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Abstract—In this paper we propose SCDP, a general-purpose
data transport protocol for data centres that, in contrast to all
other protocols proposed to date, supports efficient one-to-many
and many-to-one communication, which is extremely common in
modern data centres. SCDP does so without compromising on
efficiency for short and long unicast flows. SCDP achieves this by
integrating RaptorQ codes with receiver-driven data transport,
packet trimming and Multi-Level Feedback Queuing (MLFQ);
(1) RaptorQ codes enable efficient one-to-many and many-to-
one data transport; (2) on top of RaptorQ codes, receiver-driven
flow control, in combination with in-network packet trimming,
enable efficient usage of network resources as well as multi-path
transport and packet spraying for all transport modes. Incast and
Outcast are eliminated; (3) the systematic nature of RaptorQ
codes, in combination with MLFQ, enable fast, decoding-free
completion of short flows. We extensively evaluate SCDP in
a wide range of simulated scenarios with realistic data centre
workloads. For one-to-many and many-to-one transport sessions,
SCDP performs significantly better compared to NDP and PIAS.
For short and long unicast flows, SCDP performs equally well
or better compared to NDP and PIAS.

Index Terms—Data centre networking, data transport protocol,
fountain coding, modern workloads.

I. INTRODUCTION

Data centres support the provision of core Internet services

and it is therefore crucial to have in place data transport

mechanisms that ensure high performance for the diverse

set of supported services. Data centres consist of a large

number of commodity servers and switches, support multiple

paths among servers, which can be multi-homed, very large

aggregate bandwidth and very low latency communication

with shallow buffers at the switches.

One-to-many and many-to-one communication. Modern

data centres support a plethora of services that produce one-to-

many and many-to-one traffic workloads. Distributed storage

systems, such as GFS/HDFS [1], [2] and Ceph [3], replicate

data blocks across the data centre (with or without daisy chain-

ing1). Partition-aggregate [4], [5], streaming telemetry [6], [7],

distributed messaging [8], [9], publish-subscribe systems [10],

[11], high frequency trading [12], [13] and replicated state

machines [14], [15] also produce similar workloads. Multicast

has already been deployed in data centres (e.g. to support

virtualised workloads [16] and financial services [17]). With

the advent of P4, multicasting in data centres is becoming

practical [18]. As a result, much research on scalable network-

layer multicasting in data centres has recently emerged [19]–

[23], including approaches for optimising multicast flows in

1https://patents.google.com/patent/US20140215257

reconfigurable data centre networks [24] and programming

interfaces for applications requesting data multicast [25].

Existing data centre transport protocols are suboptimal in

terms of network and server utilisation for these workloads.

One-to-many data transport is implemented through multi-

unicasting or daisy chaining for distributed storage. As a result,

copies of the same data are transmitted multiple times, wasting

network bandwidth and creating hotspots that severely impair

the performance of short, latency-sensitive flows. In many

application scenarios, multiple copies of the same data can

be found in the network at the same time (e.g. in replicated

distributed storage) but only one replica server is used to

fetch it. Fetching data from all servers, in parallel, from all

available replica servers (many-to-one data transport) would

provide significant benefits in terms of eliminating hotspots

and naturally balancing load among servers.

These performance limitations are illustrated in Figure 1,

where we plot the application goodput for TCP and NDP

(Novel Datacenter transport Protocol) [26] in a distributed

storage scenario with 1 and 3 replicas. When a single replica

is stored in the data centre, NDP performs very well, as also

demonstrated in [26]. TCP performs poorly2. On the other

hand, when three replicas are stored in the network, both NDP

and TCP perform poorly in both write and read workloads.

Writing data involves either multi-unicasting replicas to all

three servers (blue and green lines in Figure 1a) or daisy

chaining replica servers (black line); although daisy chaining

performs better, avoiding the bottleneck at the client’s uplink,

they both consume excessive bandwidth by moving multiple

copies of the same block in the data centre. Fetching a data

block from a single server when it is stored in two more

servers creates hotspots at servers’ uplinks due to collisions

from randomly selecting a replica server for each read request

(see black and purple lines in Figure 1b).

Long and short flows. Modern cloud applications commonly

have strict latency requirements [28]–[33]. At the same time,

background services require high network utilisation [34]–

[37]. A plethora of mechanisms and protocols have been pro-

posed to date to provide efficient access to network resources

to data centre applications, by exploiting support for multiple

equal-cost paths between any two servers [26], [35], [36],

[38] and hardware capable of low latency communication [32],

[39], [40] and eliminating Incast [41]–[43] and Outcast [44].

Recent proposals commonly focus on a single dimension of

2It is well-established that TCP is ill-suited for meeting throughput and
latency requirements of applications in data centre networks, therefore we
will be using NDP and PIAS [27] as the baseline protocols in this paper.
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Fig. 1: Goodput in a 250-server FatTree topology with 1GB

link speed & 10µs link delay. Background traffic is present to

simulate congestion. Results are for 10,000 (a) write and (b)

read block requests (2MB each). Each I/O request is ‘assigned’

to a host in the network, which is selected uniformly at random

and acts as the client. Requests’ arrival times follow a Poisson

process with an inter-arrival rate λ = 1000. Replica selection

and placement is based on HDFS’ default policy.

the otherwise complex problem space; e.g. TIMELY [45],

DCQCN [46], QJUMP [47] and RDMA over Converged

Ethernet v2 [48] focus on low latency communication but do

not support multi-path routing. Other approaches [36], [37]

do provide excellent performance for long flows but perform

poorly for short flows [34], [35]. None of these protocols sup-

port efficient one-to-many and many-to-one communication.

Contribution. In this paper we propose SCDP3, a general-

purpose data transport protocol for data centres that, unlike

any other protocol proposed to date, supports efficient one-

to-many and many-to-one communication. This, in turn, re-

sults in significantly better overall network utilisation, min-

imising hotspots and providing more resources to long and

short unicast flows. At the same time, SCDP supports fast

completion of latency-sensitive flows and consistently high-

bandwidth communication for long flows. SCDP eliminates

Incast and Outcast. All these are made possible by integrating

RaptorQ codes [52], [53] with receiver-driven data transport

[26], [32], in-network packet trimming [26], [54] and Multi-

Level Feedback Queuing (MLFQ) [27].

SCDP performance overview. We found that SCDP improves

goodput performance by up to ∼50% compared to NDP and

∼60% compared to PIAS with different application work-

loads involving one-to-many and many-to-one communication

(§V-A). Equally importantly, it reduces the average FCT for

short flows by up to ∼45% compared to NDP and ∼70% com-

pared to PIAS under two realistic data centre traffic workloads

(§V-B). For short flows, decoding latency is minimised by the

combination of the systematic nature of RaptorQ codes and

MLFQ; even in a 70% loaded network, decoding was needed

for only 9.6% of short flows. This percentage was less than 1%

in a 50% congested network (§V-G). The network overhead in-

duced by RaptorQ codes is negligible compared to the benefits

of supporting one-to-many and many-to-one communication.

Only 1% network overhead was introduced when the network

3SCDP builds on our early work on integrating fountain coding in data
transport protocols [49]–[51]. In [50] we motivated the need for a novel
data transport mechanism to efficiently support one-to-many and many-to-one
communication and argued that rateless codes is the way forward in doing so.
In [49], we introduced an early version of SCDP to the research community.

was very heavily congested (§V-H). RaptorQ codes have been

shown to perform exceptionally well even on a single core,

in terms of encoding/decoding rates. We therefore expect that

with hardware offloading, in combination with SCDP’s block

pipelining mechanism (§IV-F), the required computational

overhead will not be significant.

II. RAPTORQ ENCODING AND DECODING

Encoding. RaptorQ codes are rateless and systematic. The

input to the encoder is one or more source blocks; for each one

of these source blocks, the encoder creates a potentially very

large number of encoding symbols (rateless coding). All K

source symbols (i.e. the original fragments of a source block)

are amongst the set of encoding symbols (systematic coding).

All other symbols are called repair symbols. Senders initially

send source symbols, followed by repair symbols, if needed.

Decoding. A source block can be decoded after receiving

a number of symbols that must be equal to or larger than

the number of source symbols; all symbols contribute to

the decoding process equally. In a lossless communication

scenario, decoding is not required, because all source symbols

are available (systematic coding).

Performance. In the absence of loss, RaptorQ codes do

not incur any network or computational overhead. The trade-

off associated with RaptorQ codes when loss occurs is with

respect to some (1) minimal network overhead to enable

successful decoding of the original fragments and (2) com-

putational overhead for decoding the received symbols to the

original fragments. RaptorQ codes behave exceptionally well

in both respects. With two extra encoding symbols (compared

to the number of original fragments), the decoding failure

probability is in the order of 10−6. It is important to note that

decoding failure is not fatal; instead one or more encoding

symbols can be requested in order to ensure that decoding is

successful [53]. The time complexity of RaptorQ encoding

and decoding is linear to the number of source symbols.

RaptorQ codes support excellent performance for all block

sizes, including very small ones, which is very important for

building a general-purpose data transport protocol that is able

to handle efficiently a diverse set of workloads. In [55], [56],

the authors report encoding and decoding speeds of over 10

Gbps using a RaptorQ software prototype running on a single

core. With hardware offloading, RaptorQ codes would be able

to support data transport at line speeds in modern data centre

deployments. On top of that, multiple blocks can be decoded

in parallel, independently of each other (e.g. on different

cores). Decoding small source blocks is even faster, as reported

in [55]. The decoding performance does not depend on the

sequence that symbols arrived nor on which ones do.

Example. Before explaining how RaptorQ codes are integrated

in SCDP, we present a simple example of point-to-point

communication between two hosts, which is illustrated in

Figure 24. On the sender side, a single source block is passed

to the encoder that fragments it into 8 equal-sized source

symbols S1, S2, ..., S8. The encoder uses the source symbols

4Note that Figure 2 does not illustrate SCDP’s underlying mechanisms. The
design of SCDP is discussed extensively in Section IV.
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Fig. 2: RaptorQ-based communication

to generate repair symbols Sa, Sb, Sc (here, the decision to

encode 3 repair symbols is arbitrary). Encoding symbols are

transmitted to the network, along with the respective encoding

symbol identifiers (ESI) and source block numbers (SBN) [52].

As shown in Figure 2, symbols S4 and Sb are lost. Symbols

take different paths in the network but this is transparent to

the receiver that only needs to collect a specific amount of

encoding symbols (source and/or repair). The receiver can

receive symbols from multiple senders from different network

interfaces. In this example, the receiver attempts to decode the

original source block upon receiving 9 symbols, i.e. with one

extra symbol which is network overhead (as shown in Figure

2). Decoding is successful and the source block is passed to

the receiver application. As mentioned above, if no loss had

occurred, there would be no need for decoding and the data

would have been directly passed to the application.

Erasure coding in data transport. There is a long and

interesting trail of research that integrates erasure coding into

data transport protocols. SCDP is unique compared to all these

works, efficiently supporting one-to-many and many-to-one

data transport sessions for distributed storage and numerous

other workloads prevalent in modern data centres, without

sacrificing performance for traditional short and long flows.

In [57], the authors explore the advantages and challenges

of integrating end-to-end coding into TCP. Corrective [58]

employs coding for faster loss recovery but it can only deal

with one packet loss in one window as its coding redun-

dancy is fixed. FMTCP [38] employs fountain coding to

improve the performance of MPTCP [35] by recovering data

over multiple subflows. LTTP [42] is a UDP-based transport

protocol that uses fountain codes to mitigate Incast in data

centres. CAPS [59] deals with out of order data by integrating

forward error correction on short flows, in order to reduce their

flow completion time, and employs ECMP for achieving high

throughput for long flows. RC-UDP [60] is a rateless coding

data transport protocol that enables reliable data transfer

over high bandwidth networks. It uses block-by-block flow

control where the sender keeps sending encoded symbols until

the receiver sends an acknowledgement indicating successful

decoding. PPUSH [61] is a multi-source data delivery protocol

that employs RaptorQ codes for sending multiple flows in

parallel using all available replicas.

III. THE CASE FOR RAPTORQ CODING IN DATA

TRANSPORT FOR DATA CENTRE NETWORKS

The starting point in designing SCDP, which is also the

key differentiator to the rest of the literature, is its efficient

handling of one-to-many and many-to-one communication,

without sacrificing performance for traditional unicast flows.

One-to-many communication. None of the existing data

transport protocols for data centres can support communication

beyond traditional unicast flows, even if network-level multi-

casting was deployed in the network. Congestion control in

reliable multicasting is a challenging problem and traditional

sender-driven, reliable multicasting approaches (e.g. as in [62],

[63]) would suffer from Incast [41], and lack of support

for multipath routing and multi-homed servers, as well as

their inability to spray packets in the network. A receiver-

driven approach would be more suitable. However, extending

approaches, such as NDP [26] or Homa [32], is far from

trivial as this would entail complications with flow control,

when losses occur, because lost packets must be retransmitted.

Senders would have to maintain state, enqueuing incoming

pull requests by multiple receivers, while waiting to multicast

a new packet or retransmit a lost packet. Equally importantly,

the slowest receiver would slow down all other receivers.5

With RaptorQ codes and receiver-driven flow control, one-

to-many communication is simple and efficient: a sender

multicasts a new symbol after receiving a pull request from

all receivers (see Section IV-D for a detailed description). A

sender does not need to remember which symbols it has sent

as there is no notion of retransmission. Instead, it only needs to

count the number of pending pull requests from each receiver

so it can ‘clock’ symbol sending. A receiver can decode the

original data and complete the session after it receives the

necessary amount of symbols (see Section II), independently

of other receivers that may be behind in terms of receiving

symbols because of network congestion (e.g. when they are

connected to a congested ToR switch).

Many-to-one communication. Existing protocols do not and

could not support many-to-one communication in a way

that benefits the overall performance. Even if senders were

instructed to only send a subset of the original data fragments

(emulating many-to-one communication), a congested or slow

server would always be the bottleneck for the whole session.

With RaptorQ codes, each sender contributes as much as

it can, given the current conditions, in terms of network

congestion and local load. The rateless nature of RaptorQ

codes, enable receivers to successfully decode a source block

regardless of which server sent the symbols. The only require-

ment is to receive the required number of symbols (See Section

II). This is a unique characteristic of SCDP (see Section IV-E),

which ‘bypasses’ network hotspots by having non-congested

servers contributing more symbols to the receiver. Crucially,

this is done without any central coordination.

Flow completion time and goodput. SCDP’s benefits dis-

cussed above do not come at a cost for traditional unicast

flows. This is due to the combination of the systematic nature

of RaptorQ codes, MLFQ, and packet trimming. More specif-

ically, FCT for short flows is very small, unaffected by the

introduction of coding because senders first send the original

data fragments (systematic coding) with the highest priority,

minimising loss for them. As a result, decoding is very rarely

required for short flows. SCDP performs exceptionally well

5How existing protocols for data centres could be extended to support one-
to-many and many-to-one communication is beyond the scope of this paper.
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also for long flows despite the fact that (the otherwise efficient)

decoding is needed more often. This is done by employing

pipelining of source blocks, which alleviates the decoding

overhead for large data blocks and maximises application

goodput (see Section IV-F). In combination with receiver-

driven flow control and packet trimming, SCDP eliminates In-

cast and Outcast, playing well with switches’ shallow buffers.

Network utilisation. SCDP ensures high network utilisation

for all communication modes; with RaptorQ coding there is no

notion of ordering, as all symbols contribute to the decoding

(if needed) of source data. As a result, symbols can be sprayed

in the network through all available paths maximising utilisa-

tion and minimising the formation of hotspots. At the same

time, receivers can receive symbols from different interfaces

naturally enabling multi-homed topologies (e.g. [64], [65]).

IV. SCDP DESIGN

In this section, we present SCDP’s design; we define

SCDP’s packet types and adopted switch model. We then

describe all SCDP’s supported communication modes, and

how we maximise goodput and minimise flow completion time

(FCT) for long and short flows, respectively.

A. Packet Types

SCDP’s packet format is shown in Figure 3. Port numbers

are used to identify a transport session. The type field (TYP

in Figure 3) is used to denote one of the three SCDP packet

types; symbol, header and pull (denoted as SMBL, HDR and

PULL, respectively, in Algorithms 1 and 2). The priority field

(PRI in Figure 3) is set by the sender and is used by MLFQ

(see Section IV-B).

A symbol packet carries in its payload one MTU-sized

source or repair symbol. The source block number (SBN)

identifies the source block the carried symbol belongs to. The

encoding symbol identifier (ESI) identifies the symbol within

the stream of source and repair symbols for the specific source

block [52]. A sender initiates a transport session by pushing

an initial window of symbols with the syn flag set, for the

first source block. These symbol packets also carry a number

of options: the transfer mode (M in Figure 3) can be unicast,

many-to-one or one-to-many. The rest of the options are used

to define the total length of the session (F in Figure 3), number

of source blocks (Z in Figure 3) and the symbol size (T in

Figure 3). The source block size K is derived from these

options as described in RaptorQ RFC [52]. We adopt the

notation used in this RFC [52].

Header packets are trimmed versions of symbol packets.

Upon receiving a symbol packet that cannot be buffered, a

network switch trims its payload and forwards the header, with

the highest priority. Header packets are used to ensure that a

window (w) of symbol packets is always in-flight.

A pull packet is sent by a receiver to request a symbol. The

sequence number is only used to indicate how many symbols

of the specified source block identifier to send, in case pull

requests get reordered. Multiple symbol packets may be sent

in response to a single pull request, as described in Section

IV-C. The fin flag is used to identify the last pull request; upon

receiving such a pull request, a sender sends the last symbol

packet for this SCDP session.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          Source Port          |       Destination Port        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                      Source Block Number                      |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          Encoded Symbol Identifier / Sequence Number          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  P  | T |S|F|                                                 |

|  R  | Y |Y|I|                                                 |

|  I  | P |N|N|                                                 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                         Options{M,F,T,Z}                      |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                             payload                           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 3: SCDP packet format

B. Switch Service Model

SCDP relies on network switching functionality that is

either readily available in today’s data centre networks [32] or

is expected to be [26] when P4 switches are widely deployed.

SCDP does not require any more switch functionality than

NDP [26]6, Homa [32], QJUMP [47], or PIAS [27] do.

Priority scheduling and packet trimming. In order to support

latency-sensitive flows, we employ MLFQ [27], and packet

trimming [54]. We assume that network switches support a

small number of queues with respective priority levels. The top

priority queue is only used for header and pull packets. This is

crucial for swiftly providing feedback to receivers about loss.

Given that both types of packets are very small, it is extremely

unlikely that the respective queue gets full and that they are

dropped7. The rest of the queues are small and buffer symbol

packets. Switches perform weighted round-robin scheduling

between the top-priority (header/pull) queue and the symbol

packet queues. This guards against a congestion collapse

situation, where a switch only forwards trimmed headers and

all symbol packets are trimmed to headers. When a data packet

is to be transmitted, the switch selects the head packet from

the highest priority, non-empty queue.

Multipath routing. SCDP packets are sprayed to all available

equal-cost paths to the destination8 in the network. SCDP

relies on ECMP and spraying could be done either by using

randomised source ports [34], or the ESI of symbol and header

packets and the sequence number of pull packets.

C. Unicast Transport Sessions

A sender implicitly opens a unicast SCDP transport session

by pushing an initial window of w (syn-enabled) symbol

packets tagged with the highest priority (Lines 2 − 12 in

Algorithm 19). Senders tag outgoing symbol packets with a

priority value, which is used by the switches when scheduling

their transmission (§IV-B). The priority of outgoing symbol

packets is gradually degraded when specific thresholds are

reached. Calculating these thresholds can be done as in PIAS

[27] or AuTO [39] (Line 30 in Algorithm 1). The receiver

establishes a new session upon receiving the first symbol that

6As reported in [66], there is ongoing work by switch vendors to implement
the NDP switch. Moreover, a smartNIC implementation of the NDP end-host
stack is also ongoing. This is very promising for the deployability of next-
generation protocols, including SCDP, in the real-world.

7SCDP receivers employ a simple timeout mechanism, as in [26], to recover
from the unlikely losses of pull and header packets.

8In SCDP’s one-to-many transfer mode there are multiple destinations.
9For clarity, Algorithms 1 and 2 illustrate a slightly simplified version of

SCDP for unicast data transport for a single source block without pipelining.
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Algorithm 1: SCDP Sender

1 SessionState ss

2 Function initSession()

3 // initialise ss: SBN , srcPort, dstPort, type, options

4 ss.ESI ← 0
5 ss.expectedPullSeqNum← 0
6 ss.numSentSymbols← 0
7 while ss.numSentSymbols < w do

8 hdr ← createHeader(ss, true, false, SMBL)
9 symbol← getNextSymbol(ss) // source or repair symbol

10 sendPacket(hdr, symbol) // send to network

11 ss.ESI ← ss.ESI + 1
12 ss.numSentSymbols← s.numSentSymbols + 1
13 end

14 Function onReceivePullRequest(pullReq)

15 gap← ss.expectedPullSeqNum - pullReq.seqNum

16 while gap > 0 do

17 hdr ← createHeader(ss, false, false, SMBL)
18 symbol← getNextSymbol(ss) // source or repair symbol

19 sendPacket(header, symbol) // send to network

20 gap← gap− 1
21 end

22 if pullReq.fin == true then

23 // session will be completed and

24 // garbage collected soon (in a timeout)

25 ss.toBeGarbageCollected← true

26 end

27 Function createHeader(ss, syn, fin, type)

28 hdr ← createHeader(ss) // sets port numbers

29 hdr.{SBN, syn, fin} ← (ss.SBN, syn, fin)
30 hdr.{typ, pri, opts} ← (type, getMLFQPriority(), ss.opts)
31 if type == SMBL then

32 hdr.{ESI} ← ss.ESI

33 end

34 if type == PULL then

35 hdr.{seqNum} ← ss.seqNum

36 end

carries the syn flag (Lines 5 − 10 in Algorithm 2). After

receiving the initial window of packets, the receiver takes

control of the flow of incoming packets by pacing pull requests

to the sender (Lines 33 and 37 in Algorithm 2). A pull request

carries a sequence number which is auto-incremented for each

incoming symbol packet (Line 43 in Algorithm 2). The sender

keeps track of the sequence number of the last pull request and,

upon receiving a new pull request, it sends one or more packets

to fill the gap between the sequence numbers of the last and

current request (Lines 14 − 26 in Algorithm 1). Such gaps

may appear when pull requests are reordered due to packet

spraying. Senders ignore pull requests with sequence numbers

that have already been ‘served’; i.e. when they had previously

responded to the respective pull requests.

Receivers maintain a single queue of pull requests for all

active transport sessions. Flow control’s objective is to keep

the receiver’s incoming link as fully utilised as possible at

all times. This dictates the pace at which receivers send pull

requests to all different senders. Receivers buffer encoding

symbols along with their ESI and SBN and start decoding a

source block upon receiving either K source symbols (Lines

20 − 24 in Algorithm 2), where K is the total number of

source symbols, or K + o source and repair symbols, when

loss occurs (o is the induced network overhead in number

of symbols) (Lines 25− 27 in Algorithm 2). As discussed in

Section II, RaptorQ codes perform exceptionally well in terms

of decoding failure probability; with o = 2, which is the value

we have chosen for SCDP, the decoding failure is very rare

(in the order of 10−6) and when it happens the penalty is one

RTT for requesting one more symbol and the extra latency for

Algorithm 2: SCDP Receiver

1 SessionState ss

2 ss.established← false

3 Function onReceivePacket(pkt)

4 syn, type← getHeaderInfo(pkt.hdr)

5 if syn == true && ss.established == false then

6 ss.{established, requestMoreSymbols} ← (true, true)
7 ss.{seqNum,numRcvdSymbols} ← (0, 0)
8 ss.K ← calcKFromOpts(ss.opts)
9 // K is derived from the header options as in RaptorQ RFC [52]

10 end

11 if type == SMBL then

12 processSymbol(pkt.payload)

13 end

14 if type == HDR then

15 processHeader(header)

16 end

17 Function processSymbol(symbol)

18 ss.storeSymbol(symbol)
19 ss.numRcvdSymbols← ss.numRcvdSymbols + 1
20 if ss.numRcvdSymbols == ss.K && ss.overhead == 0 then

21 ss.skipDecoding ← true

22 ss.requestMoreSymbols← false

23 ss.deliverSBN() // deliver to application layer

24 else

25 if ss.numRcvdSymbols == ss.K + ss.overhead then

26 decodeSrcBlock()

27 end

28 end

29 if ss.numRcvdSymbols == ss.K − 1 then

30 ss.F in← true

31 end

32 if ss.requestMoreSymbols == true then

33 addPullRequest()

34 end

35 Function processHeader(header)

36 ss.overhead← 2
37 addPullRequest()

38 Function getHeaderInfo(hdr)

39 (ss.SBN, ss.ESI, ss.opts)← hdr.{SBN,ESI, opts}
40 (type, syn)← hdr.{typ, syn}
41 return (type, syn)
42 Function addPullRequest()

43 ss.seqNum← ss.seqNum + 1
44 pullReq ← createHeader(ss, false, ss.F in, PULL)
45 // createHeader is defined in Algorithm 1

46 enqueuePullRequest(pullReq)
47 Function decodeSrcBlock()

48 success← ss.decode()
49 if success == true then

50 ss.requestMoreSymbols← false

51 ss.deliverSBN() // deliver to application layer

52 else

53 ss.overhead← ss.overhead + 1 // very rare

54 end

attempting decoding twice. It would be extremely unlikely for

decoding to fail with o = 3.

The receiver sets the fin flag in the pull request for the last

symbol (a source or repair symbol at that point) that sends

to the sender. Note that this may not actually be the last

request that the receiver sends, because the symbol packet that

is sent in response to that request may get trimmed. All pull

requests for the last required symbol (not a specific one) are

sent with the fin flag on (Lines 29− 31 in Algorithm 2). The

sender responds to fin-enabled pull requests by sending the

next symbol in the potentially very large stream of source and

repair symbols, with the highest priority. It finally releases the

transport session only after a time period that ensures that the

last prioritised symbol packet was not trimmed (Lines 22−26

in Algorithm 1). This time period is very short; in the very

unlikely case that the prioritised symbol packet was trimmed,

the respective header would be prioritised along with the pull

packet subsequently sent by the receiver.
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D. One-to-many Transport Sessions

One-to-many transport sessions exploit support for network-

layer multicast (e.g. with [18]–[23]) and coordination at the

application layer; for example, in a distributed storage sce-

nario, multicast groups could be pre-established for different

replica server groups or setup on demand by a metadata

storage server. This would eliminate the associated latency

overhead for establishing multicast groups on the fly and is

practical for other data centre multicast workloads, such as

streaming telemetry [6], [7] and distributed messaging [8],

[9], where destination servers are known at deployment time.

With recent advances in scalable data centre multicasting, a

very large number of multicast groups can be deployed with

manageable overhead in terms of switch state and packet size.

For example, Elmo [18] encodes multicast group information

inside packets, therefore minimising the need to store state

at the network switches. With small group sizes, as in the

common data centre use cases mentioned above, Elmo can

support an extremely large number of groups, which can

be encoded directly in packets, eliminating any maintenance

overhead associated with churn in the multicast state. “In a

three-tier data centre topology with 27K hosts, Elmo supports

a million multicast groups using a 325-byte packet header,

requiring as few as 1.1K multicast group-table entries on

average in leaf switches, with a traffic overhead as low as

5% over ideal multicast” [18].

As with unicast transport sessions, an SCDP sender initially

pushes w (syn-enabled) symbol packets tagged with the high-

est priority. Receivers then request more symbols by sending

respective pull packets. The sender sends a new symbol packet

only after receiving a request from all receivers within the

same multicast group. In Algorithm 1, this would only require

a simple extension where the sender counts the number of

pending pull requests from each receiver (not shown in order

to maintain clarity). Receivers queue and pace pull packets

as in the unicast transport mode depicted in Algorithm 2.

Network hotspots, (e.g. when incoming symbols are frequently

trimmed at the ToR switch), can prevent specific receivers

from receiving symbols as fast as other receivers of the same

one-to-many session do. The rateless property of RaptorQ

codes is ideal for such situation; within a single transport

session, receivers may receive a different set of symbols but

they will all decode the original source block as long as the

required number of symbols is collected, regardless of which

symbols they missed (see Section II). Receivers successfully

decode the original data as soon as they receive the necessary

number of symbols and they are not slowed down by receivers

that are behind a hotspot. This is an important property for

applications that only require a specific subset of receivers (e.g.

some form of quorum) to receive the data before notifying a

user or some other service.

Some receivers may end up receiving more symbols than

what would be required to decode the original source block.

This is unnecessary network overhead induced by SCDP but,

in Section V-H, we show that even under severe congestion,

SCDP performs significantly better than NDP, exploiting the

support for network-layer multicast. Dealing with situations

where receivers are extremely slow or unresponsive is an

important problem. We argue that dealing with such a situation

is a policy issue and should be handled at the application rather

than the data transport layer. For example, the data transport

protocol could notify the application of a straggler server (e.g.

in a high-performance, user-space stack deployment), which,

in turn, could either ignore the notification and leave the data

transport session unchanged or update the multicast group

used by the data transport layer. Different applications may

have different requirements and consistency constraints that

are related to dealing with unresponsive servers. Exploring

such policies is outside the scope of this work.

E. Many-to-one Transport Sessions

Many-to-one data transport is a generalisation of the unicast

transport discussed in Section IV-C. Each sender i pushes

an initial window wi of (syn-enabled) symbol packets to the

receiver, as shown in Algorithm 1 (Lines 2 − 13). These

packets are tagged with the highest priority and may contain

source or repair symbols. The total number of initially pushed

symbol packets wtotal =
∑ns

i=1 wi, where ns is the total

number of senders, is selected to be larger than the initial

window w used in unicast transport sessions10. This is to

enable natural load balancing in the data centre in the presence

of slow senders or hotspots in the network. In that case, SCDP

ensures that a subset of senders (e.g. 2 out of 3 in a 3-

replica scenario) can still fill the receiver’s downstream link. In

Section V-F, we show that initial window sizes that are greater

than 10 symbol packets result in the same (high) goodput

performance. A large initial window would inevitably result

in more trimmed symbol packets, which however would not

affect short flows that are prioritised over longer multi-source

sessions. As discussed in Section II, RaptorQ codes are rateless

and all symbols contribute to the decoding process, therefore

the receiver is agnostic to their origin. As a result, efficient

data transport can be achieved by partitioning the potentially

large stream of source and repair symbols amongst all senders,

so that each one produces unique symbols. These can be done

through coordination at the application layer or randomness.

Receivers behave as shown in Algorithm 2.

F. Maximising Goodput for Long Flows - Block Pipelining

With RaptorQ codes, if loss occurs, the receiver must

perform decoding on the collected source and repair symbols

(§II). This induces latency before the data can become avail-

able to the application. For large source blocks, SCDP masks

this latency by splitting the large source block to many smaller

blocks, instead of encoding and decoding the whole block. The

smaller blocks are then pipelined over a single SCDP session.

With pipelining, a receiver decodes each smaller block while

receiving symbol packets for the next one, effectively masking

the latency induced by decoding, except for the last source

block. The latency for decoding this last smaller block is

considerably smaller compared to decoding the whole block at

once. For short, latency-sensitive flows, this could be a serious

issue, but SCDP strives to eliminate losses, resulting in fast,

decoding-free completion of short flows (see section below).

10We assume that the value of w is decided at the application layer.
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(a) NDP/PIAS one-to-
many (multi-unicast)                

R1 R2 R3 R1 R2 R3 R1 R2 R3C1 C2 C4

(b) NDP/PIAS one-to-
many (daisy chain) 

(c) SCDP one-to-
many

R1 R2 R3C3

(d) NDP/PIAS many-to-one 

(e) SCDP many-to-one

(single-block)

Fig. 4: Read/write workloads and replica placement policy

used in evaluation. In our simulations, the selection of remote

racks to store data blocks is random and racks in different

pods can be selected (i.e. core switches are involved).

G. Minimising Completion Time for Short Flows

SCDP ensures that a window of w symbol packets are on the

fly throughout the lifetime of a transport session. The window

decreases by one symbol packet for each one of the last w

symbol packets that the sender sends. As long as no loss occurs

(detected by the receiver through receiving a trimmed header),

a receiver sends K −w pull requests in total, where K is the

number of source symbols (or original fragments) and w is the

size of the initial window. For every received trimmed header

(i.e. observed loss), the receiver sends a pull request, and,

subsequently, the sender sends a new symbol, which equally

contributes to the decoding of the source block. This ensures

that SCDP does not induce any unnecessary overhead; i.e.

symbol packets that are redundant in decoding the source

block. The target for the total number of received symbols also

changes when loss is detected. Initially, all receivers aim at

receiving K source symbols. Upon receiving the first trimmed

header, the target changes to K + o (where o is the overhead

discussed in Section IV-C), which ensures that decoding failure

is extremely unlikely to occur (see Section II).

By prioritising earlier packets of a session over later ones

through MLFQ, SCDP minimises loss for short flows. This

has an extremely important corollary in terms of SCDP’s

computational cost; no decoding is required for the great

majority of short flows, therefore completion times are al-

most always near-optimal. We evaluate this aspect of SCDP’s

design in Section V-G. Note that for all supported types

of communication, encoding latency can be masked either

(1) by pre-encoding a number of repair symbols or (2) by

generating repair symbols while sending source and previously

generated repair symbols. The latter is possible due to the

systematic nature of RaptorQ coding that enables senders to

begin transmission before generating any repair symbols, by

sending the original data fragments (i.e. source symbols).

V. EXPERIMENTAL EVALUATION

We have extensively evaluated SCDP’s performance through

large scale, packet-level simulations and compared it to the

state-of-the-art. To do so, we have developed OMNeT++

models for SCDP, NDP, PIAS, the respective switch service

models, including MLFQ, and network-layer multicast [67]11.

11Some of our models that we use in this paper have been published at the
OMNeT++ Community Summit [68]. More introductory details in [69].

Simulation setup. For our experimentation we have used a

250-server FatTree topology with 25 core switches and 5

aggregation switches in each pod (50 aggregation switches

in total). This is a typical size for a simulated data centre

topology, also used in the evaluation of recently proposed

protocols [27], [32], [33], [40]. The default values for the link

capacity, link delay and switch buffer size are 1 Gbps, 10µs

and 20 packets, respectively. We have run each simulation

5 times with different seeds and report average (with 95%

confidence intervals) or aggregate values.

Multi-Level Feedback Queuing. For protocols that rely on

MLFQ, the switch buffer is allocated to 5 packet queues with

different scheduling priorities. The thresholds for demoting

the priority for a specific session are statically assigned to

10KB, 100KB, 1MB and 10MB, respectively. In a real-world

deployment these would be set dynamically, e.g. as in AuTO

[39]. In the following, we briefly discuss details specific to the

developed protocol models.

SCDP. We have implemented SCDP in full, as described in

Section IV. For the MLFQ mechanism, the top priority queue

is for pull and header packets, which are very small. We model

the decoding latency based on the results reported in [55], by

fitting the worst-case decoding latencies for different number

of K source symbols into a polynomial function.When cal-

culating the completion time or goodput for a given SCDP

session, we use the fitted model to extrapolate a decoding

latency for the last block in the pipeline, and add it to the

total time. We do not model the encoding latency as this can

be easily masked by either (i) pre-computing repair symbols

or (ii) encoding repair symbols while sending source symbols

given that RaptorQ codes are systematic. The size of an

encoding symbol (source and repair) is 1500 bytes long (i.e.

one MTU). Unless otherwise stated, the initial window w

for one-to-one and one-to-many sessions is set to 12 symbol

packets. For many-to-one sessions w is set to 6 symbol packets

per sender. For all experiments we set the block size for

pipelining to 100 MTU-sized symbols.

NDP [26] is a receiver-driven, unicast data transport protocol.

A sender initiates a flow by sending an initial window of

data at line rate, as in SCDP. The receiver then pulls packets

from the sender by sending pull requests. If a switch queue

overflows, the packet data is trimmed and the header is

priority-forwarded. The receiver adds a pull packet for each

received data or header packet, which are then paced from

a single pull queue shared by all applications, based on the

receiver’s downlink link rate. In our NDP model the initial

window value is set to 12 packets and all packets are 1500

bytes long (i.e. one MTU). It has been shown (e.g. in [70],

[71], [72] and [73]) that NDP outperforms other modern data

transport protocols (e.g. Homa [32] and pHost [40]), therefore

it constitutes a good baseline for our experimental evaluation.

NDP+ is a simple extension of NDP that uses MLFQ and is in-

cluded here to understand how MLFQ affects the performance

of SCDP in relation to NDP. Note that results for NDP+ are not

included in the plots to maintain clarity, but are reported when

appropriate. We use the same priority demoting thresholds for

NDP+ as in SCDP. Packets are set to be MTU-sized.

PIAS. [27] is a flow scheduling mechanism that leverages
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Fig. 5: Performance comparison for SCDP, NDP and PIAS - write I/O with 3 replicas (one-to-many)
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Fig. 6: Performance comparison for SCDP, NDP and PIAS - read I/O with 3 replicas (many-to-one)

MLFQ and employs DCTCP [28] for end-to-end data trans-

port, which relies on Explicit Congestion Notification (ECN)

in the network to provide multi-bit feedback to end hosts. For

uniformity, we use the same priority demoting thresholds for

PIAS as in SCDP and NDP+. Packets are set to be MTU-sized.

A. Goodput for One-to-Many and Many-To-One Sessions

In this section we measure the application goodput for

SCDP, NDP, NDP+ and PIAS in a distributed storage setup

with 3 replicas (as depicted in Figure 4). The setup involves

many-to-one and one-to-many communication. In each run,

we simulate 2000 transport sessions (or I/O requests at the

storage layer) with sizes 1MB and 4MB each (denoted as rs

in the figures). Transport session arrival times follow a Poisson

process with inter-arrival rate λ; we have used different λ

values (2000 and 4000) to assess the performance of the

studied protocols under different loads. Each I/O request is

‘assigned’ to a host in the network (denoted as Ci in Figure

4), which is selected uniformly at random and acts as the

client. Replica selection and placement is based on HDFS’

default policy. More specifically, we assume that clients are

not data nodes themselves, therefore a data block is placed on

a randomly selected node (denoted as Ri in Figure 4). One

replica is stored on a node in a different remote rack, and the

last replica is stored on a different node in the same remote

rack. A client will read a block from a server located in the

same rack, or a randomly selected one, if no replica is stored

in the same rack. In order to simulate congestion in the core of

the network, 30% of the nodes run background long flows, the

scheduling of which is based on a permutation traffic matrix.

One-to-many transport sessions. We evaluate SCDP’s per-

formance in one-to-many traffic workloads and assess how

it benefits from the underlying support for network-layer

multicast, compared to NDP, NDP+ and PIAS. One-to-many

communication with these protocols is implemented through

(1) multi-unicasting data to multiple recipients (Figure 4a)

or (2) daisy-chaining the transmission of replicas through the

respective servers (Figure 4b). In daisy-chaining, each replica

starts transmitting the data to the next replica server (according

to HDFS’s placement policy), as soon as it starts receiving

data from another replica server. Daisy-chaining eliminates

the bottleneck at the client’s uplink. We measure the overall

goodput from the time the client initiates the transmission until

the last server receives the whole data. The results for various

loads and I/O request sizes are shown in Figure 5. In all

figures, flows are ranked according to the measured goodput

(shown on the y axis). SCDP, with its natural load balancing

and the support of multicast (Figure 4c), significantly out-

performs NDP and PIAS even when daisy-chaining is used

for replicating data. Daisy-chaining is effective compared to

multi-unicasting when the network is not heavily loaded. With

SCDP, around 50% of the sessions experience goodput that is

over 90% of the available bandwidth for 1MB sessions and

λ = 2000. The remaining 50% sessions still get a goodput

performance over 60% of the available bandwidth. When the

network load is heavier, daisy-chaining does not provide any

significant benefits over multi-unicasting because data needs

to be moved in the data centre multiple times and congestion

gets severe. For λ = 4000 and 4MB sessions, NDP’s and

PIAS’ performance is significantly worse for most sessions,

whereas SCDP still offers an acceptable transport service to

all sessions. SCDP fully exploits the support for network-layer

multicasting providing superior performance to all storage

clients because the required network bandwidth is minimised.

Minimising the bandwidth requirements for one-to-many flows

that are extremely common in the data centre, makes space

for regular short and long flows. For the experimental setup

with the heaviest network load (λ = 4000 and 4MB sessions),

we have measured the average goodput for SCDP background

traffic to be 0.408 Gbps, compared to 0.252 Gbps and 0.182

Gbps for NDP and PIAS experiments, respectively12. This is

15.6% of the available bandwidth freed up for regular unicast

flows. We evaluate the positive effect that SCDP has with

12This improvement for background flows is despite these running at the
lowest possible priority, and they span the whole duration of the simulation.



IEEE/ACM TRANSACTIONS ON NETWORKING 9

respect to network hotspots in Section V-D. NDP+ is on

average 14% better than NDP and 21% worse than SCDP,

in terms of measured goodput. This reinforces our argument

that the performance gains in one-to-many communication is

mostly due to exploiting the supported network-level multicast.

PIAS performs worse than SCDP, NDP and NDP+ because it

relies on DCTCP for data transport and as a result it suffers

from the limitations of a single-path protocol (i.e. lack of

support for multi-path transport and packet spraying).

Many-to-one transport sessions. In the many-to-one sce-

nario, clients read previously stored data from the network.

SCDP naturally balances this load according to servers’ ca-

pacity and network congestion, as discussed in Section IV-E

(see Figure 4e). With NDP and PIAS, clients read data either

from a replica server located in the same rack or a randomly

selected server, if there is no replica stored in the same rack

and we simulate both a single-block (see Figure 4d) and multi-

block request workload. The latter enables parallelisation at

the application layer (e.g. the read-ahead optimisation where a

client reads multiple consecutive blocks under the assumption

that they will soon be requested). Here, we simulate a 3-

block read-ahead policy and measure the overall goodput

from the time the I/O request is issued until all 3 blocks

are fetched. To make the results as comparable to each other

as possible, for the 3-block setup we use blocks the size of

which is one third of the size of the single-block scenario (as

reported in Figure 6). We do not include multi-block results

for SCDP as they are almost identical to the single-block case,

confirming the argument that it naturally distributes the load

without any application-layer parallelisation. In Figure 6 we

observe that SCDP significantly outperforms NDP and PIAS

for all different request sizes and λ values. Even under heavy

load, SCDP provides acceptable performance to all transport

sessions. This is the result of (1) the natural and dynamic load

balancing provided to SCDP’s many-to-one sessions and (2)

MLFQ; long background flows run at the lowest priority to

boost the performance of shorter flows. Around 82% of the

sessions experience goodput that is above 90% of the available

bandwidth for 1MB sessions and λ = 2000. In contrast, NDP

and PIAS offer this good performance to only 10% and 23%

of the sessions, respectively. For λ = 4000 and 4MB sessions,

NDP’s and PIAS’ performance is significantly worse for most

sessions, whereas SCDP still offers good performance to all

sessions. Notably, the performance difference between SCDP

and both NDP and PIAS increases with the congestion in the

network, with SCDP being able to provide acceptable levels

of performance where NDP and PIAS would not (e.g. in the

presence of hotspots or in over-subscribed networks). NDP+

outperforms both NDP and PIAS, providing on average 7%

improvement in goodput over the goodput that can be provided

by NDP and PIAS. This shows that only a small part of

SCDP’s performance gains over NDP come from MLFQ. The

key differentiator is the natural load balancing that is enabled

by RaptorQ codes; a congested server will not slow down

the session because the rest of the senders will contribute

most of the needed source and repair symbols. It is worth

noting that PIAS shows better performance for some sessions

compared to NDP (for λ = 2000 and 1MB sessions). The

benefit becomes clearer for larger flows, at the highest inter-

arrival rate. However, this does not come for free; instead,

background traffic paid for this. For the experimental setup

with λ = 4000 and 4MB sessions, we have measured the

average goodput for NDP background traffic (not shown in

the figures) to be 0.342 Gbps, compared to 0.152 Gbps for

the respective PIAS experiment.

B. Performance Benchmarking with Realistic Workloads

SCDP is designed to be a general-purpose transport protocol

for data centres therefore it is crucial that it provides high

performance for all supported transport modes and traffic

workloads. In this section, we use realistic workloads reported

by data centre operators to evaluate SCDP’s applicability and

effectiveness beyond one-to-many and many-to-one sessions.

Here, we consider two typical services; web search and data

mining [28], [74]. The respective flow size distributions are

shown in Table I. They are both heavy-tailed; i.e. a small

fraction of long flows contribute most of the traffic. We have

chosen the workloads to cover a wide range of average flow

sizes ranging from 64KB to 7.4MB. We simulate six target

loads of background traffic (0.3, 0.4, 0.5, 0.6, 0.7 and 0.8).

We generate 20000 transport sessions, the inter-arrival time of

which follows a Poisson process with λ = 2500. In Figures 7a

and 7c and 8a and 8c, we report the average flow completion

time (FCT) of flows with sizes in (0− 1MB). For the shortest

flows (0 − 100KB) we also report the 99th percentile of the

measured FCTs (Figures 7b and 8b). Finally, Figures 7d and 8d

illustrate the measured goodput for flows with sizes in (1MB,

10MB] (4000 and 1500 flows in web search and data mining

workloads, respectively) (for load value of 0.8).

0 -

10KB

10KB -

100KB

100KB -

1MB

1M-

..

Average

flow size

Web

Search [28]
19% 43% 18% 20% 1.6MB

Data

Mining [74]
78% 5% 8% 9% 7.4MB

TABLE I: Flow size distribution of realistic workloads

SCDP performs better in all scenarios due to the decoding-

free completion of (almost all) short flows and the supported

MLFQ. Note that when loss occurs, SCDP sessions must

exchange 2 additional symbols; they also pay the ‘decoding

latency’ price. For very short flows, the 99th percentile FCT is

close to the average one for all loads, which indicates that this

is rarely happening. We study the extent that this overhead and

the associated decoding latency is required in Section V-G. For

higher loads, NDP performs even worse than SCDP because of

the lack of support for MLFQ, which results in the trimming

of more packets belonging to short flows.

Note that the FCT of short flows in web search is larger

than in data mining. This is mainly because the percentage

of long flows in the former workload is larger than in the

latter, resulting in a higher overall load (for all fixed loads of

background traffic). A key message here is that SCDP provides

significantly better tail performance for short flows compared

to NDP and PIAS, especially as the network load increases,

despite the (very unlikely) potential for decoding and network

overhead. For flows with sizes in (1MB, 10MB], we observe
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Fig. 7: Web search workload with unicast flows as background traffic
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Fig. 8: Data mining workload with unicast flows as background traffic
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Fig. 9: Web search workload with 10Gbps links

that goodput with SCDP is better compared to NDP and PIAS;

tail performance is also better.

For all realistic workloads, NDP+ performance is better than

NDP and on par with SCDP when the load is not very high.

NDP+ performs slightly better than SCDP when the load is

very high, due to SCDP’s induced decoding latency when loss

occurs. For example, for 0-100KB flows and 0.8 load, the

average FCT for SCDP is 0.31ms and 0.292ms for NDP+. This

reinforces that the latency penalty due to decoding is almost

negligible because MLFQ prevents losses for very short flows.

It is worth noting here that in our experiments, NDP

outperforms PIAS. This is contradicting the results presented

in [32] for the same workload. We believe that this happens

because the experimental setup in [32] is such that packet

losses for short messages are very rare (if not non-existent)

by having large buffers (in contrast to the, admittedly more

realistic, experimental setup in this paper), therefore short

flows use the highest priority queue to complete quickly

without any losses. This is also mentioned in [70] where

it is stated that “one possible reason is that Homa assumes

infinite switch buffers in their simulations. In contrast, in

our simulations, we allocate 500KB buffer for each switch

port”. We have reproduced the experiment in [32] using our

OMNeT++ models by allocating a very large buffer to all

queues, eliminating losses for short flows. In this experimental

setup we observed that the average FCT for PIAS, when the

network load is 0.8, drops from 0.43ms when using 100KB

switch buffer (Figure 7a) to 0.32ms, when using a very large

buffer. This is indeed better than the average FCT observed for

NDP. It is however worth noting, that this improvement does

not come for free; instead, the average goodput for longer

flows drops from 0.7Gbps (Figure 7d) to 0.5Gbps. In other

words, by eliminating loss for short flows, loss becomes more

frequent in the lower priority queues occupied by packets

belonging to longer flows. In general, we argue that PIAS

performs worse than NDP because (1) it relies on DCTCP for

data transport and as a result it suffers from the limitations

of a single-path protocol (i.e. lack of support for multi-path

transport and packet spraying); (2) connection establishment

requires a three-way handshake and senders start with a small

window, both of which can severely hurt FCTs for short flows;

and (3) buffer occupancy in NDP is significantly lower than

in PIAS [26] which also affects performance for short slows.

C. Experimentation with 10Gbps Links

Our decision to use 1Gbps links was solely driven by the

very expensive nature of simulations, in terms of computa-

tional and memory resources. OMNeT++ is a packet-level

simulator which means that by increasing the supported link

rates by one order of magnitude (or more), the number of

‘live’ packets in the simulated network would dramatically

increase, requiring extremely large amounts of memory and

processing power to store and process all simulated packets.

We are confident that our results are representative of SCDP’s

general behaviour and performance, compared to the state

of the art. There are two aspects of SCDP that would need

to be considered when deployed in faster networks; (1) the

decoding latency would be more prominent in FCTs of short

flows, because the actual data transmission would be faster;

(2) the value of the initial window would need to be larger, in

order for receivers to be able to run their links at capacity. We

have performed experimentation to explore these two aspects;

(1) regarding decoding latency, we have experimented with

short flows in the context of the ‘web search’ workload in
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Fig. 10: Web search workload with a mixture of one-to-many and many-to-one sessions as background traffic
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Fig. 11: Data mining workload with a mixture of one-to-many and many-to-one sessions as background traffic
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a simulated network with 10Gbps links and two different

network loads (0.5 and 0.9). The results are shown in Figure

9. We observe that the flow completion times for both SCDP

and NDP are (as expected) roughly an order of magnitude

smaller compared to the respective results in Figures 7a and

7c. SCDP still performs better compared to NDP despite the

fact that the decoding latency is now more prominent in the

flow completion time. When the network load is very high, the

gap between SCDP and NDP is at its smallest, because losses

(trimmed packets) and therefore decoding are more frequent.

It is worth pointing out that, in this experiment, we have not

changed our underlying model for decoding latency, which is

based on the results presented in [55]. In [55], receivers were

able to decode (roughly) at 1.3Gbps. However, in [56], the

authors report substantially higher decoding throughputs (up

to 10 Gbps), which provides confidence that, in combination

with SCDP’s pipelining mechanism, decoding will not be

a bottleneck. Future hardware offloading approaches could

potentially render decoding of small blocks negligible. The

issue of selecting the value of the initial window in a 10Gbps

setup is discussed in Section V-F.

D. Minimising Hotspots in the Network

SCDP increases network utilisation by exploiting support

for network-layer multicasting and enabling load balancing

when data is fetched simultaneously from multiple servers, as

demonstrated in Section V-A. This, in turn, makes space in

the network for regular short and long flows. In this section,

we evaluate this performance benefit. We use as background

traffic a 50%/50% mixture of write and read I/O requests

(4MB each) that produce one-to-many and many-to-one traffic,

respectively. We repeat the experiment of the previous section

and evaluate the performance benefits of SCDP over NDP

and PIAS with respect to minimising hotspots and maximising

network utilisation for regular short and long flows.

In Figures 10a and 10c, we observe that SCDP’s perfor-

mance is almost identical to the one reported in Figures 7a

and 7c (similarly between Figure 8 and Figure 11). In con-

trast, NDP’s and PIAS’ performance deteriorates significantly

because the background traffic requires more bandwidth (one-

to-many) and results in hotspots at servers’ uplinks (many-to-

one). Tail performance for SCDP gets only marginally worse

(the 99th percentile increases from 0.277ms to 0.287ms for

the web search workload in load 0.5), whereas NDP’s and

PIAS’ performance get significantly worse (the 99th percentile

increases from 0.306ms to 0.381ms in NDP and from 0.386ms

to 0.48ms in PIAS in load 0.5). The observed behaviour

is more pronounced in the web search workload which, as

described in the previous section, results in higher overall

network utilisation compared to the data mining workload.

E. Eliminating Incast and Outcast

SCDP eliminates Incast by integrating packet trimming and

not relying on retransmissions of lost packets due to the

rateless nature of RaptorQ codes. We simulated Incast by

having multiple senders (ranging from 1 to 70) sending blocks
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of data (70KB and 256KB, each, in two separate experiments)

to a single receiver. All sessions were synchronised and

background traffic was present to simulate congestion. Figure

12a illustrates the measured aggregated goodput for all SCDP,

NDP and TCP flows. As expected, TCP’s performance col-

lapses when the number of senders increases. SCDP performs

slightly better compared to NDP even when a large number

of servers send data to the receiver at the same time. This

is attributed to the decoding-free completion of these flows,

in combination with the packet trimming and the lack of

retransmissions for SCDP. Figure 12b shows the CDF of the

FCTs in the presence of Incast with 70 senders. We observe

that for the vast majority of transport sessions, SCDP provides

superior performance compared to NDP.

SCDP eliminates outcast by employing receiver-driven flow

control and packet trimming, which prevent port blackout. We

have simulated a classic outcast scenario, where two receivers

that are connected to the same ToR switch receive traffic from

senders located in the same pod (2 flows crossing 4 hops) and

different pods (12 flows crossing 6 hops), respectively. Flow

size is 200KB and all flows start at the same time. This is

illustrated in Figure 12c. Here, the bottleneck link lies between

the aggregate switch and the ToR switch, which is different

from the Incast setup. Figure 12d shows the aggregate goodput

for the two groups of flows, for SCDP and TCP. TCP Outcast

manifests itself through (1) unfair sharing of the bottleneck

bandwidth (around 113 and 274 Mbps for the groups of flows,

respectively) and (2) suboptimal overall performance (around

0.387 Gbps). SCDP eliminates Outcast as the bottleneck is

shared fairly between the two groups of flows (around 460

and 435 Mbps for the groups of flows, respectively, and the

overall goodput is around 0.9 Gbps).

F. The effect of the initial window size

A key parameter of SCDP is the initial window w of symbol

packets that a sender pushes to the network. The window is

maintained throughout the lifetime of a session and is only

decreased for the last w pull packets. Here, we evaluate the

effect that the initial window has in the performance of SCDP.

The experimental setup is as described in Section V-A, with

1.5MB unicast sessions (we evaluated one-to-many and many-

to-one sessions as well, which showed similar results as the

unicast sessions). In Figure 13a, we observe that for very small

values of the initial window, goodput is very low and the

receiver’s downlink underutilised. As the window increases,

utilisation approaches the maximum available link capacity

(for 12 symbol packets).

For larger values of the initial window (up to 24 symbol

packets), the measured goodput is consistently high (i.e. down-

link runs at full capacity). Increasing the window inevitably

leads to more trimmed packets due to the added network load

when pushing symbol packets. This is illustrated in Figure 13b,

where the average number of trimmed packets for session sizes

of 1.5MB grows from 13 for an initial window of 12 to 32

trimmed packets for an initial window of 20. We can therefore

assume that there is relatively wide range of window values for

which performance can be consistently high. In order to further

explore this point, we have repeated the same experiment by

setting the initial window to 52 packets; in Figure 13a, we

observe that goodput deteriorates significantly. This is because

the initial ‘push’ phase results in severe congestion and loss,

which, in turn, results in (1) significant network overhead

induced by the large number of trimmed packets (39 packets

on average for each SCDP session) that are forwarded with

priority over all other symbol packets; (2) latency decoding

being induced to a larger number of SCDP sessions; (3) large

batches of pull requests potentially that block pull requests

belonging to other sessions.

We also explore the effect of the initial window value with

different link rates (otherwise keeping the experimental setup

unchanged). In Figure 15, we clearly observe that, as the

supported link rate increases, the value of the initial window

must also be increased in order to fully utilise the receivers’
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downlink (12 symbols for 1Gbps link, 24 symbols for 5Gbps

link and 32 symbols for 10Gbps).

G. Network Overhead and Induced Decoding Latency

SCDP provides zero-overhead data transport when no loss

occurs. In the opposite case, there is an overhead o of 2 extra

symbols (compared to the number of original fragments K) are

required by the decoder to decode the source block (with ex-

tremely high probability). Additionally, the required decoding

induces latency in receiving the original source block. Short

flows in data centres are commonly latency sensitive so SCDP

must be able to provide decoding-free completion of such

flows. To asses the efficacy of our MLFQ-based approach,

we measure the number of unicast flows that suffer symbol

packet loss for different network loads ranging from 0.5 to

0.7. For each network load, we examine different λ values

for the Poisson inter-arrival rate of the studied short flows

(150KB). In each simulation, we generate 5000 sessions with

the respective λ value as their inter-arrival time. In Figure 14,

we observe that for load values of 0.5 and 0.6, the times that a

short flow would require decoding and extra 2 symbol packets

is very small (0.44% and 1.2% of the flows, respectively, when

λ = 8000), rendering the respective overhead negligible.

H. Overhead in One-to-Many Sessions

In Section IV-D, we identified a limitation of SCDP with

respect to unnecessary network overhead which may occur in

one-to-many transport sessions in the presence of congestion.

This is due to receivers getting behind with the reception of

symbols. Consequently, up-to-date receivers will be receiving

more symbols than what they actually need. In order to

evaluate the extent of this limitation we set up a similar

experiment to the one presented in Section V-A. Figures 16a

and 16b depict the CCDF of the number of symbols that

were sent unnecessarily for different values of λ, and session

sizes. We observe that as the network load increases, the

number of sessions that induce unnecessary network overhead

increases. It is important to note that, even when this happens,

the measured goodput for SCDP is significantly better than

that of NDP. Figure 16c illustrates the measured goodput

for the examined session sizes and highest network load

(λ = 4000). Clearly, SCDP significantly outperforms NDP

despite the potential for some unnecessary network overhead.

The benefit of exploiting network-layer multicast makes this

potential overhead negligible.

I. Resource Sharing

SCDP achieves excellent fairness due to the following

design principles: (1) receivers pull symbol packets from one

or more senders in the data centre at a pace that matches

their downlink bandwidth. Given that servers are uniformly

connected to the network with respect to link speeds, SCDP

enables fair sharing of the network to servers. (2) A receiver

pulls symbol packets for each SCDP session on a round robin

basis. As a result, SCDP enables fair sharing of its downlink to

all transport sessions running at a specific receiver. It would be

straightforward to support priority scheduling at the receiver.

(3) SCDP employs MLFQ in the network. Obviously, this pri-

oritisation scheme provides fairness between competing flows

only within the same priority level. In Figure 17 we report

goodput results with respect to the convergence behaviour of

5 SCDP unicast sessions that start sequentially with 2 seconds

interval and 18 seconds duration, from 5 sending severs to

the same receiving server under the same ToR switch. SCDP

performs equally well to DCTCP in that respect [28]. Clearly,

flows acquire a fair share of the available bandwidth very

quickly. Each incoming flow is initially prioritised over the

ongoing flows (MFLQ) but, given the reported time scales,

this cannot be shown in Figure 17. We have repeated this

experiment with larger number of flows, and we find that

SCDP converges quickly, and all flows achieve their fair share.

VI. CONCLUSION

In this paper, we proposed SCDP, a general-purpose trans-

port protocol for data centres that is the first to exploit

network-layer multicast in the data centre and balance load

across senders in many-to-one communication, while perform-

ing at least as well as the state of the art with respect to

goodput and flow completion time for long and short unicast

flows, respectively. Supporting one-to-many and many-to-one

application workloads is very important given how extremely

common they are in modern data centres [18]. SCDP achieves

this remarkable combination by integrating systematic rateless

coding with receiver-driven flow control, packet trimming and

in-network priority scheduling.

RaptorQ codes incur some minimal network overhead, only

when loss occurs in the network, but our experimental evalua-

tion showed that this is negligible compared to the significant

performance benefits of supporting one-to-many and many-

to-one workloads. RaptorQ codes also incur computational

overhead and associated latency when when loss occurs.

However, we showed that this is rare for short flows because of

MLFQ. For long flows, block pipelining alleviates the problem

by splitting large blocks into smaller ones and decoding each

of these smaller blocks while retrieving the next one. As a

result, latency is incurred only for the last smaller block.

RaptorQ codes have been shown to perform at line speeds

even on a single core; we expect that with hardware offloading

the overall overhead will not be significant.

As part of our future work, we aim at developing an SCDP

prototype (in-kernel and/or using user-space network stack)

and exploring its performance with real application workloads.

We will also explore machine learning-based approaches for

setting the initial window on a per-flow basis. More specifi-

cally, we will investigate the applicability of Reinforcement

Learning in updating the initial window value for new or

existing flows based on the (partially) observable state of the

network (e.g. as [75] performs congestion control). A key

argument in this paper was that RaptorQ coding should be

the centrepiece of the data transport mechanism, in order

to enable a unified approach for efficiently dealing with

all supported communication modes. As part of our future

work, we will investigate this argument further by developing

extensions of existing unicast data centre protocols (e.g. [26])

that can handle one-to-many and many-to-one data transport

and compare their performance with SCDP.
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