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Abstract

We study the use of sparse grids methods for the scenario generation (or discretiza-
tion) problem in stochastic programming problems where the uncertainty is modeled using
a continuous multivariate distribution. We show that, under a regularity assumption on the
random function, the sequence of optimal solutions of the sparse grid approximations, as
the number of scenarios increases, converges to the true optimal solutions. The rate of con-
vergence is also established. We consider the use of quadrature formulas tailored to the
stochastic programs where the uncertainty can be described via a linear transformation of
a product of univariate distributions, such as joint normal distributions. We numerically
compare the performance of the sparse grid method using different quadrature rules with
quasi-Monte Carlo (QMC) methods and Monte Carlo (MC) scenario generation, using a
series of utility maximization problems with up to 160 random variables. The results show
that the sparse grid method is very efficient if the integrand is sufficiently smooth. In such
problems the sparse grid scenario generation method is found to need several orders of
magnitude fewer scenarios than MC and QMC scenario generation to achieve the same ac-
curacy. The method is potentially scalable to problem with thousands of random variables.
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1 Introduction

Stochastic optimization is a fundamental tool in decision making, with a wide variety of
applications (see, e.g., Wallace and Ziemba [34]). A general formulation of this problem is

min
x∈C

∫
Ξ
f(ξ, x)P (dξ), (1)

where the n-dimensional random parameters ξ are defined on a probability space (Ξ,F , P ),
F is the Borel σ-field on Ξ and P represents the given probability measure modeling the
uncertainty in the problem, and C ⊆ Rn̄ is a given (deterministic) set of possible decisions.

In practice, the continuum of possible outcomes corresponding to P is often approxi-
mated by a finite number of scenarios ξk (k = 1, . . . ,K) with positive probabilities wk,
which amounts to the approximation of the integral in (1) by a finite sum:

min
x∈C

∫
Ξ
f(ξ, x)P (dξ) ≈ min

x∈C

K∑
k=1

wkf(ξk, x). (2)

The efficient generation of scenarios that achieve good approximation in (2) is, thus, a
central problem in stochastic programming.

Several methods have been proposed for the solution of this problem. The popular
Monte Carlo (MC) method uses pseudo-random numbers (vectors) as scenarios and uniform
weights w1 = · · · = wK = 1/K. Pennanen and Koivu [27] use quasi-Monte Carlo
(QMC) methods, that is, low-discrepancy sequences, the Faure sequence, Sobol sequence,
or the Niederreiter sequence, as scenarios along with uniform weights. Scenario reduction
methods, e.g [4, 14] generate a large number of scenarios, and select a small, “good”,
subset of them, using different heuristics and data mining techniques, such as clustering and
importance sampling. Dempster and Thompson [6] use a heuristic based on the value of
perfect information, with parallel architectures in mind. Optimal discretization approaches
[9, 29] choose the scenarios by minimizing a probability metric. Casey and Sen [3] apply
linear programming sensitivity analysis to guide scenario generation.

King and Wets [16] and Donohue [7] studied epi-convergence of the Monte-Carlo
method. Epi-convergence of the QMC methods is established in Pennanen and Koivu [28],
and Pennanen [26]. Since establishing the rate of convergence is difficult (for example,
results for QMC methods are unknown), different scenario generation methods are usually
compared to each other numerically. Pennanen and Koivu [28] tested QMC methods on
the Markowitz model. The Markowitz model has an alternate closed form expression of
the integral, which allows one to test the quality of the approximation by comparing the
objective value from the approximated model with the true optimal objective value. If the
true optimal value is unknown, a statistical upper and lower bound obtained from Monte
Carlo sampling (see, e.g, [22]) may be used to compare scenario generation methods. Kaut
and Wallace [15] give further guidelines for evaluating scenario generation methods.

The main contributions are this paper are twofold. Two variants of a sparse grid sce-
nario generation method are proposed for the solution of stochastic optimization problems.
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After establishing their convergence and rate of convergence (Theorems 4 and 5), we nu-
merically compare them to MC and QMC methods on a variety of problems which differ in
their dimensionality, objective, and underlying distribution. The results show that the sparse
grid method compares favorably with the Monte Carlo and QMC methods for smooth in-
tegrands, especially when the uncertainty is expressible using distributions that are linear
transformations of a product of univariate distributions (such as the multinormal distribu-
tion). In such problems, the sparse grid scenario generation method is found to need several
orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the
same accuracy.

The paper is organized as follows. In Section 2 we review the Smoljak’s sparse grid
approximation method and its application for scenario generation. In Section 3 we adapt
this method for stochastic optimization. The general method of is presented in Section 3.1,
whereas the variant presented Section 3.2 is designed for problems that can be transformed
linearly to a problem whose underlying probability distribution is a product of univariate
distributions. In Section 4 we show that the sparse grid method gives an exact representation
of (1) if the integrand function belongs to a certain polynomial space. Here we also show
that the method is uniformly convergent and that the rate of convergence of sparse grid sce-
nario generation is the same as the rate of convergence of sparse grid numerical integration
methods. Numerical results follow in Section 5. We give results both on stochastic opti-
mization problems which have been used for testing in the literature, and on considerably
larger new simulated examples. The motivating application in these examples is portfolio
optimization with various utility functions as objectives. The results show numerically that
the sparse grid method compares favorably with the Monte Carlo and QMC methods for
smooth integrands, and scales very well. Additional remarks are made in Section 6.

2 Sparse Grid Scenario Generation in Numerical Integration

2.1 Quadrature rules for numerical integration

The sparse grid scenario generation method uses a univariate quadrature rule as a basic
ingredient. A quadrature rule gives, for every ν ∈ N, a set of points (nodes) ωk ∈ R and
corresponding weights wk ∈ R, k = 1, . . . , L(ν), used to approximate a one-dimensional
integral:

∫
Ω
f(ω)ρ(ω)dω ≈

L(ν)∑
k=1

wkf(ωk), (3)

where Ω is either a closed bounded interval (without loss of generality, [0, 1]) or the real
line R, and ρ : Ω 7→ R+ is a given nonnegative, measurable weight function. For the
stochastic optimization problems of our concern it is sufficient to consider probability den-
sity functions of continuous random variables that are supported on Ω, and which have
finite moments of every order m ∈ N. For a given univariate quadrature rule the number of
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scenarios is specified by the function L(ν) : N→ N, where ν is called the resolution of the
formula. The univariate quadrature rules differ in L(·), and in the nodes and weights they
generate for a fixed ν.

Examples of univariate quadrature rules for Ω = [0, 1] with the constant weight function
ρ = 1 include the Newton–Cotes (midpoint, rectangle, and trapezoidal) rules, the Gauss–
Legendre rule, the Clenshaw–Curtis rule, and the Gauss–Kronrod–Patterson (or GKP) rule;
see, for example, Davis and Rabinowitz [5] or Neumaier [19] for the definitions of these
rules.

Examples of quadrature rules for other domains and commonly used weight functions,
including the case when Ω = R and ρ(ω) = exp(−ω2), can be found in Krylov’s mono-
graph [17]. We mention two important families of such rules. Gaussian quadrature rules
[17, Chap. 7] are the generalization of Gauss–Legendre rules, and can be defined for ev-
ery domain and weight function; they satisfy L(ω) = ω. We introduce the second family,
Patterson-type rules in Section 3.2; these rules have an exponentially increasing function
L.

An important feature of quadrature rules is their degree of polynomial exactness (some-
times called degree of precision), which is the largest integer Dν for which the approxima-
tion (3) with resolution ν is exact for every polynomial of degree up to Dν . For example,
for the Gaussian rules we have Dν = 2ν − 1, whereas the GKP rule satisfies D1 = 1 and
Dν = 3·2ν−1−1, for ν ≥ 2. [13]. High degree of polynomial exactness translates to a good
approximation of the integrals of functions approximable by polynomial functions. For r-
times weakly differentiable functions f (see also (7) below) the error in the approximation
(3) can be estimated as:∣∣∣∣∣

∫
Ω
f(ω)ρ(ω)dω −

L(ν)∑
k=1

wkf(ωk)

∣∣∣∣∣ = O
(
K−r

)
,

where K = L(ν) is the number of nodes.
Let Ων = {ω1, . . . , ωL(ν)} be the nodes andwων = {w1, . . . , wL(ν)} be the correspond-

ing weights. If Ων ⊂ Ων+1, then the univariate quadrature rule is called nested. The nodes
of Gaussian quadrature rules are not nested. Examples of nested univariate quadrature rules
are the iterated trapezoidal, the nested Clenshaw–Curtis, and the Gauss–Knonrod–Patterson
(GKP) formulas [13], as well as the Patterson-type rules of Section 3.2. In general, nested
quadrature rules are preferred in the sparse grid scenario generation, as they are known to
give better approximations to the integrals than sparse grid formulas with non-nested rules,
such as the Gaussian.

2.2 Smolyak’s Sparse Grid Construction

The sparse grid algorithm by Smolyak [32] utilizes any of the above univariate quadrature
rules and uses a complexity parameter to limit the number of grid point it generates. Sparse
grids have significantly fewer nodes than the exponential number of nodes of the product
grid obtained by taking direct products of univariate quadrature formulas. We now briefly
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describe Smolyak’s construction of multivariate quadrature rule and summarize the main
results on this topic. See Bungartz and Griebel [1] for a review on sparse grid methods
(with a focus on differential equations).

Let ρ(ω1, . . . , ωn) = ρ1(ω1) · · · ρn(ωn) be a given n-variate weight function, ν1, · · · , νn
represent the sparse grid resolution along dimensions 1, . . . , n, and ν be a shorthand for
(ν1, · · · , νn). Let Ωνi = {ω1, . . . , ωL(νi)} be the nodes of the univariate quadrature rule
for the weight function ρi with resolution νi, and let w1, . . . , wL(νi) be the corresponding
weights. For a given positive integer q, Smolyak’s sparse grid formula uses the nodes in

G(q, n) =
⋃

‖ν‖1≤q+n−1

(Ων1 × · · · × Ωνn), (4)

and approximates the multivariate integral∫
Ωn
f(ω)ρ(ω)dω (5)

by the finite sum

K∑
k=1

wkf(ωk) :=
∑

q≤‖ν‖1≤q+n−1

(−1)q+n−‖ν‖1−1

(
n− 1
‖ν‖1 − q

) Lν1∑
k1=1

· · ·
Lνn∑
kn=1

wk1 · · ·wknf(ωk1 , . . . , ωkn).

(6)
We now present results on the error estimates for the sparse grid method in approxi-

mating a multi-variate integral. Theorem 1 shows that Smolyak’s multivariate quadrature
preserves the underlying univariate quadrature rule polynomial exactness property. For ex-
ample, if n = 2, q = 2, then using the Gaussian quadrature rule the approximation is exact
for polynomials that are a linear combination of x, x2, x3, y, y2, y3, xy, x2y, xy2, x3y, xy3,
and a constant. Hence, the approximation is exact for all polynomials of degree 3, and
monomials x3y, xy3 of degree 4. In general, for any n and q = 2 the approximation is
exact for polynomials of degree 3. A general result on polynomial exactness is restated in
the following theorem.

Theorem 1. (Gerstner and Griebel [13], Novak and Ritter [23]) Let q ∈ N, and the sparse
grid approximation of (5) be given as in (6). Let Dνi be the degree of polynomial exactness
of a univariate quadrature rule with resolution νi. Let PDνi ⊗ PDνj represent the space
of polynomials generated by linear combination of products of monomials pki(xi) with
pkj (xj), where the monomial degree ki ≤ Dνi and kj ≤ Dνj . Then the value of (6) is equal
to the integral (5) for every polynomial f ∈ Pnq :=

∑
‖ν‖1≤q+n−1

{
PDν1 ⊗ · · · ⊗ PDνn

}
.

In Theorem 2 we restate a result providing an error bound on the approximation, when
the integrand is not a polynomial. In this theorem the functional space includes functions
with weak derivatives. Weak derivatives are defined for integrable, but not necessarily
differentiable functions [10, 31]. The constant cr,n in Theorem 2 depends on dimension
n, the order of differentiability r, and the underlying univariate quadrature rule used by
the sparse grid method. Although for some cases cr,n is known (see Wasilkowski and
Woźniakowski [35]), in general one can not expect to know cr,n a priori.
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(a) d = 2 (b) d = 3

Figure 1: Sparse grid on unit square and unit cube for q = 5 with underlying GKP univariate
quadrature. There are 129 scenarios in the unit square and 351 scenarios in the unit cube.

Theorem 2. (Smolyak [32], Novak and Ritter [23], Gerstner and Griebel [13]) Consider
the functional space

Wr
n :=

{
f : Ωn → R,

∥∥∥∥∂s1+s2+...+snf

∂ωs11 . . . ∂ωsnn

∥∥∥∥
∞

<∞,max(s1, s2, . . . , sn) ≤ r
}
, (7)

where the symbol ∂f
∂ωj

represents the weak-derivative of a function f w.r.t. ωj . Assume that
the chosen univariate quadrature rule satisfiesL(1) = 1, L(ν) = O(2ν). For n, r ∈ N, f ∈
Wr
n, then K:=|G(q, n)| = O(2qqn−1) is the cardinality of the sparse grid. Furthermore,

for some 0 < cr,n <∞ we have

sup
f∈Wr

n

∣∣∣∣∣
∫

Ωn
f(ω)ρ(ω)dω −

K∑
k=1

wkf(ωk)

∣∣∣∣∣ ≤ cr,nK−r(logK)(n−1)(r+1)‖f‖∞. (8)

From a complexity point of view the sparse grid method generates O(2qqn−1) grid
points when O(2ν) points are generated for a (nested) univariate quadrature rule. This is
in contrast to the full grid construction where the number grows as O(2qn), with resolu-
tion q along each dimension. Table 1 compares the full grid and sparse grid number of
scenarios required to achieve a degree of polynomial exactness. It shows that even the
product formula with the fewest nodes (the product of Gaussian quadrature formulas) does
not scale to dimensions higher than approximately 5. In contrast, sparse grid formulas using
GKP univariate quadrature rules can achieve at least moderate degree of exactness for high-
dimensional problems. Figure 1 shows Smolyak’s sparse grid points using GKP univariate
quadrature algorithm for two and three dimensions using q = 5.

We emphasize that sparse grid method overcomes the “curse of dimensionality” by
benefiting from the differentiability of the integrand. For a given problem of dimension
n, the integration error goes to zero fast for sufficiently differentiable functions since for
r ≥ 2 in (8) the term K−r dominates (logK)(n−1)(r+1). In comparison, the QMC method

6



Dimension n, Full grid Sparse grid
degree d (Gaussian) (GKP)

n = 5
d = 3 32 11
d = 5 243 71
d = 7 1,024 351
d = 9 3,125 1,471
d = 11 7,776 5,503
d = 13 16,807 18,943

n = 10
d = 3 1,024 21
d = 5 59,049 241
d = 7 1,048,576 2,001
d = 9 9,765,625 13,441
d = 11 6.0466 · 107 77,505

n = 20
d = 3 1,048,576 41
d = 5 3.4868 · 109 881
d = 7 1.0995 · 1012 13,201
d = 9 9.5367 · 1013 154,881

n = 50
d = 3 1.1259 · 1015 101
d = 5 7.1790 · 1023 5,201
d = 7 1.2677 · 1030 182,001

n = 200
d = 3 1.6070 · 1060 401
d = 5 2.6561 · 1095 80,801

Table 1: Number of nodes in the most efficient product grid (product of Gaussian formulas)
and in the sparse grid created using GKP quadrature formulas, for various dimensions and
degrees of exactness.
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minimize discrepancy on the unit cube [0, 1]n (Sobol [33] and Niederreiter [21, 20]). A
typical convergence rate bound (see, for example Caflisch [2]) for QMC methods (Halton,
Sobol, or Niederreiter sequences) is given by

cnK
−1(logK)n, (9)

where cn is a constant. The bound in (9) does not benefit from the differentiability properties
of f . We will prove in Section 3 that the sparse grid convergence results hold for stochastic
optimization problems. To the best of our knowledge the rate of convergence bounds such
as (9) are not yet established for stochastic optimization problems with scenario generation
using QMC methods.

3 Sparse in stochastic optimization

3.1 Sparse grid scenario generation via diffeomorphism

The integration domain of the sparse grid method presented in Section 2.2 is of the form
[0, 1]n, which gives a straightforward application to expected value computation for distri-
butions supported on the same domain. For more general distributions we need to perform
a change of variables before applying the sparse grid method. Suppose that g is a continu-
ously differentiable diffeomorphism that generates ξ ∈ Ξ with probability measure P from
a uniform random vector ω ∈ (0, 1)n. Then, from Folland [11, Theorem 2.47(b)]∫

Ξ
f(ξ)P (dξ) =

∫
g((0,1)n)

f(ξ)P (dξ) =

∫
(0,1)n

f(g(ω))dω.

To approximate the integral
∫

Ξ f(ξ)P (dξ) we proceed as follows:

1. Choose a q ≥ 1, and generate the setH(q, n) ⊂ (0, 1)n ofK scenarios and the corre-
sponding weights by Smoljak’s sparse grid construction for integration with respect
to the constant weight function over (0, 1)n.

2. Apply (pointwise) the transformation g to H(q, n) to generate the stochastic opti-
mization scenarios.

3. Use the transformed scenarios to approximate the integral
∫

Ξ f(ξ)P (dξ).

Note that while the sparse grid formula for integrating with respect to a product measure
has the degree of exactness of our choice, the same does not hold for the transformed
formula for integrating over Ξ with respect to P . In other words, f(·) is not a polynomial
when f(g(·)) is. Only if g is linear, is the degree of exactness of the formula preserved.
Hence, sparse grid formulas with a prescribed degree of exactness can be computed for
every probability measure that is a linear transform of a product of probability measures on
R. An important special case is that of the multivariate normal distribution.
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Example 1. Let µ ∈ Rd be arbitrary, and Σ ∈ Rd×d be a positive definite matrix with
spectral decomposition Σ = UΛUT. If X is a random variable with standard multinor-
mal distribution, then the variable Y = µ + UΛ1/2X is jointly normally distributed with
mean vector µ and covariance matrix Σ. Therefore, a sparse grid formula with degree of
exactness D can be obtained from any univariate quadrature rule consisting of formulas
exact up to degree D for integration with respect to the standard normal distribution. Such
quadrature rules include the following:

1. Gauss–Hermite rule [17, Sec. 7.4]. The nodes of the Gauss–Hermite quadrature
formula of order ν (ν = 1, 2, . . . ) are the roots of the Hermite polynomial of degree
ν, defined by Hν(x) = (−1)νex

2/2 dν

dxν e
−x2/2. With appropriately chosen weights

this formula is exact for all polynomials up to degree 2ν − 1, which is the highest
possible degree for formulas with ν nodes. The Gauss–Hermite rule is not nested.

2. Genz–Keister rule [12]. The Genz–Keister rule is obtained by a straightforward
adaptation of Patterson’s algorithm [24] that yields the GKP rule for the uniform
distribution. This rule defines a sequence of nested quadrature formulas for the stan-
dard normal distribution. Similarly to the GKP sequence, it is finite: the number of
nodes of its first five formulas are 1, 3, 9, 19, and 35, the corresponding degrees of
exactness are 1, 5, 15, 29, and 51.

The transformation of formulas via the diffeomorphism g is also the way to apply QMC
sampling for general distributions: in Step 1 of the above algorithm the scenarios H(q, n)
can be replaced by the points of a low-discrepancy sequence to obtain the QMC formulas.

3.2 Sparse grid scenarios using Patterson-type quadrature rules

The discussion in Example 1 can be applied to distributions other than the uniform and the
normal distributions. Gaussian quadrature formulas, that is, formulas with degree 2ν −
1 of polynomial exactness with L(ν) = ν nodes can be obtained for every continuous
distribution [17, Chap. 7]. These formulas are unique (for given ν and distribution), and
they have the highest possible degree of polynomial exactness, but they are not nested.

It is also possible to generalize Patterson’s method from [24] that yields the GKP rule for
the uniform distribution to obtain nested sequences of quadrature formulas for other contin-
uous distributions with finite moments. One such extension is given in [25]; a streamlined
version, which computes nested sequences of quadrature formulas for general continuous
distributions with finite moments directly from the moments of the distribution, can be
found in [18].

4 Convergence of sparse grid scenario generation

We now give convergence results for the stochastic optimization problems (2) generated
using the sparse grid scenarios. Theorem 3 states that for integrands that are polynomials
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after the diffeomorphism to product form, the approximation (2) using sparse grid scenario
gives an exact representation of (1).

Theorem 4 presents a novel uniform convergence result for optimization using sparse
grid approximations for functions with bounded weak derivatives. Note that since the sparse
grid method may generate negative scenario weights, the previous convergence results by
King and Wets [16], Donohue [8], and Pennanen [26] do not apply, and also that conver-
gence result in Theorem 4 is slightly stronger than the epi-convergence results for the QMC
methods in [26]. As the proof relies on Theorem 2, the result requires that the function
f(g(·)) has bounded weak derivatives. Since g is differentiable, this holds for smooth func-
tions f , except for some cases when the domain Ξ is unbounded. In such cases suitable
truncation of the underlying distribution (and Ξ) may be used. If the distribution is a linear
transform of a product of univariate distributions (with bounded or unbounded support),
then the method of Section 3.2 is applicable.

Finally, a rate of convergence result for the sparse grid approximation is given in Theo-
rem 5.

Theorem 3. Consider the optimization problem (1) and its approximation (2), where the
weights and scenarios are generated using the sparse grid method of Section 3.1, with some
control parameter q ≥ 1. If the underlying univariate quadrature rule used in the sparse
grid construction has degree Dνi of polynomial exactness at resolution νi, and ∀x ∈ C the
function f(g(·), x) is a member of the space of polynomials Pnq defined in Theorem 1, then
x∗ is an optimal solution of (1) if and only if x∗ is an optimum solution of (2).

Proof. Follows immediately from Theorem 1: under the assumptions, the approximation
(2) is exact, the two problems are identical.

Theorem 4 (Convergence of the sparse grid method). Consider (1) and assume that C is
closed and bounded; f(ξ, x)ρ(ω) ≤ M < ∞ for all x ∈ C and ξ ∈ Ξ; and that ∀x ∈ C,
f(g(·), x) is in the spaceWr

n, 1 ≤ r <∞. Consider (2) where the scenarios are generated
using the sparse grid method of Section 3. Let xK be a solution of (2), K = 1, . . . ,∞, and
z∗K be the corresponding objective value. Then,

(i) z∗ ≥ limK z
∗
K .

(ii) If {xK}∞K=1 has a cluster point x̂, then x̂ is an optimal solution of (1). Furthermore,
for a subsequence {xKt}∞t=1 converging to x̂, limt z

∗
Kt
→ z∗.

Proof. Let F (x) =
∫

Ξ f(ξ, x)P (dξ) and QK(x) =
∑K

k=1w
kf(ξk, x). From our earlier

discussion F (x) =
∫

Ωn f(g(ω), x)µ(dω). Since f(g(·), x) ∈ Wr
n, ∀x ∈ C, by Theorem 2

we have that for every x ∈ C,

|F (x)−QK(x)| ≤ cr,nK−r(logK)(n−1)(r+1)‖f(·, x)‖∞
≤ cr,nK−r(logK)(n−1)(r+1)M.
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Hence, as K → ∞, QK(x) → F (x) uniformly on C, i.e., for every convergent sequence
{xK}∞k=1 → x̄ ∈ C, we have

∀ε > 0,∃N1(ε) : |Qn(xK)− F (xK)| < ε,∀n > N1(ε). (10)

Since F is continuous on the closed and bounded set C, it is uniformly continuous there,
and we have

∃β(ε) > 0 : |F (xK)− F (x̄)| < ε if ‖xK − x̄‖ < β(ε). (11)

If xK → x̄, the above inequality holds for all K large enough, say K ≥ N2(ε). Hence,
we have

|F (x̄)−QK(xK)| ≤ |F (x̄)−F (xK)|+|F (xK)−Qn(xK)| < 2ε, ∀K > max(N1(ε), N2(ε)).
(12)

Therefore, QK(xK)→ F (x̄). Clearly,

QK(xK) ≥ inf
x∈C

QK(x), (13)

hence,

F (x̄) = lim
K
QK(xK) = lim

K
QK(xK) ≥ lim

K

(
inf
x∈C

QK(x)

)
. (14)

By taking infimum of the above inequality, we have

z∗ = inf
x∈C

F (·) ≥ lim
K

(
inf
x∈C

QK(x)

)
= lim

K
z∗K . (15)

We now prove the second result. The solution sequence {xK}∞K=1 of the problem sequence
(2)∞K=1 might not converge. However if it has a cluster point x̂, we consider a subsequence
{xKt}∞t=1 → x̂. By applying (14) to this subsequence, we have

F (x̂) = lim
t
QKt(x

Kt) = lim
t

(
inf
x∈C

QKt(x)

)
, (16)

and since

F (x̂) ≥ inf
x∈C

F (x), (17)

we have

lim
t

(
inf
x∈C

QKt(x)

)
≤ inf

x∈C
F (x) ≤ F (x̂) = lim

t

(
inf
x∈C

QKt(x)

)
. (18)

Hence, x̂ is an optimal solution of (1), and limt z
∗
Kt

= z∗.
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Theorem 5 (Rate of convergence). Consider (1) and its sparse grid approximation (2).
Assume that ∀x ∈ C the function f(g(·), x) ∈ Wr

n, and f(ξ, x) is bounded for all x ∈ C.
Let x∗ be an optimal solution of (1), and xK be an optimal solution of (2), then∣∣∣∣∣

K∑
k=1

wkf(ξk, xK)−
∫

Ξ
f(ξ, x∗)P (dξ)

∣∣∣∣∣ ≤ ε, and (19)∣∣∣∣∫
Ξ
f(ξ, xK)P (dξ)−

∫
Ξ
f(ξ, x∗)P (dξ)

∣∣∣∣ ≤ 2ε, (20)

where

ε = cr,nK
−r(logK)(n−1)(r+1)‖f‖∞, (21)

and K is defined as in Theorem 2.

Proof. Let F (x) =
∫

Ξ f(ξ, x)P (dξ) and QK(x) =
∑K

k=1w
kf(ξk, x). Then from Theo-

rem 2, and using the optimality of xK and x∗, we have

F (x∗)−QK(xK) = F (x∗)− F (xK) + F (xK)−QK(xK) ≤ F (xK)−QK(xK) ≤ ε, and

F (x∗)−QK(xK) = F (x∗)−QK(x∗) +QK(x∗)−QK(xK) ≥ F (x∗)−QK(x∗) ≥ −ε,

for K sufficiently large. This proves (19). Now from (19) and Theorem 2, respectively, we
have

−ε ≤ QK(xK)− F (x∗) ≤ ε
−ε ≤ F (xK)−QK(xK) ≤ ε.

Hence, −2ε ≤ F (xK)− F (x∗) ≤ 2ε.

Theorem 5 suggests that using the sparse grid approximation the optimal objective value
of (2) converges to the optimal objective value of (1) with the same rate as that for the in-
tegration problem. Hence, it continues to combat the curse of dimensionality for stochastic
optimization problems involving differentiable functions.

5 Numerical Examples

Our first example (Section 5.1) demonstrates the finite convergence of the sparse grid sce-
nario generation for polynomial models. We consider a simple example involving the
Markowitz model, taken from Rockafellar and Uryasev [30]. There are three instruments:
S&P 500, a portfolio of long-term U.S. government bonds, and a portfolio of small-cap
stocks, the returns are modeled by a joint normal distribution. The objective, the variance
of the return of the portfolio, can be expressed as the integral of a quadratic polynomial.

In Section 5.2 we consider a family of utility maximization problems. We consider
three different utility functions and three different distributions: normal, log-normal, and
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one involving Beta distributions of various shapes. With these examples we examine the
hypothesis that with a sufficiently smooth integrand sparse grid formulas with high degree
of exactness provide a good approximation of the optimal solutions to stochastic programs
even for high-dimensional problems, and also regardless of the shape of the distribution
with respect to which is integrated.

In the examples we compare variants of the sparse grid method to Monte Carlo (MC)
and quasi-Monte Carlo sampling. Our preliminary experiments with various quasi-random
(or low-discrepancy) sequences in the QMC method showed relatively little difference be-
tween different quasi-random sequences. We show this similarity in the first example, but
for simplicity, in the utility maximization problems only the results with the Sobol sequence
are shown. (For more examples see the earlier technical report version of the paper.)

The results are summarized in Section 5.3.
In our experiments we used the GKP univariate quadrature rules to build sparse grid

formulas for the uniform distribution, and analogous nested quadrature rules to be used
with non-uniform distributions. The code to generate multivariate scenarios from Smolyak
sparse grid points was written in Matlab; the approximated problems were solved with
Matlab’s fmincon solver.

5.1 Markowitz model

This instance of the classic Markowitz model was used in [30] and [28] for comparing
QMC scenario generation methods with the Monte Carlo method; the problem data is re-
constructed in the Appendix.

Example 2. (Markowitz model) Let x = [x1, . . . , xn] be the amount invested in d financial
instruments, xi ≥ 0 and

∑n
i=1 xi = 1. Let ξ = [ξ1, . . . , ξn] be the random returns of

these instruments, p(ξ) be the density of the joint distribution of the rates of return, which
is a multinormal distribution with mean vector m and covariance matrix V ∈ Rn×n. We
require that the mean return of the portfolio x be at least R, and we wish to minimize the
variance of the portfolio. The problem can be formulated as follows:

min
x

∫
Rn

(ξTx−mTx)2p(ξ)dξ

s.t. ‖x‖1 ≤ 1,mTx ≥ R, x ≥ 0.

We can approximate the above problem by a formulation with finitely many scenarios
as

min
x

K∑
k=1

wk(ξ
T
k x−mTx)2

s.t. ‖x‖1 ≤ 1,mTx ≥ R, x ≥ 0,

using scenarios xk and weights wk.
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The optimal objective function value can also be computed by solving an equivalent (de-
terministic) quadratic programming problem; the optimal value is approximately 0.003785.

The objective values of the approximated models are shown in Table 2 and plotted in
Figure 2. Since the integrand is a quadratic polynomial, approximation using a sparse grid
formula with degree of polynomial exactness greater than one (for integration with respect
to the normal distribution) is guaranteed to give the exact optimum. For example, the con-
vergence of the sparse grid method using the Genz–Keister quadrature rule is finite: we
obtain the exact objective function value with 7 scenarios, corresponding to the control pa-
rameter value q = 2 in the sparse grid construction (6), which yields an exact formula for
polynomial integrands of degree up to 3. (The formula corresponding to q = 1 is exact only
for polynomials of degree one.)

We can also use the sparse grid method with GKP nodes transformed using the diffeo-
morphism mapping uniformly distributed random variables to normally distributed ones.
Of course, the convergence for such formulas is not finite. We obtain 4 correct significant
digits for sample sizes exceeding 1023, which corresponds to q = 6 in (6). As noted before,
using the GKP formulas requires care: the diffeomorphism required to transform the uni-
form distribution to normal does not have bounded derivatives, thus the convergence results
do not apply. One possibility to resolve this problem is to replace the normal distribution
by a sufficiently truncated one.

We also generated QMC approximations with the same number of scenarios for this
problem, these results are also reported in Table 2. The performance of the Sobol, Halton,
and reverse Halton sequences are comparable to each other. Their performance is better
than the Niederreiter-2 sequence, and significantly better than the Monte Carlo based ap-
proximations. The results show that the sparse grid method reached the first, second, third,
and fourth significant digit at 7, 111, 351, and 1023 number of scenarios. In contrast, the
best performing QMC sequences needed 111 and 1023 number of scenarios to reach the
one and two significant digits of accuracy. Note also that with 2815 scenarios the standard
deviation computed using MC scheme only provides confidence for the first significant digit
of the objective value for this problem. In order to study the convergence of QMC for this
problem, we generated approximations with up to 500, 000 nodes using the Sobol sequence.
We observed steady but slow convergence. The third correct significant digit was obtained
with 2, 300 scenarios, and the fourth correct significant digit was achieved with 110, 000
scenarios.

It is reasonable to conclude that by exploiting the smoothness of the integrand function
the sparse grid method achieved faster convergence than the scenarios generated using pop-
ular QMC sequences even using the transformed GKP formula, which does not give exact
result for a polynomial integrand.

5.2 Utility maximization models

In this section we examine the hypothesis that with a sufficiently smooth integrand sparse
grid formulas with high degree of exactness provide a good approximation of the optimal
solutions to stochastic programs even for high-dimensional problems, and also regardless
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sparse grid QMC MC
# nodes GKP Genz–Keister Sobol Nieder. Halton RevHalton mean std

1 0.000000 0.000000 0.000000 0.115447 0.000085 0.000085 0.0025546 0.0038893
7 0.003091 0.003785 0.001099 0.017470 0.001695 0.002253 0.0038511 0.0022252

31 0.003674 0.002990 0.006398 0.002875 0.003346 0.0033804 0.0008580
111 0.003769 0.003398 0.004499 0.003408 0.003543 0.0038163 0.0006048
351 0.003783 0.003641 0.004023 0.003640 0.003683 0.0037725 0.0002422

1023 0.003785 0.003726 0.003840 0.003737 0.003737 0.0038138 0.0002272
2815 0.003785 0.003760 0.003802 0.003759 0.003767 0.0037926 0.0001009

Table 2: Approximated Objective Value of the Markowitz Model. The true optimal objec-
tive value is ≈ 0.003785.

Sample Size

×10−3

111 351 1023 2815
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0

Sparse Grid

Halton
MC

Figure 2: Approximated objective value of the Markowitz Model. The y-axis shows the
optimal values from the approximated model for different scenario generation methods for
sample size (x-axis) from 1 to 2815. The true optimal value is ≈ 0.003785.

of the shape of the distribution with respect to which it is integrated. For this purpose, we
considered utility maximization examples of the form

max
x

∫
Ξ
u(xTξ)p(ξ)dξ s.t. ‖x‖1 ≤ 1, x ≥ 0, (22)

for different utility functions u and density functions p.
The three utility functions considered were:

u1(t) = − exp(t) (exponential utility), (23a)

u2(t) = log(1 + t) (logarithmic utility), and (23b)

u3(t) = (1 + u)1/2 (power utility). (23c)

The probability densities considered were products Beta distributions, obtained by tak-
ing the product of univariate Beta(α,β) distributions with α, β ∈ {1/2, 1, 3/2, 5} (see
Figure 3). The motivation behind this choice that it allows us to experiment with distri-
butions of various shapes, and also to transform the problem into product form, for which
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Figure 3: Shapes of Beta(α,β) distributions for (α, β) ∈ {1/2, 1, 3/2, 5}2.

formulas with different degrees of polynomial exactness can be created and compared. We
compared both variants of the sparse grid method proposed in Section 3: we used GKP for-
mulas transformed with the appropriate diffeomorphism to scenarios for integration with
respect to the product Beta distribution (or transformed GKP formulas for short) and sparse
grid formulas using the Patterson-type quadrature rules of Section 3.2 derived for the Beta
distribution (or Patterson-type sparse grid for short).

5.2.1 Exponential utility

Table 3 shows the (estimated) optimal objective function values computed with different
scenario generation techniques for the 100-dimensional exponential utility maximization
(using u1 from (23) in (22)), where p is the probability distribution function of the 100-fold
product of the Beta(1/2,1/2) distribution (shown in the upper left corner of Figure 3). The
optimal objective function value cannot be computed in a closed form, but by the agreement
of the numerical results obtained with the different methods the correct value (up to six
significant digits) appears to be 0.606909. The table shows great difference in the rate of
convergence of the different scenario generation methods. Monte Carlo (MC) integration
achieves only 4 correct significant digits using 106 scenarios, quasi-Monte Carlo (QMC)
integration with the Sobol sequence gets 6 digits with about 2 · 105 scenarios, but only 3
digits with 2·104 scenarios. The sparse grid formula obtained by transforming the GKP rule
gets 6 digits with 2 · 104 scenarios. (See column 4 in Table 3.) Finally, the Patterson-type
sparse grid achieves 6 correct digits already with 201 scenarios. (Column 5.) The latter
formula was created using a nested Patterson-type rule for the Beta(1/2,1/2) distribution
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# nodes MC QMC (Sobol) SG w/ transformed GKP Patterson-type SG

201 0.5861458741 0.6057992465 0.6069012301 0.6069097420
20401 0.6059951776 0.605986365 0.6069098645 0.6069098767

200000 0.606784018 0.6069097597
1000000 0.6069217022 0.6069097569

Table 3: Results from a 100-dimensional exponential utility maximization example using
Beta distributions.

(see Section 3.2).
In summary, to achieve the same accuracy in this example, the sparse grid using the

Patterson-type rule (and which is exact for polynomials) requires an order of magnitude
fewer scenarios than the sparse grid using transformed GKP nodes, which in turn requires
an order of magnitude fewer scenarios than QMC. Monte Carlo is not competitive with the
other three methods.

We repeated the same experiment with all of the 16 distributions shown on Figure 3,
with the same qualitative results, with the exception of the distribution Beta(1,1), which is
the uniform distribution, hence the two sparse grid formulations are equivalent (and still
outperform MC and QMC); the details are omitted for brevity.

We also considered examples with less regular distributions, using the same distribu-
tions from Figure 3 as components. The underlying 160-dimensional product distribution
has ten components distributed as each of the distributions shown on Figure 3. The optimal
objective function value appears to be approximately 0.40315 by the agreement of three
out of four methods; Table 4 shows the approximate objective function values computed
with different techniques. The sparse grid formula using the Patterson-type rule achieves
the same precision as QMC with an order of magnitude fewer points, reaching five correct
digits with only 341 nodes. MC performs considerably worse than both of them, it needs
about 1 million points to get the fourth significant digit correctly. Memory constraints pre-
vented the generation of higher-order sparse grids formulas, the transformed GKP formula
did not outperform MC in this example.

5.2.2 Logarithmic utility

We repeated the above experiments for the logarithmic utility maximization problem, that
is, plugging u2 from (23) into (22), with the same experimental setup. We only give here the
detailed results of the 160-dimensional experiment involving the product Beta distribution
with various parameters. The optimal objective function value appears to be approximately
−0.646451. The results obtained with different scenario generation methods are shown in
Table 5.

The results are essentially the same as in the exponential utility maximization problem.
Sparse grid with the Patterson-type quadrature rule gets 6 correct significant digits with 341
nodes, whereas QMC requires about 106 nodes for the same accuracy.
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# nodes MC QMC (Sobol) SG w/ transformed GKP Patterson-type SG

321 0.4000670523 0.4026883669 0.4007432411
341 0.4020710589 0.4027479863 0.4031483327

5000 0.4031330914 0.4031128470
51841 0.4025879651 0.4031793283 0.4028398967
58331 0.4031793283 0.4031448802 0.4031484071

250000 0.4031696956 0.4031478092
1000000 0.4031451156 0.4031482230

Table 4: Results from the 160-dimensional exponential utility maximization example using
Beta distributions.

# nodes MC QMC (Sobol) SG w/ transformed GKP Patterson-type SG

321 -0.6507230838 -0.6471053734 -0.6493579499
341 -0.6497278246 -0.6470413764 -0.6464513847

5000 -0.6469930332 -0.6464964703
51841 -0.6464701611 -0.6464576966 -0.6467992796
58331 -0.6465609053 -0.6464554973 -0.6464512999

250000 -0.6464336612 -0.6464519084
1000000 -0.6464269362 -0.6464514985

Table 5: Results from the 160-dimensional logarithmic utility maximization example using
Beta distributions.
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# nodes MC QMC (Sobol) SG w/ transformed GKP Patterson-type SG

321 -1.384429683 -1.3821357312 -1.3835622039
341 -1.3863232853 -1.3821077423 -1.3816379583

5000 -1.3822980733 -1.3816702317
51841 -1.381717902 -1.3816421717 -1.3800861876
58331 -1.381763212 -1.3816406975 -1.3816379399

250000 -1.3816977241 -1.3816382958
1000000 -1.3816521898 -1.381638062

Table 6: Results from the 160-dimensional power utility maximization example using Beta
distributions.

5.2.3 Power utility

We repeated the above experiments for the power utility maximization problem, that is,
plugging u3 from (23) into (22), with the same experimental setup. The results obtained
with different scenario generation methods are shown in Table 6; they are very similar to
the results of the previous experiments. The optimal objective function value appears to be
approximately−1.3816. MC needs over 50000 nodes to get to 4 digits of accuracy, the fifth
digit is reached with 106 nodes. QMC reaches 5 correct significant digits with about 50000
nodes. Sparse grid with the Patterson-type quadrature rule requires only 341 nodes for the
same accuracy.

5.3 Summary of numerical results

The numerical experiments provide a strong indication of both the strengths and limitations
of sparse grid scenario generation in stochastic optimization. For problems where the un-
derlying distribution can be transformed linearly to a product of univariate distributions,
sparse grid scenarios generated using Patterson-type formulas are superior to standard MC
and QMC scenario generation methods.

Sparse grid scenario generation also scales well: for most common distributions 2n+ 1
scenarios are sufficient to achieve degree 3 of polynomial exactness. O(n2), respectively
O(n3), scenarios provide degree 5, respectively degree 7, of polynomial exactness, which
is sufficient for the good approximation of smooth functions, even in optimization problems
with hundreds (and possibly thousands) of variables. When the integrand can be expressed
as the product of a polynomial and a probability density function, approximation with sparse
grid scenarios provides the exact optimum, which cannot be matched by other scenario
generation methods. The generation of the sparse grid formulas (even those with millions
of nodes in thousands of dimensions) is a minimal overhead compared to the optimization
step. The generation of Patterson-type formulas with the method of [18] is also easy, and
needs to be carried out only once for every univariate distribution used. The size of the
problems concerned in this paper were only limited by two other factors: available memory
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for carrying out the optimization, and the fact that the true optimal objective value cannot
be validated by alternative methods or statistical bounds for problems with thousands of
random variables.

For problems where a general nonlinear diffeomorphism is needed to transform the
problem to one involving a product distribution, the nonlinearity of the transformation elim-
inates the polynomial exactness of the formulas. Although the convergence of the method,
as the number of scenarios tends to infinity, is proven in this case, too, the method did not
outperform QMC sampling in our high-dimensional examples. Since the convergence of
standard QMC methods is also independent of the smoothness of the integrand, it is recom-
mended that QMC be used in place of sparse grid scenario generation for high-dimensional
problems that cannot be written in product form.

6 Concluding Remarks

Sparse grid scenario generation appears to be a very promising alternative to quasi-Monte
Carlo and Monte Carlo sampling methods for the solution of stochastic optimization prob-
lems, whenever the integrands in the problem formulation are sufficiently smooth. The
theoretical results on its efficiency, which state that the rate of convergence of the optimal
objective value is the same as the rate of convergence of sparse grid formulas for integra-
tion, is complemented by excellent practical performance on a variety of utility maximiza-
tion problems, which feature the expected values of smooth concave utility functions as
objectives.

It is well-known that sparse grid formulas using nested quadrature formulas achieve
better approximation with approximately the same number of scenarios than those using
non-nested, such as Gaussian, formulas. The numerical results also show the importance of
using suitable univariate quadrature formulas, which allow the generation of scenarios that
provide exact approximation for polynomial integrands up to some degree. Patterson-type
quadrature formulas have both desirable properties. Patterson-type sparse grid scenarios
provided consistently better approximations than those obtained through a non-linear (and
non-polynomial) transformation of scenarios generated for a different (usually uniform) dis-
tribution. Scenarios with a given degree of polynomial exactness are easily generated for
distributions that are linear transformations of a product of univariate distributions—this
includes the multivariate normal distributions. We were able to generate univariate quadra-
ture formulas of at least 5 different resolutions (with degrees of exactness exceeding 40)
for a number of distributions. The limits of this approach is an open problem; for example
it is not known if the sequence of GKP formulas is finite or not. Note that this theoretical
gap is only relevant in the solution of low-dimensional problems. High-dimensional sparse
grids of high resolution have prohibitively large number of nodes, furthermore, Gaussian
formulas with arbitrarily high degree of polynomial exactness can be generated for every
univariate distribution using established methods; these can also be used in the absence of
Patterson-type formulas.

The sparse grid method also scales well. The scenarios can be generated quickly, and a
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small number of scenarios achieves a given low degree of polynomial exactness. The main
limiting factor in the size of the problems considered in the numerical experiments section,
while comparing sparse grid with the MC and QMC methods, was the size of the memory
of the computer used for these experiments.

A couple of questions remain open, and shall be the subject of further study. The most
important one concerns multi-stage problems. The first stage objective function of a multi-
stage stochastic programming problem is typically the integral of a piecewise smooth, but
not necessarily differentiable, convex function. The sparse grid approach is applicable in
principle for many such problems (as long as the integrands involved have weak deriva-
tives), but the practical rate of convergence may be slow, and the negative weights in the
sparse grid formulas may make the approximation of the convex problems non-convex.

A Appendix: Problem data

Tables 7 and 8 are used in the Markowitz model; the minimum returnR is 0.011. This prob-
lem is the same as the one used by Rockafellar and Uryasev in [30]. The high-dimensional
Utility Maximization problems involved various Beta distributions, as explained in the main
text.

Instrument Mean Return
S & P 0.0101110

Gov Bond 0.0043532
Small Cap 0.0137058

Table 7: Portfolio Mean Return

S & P Gov Bond Small Cap
S & P 0.00324625 0.00022983 0.00420395

Gov Bond 0.00022983 0.00049937 0.00019247
Small Cap 0.00420395 0.00019247 0.00764097

Table 8: Portfolio Covariance Matrix
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