has been
identified by van der Aalst et al.

Orc can conveniently model most workflow patterns! [Coordination’06]

The Orc challenge

If we can show that SCC can encode Orc, then by transitivity we can
implement van der Aalst’s workflow patterns.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 44 / 58

SCC Examples: Encoding Orc in SCC - I

SCC as a service orchestration language

To evaluate the expressiveness and usability of SCC as a language for
service orchestration, one has to challenge its ability of encoding some
frequently used service composition patterns.

Workflow patterns

A library of basic patterns, called the workflow patterns, has been
identified by van der Aalst et al.

Orc can conveniently model most workflow patterns! [Coordination’06]

The Orc challenge

If we can show that SCC can encode Orc, then by transitivity we can
implement van der Aalst’s workflow patterns.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 44 / 58

SCC Examples: Encoding Orc in SCC - I

SCC as a service orchestration language

To evaluate the expressiveness and usability of SCC as a language for
service orchestration, one has to challenge its ability of encoding some
frequently used service composition patterns.

Workflow patterns

A library of basic patterns, called the workflow patterns, has been
identified by van der Aalst et al.

Orc can conveniently model most workflow patterns! [Coordination’06]

The Orc challenge

If we can show that SCC can encode Orc, then by transitivity we can
implement van der Aalst’s workflow patterns.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 44 / 58

SCC Examples: Encoding Orc in SCC - II

While a value is trivially encoded as itself, i.e., [[u]] = u, for variables (and
thus for actual parameters) we need two different encodings, depending on
whether they are passed by name or evaluated.

We distinguish the two encodings by different subscripts:

[[x]]n = x [[x]]v = x ⇐ •

The evaluation of a variable x is encoded as a request for the current
value to the variable manager of x .

Variable managers are created by both sequential composition and
asymmetric parallel composition.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 45 / 58

SCC Examples: Encoding Orc in SCC - II

[[E (x) , P]] = E ⇒ (x)[[P]]

[[a(p)]] = a ⇐ [[p]]v

[[x(p)]] = (νforw , pub)
(

forw{} ⇐ [[x]]v |

forw ⇒ (a)pub{} ⇐ [[a(p)]] |

pub ⇒ (y)return y
)

[[E (p)]] = E ⇐ [[p]]n

[[P |Q]] = [[P]]|[[Q]]

[[P > x > Q]] = (νz, pub)
(

z{} ⇐ [[P]] |

z ⇒ (y)(νx)(x ⇒ (−)y | pub{} ⇐ [[Q]]) |

pub ⇒ (y)return y
)

[[Q where x :∈ P]] = (νx , z, w)
(

[[Q]] |

z ⇒ (y)(x ⇒ (−)y) |

w{} ⇐z • |

w ⇒ (−)(close {} ⇐ [[P]])
)

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 46 / 58

From Orc to SCC: An Example

Emailing news in Orc

Let us consider the Orc expression

CNN(d)|BBC (d) > x > email(x)

which invokes the news services of both CNN and BBC asking for news of
day d . For each reply it sends an email (to a default address) with the
received news. Thus this expression can send from zero up to two emails.
The SCC encoding is as follows:

(νz , pub)
(

z{} ⇐ (CNN ⇐ d |BBC ⇐ d) |
z ⇒ (y)(νx)(x ⇒ (−)y | pub{} ⇐ email ⇐ x ⇐ •) |
pub ⇒ (y)return y

)

We have supposed here to have CNN , BBC and email available as
services.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 47 / 58

Outline

1 Introduction & Motivation

2 Informal Description

3 Basics & PSC

4 Termination handlers & SCC

5 Concluding Remarks

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 48 / 58

Concluding Remarks

What’s new?
The main novelty regards session handling mechanisms for the definition of

session naming and scoping

structured interaction protocols

service interruption, cancelation and update (dynamic environment)

In particular

The protocols to be run within the service-side / client-side session are
well-exposed in the syntax of the calculus to favour type checking, service
conformance check, service discovery

While Orc’s cancelation is too demanding (it can destroy a wide area
computation), SCC has just a local termination that activates a proper
handler at the partner site.

And why not just π?

Higher-level primitives can favour and make more scalable the development
of typing systems and proof techniques.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 49 / 58

Future Work

Alternatives and Future extensions

Ongoing discussions about:

Multi-party sessioning

Replicator / recursion / return P

Synchronized termination

Next issues on the stack:

Distribution

Types

Long-running transactions and compensations

Delegation

XML querying

SLA and QoS

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 50 / 58

THANKS!

Question? ⇒ (q)selectCoAuthor ⇐ q

| selectCoAuthor ⇒ (q)Antonio ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Davide ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Francisco ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Gianluigi ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Ivan ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Luis ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)MicheleB ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)MicheleL ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Rocco ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Ugo ⇐selectCoAuthor q

| selectCoAuthor ⇒ (q)Vasco ⇐selectCoAuthor q

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 51 / 58

PSC Examples: News Streaming

Programming Pattern

The service pub (or alike) can be useful in many applications.

In fact, in PSC sessions cannot be closed and therefore recursive invocations on
the client-side are nested at increasing depth (while the return instruction can
move values only one level up).

News Streaming (client side)

A recursive process that repeatedly invokes service s on value x with publishing
service p is shown below:

rec ⇒ (s, x , p)s

{

(−)

(

(y)p{} ⇐ y

| rec{} ⇐ 〈s, x , p〉

) }

⇐ x

Sample of invocation of the service rec :

rec{} ⇐ 〈ANSA, •, pub〉 | pub ⇒ (x)return x

that returns the stream of news obtained from the ANSA service.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 52 / 58

PSC Examples: Room Booking

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCCnum.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation, it gets (from the local service
avail) and passes to the client the set of available rooms. The client sends her selection
cs. A fresh reservation code is sent to the client. The client sends her credit card
number cc. The service debits the cost to the credit card (via a suitable electronic
payment service epay). Finally, if everything is ok, the client receives the confirmation id
i generated by epay .
Note that we suppose a service select for interacting with the user and price that
computes the price of the chosen room.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 53 / 58

PSC Examples: Encoding of the lazy λ-calculus

The translation is in the spirit of Milner’s π-calculus encoding:

JxKp = x{} ⇐ p

Jλx .MKp = p ⇒ (x)(q)JMKq

JM NKp = (νm)(νn)





JMKm

| n ⇒ (s)JNKs

| m{(−)p} ⇐ n





The more important differences

1 each service invocation opens a new session where the computation can
progress (remind that sessions cannot be closed in PSC)

2 all service definitions will remain available even when no further invocation
will be possible.

If on one hand, the encoding witnesses the expressive power of PSC, on the other
hand, it also motivates the introduction of some mechanism for closing sessions.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 54 / 58

Encoding of PSC into π-calculus

The encoding below shows that PSC can be seen as a fragment of the π-calculus.

Ja{(x)P} ⇐ QKin,out,ret = (νz)
(

JQKin,z,ret | !z(x).(νr , r̃)a〈r , r̃ , x〉.JPKr,r̃ ,out

)

Ja ⇒ (x)PKin,out,ret = !a(r , r̃ , x).(JPKr̃ ,r,out)

Ja ⊲ PKin,out,ret = JPKa,ã,out

Ja.PKin,out,ret = out a.JPKin,out,ret

J(x)PKin,out,ret = in(x).JPKin,out,ret

Jreturn a.PKin,out,ret = ret a | JPKin,out,ret

JP |QKin,out,ret = JPKin,out,ret | JQKin,out,ret

J(νx)PKin,out,ret = (νx)JPKin,out,ret

J0Kin,out,ret = 0

The encoding can hardly be extended to full SCC calculus due to the session
interruption mechanism that has no direct couterpart in the π-calculus.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 55 / 58

SCC Examples: A blog service - I

Blog

We consider a service that implements a blog, i.e. a web page used by a
web client to log personal annotations.

Interaction with the Blog

A blog provides two services:

get to read the current contents of the blog

set to modify the contents.

The close -free fragment is not expressive enough to faithfully model such
a service because it does not support service update, here needed to
update the blog contents.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 56 / 58

SCC Examples: A blog service - II

Blog Factory

newBlog ⇒ (v , get, set)
(

blog{} ⇐newBlog 〈v , get, set〉
)

|
blog ⇒ (v , get, set)

(

get ⇒ (−)v |
close {} ⇐ (set ⇒ (v ′)return 〈v ′, get, set〉)

)

We use the service newBlog as a factory of blogs. It receives three names:

the initial contents v

the name for the new get service

the name for the new set service

Upon invocation, the factory forwards the three received values to the blog service
which is the responsible for the actual instantiation of the get and set services.

The update of the blog contents is achieved by invoking the service close which is
bound to newBlog ; this invocation cancels the currently available get and set

services and delegates to newBlog the creation of their new instances passing also
the updated contents v ′.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 57 / 58

SCC Examples: A blog service - III

Blog update

The process below installs a wiki page with initial contents v , then it adds
some new contents v ′.

newBlog{} ⇐ 〈v , get, set〉 |
set{} ⇐

(

concat{ (−)v ′.get ⇐ • | (x)return x } ⇐ •
)

The service concat simply computes the new contents appending v ′ to the
contents v received after service invocation:

concat ⇒ (−)(y)(z).y ◦ z

Here ◦ denotes justaposition of blog contents.

Roberto Bruni (Pisa) SCC: A Service Centered Calculus WS-FM 2006 @ Wien 58 / 58

	Introduction & Motivation
	Informal Description
	Basics & PSC
	Termination handlers & SCC
	Concluding Remarks

