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SCENARIO MIN-MAX OPTIMIZATION AND THE RISK
OF EMPIRICAL COSTS∗

A. CARÈ† , S. GARATTI‡ , AND M. C. CAMPI§

Abstract. We consider convex optimization problems in the presence of stochastic uncertainty.
The min-max sample-based solution is the solution obtained by minimizing the max of the cost
functions corresponding to a finite sample of the uncertainty parameter. The empirical costs are
instead the cost values that the solution incurs for the various parameter realizations that have
been sampled. Our goal is to evaluate the risks associated with the empirical costs, where the
risk associated with a cost is the probability that the cost is exceeded when a new realization
of the uncertainty parameter is seen. This task is accomplished without resorting to uncertainty
realizations other than those used in optimization. The theoretical result proved in this paper is that
these risks form a random vector whose probability distribution is an ordered Dirichlet distribution,
irrespective of the probability measure of the stochastic uncertainty parameter. This result provides
a distribution-free characterization of the risks associated with the empirical costs that can be used
in a variety of application problems.
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1. Introduction. In this paper, we consider min-max sample-based uncertain
convex optimization problems. The uncertainty parameter is modeled as a random
element δ that takes value in a set Δ according to a probability distribution P, the
optimization variable x takes value in a convex set X ⊆ R

d, and the cost function
f(x, δ) is convex and continuous in x for all values of δ. We are provided with a sam-
ple of N independent realizations, or “scenarios,” δ(1), δ(2), . . . , δ(N) of δ distributed
according to P. δ(1), δ(2), . . . , δ(N) is the only available information on the random
element δ that is used to select a value of x. The min-max sample-based approach
consists in solving the optimization problem

min
x∈X⊆Rd

max
i=1,...,N

f(x, δ(i)),(1)

which is called the “min-max scenario program” and whose solution is denoted by
x∗.1 Problem (1) arises in diverse applications. For example, given a random variable
y, consider the problem of linearly regressing y against variables u1, . . . , ud based

on a sample of N independent observations δ(i) = (u
(i)
1 , . . . , u

(i)
d , y(i)), i = 1, . . . , N .
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Fig. 1. Two instances of the optimization problem in (1). Each function corresponds to

a scenario δ(i).

The coefficients x1, . . . , xd in the regression model can be obtained according to the
L∞ criterion of best fit, which corresponds to solving (1) with f(x, δ(i)) = |y(i) −∑d

j=1 xju
(i)
j |; see, e.g., [27, 10, 22]. Optimization problems of the type (1) also arise in

simulation-based control, e.g., when the controller parameters are decided based on N
realizations of the disturbance so as to minimize the worst-case output variance [13, 9].
Yet another example of application is value at risk (VaR) portfolio optimization, where
the portfolio is optimized based on a record of past asset returns [40]. The link between
VaR portfolio optimization and (1) is discussed in [44, 50, 45].

When the computed x∗ is applied to the real world, a new realization of the
uncertainty parameter δ independent of δ(1), δ(2), . . . , δ(N) is experienced, and one
issue that arises quite naturally is the assessment of the performance achieved by x∗

for a new δ. This analysis is conducted in this paper by relying on the δ(i)’s without
resorting to new scenarios. With this objective in mind, we introduce the following
definitions.

Definition 1 (empirical cost). Consider the cost values f(x∗, δ(i)), i = 1, . . . , N ,
achieved by the solution x∗ of (1) for the seen scenarios δ(i)’s, and sort them in
decreasing order: f(x∗, δ(i1)) ≥ f(x∗, δ(i2)) ≥ · · · ≥ f(x∗, δ(iN )). The kth empirical
cost is defined as

c∗k := f(x∗, δ(ik)).

See Figure 1 for an illustration of the concept of empirical cost.
Definition 2 (risk). For any given x ∈ R

d and c ∈ R, the risk associated with
(x, c) is R(x, c) = P{δ ∈ Δ : f(x, δ) > c}. The risk of the empirical cost c∗k is defined
as

Rk = R(x∗, c∗k).
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The risk Rk is defined as the composition of R(x, c) with (x∗, c∗k), so that Rk is a
random variable that depends on δ(1), δ(2), . . . , δ(N) through x∗ and c∗k. The inter-
pretation of Rk is that it is the conditional probability given δ(1), δ(2), . . . , δ(N) that
a new realization of δ from (Δ,P) incurs a cost f(x∗, δ) greater than c∗k, and Rk

can be equivalently written as Rk = P
N+1{f(x∗, δ) > c∗k|δ(1), δ(2), . . . , δ(N)}, where

P
N+1 = P×P×· · ·×P is the probability distribution of δ(1), δ(2), . . . , δ(N), δ, which is

a product probability due to independence. As a shorthand notation, in what follows
we shall also write Rk = Pδ{f(x∗, δ) > c∗k}, where Pδ indicates that the probability is
computed with respect to δ, while x∗ and c∗k are kept fixed.

To make the concepts of empirical cost and risk more concrete, refer to the linear

regression example. Here, c∗1 = maxi=1,...,N |y(i) −∑d
j=1 x

∗
ju

(i)
j | is the largest vertical

distance between the observations and the regression hyperplane, that is, twice c∗1 is
the vertical thickness of a layer that contains all observations. Cost c∗k is instead the
kth largest vertical distance between the observations and the regression hyperplane.
Thus, a layer whose vertical thickness is 2c∗k contains all observations but k − 1 of
them. For given observations, the risk Rk is the probability that a new observation
falls outside this layer. Knowledge of Rk is important in prediction problems.

To assess the performance achieved by x∗ for a new random δ, theoretical bounds
on Rk are established in this paper.2 This goal is pursued without resorting to new re-
alizations of the uncertainty parameter, that is, only the realizations δ(1), δ(2), . . . , δ(N)

used in optimization are available. This set-up is of interest any time the realizations
represent a costly and limited resource, as is the case in data-driven optimization
problems where the scenarios are observations; see, e.g., [7, 6, 51]. This is different
from assessing the value of Rk with new realizations of the uncertainty parameter by
a Monte Carlo procedure; see, e.g., [39, 15, 34, 4, 5].

In the literature, the problem of assessing the risk associated with empirical costs
has been studied for c∗1, and various results are available that cover both the asymp-
totic case when N → ∞ (see, e.g., [50] and the references therein) and the finite
sample case, which has been considered in a series of papers by the authors of this
contribution [8, 9, 11]. Moreover, extensions to a nonconvex context [37, 1] and to
a multistage set-up [52] are also available. The present work is in the vein of the
so-called scenario approach of [8, 9, 11, 12, 23]. In [11], the sharpest possible charac-
terization of the risk R1 is provided. It is shown that R1, which, we recall, is a ran-
dom variable that depends on δ(1), δ(2), . . . , δ(N) through x∗ and c∗1, has a cumulative
distribution function that is lower-bounded by a Beta distribution with parameters
(d + 1, N − d). From this fact it follows that R1 tends to zero with probability 1 as
N → ∞. In [2] it has been shown that the tail of the Beta distribution beyond the

value ρ := 1
N (d + ln 1

β +
√
2d ln 1

β ) has a probability smaller than β, so that, based

on the result in [11], for any finite N relation R1 ≤ ρ holds with confidence 1 − β.
These results have opened new avenues to address stochastic optimization problems
with a VaR risk measure. Indeed, relation R1 ≤ ρ means that the value attained by
the scenario solution x∗ exceeds c∗1 with probability no more than ρ, that is, the VaR
at level 1− ρ is smaller than or equal to c∗1. For more discussion, see [8, 11].

In this paper, we move an important step beyond the results in [11]. One first
observation is that the set of all empirical costs c∗1, c

∗
2, . . . , c

∗
N provides a much more

2In other words, we study the feasibility of (x∗, c∗k) in a chance-constrained sense. See [46, 47,
48, 16] for general references on chance-constrained optimization and [28, 19, 49, 18, 29, 43, 42, 30,
38, 54, 36] for recent advances.
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complete characterization of the goodness of the solution x∗ than c∗1 only. Suppose,
for instance, that the gaps between the costs c∗k are large. Then, intuitively, it is
expected that a new δ will obtain a cost f(x∗, δ) significantly smaller than c∗1 with
high probability. On the other hand, when most values c∗k concentrate near c∗1, it
is expected that f(x∗, δ) takes a value close to c∗1 with high probability. This idea
is not new. A similar approach is found in [31, 32], where the empirical costs are
used in a financial decision optimization context. What this paper offers is a precise
theory to put such reasonings on a solid quantitative ground. Precisely, we compute
the joint probability distribution of all risks R1, R2, . . . , RN and show that this joint
probability distribution is lower-bounded by an ordered Dirichlet distribution. This
result represents a rigorous tool to support decisions in many real applications even
for small sample sizes. In particular, since the ordered Dirichlet distribution is thin-
tailed, the risks can be bounded with high confidence. Based on these findings, we
further show that the cumulative distribution function of the cost f(x∗, δ) belongs
to a probability box with high confidence, and this result provides an easy-to-inspect
characterization of the quality of the sample-based solution x∗. All the results of this
paper hold independently of the probability P, i.e., they are distribution-free, so that
they are well-suited for data-driven optimization, where knowledge on the probability
P is missing. The significance of the found results is highlighted by an application
example on the equalization of a communication channel.

1.1. Structure of the paper. Section 2 provides the main results of the paper.
The practical use of the results is discussed in section 3. Section 4 presents a numerical
example, while the proofs are in section 5.

2. The risk of empirical costs: Theoretical results. The following assump-
tion on the solution of problem (1) is in force throughout the paper.

Assumption 1 (existence and uniqueness). For every value of N and δ(1), δ(2), . . . ,
δ(N), the optimal solution x∗ to (1) exists and is unique.

Although problem (1) is always feasible, existence of the solution may be lost
when the cost value improves as x drifts away toward infinity in some directions.
This behavior can be prevented by confining optimization to a compact domain X .
In this way, existence in Assumption 1 is secured. In addition, uniqueness can be
enforced by introducing suitable tie-break rules as discussed in section 2.1 of [11].

For future use, it is convenient to rewrite problem (1) in epigraphic form as follows:

EPIN : min
x∈X⊆Rd,c∈R

c

subject to f(x, δ(i)) ≤ c, i = 1, . . . , N.(2)

The following Definitions 3 and 4 are taken from [11].

Definition 3 (support scenario). The scenario δ(i), i ∈ {1, . . . , N}, is called a
support scenario for problem (2) if its removal changes the solution (x∗, c∗1) of (2).

Loosely speaking, support scenarios are those preventing the solution from “falling”
to a lower position. It can be proven3 that the number of support scenarios of problem
(2) is at most d+1. Figure 1 shows two cases with d = 1 where the number of support
scenarios are two and one, respectively.

3A proof of this result stated in a slightly different but equivalent way can be found in [33].
The proof of [33] is based on Helly’s theorem. A self-contained proof of the result stated in the
terminology of the present paper is given in [8].
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Definition 4 (fully supported problem). Problem (2) is fully supported if, for
every N ≥ d+1, with probability one with respect to the random sample δ(1), δ(2), . . . ,
δ(N), the number of its support scenarios is d+ 1.

By the very definition of support scenario, all the support scenarios attain the
same cost, and when the problem is fully supported we have that c∗1 = c∗2 = · · · = c∗d+1.
The fact that the empirical costs from the (d + 1)th on are not distinct, instead, is
regarded as a situation of degeneracy.

Definition 5 (nondegenerate problems). Problem (2) is nondegenerate if, for
every N ≥ d+1, with probability one with respect to the random sample δ(1), δ(2), . . . ,
δ(N), it holds that

(3) c∗d+1 �= c∗d+2 �= · · · �= c∗N .

A sufficient condition for nondegeneracy is that, for any given x ∈ R
d and c ∈ R, it

holds that P{δ ∈ Δ : f(x, δ) = c} = 0. In other words, for any x, the probability
distribution of f(x, δ) has no concentrated mass. Though less general than (3), this
condition is easier to check and it may be helpful in some situations.

Theorem 1 below characterizes the joint probability distribution of the risks
Rd+1,Rd+2,. . . , RN for nondegenerate problems; Theorem 2 extends the result to
when the nondegeneracy condition is removed.

Before the theorems are stated, we recall that the ordered Dirichlet distribution
with parameters

(d+ 1, 1, 1, . . . , 1︸ ︷︷ ︸
N−d

)

is the probability distribution whose density function is

p(νd+1, νd+2, . . . , νN) =
N !

d!
νdd+11{0 ≤ νd+1 ≤ νd+2 ≤ · · · ≤ νN ≤ 1},

where 1{·} denotes the indicator function; see, e.g., [53, p. 182]. Its cumulative
distribution function is

Fd,N (εd+1, . . . , εN )

=
N !

d!

∫ εd+1

0

νdd+1

∫ εd+2

0

∫ εd+3

0

· · ·
∫ εN

0

1{0 ≤ νd+1 ≤ · · · ≤ νN ≤ 1}dνN · · · dνd+3dνd+2dνd+1.

Section 3.4 provides additional information on Dirichlet distributions. In the theo-
rems, PN = P× P× · · · × P is the probability distribution of δ(1), δ(2), . . . , δ(N); it is
a product probability since the scenarios are independent.

Theorem 1. If problem (2) is nondegenerate, then the joint probability distribu-
tion function of Rd+1, . . . , RN is given by Fd,N (εd+1, εd+2, . . . , εN ), i.e.,

(4) P
N{Rd+1 ≤ εd+1, Rd+2 ≤ εd+2, . . . , RN ≤ εN} = Fd,N (εd+1, εd+2, . . . , εN ).

Proof. See section 5.1.
Theorem 1 gives the joint probability distribution function of the risks from the

(d + 1)th on and shows that this distribution does not depend on P (distribution-
free result). Since c∗i ≥ c∗d+1, i = 1, . . . , d, we have that Ri ≤ Rd+1, i = 1, . . . , d,
and the bound εd+1 automatically applies also to Ri, i = 1, . . . , d. Arguably, this
is the most general distribution-free result possible, since the distribution of Ri, i =
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1, . . . , d, is problem dependent. When the problem is fully supported, it holds that
c∗1 = c∗2 = · · · = c∗d+1 so that R1 = R2 = · · · = Rd+1, and Theorem 1 exactly
characterizes the joint distribution of all risks Ri, i = 1, . . . , N . Thus, we see that
the class of fully supported problems admits “universal” risks R1, R2, . . . , RN , in the
sense that their joint probability distribution function is the same irrespective of the
problem at hand.

It is well known (see, e.g., [53]) that the marginals of an ordered Dirichlet distribu-
tion are Beta distributions. From this, one can infer that the probability distribution
function of Rk, k = d+1, . . . , N, is a Beta distribution with parameters (k,N−k+1),
that is,

(5) P
N{Rk ≤ ε} = 1−

k−1∑
i=0

(
N

i

)
εi(1− ε)N−i.

For k = d+ 1, and recalling that R1 ≤ Rd+1, we obtain

(6) P
N{R1 ≤ ε} ≥ P

N{Rd+1 ≤ ε} = 1−
d∑

i=0

(
N

i

)
εi(1− ε)N−i.

This bound on P
N{R1 ≤ ε} is bound (6) in Theorem 1 of [11], which is recovered as

a byproduct of the general theory of this paper.4 Actually, (6) proves more than the
result in [11] since the right-hand side of (6) is recognized to be the exact probability
distribution function of the risk of c∗d+1.

The nondegeneracy assumption in Theorem 1 cannot be removed while preserv-
ing the equality in (4). In fact, for the sake of the argument, suppose, e.g., that
the probability distribution P is concentrated on a unique scenario δ̄. Then, all
of the costs c∗1, c

∗
2, . . . , c

∗
N are equal and have zero risk. Although Theorem 1 does

not hold for degenerate problems, it can be shown that the distribution of the risks
Rd+1, Rd+2, . . . , RN is always lower-bounded by the ordered Dirichlet distribution, as
is formally stated in the next theorem.

Theorem 2. For any problem (2), the joint probability distribution function of
Rd+1, . . . , RN is lower-bounded by Fd,N (εd+1, . . . , εN ), i.e.,

(7) P
N{Rd+1 ≤ εd+1, Rd+2 ≤ εd+2, . . . , RN ≤ εN} ≥ Fd,N (εd+1, εd+2, . . . , εN ).

Proof. See section 5.2.
Since R1 ≤ · · · ≤ Rd+1, the following corollary that covers all the Ri, i = 1, . . . , N ,

follows.
Corollary 1. For any problem (2), it holds that

P
N{R1 ≤ εd+1, . . . , Rd+1 ≤ εd+1, Rd+2 ≤ εd+2, . . . , RN ≤ εN}

≥ Fd,N (εd+1, εd+2, . . . , εN ).

3. Practical use of the results and discussion.

3.1. Connection with order statistics. Consider N independent realizations
of a continuous random variable Y with cumulative distribution function F , and sort
them in decreasing order to obtain

Y1 ≥ Y2 ≥ · · · ≥ YN .

4To help the reader match the terminology of this paper to that of [11], we notice that in [11]
the risk R1 is named the violation probability of the solution (x∗, c∗1) of (2).
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These variables are called order statistics, and it is well known that the vector
(1 − F (Y1), 1 − F (Y2), . . . , 1 − F (YN )) is a random element whose joint probabil-
ity distribution is an ordered Dirichlet [53, 26]. Order statistics are recovered as a
particular case of the theory developed in this paper by letting δ = Y and f(x, δ) = δ,
i.e., when we are in a purely descriptive set-up where no optimization is performed.
The surprising fact expressed by Theorem 1 is that joint probability distribution of the
risks is still an ordered Dirichlet when an optimization variable is present, a frame-
work that is way more complex than that of order statistics. As a matter of fact,
order statistics are ordered values from the real line, while the empirical costs lie on a
random line passing through x∗, which is selected by solving an optimization problem.
From the mathematical side, this fact implies that our results cannot be traced back
to order statistics and their derivation demands a genuinely new approach.

3.2. Postexperiment analysis and experiment design. The results pre-
sented in section 2 can be applied in various ways. Two examples are in order.

Postexperiment analysis. The user has available a sample δ(1), δ(2), . . . , δ(N)

and solves problem (1) obtaining x∗ and the corresponding empirical costs c∗k, k =
1, . . . , N . He/she then chooses a confidence parameter value, e.g., β = 10−7, and
determines values for εd+1, εd+2, . . . , εN such that Fd,N (εd+1, εd+2, . . . , εN) ≥ 1 − β.
By applying Theorem 2, the user can claim that Pδ{f(x∗, δ) > c∗k} ≤ εk holds true
simultaneously for all k = d+ 1, . . . , N with high confidence 1− β.

Experiment design. The user chooses a confidence parameter value, e.g., β =
10−7. Then he/she fixes desired upper bounds on the risks of the empirical costs,
that is, 0 ≤ εd+1 ≤ εd+2 ≤ · · · ≤ εN ≤ 1 (selecting εk = 1 for some k corresponds
to having no constraints on the risk of c∗k). Then, he/she computes the minimum
number N of scenarios that guarantees that Fd,N (εd+1, εd+2, . . . , εN) ≥ 1 − β, and
samples N scenarios to be used in problem (1). Theorem 2 can be applied to give the
same guarantees as in the postexperiment analysis.

3.3. Bounding the cumulative distribution function of f(x∗, δ). By the
definition of risk, R(x∗, c) = Pδ{f(x∗, δ) > c} = 1 − Pδ{f(x∗, δ) ≤ c}. Thus, if
εd+1, εd+2, . . . , εN are chosen such that Fd,N(εd+1, εd+2, . . . , εN ) ≥ 1 − β, then, by
letting εk = εd+1 for k ≤ d, from Corollary 1 we have with confidence 1− β that

(8) Pδ{f(x∗, δ) ≤ c∗k} ≥ 1− εk for all k = 1, . . . , N.

Observing that Pδ{f(x∗, δ) ≤ c} is increasing with c, (8) implies that

(9) Pδ{f(x∗, δ) ≤ c} ≥ L(c),

where

L(c) =

⎧⎨
⎩
1− ε1 if c ≥ c∗1,
1− εk if c∗k ≤ c < c∗k−1 (k = 2, . . . , N),
0 if c < c∗N .

The right-hand side of (9), L(c), is a step function that, with confidence 1 − β,
lower bounds the cumulative distribution function of the cost f(x∗, δ) (first order
stochastic dominance5). The lower step function in Figure 2 gives an example of this
construction.

5An interesting stream of research in stochastic optimization introduces stochastic dominance
as a constraint; see, e.g., [20, 21, 17, 35]. The difference between these papers and the present
contribution is that the distribution on the right-hand side of (9) is here a posteriori computed, and
it is not a priori enforced as a constraint.
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1

0
c∗N c∗k+1 c∗k c∗k−1 c∗d+1 c∗2 c

∗
1

εk

ε′k

Fig. 2. A “probability box” for the cumulative distribution function of f(x∗, δ). With
confidence 1− β − β′, the whole graph of Pδ{f(x∗, δ) ≤ c} lies in the white area bounded by
the two step functions.

Result (9) can be refined when the problem is nondegenerate and Theorem 1
applies. Since the joint distribution of Rd+1, . . . , RN is exactly known in this case, in
addition to the εk’s computed above, values ε′d+1, ε

′
d+2, . . . , ε

′
N can be obtained such

that, with confidence 1− β′, it holds that

(10) Pδ{f(x∗, δ) ≤ c∗k} ≤ 1− ε′k for all k = d+ 1, . . . , N.

By the monotonicity of Pδ{f(x∗, δ) ≤ c}, we conclude that, with confidence 1−β−β′,
Pδ{f(x∗, δ) ≤ c} can be bounded from below and from above as follows:

(11) U(c) ≥ Pδ{f(x∗, δ) ≤ c} ≥ L(c),

where

U(c) =

⎧⎨
⎩
1 if c > c∗d+1,
1− ε′k if c∗k+1 < c ≤ c∗k (k = d+ 1, . . . , N − 1),
1− ε′N if c ≤ c∗N .

Relation (11) defines, with confidence 1 − β − β′ with respect to the variability of
δ(1), δ(2), . . . , δ(N), a “probability box”6 for the conditional cumulative distribution
function of f(x∗, δ) given x∗; see again Figure 2. See section 4 for the construction of
the probability box in a concrete example.

3.4. Computational issues for the ordered Dirichlet distribution.

Ordered Dirichlet versus Dirichlet distributions. Equation (4) states that
the random vector (Rd+1, Rd+2, . . . , RN) is distributed according to an ordered Dirich-
let distribution. By the transformation

Dd+1 = Rd+2 −Rd+1, Dd+2 = Rd+3 −Rd+2, . . . , DN−1 = RN −RN−1, DN = 1−RN ,

6For the definition of “probability box” and a discussion of its usefulness in statistics, see, e.g., [3].
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one obtains vector (Dd+1, Dd+2, . . . , DN ), which is distributed according to the so-
called Dirichlet distribution, [53]. Hence, the evaluation of an ordered Dirichlet dis-
tribution function can be converted into the problem of evaluating a Dirichlet distri-
bution function. The reader is referred to [24, 25] and references therein for studies
on computational issues for Dirichlet distributions.

Marginal distributions. We have already observed that for nondegenerate
problems the probability distribution function of each Rk is a Beta with parame-
ters (k,N − k + 1) for k = d + 1, . . . , N ; see (5). Notably, the right-hand side of
(5) can be easily evaluated by means of common tools, like the betainc function in
MATLAB, or pbeta in R. As is clear, a lower bound for the joint probability distribu-
tion function of Rd+1, Rd+2, . . . , RN is given by the sum of the marginals, so that one
obtains

P
N{Rd+1 ≤ εd+1, . . . , RN ≤ εN}

≥ 1−
N∑

k=d+1

P
N{Rk > εk}

= 1−
N∑

k=d+1

k−1∑
i=0

(
N

i

)
εik(1− εk)

N−i.(12)

See section 4 for an example of the use of formula (12).

An explicit expression for N . Based on (12), and following similar calcula-
tions as in the proof of (12) in [23], it can be shown that, for a given β ∈ (0, 1), if

N ≥ max
k=d+1,...,N

N (k),

where

N (k) =

⌊
2

εk

(
k + ln

1

β

)
+

4

εk
ln

(
2

εk

(
k + ln

1

β

))⌋
+ 1

(	·
 denotes integer part), then P
N{Rd+1 ≤ εd+1, . . . , RN ≤ εN} ≥ 1 − β, i.e., con-

ditions Rk ≤ εk, k = d + 1, . . . , N , hold simultaneously with high confidence 1 − β.
This bound has a logarithmic dependence of N on β, a fact that shows that a very
high confidence can be enforced without increasing N too much.

4. A numerical example. The example in this section is inspired by the equal-
izer design problem in [41].

4.1. Problem formulation. In a digital communication system, a signal u(t),
t = . . . ,−2,−1, 0, 1, 2, . . . , is sent from a transmitter to a receiver through a com-
munication channel C. In general, the signal ũ(t) at the receiver end is different
from the transmitted signal owing to the distortion introduced by the channel. We
assume that the channel acts approximately as a linear filter so that its behavior is
characterized by its frequency response C(ω), which is a complex-valued function of
ω ∈ [−π, π] linking the Fourier transform U(ω) of u(t) to the Fourier transform Ũ(ω)
of ũ(t) according to the equation Ũ(ω) = C(ω)U(ω). If the distortion introduced by
the channel is unacceptably high, a device E, called the equalizer, can be added at
the receiver end to improve the quality of the received signal.
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The equalizer E is a filter whose frequency response is denoted by E(ω). We
consider a d-tap finite impulse response equalizer:

(13) E(ω) =

d−1∑
k=0

xke
−ikω ,

where i is the imaginary unit and x0, x1, . . . , xd−1 are real parameters through which
the frequency response of E can be shaped. Overall, the frequency response of the
channel-equalizer cascade is C(ω)E(ω), and the aim is to design the equalizer E so
as to make C(ω)E(ω) as similar as possible to a desired frequency response that
incorporates the idea that the equalized channel should introduce little distortion.
In line with [41], the desired frequency response we consider is e−iDω , the frequency
response of a pure delay of D time steps. As for the cost function, a grid ωk = k

100π,
k = 0,±1, . . . ,±100 of [−π, π] is considered, and we take

(14) f(x) =
1

201

100∑
k=−100

|C(ωk)E(ωk)−e−iDωk |+ max
k=−100,...,100

|C(ωk)E(ωk)−e−iDωk |.

The first term is the average deviation and takes care of the global behavior over
the whole range of frequencies, while the second term penalizes the presence of large
deviations localized at given frequencies caused by resonant peaks in C(ω)E(ω). Res-
onant peaks are undesirable because they generate annoying whistling noise in audio
communications.

The cost function in (14) assumes that C(ω) is known. In real-world applications,
the frequency response of the channel is often not completely known because of imper-
fections in the procedure used to estimate C(ω), or due to intrinsic variability of the
environment, as is the case, for example, in mobile communication. Hence, in what
follows we consider a channel function C(ω, δ) in place of C(ω) in (14), where δ is a
parameter describing uncertainty, and the cost function is correspondingly written as
f(x, δ).

4.2. The scenario approach. In this simulation example, the scenarios are
generated according to the model

C(ω, δ) =
1

ei2ω + δ1eiω + δ2
,

where δ = (δ1, δ2) is uniformly distributed over [−0.4, 0.4]× [0.5, 0.8]. We take N =
3000, d = 10, and D = 8. According to the scenario approach, the equalizer E∗ is
obtained by solving

min
x∈R10

max
i=1,...,3000

f(x, δ(i)).(15)

The solution we found is x∗ = (7.08 · 10−2, 1.00 · 10−3,−6.64 · 10−2, 1.42 · 10−3, 4.71 ·
10−2, 3.73 · 10−4, 8.37 · 10−1, 2 · 10−3, 5.09 · 10−1,−3.46 · 10−4), and the empirical costs
c∗k were also evaluated, and they are plotted in Figure 3. The empirical costs c∗k
are monotonically decreasing and do not accumulate, a fact that is not surprising
since δ has a density. In a real application, Theorem 2 is always applicable since it
holds without any assumption. However, observing that the c∗k’s do not accumulate,
possibly used in conjunction with prior knowledge on the application domain, may
justify that one assumes that the problem is nondegenerate and Theorem 1 is applied.
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Fig. 3. Functions c∗k and εk, k = 1, . . . , 3000. As k increases, c∗k goes down from 1.322
to 0.816, and the bound εk on the risk to exceed c∗k increases from 0.0159 to 1− 10−14.

Values ε11, . . . , ε3000 are chosen as follows: β was set to 10−7 and, for each k =
11, 12, . . . , 3000, εk is obtained by solving the equation

k−1∑
i=0

(
N

i

)
εik(1 − εk)

N−i =
β

2990
,

which, assuming nondegeneracy, corresponds to choosing the εk’s so that the marginal
probability P

N{Rk > εk} is equal to β
2990 for all k = 11, 12, . . . , 3000. The values of

εk are also displayed in Figure 3. Recalling (12), this choice implies that PN{R11 ≤
ε11, . . . , R3000 ≤ ε3000} ≥ 1 − 10−7. Thus, we can, e.g., claim that the risk that the
equalizer E∗ incurs a cost greater than c∗11 = 1.298 is no more than ε11 = 1.59%,
i.e., cost 1.298 is guaranteed for 98.41% of the channel frequency responses C(ω, δ).
Likewise, cost c∗12 = 1.297 is guaranteed for the 1 − ε12 = 98.35% of the channel
frequency responses, and so on for any value of k. These claims are true simultaneously
for all k with high confidence 1− β = 1− 10−7. We can also construct a probability
box for the cumulative distribution function of f(x∗, δ) as explained in section 3.3.
Values ε′11, . . . , ε′3000 are chosen such that the marginal probability P

N{Rk < ε′k} is

equal to β
2990 for all k = 11, 12, . . . , 3000, that is,

1−
k−1∑
i=0

(
N

i

)
(ε′k)

i(1− ε′k)
N−i =

β

2990
.

Hence, ε′k ≤ Rk ≤ εk holds for each k = 11, . . . , 3000, with confidence at least 1− 2 ·
10−7. Figure 4 represents the probability box found in this example.

In conclusion, the user has at his disposal an evaluation of the probability of the
various costs when the design x∗ is applied. A graph like that visualized in Figure
4 is interpreted that, if a vertical line is drawn from any cost value, this line crosses
the white region over a segment that contains the probability with which that cost is
incurred. This result is established without using any knowledge of the distribution P.
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(a)

c∗2974 c∗2973 c∗2972

ε2974 ε2873

ε′2973 ε′2972

(b)

Fig. 4. (a) With confidence 1−2 ·10−7 the cumulative distribution function of the cost function
f(x∗, δ) lies in the white strip. (b) Zoomed-in detail of Figure 4(a).

5. Proofs.

5.1. Proof of Theorem 1. For any fixed (x, c, c̄) ∈ R
d+2, let D(x, c, c̄) = P{δ ∈

Δ : c < f(x, δ) ≤ c̄} and, for any integer k such that d+ 1 ≤ k ≤ N , let

(16) Dk = D(x∗, c∗k+1, c
∗
k),

where c∗N+1 is defined to be equal to −∞. Similarly to the Rk’s, the Dk’s are random

variables, since they depend on the sample (δ(1), . . . , δ(N)) through x∗, c∗d+1, . . . , c
∗
N .

The interpretation of Dk is that it is the conditional probability with respect to
x∗, c∗k+1, c

∗
k that a new realization of δ incurs a cost between levels c∗k and c∗k+1. The

variables Dk’s and Rk’s are related by the following simple linear transformations:

Dd+1 = Rd+2 −Rd+1 Rd+1 = 1−
N∑

i=d+1

Dk

Dd+2 = Rd+3 −Rd+2 or, equivalently, Rd+2 = 1−
N∑

i=d+2

Dk

...
...

DN−1 = RN −RN−1 RN−1 = 1−
N∑

i=N−1

Dk

DN = 1−RN RN = 1−DN .(17)

Thanks to (17), the joint probability distribution function of the Rk’s can be easily
derived from the joint probability distribution function of the Dk’s and vice versa.
Hence, we proceed by computing the joint probability distribution function of the

Dk’s first. In order to do so, we consider E[D
kd+1

d+1 · · ·DkN

N ], the multivariate moment
of Dd+1, . . . , DN , and evaluate it for each possible assignment of nonnegative integers
kd+1, . . . , kN . The joint distribution function of Dd+1, . . . , DN can then be deduced
from the resulting moment problem.

To ease the notation, define Md = N , Md+1 = N + kd+1, Md+2 = N + kd+1 +

kd+2, etc., until MN = N +
∑N

i=d+1 ki. By (16), the product D
kd+1

d+1 D
kd+2

d+2 · · ·DkN

N
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gives the conditional probability with respect to x∗, c∗d+1, . . . , c
∗
N , i.e., with respect

to (δ(1), . . . , δ(N)), that MN −N new independent realizations of the uncertainty pa-
rameter, say, δ(N+1), . . . , δ(MN ), are such that the first kd+1 (i.e., δ(N+1), . . . , δ(Md+1))
incur a cost between c∗d+1 and c∗d+2, the next kd+2 (i.e., δ(Md+1+1), . . . , δ(Md+2)) incur
a cost between c∗d+2 and c∗d+3, and so on till the last kN incurring a cost below c∗N (re-

call that c∗N+1 = −∞). Therefore, the product D
kd+1

d+1 D
kd+2

d+2 . . . DkN

N can be expressed
as

(18)
N∏

i=d+1

Dki

i = P
MN−N

δ
MN
N+1

{c∗i+1 < f(x∗, δ(j)) ≤ c∗i , i = d+1, . . . , N, j = Mi−1+1, . . . ,Mi},

where P
MN−N = P× · · · × P denotes the product probability measure of δ(N+1), . . . ,

δ(MN ), and δMN

N+1 is shorthand for δ(N+1), . . . , δ(MN ). Expressing probability as the

integral of an indicator function and using the notation ΔMN

N+1 = Δ×Δ× · · · ×Δ to

indicate the domain for δMN

N+1, (18) can be rewritten as

N∏
i=d+1

Dki

i =

∫
Δ

MN
N+1

1{c∗i+1 < f(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N,

j = Mi−1 + 1, . . . ,Mi}PMN−N{dδMN

N+1}.
As δ(1), . . . , δ(N) vary,

∏N
i=d+1 D

ki

i takes on various values and we are interested in
computing its expected value, i.e.,

E

[
N∏

i=d+1

Dki

i

]

=

∫
ΔN

1

N∏
i=d+1

Dki

i P
N{dδN1 }

=

∫
ΔN

1

∫
Δ

MN
N+1

1{c∗i+1 < f(x∗, δ(j)) ≤ c∗i , j = Mi−1 + 1, . . . ,Mi,

i = d+ 1, . . . , N}PMN−N{dδMN

N+1}PN{dδN
1 },

which, by Fubini’s theorem, can be restated as∫
Δ

MN
1

1{c∗i+1 < f(x∗, δ(j)) ≤ c∗i , i = d+ 1, . . . , N,

j = Mi−1 + 1, . . . ,Mi}PMN{dδMN
1 }.

Thus, the moment E[D
kd+1

d+1 · · ·DkN

N ] is interpreted as the total probability with respect

to all variables δ(1), . . . , δ(N), δ(N+1), . . . , δ(MN ) that δ(N+1), . . . , δ(Md+1) incur a cost
between c∗d+1 and c∗d+2, δ

(Md+1+1), . . . , δ(Md+2) incur a cost between c∗d+2 and c∗d+3,
and so on.

Now, let S̄ = {j1, . . . , jN} be a generic subset ofN indexes taken from {1, . . . ,MN}
and let z∗|S̄ := (x∗

|S̄ , c
∗
1|S̄) be the optimal solution to problem

EPI|S̄ : min
c∈R,x∈X⊆Rd

c

subject to f(x, δ(i)) ≤ c, i ∈ S̄.
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Moreover, for k = 1, . . . , N , let c∗
k|S̄ = max{c ∈ R : c ≤ f(x∗

|S̄ , δ
(i)) for a choice of

k indexes i among S̄}, i.e., the c∗
k|S̄ are the empirical costs associated with x∗

|S̄ , and
let c∗

N+1|S̄ = −∞. Finally, for each i = d + 1, . . . , N , let Si = {j1, . . . , jki} be a

subset of ki indexes from {1, . . . ,MN} \ S̄ so that Sm ∩ Sn = ∅ if m �= n. Due to the
independently and identically distributed nature of (δ(1), δ(2), . . . , δ(MN )), the total
probability that the realizations with indexes in Sd+1 incur a cost between c∗

d+1|S̄ and

c∗
d+2|S̄, those with indexes in Sd+2 incur a cost between c∗

d+2|S̄ and c∗
d+3|S̄ , and so on

till those with indexes in SN incurring a cost below c∗
N |S̄ , does not depend in any way

on the choice of S̄, Sd+1, . . . , SN . Then∫
Δ

MN
1

1{c∗i+1 < f(x∗, δ(j)) ≤ c∗i , j = Mi−1 + 1, . . . ,Mi, i = d+ 1, . . . , N}PMN{dδMN
1 }

=

∫
Δ

MN
1

1{c∗i+1|S̄ < f(x∗
|S̄ , δ

(j)) ≤ c∗i |S̄ , j ∈ Si, i = d+ 1, . . . , N}PMN{dδMN
1 }

for all (S̄, Sd+1, . . . , SN) ∈ S,
where S is the set of all feasible (i.e., of suitable sizes) choices of S̄, Sd+1, . . . , SN from
{1, . . . ,MN}. Indicating with |S| the cardinality of S, we then have

E[D
kd+1

d+1 · · ·DkN

N ]

=

∫
Δ

MN
1

1{c∗i+1 < f(x∗, δ(j)) ≤ c∗i , j = Mi−1 + 1, . . . ,Mi,

i = d+ 1, . . . , N}PMN{dδMN
1 }

=
1

|S|
∑

(S̄,Sd+1,...,SN)∈S

∫
Δ

MN
1

1{c∗i+1|S̄ < f(x∗
|S̄ , δ

(j)) ≤ c∗i |S̄,

j ∈ Si, i = d+ 1, . . . , N}PMN{dδMN
1 }

=
1

|S|
∫
Δ

MN
1

∑
(S̄,Sd+1,...,SN )∈S

1{c∗i+1|S̄ < f(x∗
|S̄ , δ

(j)) ≤ c∗i |S̄,

j ∈ Si, i = d+ 1, . . . , N}PMN{dδMN
1 }.

For a fixed sample δMN
1 the integrand∑

(S̄,Sd+1,...,SN )∈S
1{c∗i+1|S̄ < f(x∗

|S̄ , δ
(j)) ≤ c∗i |S̄ , j ∈ Si, i = d+ 1, . . . , N}

counts the number of partitions of the indexes of given uncertainty realizations δ(1),
δ(2), . . . , δ(MN ) into sets S̄, Sd+1, . . . , SN , such that the costs associated with the re-
alizations with index in Sd+1, . . . , SN satisfy

(19) c∗i+1|S̄ < f(x∗
|S̄ , δ

(j)) ≤ c∗i|S̄ , j ∈ Si, i = d+ 1, . . . , N.

It is a fact that such a number is almost surely equal to 1, as is formally stated in the
next proposition, whose proof is postponed to section 5.1.1.

Proposition 1.∑
(S̄,Sd+1,...,SN )∈S

1{c∗i+1|S̄ < f(x∗
|S̄ , δ

(j)) ≤ c∗i|S̄ , j ∈ Si, i = d+ 1, . . . , N} = 1 almost surely.
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Thanks to Proposition 1, we have

(20) E[D
kd+1

d+1 · · ·DkN

N ] =
1

|S| =
1(

MN

N,kd+1,...,kN

) ,
where the denominator in the last expression is the multinomial coefficient(

MN

N, kd+1, . . . , kN

)
=

N−d−1∏
i=0

(
MN−i

kN−i

)
=

MN !

N !kd+1! · · · kN !
.

Note that (20) holds true for every value of kd+1, . . . , kN so that (20) provides all
the multivariate moments of Dd+1, . . . , DN . Hence, the joint distribution function
of Dd+1, . . . , DN remains uniquely determined [14]. In particular, by integration one
can check that the density of the Dirichlet distribution,

(21)

pD(xd+1, xd+2, . . . , xN ) =
N !

d!

(
1−

N∑
i=d+1

xi

)d

1

{
N∑

i=d+1

xi ≤ 1, 0 ≤ xi ≤ 1

}
,

satisfies the moment problem posed by (20), so that the conclusion is drawn that (21)
is the density of Dd+1, . . . , DN .

Go back now to (17). Using this transformation we obtain the joint density pR
of Rd+1, . . . , RN as follows:

pR(rd+1, rd+2, . . . , rN )

= pD(rd+2 − rd+1, rd+3 − rd+2, . . . , rN − rN−1, 1− rN )

=
N !

d!
rdd+11{0 ≤ rd+1 ≤ rd+2 ≤ · · · ≤ rN ≤ 1},(22)

and (4) follows by integrating (22).

5.1.1. Proof of Proposition 1. Consider the optimization problem with all
the uncertainty realizations δ(1), . . . , δ(N), δ(N+1), . . . , δ(MN ) in place,

EPIMN : min
c∈R,x∈X⊆Rd

c

subject to f(x, δ(i)) ≤ c, i = 1, . . . ,MN ,(23)

and let (x̃, c̃1) be the optimal solution. Moreover, let c̃k = max{c ∈ R : f(x̃, δ(i)) ≥ c
for a choice of k indexes i among {1, . . . ,MN}}, k = 1, . . . ,MN . Clearly, c̃k ≤ c̃k′

when k > k′. The nondegenerate assumption guarantees that the following strict
ordering holds true almost surely:

c̃d+1 > c̃d+2 > · · · > c̃MN .

In order for (19) to hold, observe that S̄ must be such that (x̃, c̃1), the optimal solution
to (23), coincides with (x∗

|S̄ , c
∗
1|S̄), the optimal solution computed with the uncertainty

realizations in S̄ only. Indeed, if this were not the case, there would be a δ(j) in one of
the sets Sd+1, . . . , SN such that f(x∗

|S̄ , δ
(j)) > c∗

1|S̄. But then, by definition of c∗
d+1|S̄,

this would entail that f(x∗
|S̄ , δ

(j)) > c∗
d+1|S̄ , which is in contrast with (19). Once

the fact that x̃ = x∗
|S̄ has been established, the thesis easily follows. Indeed, S̄ must
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contain the indexes of the first d+1 functions f(x̃, δ(i)) counted starting from the top;
Sd+1 is the set of the indexes of the next kd+1 functions; the index of the function that
comes immediately after must belong to S̄; Sd+2 is the set of the indexes of the next
kd+2 functions, and so on. This construction determines the only possible partition
of {1, . . . ,MN} in the subsets S̄, Sd+1, . . . , SN .

5.2. Proof of Theorem 2. The reasoning is inspired to that used to prove the
general bound (6) in [11], recalled in section 2, equation (6), of this paper. The idea
consists in perturbing the sampled functions (“heating”) so as to go back to the setting
of Theorem 1 and then inferring the sought result via a limiting process (“cooling”).

Heating. Given a real ρ > 0, let H = [−ρ, ρ], and δ′ = (δ, h) ∈ Δ′, with Δ′ =
Δ×H . Indicating with U the uniform measure on H , P′ = P×U defines a probability
over Δ′. Moreover, for each x ∈ X and δ′ = (δ, h), let f ′(x, δ′) = f(x, δ) + h. The
problem with N constraints obtained as realizations from (Δ′,P′) is called the heated
scenario problem:

H-EPIN : min
c∈R,x∈X⊆Rd

c

subject to f(x, δ(i)) + h(i) ≤ c, i = 1, . . . , N.(24)

Since for any (x, c) we have that P
′{δ′ ∈ Δ′ : f ′(x, δ′) = c} = 0, H-EPIN is

nondegenerate and Theorem 1 applies. Hence, letting (x′∗, c′∗1 ) be the solution of
H-EPIN , c′∗k , k = 1, . . . , N , be the empirical costs, and R′

k = P
′
δ′{f ′(x′∗, δ′) > c′∗k },

k = 1, . . . , N , be the corresponding risks, the joint probability distribution function
P
′N{R′

d+1 ≤ εd+1, . . . , R
′
N ≤ εN} is computed according to (4), and it is given by

Fd,N (εd+1, εd+2, . . . , εN ).

Convergence of the heated solution to the original solution by cool-
ing. Fix δ(1), δ(2), . . . , δ(N), and compute the solution of EPIN , (x∗, c∗1), as well as
the empirical costs c∗d+1, . . . , c

∗
N . Let ρn ↓ 0 be a sequence of reals monotonically

decreasing to zero. For every n, pick N arbitrary numbers h
(1)
n , . . . , h

(N)
n from the

interval Hn = [−ρn, ρn], and let (x′∗, c′∗1 ) and c′∗d+1, . . . , c
′∗
N be the solution and the

empirical costs of problem (24), where h(i) = h
(i)
n . By mimicking [11], it is easy to

show that the solution, as well as the heated costs of the heated problem, converges
to the original solution, and to the empirical costs, of the original problem as n → ∞.
In formal terms,

lim
n→∞ sup

h
(1)
n ,...,h

(N)
n ∈Hn

||(x′∗, c′∗1 )− (x∗, c∗1)|| = 0

and

lim
n→∞ sup

h
(1)
n ,...,h

(N)
n ∈Hn

|c′∗k − c∗k| = 0, k = d+ 1, . . . , N.(25)

Derivation of (7). Fix a “bad” sample δ(1), δ(2), . . . , δ(N), i.e., a sample such
that the condition Rj > εj is true for at least one j ∈ {d + 1, . . . , N}. As above,
consider a sequence of heating parameters ρn ↓ 0. In line with [11], it can be shown
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that, thanks to (25), there exists a big enough n̄ such that for all n > n̄ and for

every choice of h
(1)
n , . . . , h

(N)
n , the heated sample (δ(1), h

(1)
n ), . . . , (δ(N), h

(N)
n ) is such

that R′
j > εj, i.e., it is bad in the heated setting. Now, note that

(P× U)N{∃j : R′
j > εj}

=

∫
ΔN

∫
HN

n

1{∃j : R′
j > εj} dhN

1

(2ρn)N
P{dδN1 }

≥
∫
ΔN

1{∃j : Rj > εj}
[∫

HN
n

1{∃j : R′
j > εj} dhN

1

(2ρn)N

]
P{dδN1 }.

The first indicator function limits the integration domain to samples in ΔN that are
bad. As previously noted, for every fixed bad sample in ΔN the inner integral is equal
to 1 for a sufficiently large n. Thus, by the dominated convergence theorem,

lim
n→∞

∫
ΔN

1{∃j : Rj > εj}
[∫

HN
n

1{∃j : R′
j > εj} dhN

1

(2ρn)N

]
P{dδN1 }

=

∫
ΔN

1{∃j : Rj > εj}P{dδN1 }.

It follows that

lim
n→∞(P× U)N{∃j : R′

j > εj}

≥
∫
ΔN

1{∃j : Rj > εj}P{dδN1 }

= P
N{∃j : Rj > εj}

= 1− P
N{Rd+1 ≤ εd+1, Rd+2 ≤ εd+2, . . . , RN ≤ εN},

from which

P
N{Rd+1 ≤ εd+1, Rd+2 ≤ εd+2, . . . , RN ≤ εN}
≥ 1− lim

n→∞(P× U)N{∃R′
j > εj}

= Fd,N (εd+1, εd+2, . . . , εN),

where the last equality follows from the discussion in the “heating” part of the proof.
This establishes the validity of (7).

6. Summary and conclusions. In various application endeavors one relies on
samples to optimize. In this paper, min-max sample-based optimization has been con-
sidered. After solving the optimization problem, one can evaluate the performance
of the obtained solution corresponding to the samples that have been used in opti-
mization. These performance values are called the empirical costs. Intuitively, the
empirical costs carry useful information on the performance that can be expected
when the solution is applied to a new situation, which is not in the set of initial
samples. This idea is put on a solid mathematical ground in this paper. We have
shown that precise limits to the probability of exceeding the empirical costs can be set.
These results are tight in that they provide exact evaluations in situations precisely
described in the paper, while they are also distribution-free, so that their application
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does not require that prior knowledge on the underlying probability distribution of
the samples is available to the user.

One important feature of the methods developed in this paper is that all evalua-
tions are carried out without resorting to new samples of the uncertainty parameter in
addition to those that are used for optimization. This fact is key to the applicability
of the methods to contexts where the samples are observations, so that they represent
a costly and limited resource.
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