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Abstract— Early design space exploration (DSE) is a key
ingredient in system-level design of MPSoC-based embedded
systems. The state of the art in this field typically still explores
systems under a single, fixed application workload. In real-
ity, however, the applications are concurrently executing and
contending for system resources in such systems. As a result,
the intensity and nature of application demands can change
dramatically over time. This paper therefore introduces the
concept of workload scenarios in the DSE process, capturing
dynamic behavior both within and between applications. More
specifically, we present and evaluate a novel, scenario-based
DSE approach based on a coevolutionary genetic algorithm.

I. INTRODUCTION

Modern embedded systems are increasingly based on

heterogeneous MultiProcessor SoC (MPSoC) architectures,

integrating components that range from fully programmable

processors to dedicated hardware blocks for time-critical

application tasks. The application behavior of these, typically

software-centric, MPSoC-based embedded systems also be-

comes more and more dynamic. Here, one can distinguish

two types of dynamic behavior: intra-application and inter-

application dynamic behavior. Intra-application dynamic be-

havior relates to the different behaviors, or operation modes,

of a single application. For example, a video application

could dynamically lower its resolution (and thus its QoS) to

decrease its computational demands in order to save battery

life. Inter-application dynamic behavior, on the other hand,

is caused by the fact that modern embedded systems often

require to support an increasing number of applications and

standards. Also, todays embedded systems become more

and more ”open systems” for which third-party software

applications can be downloaded and installed. As a conse-

quence, the application workload in such systems (i.e., the

applications that are concurrently executing and contending

for system resources), and therefore the intensity and nature

of the application demands, can change very dramatically

over time.

To cope with the design complexities of MPSoC-based

embedded systems, system-level design has become a

promising approach for raising the abstraction level of de-

sign, and thereby increasing the design productivity. Early

design space exploration (DSE) is an important ingredient

of such system-level design, which has received significant

research attention in recent years. However, the majority of

these DSE efforts still evaluate and explore MPSoC archi-

tectures under single-application workloads. In this paper,

we therefore build upon the concept of workload scenarios

[1], capturing dynamic application behavior at both inter and

intra application levels, and present a novel, scenario-based

DSE approach.

An important problem that needs to be solved by such

scenario based DSE is the fact that the number of possible

workload scenarios usually is too large for an exhaustive

evaluation of all the design points with all workload sce-

narios during the MPSoC DSE. Therefore, a representative

subset of scenarios need to be selected for the evaluation

of MPSoC design points. The most attractive way of such

scenario selection is to obtain a representative subset of

scenarios statically, before the DSE is performed. This

could, e.g., be done by clustering the scenarios, based on

architecture dependent metrics [1]. However, because our

goal is to perform MPSoC DSE, implying that the target

MPSoC as well as the mapping of applications onto the

underlying MPSoC are still unknown, a static clustering

based on architecture dependent metrics cannot be done. For

this reason, a dynamic selection method is required. During

the DSE itself, a representative subset of scenarios must be

dynamically identified based on the MPSoC design points

evaluated by the DSE process. The consequence is that the

DSE algorithm must solve two problems simultaneously:

searching the MPSoC design space as well as searching the

scenario space to find a representative subset of scenarios.

To this end, we use the concept of coevolution, in which

the evolution of a certain type of individual is closely

related to the evolution of another type of individual [2], [3].

More specifically, we present and evaluate a coevolutionary

genetic algorithm to perform scenario-based DSE of MPSoC

architectures.

The remainder of this paper is organized as follows. In

the next section, we briefly outline the high-level simulation

framework Sesame which allows for simulating and evaluat-

ing MPSoC design instances. Additionally, a brief descrip-

tion of workload scenarios is given. Section 3 describes our

scenario based DSE approach, based on a coevolutionary

genetic algorithm. In Section 4, we present experimental

results which show that our coevolutionary DSE approach

clearly outperforms DSE in which the representative subset

of scenarios has been selected statically using random selec-

tion. Section 5 discusses related work, after which Section 6

concludes the paper.

II. SCENARIO BASED MPSOC SIMULATION

To evaluate design points during system-level design space

exploration, we deploy the Sesame high-level simulation

framework [4]. This framework, as illustrated in Figure 1,
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Fig. 1. High level scenario based MPSoC simulation in Sesame in
combination with workload scenarios

allows for rapid performance evaluation of different MPSoC

architecture designs, application to architecture mappings,

and hardware/software partitioning. Key to this flexibility

is the separation of application and architecture models,

together with an explicit mapping step to map application

models onto an architecture model. This mapping step has

been implemented using trace-driven co-simulation of the

application and architecture models. The input to Sesame is a

set of event traces, which are an abstract representation of the

workload imposed on the architecture. After processing the

events, the architecture model provides us with the quality

(e.g. performance, power) of the mapping.

To systematically specify and generate different multi-

application workloads for Sesame, so that these workloads

can be used during system-level design space exploration, we

use the concept of workload scenarios [1]. More specifically,

we distinguish two types of application scenarios within a

workload scenario: intra and inter application scenarios.

Intra-application scenarios are scenarios which describe the

different behaviors, or operation modes, of a single ap-

plication. For example, an application may feature various

operation modes to maintain a certain level of QoS under

changing circumstances. The inter-application scenarios, on

the other hand, describe the behavior of multiple applica-

tions. More specifically, inter-application scenarios indicate

which applications can run concurrently. In Figure 1, for

example, it can be seen that an intra-application scenario

corresponds to a single application specification, which in

our case is a (Kahn) Process Network. We capture an

intra-application scenario by the set of trace events that

were dispatched by the processes in a Process Network [5]

during a particular execution phase of the application. The

behavior of a complete system with multiple applications

is described by an inter-application scenario. Such an inter-

application scenario actually bundles the description of all

the individual intra-application scenarios for each of the

Process Networks (an MP3 recorder and Video player in
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Fig. 2. The coevolutionary genetic algorithm

Figure 1). Subsequently, we use a scenario database to

compactly store all possible workload scenarios, consisting

of both intra-application and inter-application scenarios [6].

This scenario database allows for on-demand generation of

application workloads, in the form of event traces, according

to the stored scenarios for the purpose of scenario-based DSE

using the Sesame framework.

III. COEVOLUTIONARY ALGORITHM

Our DSE problem consists of finding optimal mappings

(also called design points) of the applications onto the

architecture, given a subset of application scenarios that is

representative for all the scenarios in the scenario database.

Here, a mapping defines both the allocation of resources

in the MPSoC platform and the binding of the tasks and

communication channels onto the allocated resources. The

difficulty is the dependence of the representativeness of a

subset of scenarios on the application mapping. Based on

the architecture instances that are explored, the behavior of

an application scenario can vary. An obvious example is an

architecture that may be optimized for a certain scenario. On

the optimized architecture it may execute quite efficiently,

whereas in general the scenario is quite expensive. As the

architectures used in the DSE are not known beforehand,

the representative subset is also not known in beforehand.

Consequently, the problem is ill-defined.

A technique to solve ill-defined problems is a coevo-

lutionary genetic algorithm (GA). The coevolutionary GA

algorithm can be built in two ways [3]: a combined and a

separate genotype approach. This paper presents a coevolu-

tionary DSE method using the separate genotype approach.

The implementation of this coevolutionary genetic algorithm

is based on the widely-used SPEA2 GA [7].

The separate genotype solution corresponds to two GAs

which are running in parallel: a GA in the solution space

and a GA in the problem space (shown in Figure 2). In our

case, the solution space consists of the different mappings

of the applications onto the underlying platform architecture

specifying the MPSoC instance. The goal of the solution
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space is to optimize the application mapping. As a result,

the solution space will try to identify the best resource

allocation and binding. The problem space, on the other

hand, completes the ill-defined problem by filling in some

remaining details of the given problem. It tries to find the best

representative subset of the scenarios for the mappings that

are evaluated in the solution space. The MPSoC designer is

supposed to limit the size of the subsets. As a consequence,

the problem space is spanned by all possible valid subsets of

application scenarios. In this case, a valid subset has a size

which is smaller or equal to the defined limit.

The most important aspect of a coevolutionary genetic

algorithm is the interaction between the two populations.

This interaction can be symbiotic or competitive [2]. In

a symbiotic interaction two species cooperate to obtain a

high fitness. For competitive interaction the behavior is the

other way around. Between the two populations there is a

competition; what is good for one population is probably bad

for the other. For our DSE problem, the interaction between

the solution and problem space is symbiotic. The better the

subsets in the problem space become, the better the fitness

of the mappings in the solution space can be predicted. As

a consequence, we obtain better mappings since the right

mappings will be selected for future generations of the GA

based search process.

A. Chromosome representations

As mentioned, our coevolutionary approach features two

separate chromosome representations. For the solution geno-

type, there are two types of genes as illustrated in Figure

3. The first part of the chromosome contains the mapping

of the processes in all the applications. In the second part,

the mappings of the communication channels of all the

applications are described. Implicitly, this also contains the

resource allocation for the platform. Resources that are not

used in any binding (processing or memory) are also not

allocated on the platform.

The chromosome representation of the problem genotype

represents a complete representative subset. Each individual

gene encodes a single scenario of the representative subset.

The scenario is described using an integer number referring

to the scenario number in the scenario database. This means

that it is possible that a single scenario occurs multiple

times in the same representative subset. In our point of

view, this does not cause any problems because the fitness

function will filter the weak subsets out of the population. If

a representative subset with multiple occurrences of a single

scenario is not filtered out, then it is probably a quite good

TABLE I

AN EXAMPLE OF THE FITNESS EVALUATION OF A SUBSET

A B C

s1 1.5 3.3 3.5
s2 1.75 3.6 3.6
s3 1.85 3.5 4
s4 2.5 6.4 5.3

Fsol 1.9 4.2 4.1
Rsol 1 3 2

F s

sol
1.68 3.40 3.75

Rs

sol
1 2 3

d 0.23 0.80 0.35
dN 0.23 0.26 0.19

D([s1, s3]) = 1

3
(0.23 + 0.26 + 0.19) ≈ 0.23

R([s1, s3]) = 1 − ρ = 0.5

distribution of scenarios.

B. Fitness functions

An exhaustive evaluation, using all the possible scenarios,

of the individuals in the solution space is infeasible. Con-

sequently, we need to estimate the fitness of the application

mappings. The work of Jin and Branke [8] describes several

ways of estimating the fitness of a solution: problem approx-

imation, data-driven functional approximation and fitness

inheritance. In our work, we use problem approximation.

Problem approximation tries to replace the original statement

of the problem by one that is approximately the same as

the original problem, but which is easier to solve. In our

case, this means that we are using a representative subset of

scenarios instead of all the application scenarios.

Evaluating the estimated fitness of solution individuals is

performed using the Sesame framework. The mapping spec-

ified in each solution individual is simulated and evaluated

using the representative subset of scenarios s received from

the problem population (see Figure 2).

Next to this, we need to determine the fitness of the

representative subsets. In order to keep the fitness evaluation

of the problem space affordable, no additional mappings need

to be simulated by Sesame during coevolution. Instead, we

are using a trainer. The trainer consists of a small number of

training mappings that have already been exhaustively (i.e.

using all the scenarios) evaluated. As a consequence, the

exact fitness of these training mappings is known and can

be used to obtain the quality of a subset in the problem

population. The quality (or problem fitness) Fp(s) of subset

s is calculated for each individual objective, like performance

and power, and given in the following equations:

D(s) =
1

|T |

|T |∑

i=0

norm (abs (Fsol(T [i]) − F s
sol(T [i]))) (1)

R(s) =1 − ρ(T, Fsol, f
s
sol) (2)

Fp(s) =α ∗ D(s) + (1 − α) ∗ R(s) (3)

The problem fitness Fp is composed of two metrics. We have

chosen for two metrics, because in the case of a small trainer

these metrics are not capable of selecting the best subset of

scenarios. The two metrics are not inherently conflicting. If a

subset has the optimal value on one of the metrics, it also has



the optimal value on the other metric. The weighting factor

α allows us to give a preference on one of the two metrics.

Currently, we have only used α = 0.5. The individual

metrics, obtained using the trainer T , are as follows:

1) The first metric is the deviation of the predictor. The

deviation D(s) of subset s is obtained by taking the

absolute difference between the real fitness Fsol and

the estimated fitness F s
sol for each of the training

mappings. The difference for each training mapping

is normalized such that each training mapping gets a

similar weight during the evaluation of the subset. This

is done by dividing it by the highest possible difference

in the estimated fitness of the training mapping, which

is equal to the difference of the largest scenario fitness

and the lowest scenario fitness.

2) The second metric is Spearman’s rank correlation ρ [9].

Spearman’s rank correlation measures the correlation

between two variables based on their ranking. For the

quality of the subset, the ranking based on the real and

estimated fitness is compared. When the ranking of a

subset is the same as the exact ranking of the trainer

mappings, it is a good subset. So, the goal of the fitness

prediction is to obtain the correct trend. It is not about

the absolute predicted fitness, but about the relative

fitness value. The predictor needs to make sure that

the Pareto optimal mapping solutions are found. This

can only be the case when the Pareto optimal solutions

have the highest predicted fitness. For the problem

fitness function, the rank correlation is subtracted from

1.0 such that, analogous to the deviation, this metric

must be minimized.

In Table I, an example fitness evaluation is given with a

single objective (a lower fitness value is better). In this case,

the trainer consists of three mappings: A, B and C. The

application has four different kinds of behavior, which are

stored at the scenario database in the four scenarios: s1, s2,

s3 and s4. The function Fsol gives the exhaustive evaluation

(the average of scenario s1, s2, s3 and s4) for each of the

training mappings. Based on the exhaustive evaluation, we

can conclude that mapping A gets rank 1, mapping C gets

rank 2 and mapping B gets rank 3. In this example, the

fitness of the subset s = [s1, s3] is determined. For mapping

C, the predicted fitness becomes (3.5 + 4)/2 = 3.75. The

deviation to the real fitness is equal to 0.35. In order to

normalize the value, it is divided by 5.3 − 3.5, which gives

a deviation of approximately 0.19. When the results of all

the training mappings are combined, the average deviation

is 0.23. The ordering quality is equal to 0.5 due to the

differences in the ranks of training mappings B and C.

C. Trainer selection

The next challenge is to obtain a good trainer. During

the selection of the trainer, there are two conflicting require-

ments. The first requirement is that the trainer is as compact

as possible. The fewer application mappings in the trainer,

the fewer exhaustive evaluations for training mappings are

required. On the other hand, the set of training mappings

Start 
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Fig. 4. Trainer selection during the coevolution

must reflect the solution design space as good as possible.

The more training mappings in the trainer, the higher the

probability that the trainer provides a good reflection of the

solution design space.

Based on these observations, we have chosen to update the

trainer dynamically during the coevolution. Because during

the coevolution different parts of the solution design space

are traversed, it is more likely that the dynamically updated

trainer reflects the relevant part of the solution design space.

In order to limit the total evaluation time, the trainer is only

updated periodically. After a fixed number of generations,

only a small number of mappings is added to the trainer.

The procedure is illustrated in Figure 4. The main part

of the procedure is the coevolution process. Periodically, the

coevolution process is paused to extend the list of mappings

in the trainer. The length of the period is given as a parameter

of the scenario-based design space exploration.

The extension procedure of a trainer starts by getting a list

of candidate mappings. As can be seen in Figure 2, in each

generation the solution space will supply a list of candidate

mappings. If the trainer is not updated, this list is simply

discarded. Otherwise, the candidate mappings are analyzed to

identify the most interesting mappings. To identify the most

interesting mappings, the candidate mappings are partially

evaluated by Sesame. In this partial evaluation, the scenarios

used in the subsets of the problem population (without the

offspring) are used. For each of the candidate mappings,

the standard deviation of the estimated fitness of all the

subsets in the problem population is calculated. This standard

deviation is normalized. The mappings with the highest

normalized standard deviation are chosen. The rationale

behind this idea is that the larger the standard deviation,

the higher the uncertainty about the predicted fitness. As our

fitness predictor must reduce the uncertainty of the predicted

fitness, it makes sense to exhaustively evaluate the uncertain

mappings and use them for training.

Finally, scenario-based DSE allows to throttle the execu-

tion time. As the Sesame simulations are the most significant

part of the execution time, the designer can specify the

maximum number of times Sesame is invoked (both in the

solution and problem space). The coevolutionary procedure

guarantees that this amount of evaluations is not exceeded.

This is done by adjusting the number of mappings added



TABLE II

GENERAL SETTINGS FOR THE (COEVOLUTIONARY) GA

Population size 200

Offspring size 30

Pcrossover 0.8

Pmutate 0.01

Generations 600

Population size 150

Offspring size 25

Pcrossover 0.8

Pmutate 0.02

Gen-train 10

Solution Space Problem Space

to the trainer during the trainer extension. For this purpose,

the number of allowed Sesame calls per generations is de-

termined. During the extension of the trainer, the difference

between the number of allowed Sesame calls until now and

the executed Sesame calls is used for the trainer extension.

The higher the maximum amount of Sesame evaluations, the

higher the quality of the trainer will be. To a certain extent,

this will improve the result of the scenario-based DSE.

IV. EXPERIMENTAL RESULTS

To evaluate our coevolutionary DSE approach, we have

studied the design space exploration of two types of multi-

application workloads. The first multi-application workload

is composed of two real applications, whereas the second

multi-application workload only contains synthetic applica-

tions giving us more control about its behavior.

In both experiments, the design space exploration entails

the search of the optimal design instances – in terms of

cost and execution time objectives – of a heterogeneous

MPSoC platform target architecture consisting of at most

eight processing elements: three MIPS processors, three

ARM processors and dedicated DCT and VLE hardware

blocks. For communication, the platform architecture allows

for using a crossbar with private memory buffers, four

dedicated point-to-point FIFOs and / or a bus connected to

a shared memory. As the mapping determines the resource

allocation, not all these elements need to be used in the final

platform instance.

We compare our coevolutionary approach against a static

approach to select a representative subset of scenarios. In

this static approach, we have randomly selected a sample of

the workload scenarios in the scenario database. This fixed,

random sample of scenarios has subsequently been used for

the evaluation of solution individuals (i.e., mappings) in a

traditional DSE process using a single (SPEA2 based) GA for

searching the solution space. Additionally, the coevolutionary

approach is compared to an exhaustive DSE where the

complete scenario database is used for the evaluation of each

solution individual. The general settings of the GA for the

solution and problem spaces are given in Table II. The table

on the right is only applicable for the coevolutionary GA.

Here, the Gen-train is the interval after which the trainer

is updated. Each experiment is repeated several times to

take the randomness of a GA into account. The realistic

experiment is repeated twelve times, whereas the synthetic

approach is repeated six times.

Since the coevolutionary and static approaches select

different representative subsets of workload scenarios, we

cannot directly compare their obtained solution populations.

The problem is that the objective values, such as execution

time, have been calculated on different scenario subsets. To

resolve this, the real objective values for each solution must

be calculated using exhaustive simulation. In order to analyze

the convergence of the GAs, this has been done at every 15th

population.

The experiments result into Pareto fronts (as illustrated in

Figure 6D). A Pareto front shows the designer the different

tradeoffs that can be made with respect to execution time and

cost. However, Pareto fronts cannot directly be used for a

quantified comparison between the different methods. There

are several known metrics that are capable of quantifying

the difference between the Pareto fronts [10]. In our case,

we are using the hypervolume indicator (or S-metric). The

hypervolume indicator considers the volume of the objective

space dominated by the total Pareto front. This volume can

be used to compare the results of the different approaches

and to analyze the convergence of the GA.The larger the

hypervolume, the better the Pareto front.

A. Real multi-application workload

The real multi-application workload contains two appli-

cations: A Motion JPEG (M-JPEG) encoder and a MPEG4

Simple Profile decoder. The M-JPEG application contains

11 intra-application scenarios, whereas the MPEG4 applica-

tion is composed of 10 scenarios. For the inter-application

scenarios all possible combinations are chosen: the M-JPEG

application can run concurrently with the MPEG4 application

and both applications can run on their own. As a result, 131

different workload scenarios are obtained.

In this experiment, the statically selected subset contains 5
scenarios and the maximal size of the dynamically selected

subset in our coevolutionary approach) is equal to 4 scenar-

ios. In this way, the additional Sesame calls performed by the

trainer are compensated for and both methods are using the

same number of simulations. The results of the experiments

are shown in Figure 5A. On average, the hypervolume of the

Pareto fronts of the coevolution approach is better than the

static method. Both methods converge quite quickly. Starting

from the 100th generation, the hypervolume increases very

slowly. The final result is that the hypervolume of the

coevolution is 0.02 larger. For the designer, this means

that, on average, the found solutions of the coevolutionary

approach are more than 2 percent faster.

Figure 5B shows the quality of the representative subset

of scenarios using Spearman’s rank correlation. For this

purpose, a large set of exhaustively evaluated solution indi-

viduals are used. This set is unequal to the trainer. The higher

the rank correlation, the better the ranking of the subset

matches with the real ranking. In the graph, the lines show

the averaged quality of the subsets over all the runs. Extrema

over the different runs are shown in two ways. As the subset

of the static approach does not change over time, the quality

is also constant. Therefore, the extrema are shown as an error

bar. The quality of the coevolution approach changes over

time, thus the extrema are shown using a shaded region to

prevent clutter.
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Fig. 5. The results of the coevolutionary GA on the real multi-application workload

The quality of the subsets are more or less equal for both

the coevolutionary approach and the random approach. A

lack of diversity in the scenario database is the cause of

the similar quality. Since the diversity is so small, there is

a large probability that a randomly picked subset will be

representative for the complete scenario database.

B. Synthetic multi-application workload

In order to assess a larger diversity of multi-applicational

workloads, the coevolutionary GA is also tested on a syn-

thetic workload. The synthetic workload contains 18 appli-

cations with a total of 72 process nodes. The total number of

intra-application scenarios is 51, which in combination with

27 inter-application scenarios results into a total number of

514 scenarios. In order to make a fair comparison, we choose

to use the same amount of evaluations for the random and

the coevolutionary genetic approach. This means that the

random approach will use a subset of 10 scenarios, whereas

the coevolutionary approach only takes 6 scenarios in the

representative subset. The remaining Sesame calls in the

coevolutionary approach are used for the evaluation of the

trainer. As a consequence, the coevolutionary approach needs

to work extra hard in order to let the representative subset

outweigh the random subset.

The results of the experiment are given in Figure 6A.

Evidently, the best method is the exhaustive evaluation of

the complete workload. One can see that for this approach

the hypervolume of the Pareto front is only increasing

during the evolution. The reason is obvious, as it selects

individuals based on the real fitness, it will only take the

strong individuals for use in the next generation1. However,

the exhaustive method is only run once and for 420 gen-

erations. The evaluation effort of the exhaustive evaluation

is impractical, as can be seen in Figure 6B. Whereas the

exhaustive approach has a (wall clock) execution time of

163 hours, the coevolution and static approaches only take

approximately 6 hours.

The evaluation effort of the random and coevolutionary

approaches are more or less equal. In this view, it can be

seen that the coevolutionary approach clearly outperforms the

random approach. The average hypervolume of the coevolu-

tionary approach is almost monotonically increasing. From

this observation, we can conclude that the fitness prediction

1SPEA2 is an selection algorithm which makes use of elitism.

of the representative subset is good enough to keep the strong

individuals in the population. However, the subset only spans

1.2 percent of the scenario database. This is the reason why it

is not always capable of selecting all individuals that improve

the Pareto front, and as a result, the hypervolume of the

exhaustive evaluation is still somewhat larger. On the other

hand, the random approach makes wrong decisions resulting

into a decreasing hypervolume.

The coevolutionary approach does not only obtain better

results, but the variance in the results over different runs

is also decreased. In Figure 6A, the extrema of the different

experiments are highlighted using a shaded area. These areas

partially overlap, as can be seen by the darker region. Since

the exhaustive evaluation is only done once, the exhaustive

evaluation is not extended with a colored area. In the initial

part of the evolution, the fitness differences between the

individuals in the solution population are still large enough to

make an easy distinction. As a result, all methods have a sim-

ilar hypervolume and the variance is not too large. During the

coevolution, the dynamic improvement of the representative

subset takes care that the variance is slowly decreased. On the

other hand, the variance of the hypervolume of the random

approach is much larger. As this random approach has no

clever way of selecting the scenarios, the representativeness

of the subsets is extremely uncertain. The uncertainty of the

representativeness of the subset gives problems in the later

stages in the evolution. Due to the imprecise prediction of

the fitness, the fitness predictor based on the subset is not

capable of selecting the Pareto optimal solution individuals.

Next, the dynamic improvement of the subset used in the

fitness prediction of the solution individuals is demonstrated.

The quality of the subsets is obtained in a similar fashion

as we described in the previous subsection and can be seen

in Figure 6C. A first observation is that, in contrary to the

previous experiment where the scenario database had much

less diversity, the quality of the subset generated by the

coevolutionary approach is much better. As the diversity in

the scenario database makes it harder to statically select

a representative subset, the coevolution approach is now

capable of dominating the static approach. Additionally, the

variance of the subset quality in the random approach is

both for the deviation and the ranking much larger than

the variance of the coevolutionary approach. In fact, the

random approach has a variance which is no less than
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Fig. 6. The results of the coevolutionary GA on the synthetic multi-application workload

ten times as large as the coevolutionary approach. Another

observation is that in the beginning of the DSE, the search of

a representative subset in the problem space is not partially

converged yet. As a result, the quality of the dynamically

selected subset is within the range of the statically selected

subset. After a certain number of generations, however, the

dynamically updated subset of 6 scenarios reigns supreme

over the statically selected subset of 10 scenarios. The consis-

tent quality of the coevolutionary selected subset outperforms

the uncertain quality of the random subset of scenarios. Even

the worst subset in the coevolution approach is eventually

better than the best subset in the random approach.

Finally, Figure 6D shows one of the trainers. The line is the

Pareto front of non-dominated design points which are found

in the specific DSE. For the designers, this is the main result

of the DSE where they can see the found trade off between

performance and cost (in terms of area). Within this graph,

all the trainer mappings are plot using their real fitness. It

can be observed that the trainer mostly picks the mappings

with fitness values close to Pareto optimal design points. In

these areas the mappings are cluttered and therefore hard to

differentiate.

V. RELATED WORK

Much research has been performed on high-level modeling

and simulation for MPSoC performance evaluation as well

as on GA based DSE [11], [12]. However, the majority of the

work in this area still evaluates and explores systems under

a single (fixed) application workload. Only very recently,

research has been initiated on recognizing workload scenar-

ios [13], [1] and making DSE scenario aware [14], [15].

In [1], for example, different single-application scenarios

are used for DSE. Another type of scenario is the use-

case. A use-case can be compared with what we call inter-

application scenarios, and consequently, a use-case describes

which applications are able to run concurrently. Examples

of frameworks utilizing use-cases for mapping multiple ap-

plications are MAMPS [16] and the work of Benini et al.

[17]. MAMPS is a system level synthesis tool for mapping

multiple applications on a FPGA, whereas Benini et al. use

logic programming to reconfigure an embedded system when

a new use-case is detected. Another way of describing the use

of multiple applications is a multimode multimedia terminal

[18], in which the inter-application behavior is captured

in a single, heterogeneous model of computation (MoC)

combining dataflow MoCs and state machine MoCs. These

approaches describe inter-application dynamic behavior, but

do not capture intra-application dynamism. To the best of

our knowledge, our approach is the first to address both intra

and inter application dynamism during DSE of MPSoCs with

multi-application workloads.

Moreover, to the best of our knowledge, coevolution is

also not used yet in the field of DSE of MPSoCs. However,

in other research areas there has been done some work in

applying coevolution to reduce the number of scenarios or

test cases during the execution of a GA to improve the

efficiency. Branke and Rosenbusch [19] apply coevolution for

worst-case optimization. They try to optimize a mathematical

function F (s, t). In this function s is the solution parameter,

whereas t is a test case. The goal is to find the optimal s such

that the worst case value of all the possible tests t is as high

as possible. Since the worst case performance is an individual



metric (as long as the worst case test is in the population,

the real fitness is obtained, irrespective of the other tests in

the population), they do not need an exhaustively evaluated

trainer.

The work of Schmidt and Lipson [20], on the other hand,

uses an exhaustively evaluated trainer. Similarly to our work,

they want to increase the efficiency of a GA by using a

fitness predictor. The fitness predictors are coevolving with

the traditional GA and are composed of a subset of all

the samples in the problem definition. In order to evaluate

the fitness predictor, a set of exhaustively evaluated training

individuals is used. The lower the absolute prediction error

on the trainer, the better the fitness predictor is.

In contrast to our work, the fitness predictor is evaluated

differently. We are not only normalizing the prediction error

to get a fair weight for each individual training element,

but also the relative ordering quality is taken into account

using Spearman’s rank correlation. The relative ordering that

a fitness predictor gives is in our point of view the most

important quality of a fitness predictor. At the end of the

DSE, the best solutions need to be found, and from this

perspective it does not matter if the predicted fitness has a

systematic error. The combination of Spearman’s rank corre-

lation and the prediction error gives a complete view of the

quality of a fitness predictor. As a small trainer is not capable

of getting a complete view of the ordering requirements,

comparable ordering qualities can be discriminated using

the prediction error. The smaller the prediction error, the

higher the probability that the relative ordering of the fitness

predictor is representative for the rest of the design space.

To summarize, our work is the first to exploit the co-

evolution technique in order to make the DSE of MPSoCs

more efficient. In this way, we are able of exploring a

multi-application workload taking both the intra- and inter-

application dynamism into account.

VI. CONCLUSION

To address the increasingly dynamic behavior of applica-

tion workloads in modern MPSoC-based embedded systems,

this paper has introduced the concept of workload scenarios

in system-level DSE of such systems. More specifically, we

have proposed a novel scenario-based DSE approach, based

on a co-evolutionary algorithm. This algorithm simultane-

ously searches for optimal MPSoC design instances and for

representative subsets to evaluate these design instances.

We have shown that, as long as the diversity in the scenario

database is large enough, the coevolutionary DSE clearly

outperforms the DSE in which the representative subset of

scenarios has been selected statically using random selection.

The improvement comes in two ways. The first improvement

is that the hypervolume of the resulting Pareto fronts is larger.

This means that the fully dominated area is larger and we

have obtained design points which are faster and cheaper.

Secondly, there is a higher probability that the coevolution

gives a good outcome. The diversity in the hypervolume

of the Pareto fronts and the quality of the representative

subset is much smaller than in the random approach. As

a consequence, the results are more consistent than it would

be with a randomly selected subset.

Thus, the coevolution approach supports the designer

by obtaining a Pareto front of near-optimal design points

much faster than the traditional approach that exhaustively

evaluates all the scenarios. Additionally, the results are more

reliable as the consistency over different runs is much larger

than with a randomly selected subset.
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