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Abstract An important issue for solving multistage stochastic programs consists
in the approximate representation of the (multivariate) stochastic input process in the
form of a scenario tree. In this paper, we develop (stability) theory-based heuristics for
generating scenario trees out of an initial set of scenarios. They are based on forward
or backward algorithms for tree generation consisting of recursive scenario reduction
and bundling steps. Conditions are established implying closeness of optimal values
of the original process and its tree approximation, respectively, by relying on a recent
stability result in Heitsch, Römisch and Strugarek (SIAM J Optim 17:511–525, 2006)
for multistage stochastic programs. Numerical experience is reported for constructing
multivariate scenario trees in electricity portfolio management.
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1 Introduction

Multiperiod stochastic programs are often used to model practical decision processes
over time and under uncertainty, e.g., in finance, production, energy and logistics.
Their inputs are multivariate stochastic processes {ξt }T

t=1 defined on some probability
space (Ω,F , P) and with ξt taking values in some R

d . The (stochastic) decision xt

at t maps from Ω to R
mt and is assumed to be nonanticipative, i.e., to depend only
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on (ξ1, . . . , ξt ). This property is equivalent to the measurability of xt with respect to
the σ -field Ft (ξ) ⊆ F , which is generated by ξ t := (ξ1, . . . , ξt ). Clearly, we have
Ft (ξ) ⊆ Ft+1(ξ) for t = 1, . . . , T − 1. Since at time t = 1 the input is known, we
assume that F1(ξ) = {∅,Ω}.

The multiperiod stochastic program is assumed to be of the form

min

⎧
⎨

⎩
E

[
T∑

t=1

〈bt (ξt ), xt 〉
] ∣∣
∣
∣
∣
∣

xt ∈ Xt ,

xt is Ft (ξ) − measurable, t = 1, . . . , T,

At,0xt + At,1(ξt )xt−1 = ht (ξt ), t = 2, . . . , T

⎫
⎬

⎭
, (1)

where the subsets Xt of R
mt are nonempty and polyhedral, the cost coefficients bt (ξt )

belong to R
mt , the right-hand sides ht (ξt ) are in R

nt , At,0 ∈ R
nt ×mt are fixed recourse

matrices and At,1(ξt ) ∈ R
nt ×mt−1 technology matrices, respectively. We assume that

costs bt (·), right-hand sides ht (·) and technology matrices At,1(·) depend affinely on
ξt covering the situation that some of the components of bt and ht , and of the elements
of At,1 are random. Note that the two constraints xt ∈ Xt and At,0xt + At,1(ξt )xt−1 =
ht (ξt ) mean xt (ω) ∈ Xt and At,0xt (ω) + At,1(ξt (ω))xt−1(ω) = ht (ξt (ω)) for P-
almost every ω ∈ Ω .

In addition to the pointwise constraint with probability 1, measurability, filtration or
information constraints appear in (1). They are functional and non-pointwise at least
if T > 2 and F1(ξ) � Ft (ξ) � FT (ξ) for some 1 < t < T . In the latter case (1) is
called multistage. The presence of such qualitatively different constraints constitutes
the origin of both the theoretical and computational challenges of multistage models.

The main computational approach to multistage stochastic programs consists in
approximating the stochastic process ξ = {ξt }T

t=1 by a process having finitely many
scenarios exhibiting tree structure and starting at a fixed element ξ1 of R

d . This leads
to linear programming models that are very large scale in most cases and can be solved
by decomposition methods that exploit specific structures of the model. We refer to
[43, Chap. 3] for a recent survey.

Presently, there exist several approaches to generate scenario trees for multistage
stochastic programs (see [8] for a survey of ideas and methods until 2000). They
are based on several different principles. We mention here (1) bound-based construc-
tions (e.g., [2,13,28]), (2) Monte Carlo-based schemes [3,44,45], (3) Quasi Monte
Carlo-based discretization methods [30,31], (4) EVPI-based sampling and reduction
within decomposition schemes [4,5,23], (5) the moment-matching principle [25–27],
(6) probability metric based approximations [16,17,24,32]. Many of them require to
prescribe the tree structure and offer different strategies for selecting scenarios.

In the present paper, we study and extend the scenario tree generation technique
of [16,17]. Its idea is to start with a good initial approximation of the underlying
stochastic input process ξ consisting of a process ξ̂ having finitely many scenarios.
These scenarios might be obtained by quantization techniques [15], by sampling or
resampling techniques based on parametric or nonparametric stochastic models of ξ .
Starting from ξ̂ , a process ξtr in tree form is constructed by deleting and bundling sce-
narios recursively. While the recursive method described in [16,17] works backward
in time, a forward method was recently proposed in [20]. The main aims of the pa-
per are (1) to derive error estimates for the Lr -distance ‖ξ̂−ξtr‖r of both (backward and
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forward) tree generation techniques, and (2) to provide justifications for both
techniques by showing that the distance of optimal values |v(ξ) − v(ξtr)| of the
underlying stochastic program (1) is small when additional conditions on ξ̂ are impo-
sed. The latter is attained by relying on recent stability results for multistage stochastic
programs in [21,22]. The stability results enlighten that ξ has to be approximated in
the sense of Lr and in terms of a filtration distance. Consequently, we argue that both
distances get for ξ and ξtr if ξ̂ represents a good approximation of ξ (in a sense which is
made precise in Sect. 5). In this way, a (stability) theory-based heuristic for generating
scenario trees out of a finite number of given scenarios is developed.

The backward and forward tree generation methods were implemented and tested
on real-life data in several practical applications, namely, for generating passenger
demand scenario trees in airline revenue management [29] and for load-price scenario
trees in electricity portfolio management [10,18].

Section 2 contains some prerequisites on distances of probability distributions and
random vectors, and a short introduction to scenario reduction. Section 3 records
the main stability results of [21,22], which provides the theoretical basis of our tree
constructions. Sections 4 and 5 contain the main results of our paper, in particular,
the tree generation algorithms and their theoretical justification. In Sect. 6 we derive
some estimates of the filtration distance and in Sect. 7 we discuss some numerical
experience on backward and forward generation of load-inflow scenario trees based
on realistic data.

2 Distances and scenario reduction

In earlier works on quantitative stability of stochastic programs without information
constraints, probability metrics for measuring the distance of probability distribu-
tions played a major role [34,41]. In particular, distances given in terms of Monge–
Kantorovich mass transportation problems became relevant. They are of the form

inf

⎧
⎨

⎩

∫

Ξ×Ξ

c(ξ, ξ̃ )η(dξ, d ξ̃ ) : η ∈ P(Ξ × Ξ), π1η = P, π2η = Q

⎫
⎬

⎭
, (2)

where Ξ is a closed subset of R
s (for some s ∈ N), π1 and π2 denote the projections

onto the first and second components, respectively, c is a nonnegative, symmetric and
continuous cost function, and P and Q belong to a set Pc(Ξ) of probability measures
on Ξ , which is chosen such that all occurring integrals are finite. Two types of cost
functions have been used in stability analysis [9,42], namely,

c(ξ, ξ̃ ) := |ξ − ξ̃ |r (ξ, ξ̃ ∈ Ξ) (3)

and
c(ξ, ξ̃ ) := max

{
1, |ξ − ξ0|r−1, |ξ̃ − ξ0|r−1

}
|ξ − ξ̃ | (ξ, ξ̃ ∈ Ξ) (4)

for some r ≥ 1, ξ0 ∈ Ξ and a seminorm or a norm | · | in R
s . In both cases, the set

Pc(Ξ) may be chosen as the set Pr (Ξ) of all probability measures Q on Ξ such that
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∫

Ξ
|ξ |r Q(dξ) is finite. The cost (3) leads to Lr -minimal metrics �r [36], which are

defined by

�r
r (P, Q) := inf

⎧
⎨

⎩

∫

Ξ×Ξ

|ξ − ξ̃ |rη(dξ, d ξ̃ ) |η ∈ P(Ξ × Ξ), π1η = P, π2η = Q

⎫
⎬

⎭

(5)
and sometimes also called Wasserstein metrics of order r [14]. The mass transportation
problem (2) with cost (4) defines the Monge–Kantorovich functional µ̂r [33,35].
A variant of the functional µ̂r appears if, in its definition (2), the conditions η ∈
P(Ξ × Ξ), π1η = P, π2η = Q are replaced by the condition that η is a finite

measure on Ξ ×Ξ with π1η −π2η = P − Q. The corresponding functionals
◦
µr turn

out to be metrics on Pr (Ξ). They are called Fortet–Mourier metrics of order r [33].
The convergence of sequences of probability measures with respect to both metrics �r

and
◦
µr is equivalent to their weak convergence and the convergence of their r th order

absolute moments.
For stochastic programs containing information constraints the situation is dif-

ferent. Examples (e.g., [22, Example 2.6]) show that a stability analysis based only
on distances of probability distributions may fail. In the recent paper [22] quantitative
stability of multistage stochastic programs (1) is proved with respect to the sum of
two distances, namely, the norm

‖ξ‖r :=
(

T∑

t=1

E[|ξt |r ]
) 1

r

in Lr (Ω,F , P; R
s) with s := T d for the Ξ -valued random inputs and the so-called

information or filtration distance. The latter is defined in terms of the norm ‖ · ‖r ′ with
r ′ depending on r . Its precise definition is given in Sect. 3.

Let ξ and ξ̃ be random vectors on some probability space (Ω,F , P) with probability
distributions P and Q. Since the probability distribution η̄ of the pair (ξ, ξ̃ ) of two
Ξ -valued random vectors is feasible for the minimization problem (5), we have

�r (P, Q) ≤ ‖ξ − ξ̃‖r . (6)

Moreover, since an optimal solution η∗ ∈ P(Ξ × Ξ) of the mass transportation
problem (5) always exists (cf. [33, Theorem 8.1.1]), there are a probability space
and a pair of Ξ -valued random vectors, a so-called optimal coupling, defined on it,
such that the probability distribution of the pair is just η∗ (e.g., [33, Theorem 2.5.1]).
Hence, equality is valid in (6) on some probability space. This fact justifies the name
Lr -minimal metric for �r .

Now, let ξ and ξ̃ be discrete random vectors with scenarios ξ i and probabilities
pi , i = 1, . . . , N , and ξ̃ j with probabilities q j , j = 1, . . . , M , respectively. Then we
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have

�r
r (P, Q) = min

⎧
⎨

⎩

∑

i, j

ηi j |ξ i − ξ̃ j |r : ηi j ≥ 0,
∑

i

ηi j = q j ,
∑

j

ηi j = pi

⎫
⎬

⎭
, (7)

i.e., �r
r (P, Q) is the optimal value of a linear transportation problem. A case of parti-

cular interest consists in the situation that M < N and that the scenarios of Q form
a subset {ξ j } j �∈J of the scenario set {ξ i : i = 1, . . . , N } of P . One might first wish
to solve the problem of finding the best approximation of P with respect to �r by a
probability measure Q J supported by the (scenario) set {ξ j } j �∈J , i.e., to determine
the minimal distance DJ and an optimal solution {q̄ j : j �∈ J } such that �r (P, Q J )

is minimized on the simplex {q : q j ≥ 0,
∑

j �∈J q j = 1}. From [9, Theorem 2] we
conclude

Lemma 2.1 Let J be a nonempty subset of {1, . . . , N }. Then the identity

DJ = min

⎧
⎨

⎩
�r (P, Q J ) : qi ≥ 0,

∑

i �∈J

qi = 1

⎫
⎬

⎭
=
⎛

⎝
∑

j∈J

p j min
i �∈J

|ξ i − ξ j |r
⎞

⎠

1
r

(8)

holds and the minimum is attained at q̄i = pi + ∑
j∈Ji

p j , i �∈ J , where Ji :=
{ j ∈ J |i = i( j)} and i( j) belongs to arg min

i �∈J
|ξ i − ξ j | for every j ∈ J (optimal

redistribution).

Let Ai := ξ−1({ξ i }) ∈ F , and, thus, P(Ai ) = pi , i = 1, . . . , N . If the random
vector ξJ is defined by

ξJ (ω) :=
{

ξ i , ω ∈ Ai , i �∈ J,

ξ i( j), ω ∈ A j , j ∈ J,

where i( j) is defined as in Lemma 2.1, we obtain

‖ξ − ξJ ‖r
r =

∑

j∈J

|ξ j − ξ i( j)|r P(A j ) =
∑

j∈J

p j min
i �∈J

|ξ i − ξ j |r = Dr
J .

Hence, the distance �r (P, Q J ) is minimal if Q J is the probability distribution of
ξJ . Consequently, scenario reduction with respect to the Lr -minimal distance may
alternatively be considered with respect to the norm ‖ · ‖r on any probability space.

Using the explicit formula (8), the optimal reduction problem for a scenario index
set J with prescribed cardinality |J | = N − n from P is given by the combinatorial
optimization model

min

⎧
⎨

⎩
DJ =

∑

j∈J

p j min
i �∈J

|ξ i − ξ j |r : J ⊂ {1, . . . , N }, |J | = N − n

⎫
⎬

⎭
. (9)
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For the two extremal cases n = N − 1 and n = 1 the problem (9) is of the form

min
l∈{1,...,N } pl min

i �=l
|ξ l − ξ i |r (n = N − 1) and min

u∈{1,...,N }

N∑

j=1
j �=u

p j |ξu − ξ j |r (n = 1),

and easily solvable. Their solutions J = {l∗} and J = {1, . . . , N }\{u∗} arise as the
result of two different processes: Backward reduction and forward selection. Both
process ideas may be extended and lead to the following two heuristics for finding
approximate solutions of (9). Their results are the index sets J [N−n] and J [n], respec-
tively, of deleted scenarios and have cardinality N − n.

Algorithm 2.2 (Backward reduction).

Step [0]: J [0] := ∅ .

Step [i]: li ∈ arg min
l �∈J [i−1]

∑

k∈J [i−1]∪{l}
pk min

j �∈J [i−1]∪{l}
|ξ k − ξ j |r ,

J [i] := J [i−1] ∪ {li } .

Step [N-n+1]: Optimal redistribution.

Algorithm 2.3 (Forward selection).

Step [0]: J [0] := {1, . . . , N }.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑

k∈J [i−1]\{u}
pk min

j �∈J [i−1]\{u}
|ξ k − ξ j |r ,

J [i] := J [i−1]\{ui } .

Step [n+1]: Optimal redistribution.

These heuristics were studied in [19] for different cost functions c. There it is shown
that both algorithms exhibit polynomial complexity. Although the algorithms do not
lead to optimality in general, the performance evaluation of their implementations in
[19] is very encouraging.

3 Stability of multistage models

Here, we record the main results of the recent papers [21,22]. We assume that the
stochastic input process ξ belongs to the Banach space Lr (Ω,F , P; R

s) with s := T d
and r ≥ 1. The multistage model (1) is regarded as an optimization problem in the
space Lr ′(Ω,F , P; R

m) with m = ∑T
t=1 mt and endowed with the norm

‖x‖r ′ :=
(

T∑

t=1

E[|xt |r ′ ]
) 1

r ′

(1 ≤ r ′ < ∞) or ‖x‖∞ := max
t=1,...,T

ess sup |xt |,
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where the number r ′ is defined by

r ′ :=

⎧
⎪⎪⎨

⎪⎪⎩

r
r−1 , if only costs are random
r, if only right-hand sides are random

r = 2, if only costs and right-hand sides are random
∞, if all technology matrices are random and r ≥ T .

(10)

The choice of r and the definition of r ′ are motivated by the knowledge on existing
moments of the input process, by having the stochastic program well defined (in
particular, such that 〈bt (ξt ), xt 〉 is integrable for every decision x and t = 1, . . . , T )
and by satisfying the conditions (A2) and (A3). It is shown in [22] that the decisions
belong to Lr (i.e., r ′ = r ) if ξ ∈ Lr enters right-hand sides. If ξ enters the costs,
in addition, the condition 1

r + 1
r ′ = 1 implies r ′ = r = 2 and the finiteness of the

objective. If either right-hand sides or costs are random, it is sufficient to require
r ≥ 1 and to select r ′ such that the objective is again finite. The flexibility of having
r > 1 may be used to satisfy the conditions (A2) and (A3) (see below) on the feasible
set. If the linear stochastic program is fully random (i.e., costs, right-hand sides and
technology matrices are random), the conditions r ≥ T and r ′ = ∞ allow to derive a
stability result for the optimal values, where the norm ‖ξ‖T enters the stability constant
(see the proof of [22, Theorem 2.1]).

Let us introduce some notations. Let F denote the objective function defined on
Lr (Ω,F , P; R

s) × Lr ′(Ω,F , P; R
m) → R by F(ξ, x) := E[∑T

t=1〈bt (ξt ), xt 〉], let

Xt (xt−1; ξt ) := {
xt ∈ Xt |At,0xt + At,1(ξt )xt−1 = ht (ξt )

}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) :=
{

x = (x1, x2, . . . , xT ) ∈ ×T
t=1Lr ′(Ω,Ft (ξ), P; R

mt )|
x1 ∈ X1, xt ∈ Xt (xt−1; ξt )

}

the set of feasible elements of (1) with input Ξ . Then the multistage stochastic program
(1) may be rewritten as

min{F(ξ, x) : x ∈ X (ξ)}. (11)

Furthermore, let v(ξ) denote its optimal value and, for any α ≥ 0,

Sα(ξ) := {x ∈ X (ξ) : F(ξ, x) ≤ v(ξ) + α} and S(ξ) := S0(ξ)

denote the α-approximate solution set and the solution set of the stochastic program
(11) with input ξ , respectively.

The following conditions are imposed on (11):

(A1) ξ ∈ Lr (Ω,F , P; R
s), i.e.,

∫

Ω
|ξ(ω)|r dP(ω) < ∞, for some r ≥ 1.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr (Ω,F , P; R
s) with ‖ξ̃ −ξ‖r ≤ δ,

any t = 2, . . . , T and any x1 ∈ X1(ξ̃1), xτ ∈ Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t −
1, there exists an Ft (ξ̃ )-measurable xt ∈ Xt (xt−1; ξ̃t ) (relatively complete
recourse locally around ξ ).
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(A3) The optimal values v(ξ̃ ) of (11) with input ξ̃ are finite for all ξ̃ in a
neighborhood of ξ and the objective function F is level-bounded locally uni-
formly at ξ , i.e., for some α > 0 there exist a constant δ > 0 and a boun-
ded subset B of Lr ′(Ω,F , P; R

m) such that Sα(ξ̃ ) is contained in B for all
ξ̃ ∈ Lr (Ω,F , P; R

s) with ‖ξ̃ − ξ‖r ≤ δ.

The following stability result for optimal values and solutions of multistage stochas-
tic programs represents a combination of [22, Theorem 2.1] on quantitative continuity
properties of optimal values and of [21, Theorem 2.2] on the convergence of ap-
proximate solutions. Its main observation is that multistage models behave stable at
some stochastic input process if both its probability distribution and its filtration are
approximated with respect to the Lr -distance and the filtration distance

Df(ξ, ξ̃ ) := sup
ε>0

inf
x∈Sε(ξ)

x̃∈Sε(ξ̃ )

T −1∑

t=2

max{‖xt − E[xt |Ft (ξ̃ )]‖r ′ , ‖x̃t − E[x̃t |Ft (ξ)]‖r ′ }, (12)

where Ft (ξ) and Ft (ξ̃ ) denote the σ -fields generated by ξ t and ξ̃ t , and E[·|Ft (ξ)] and
E[·|Ft (ξ̃ )], t = 1, . . . , T , the corresponding conditional expectations, respectively.
Note that for the supremum in (12) only small ε’s are relevant and that the approximate
solution sets are bounded for ε ∈ (0, α] according to (A3).

Theorem 3.1 Let (A1), (A2) and (A3) be satisfied and X1 be bounded.
Then there exist positive constants L and δ such that the estimate

|v(ξ) − v(ξ̃ )| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃ )) (13)

holds for all random elements ξ̃ ∈ Lr (Ω,F , P; R
s) with ‖ξ̃ − ξ‖r ≤ δ.

An example in [22] shows that the filtration distance Df is indispensable for Theo-
rem 3.1 to hold. The filtration distance of two stochastic processes vanishes if their
filtrations coincide, in particular, if the model is two-stage (i.e., T = 2). If both S(ξ)

and S(ξ̃ ) are nonempty, the filtration distance is of the simplified form

Df(ξ, ξ̃ ) = inf
x∈S(ξ)

x̃∈S(ξ̃ )

T −1∑

t=2

max{‖xt − E[xt |Ft (ξ̃ )]‖r ′ , ‖x̃t − E[x̃t |Ft (ξ)]‖r ′ }. (14)

For example, the solution sets S(ξ) and S(ξ̃ ) are nonempty if conditions (A1)–(A3)
are satisfied and if Ω is finite or 1 < r ′ < ∞. This fact is due to the continuity
of F(ξ̃ , ·) with respect to the weak and norm topologies in Lr ′(Ω,F , P) and to the
nonemptiness (because of (A2)), convexity and closedness of X (ξ̃ ) for every ξ̃ with
‖ξ̃ −ξ‖r ≤ δ. Moreover, if Ω is finite, (A3) implies that certain level sets are bounded
in the finite-dimensional space Lr ′(Ω,F , P) and, hence, compact. For general Ω , the
condition 1 < r ′ < ∞ implies that the Banach space Lr ′(Ω,F , P) is reflexive [7,
Corollary IV.8.2], hence, the level sets are weakly compact as they are closed, convex
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and bounded (due to (A3)). The existence of solutions then follows from Weierstrass’
theorem on the existence of minimizers of continuous functions on compact topologi-
cal spaces. A more thorough discussion of the existence of solutions of (11) is given
in [21, Theorem 2.1]. The paper [21] also contains stability results for (approximate)
solution sets.

Theorem 3.1 is valid for any choice of the underlying probability space such that
there exists a version of ξ with its probability distribution. The right-hand side of
(13) is minimal if the probability space is selected such that both norms ‖ · ‖r and
‖ · ‖r ′ coincide with the corresponding Lr -minimal and Lr ′ -minimal distances (cf. the
discussion in Sect. 2).

Another bound for the filtration distance of ξ and ξ̃ in Lr (Ω,F , P; R
s) with

‖ξ̃ − ξ‖r ≤ δ is immediately obtained by the estimate

Df(ξ, ξ̃ ) ≤ C sup
‖x‖r ′≤1

T −1∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖r ′ =: C D∗
f (ξ, ξ̃ ), (15)

where δ > 0 and B are the constant and Lr ′ -bounded set appearing in (A2) and (A3),
respectively, and the constant C > 0 is chosen such ‖x‖r ′ ≤ C for all x ∈ B. Another
estimate for Df may be obtained if (A3) is replaced by the following stronger condition
(A3)′.
(A3)′ The optimal values v(ξ̃ ) of (11) with input ξ̃ are finite for all ξ̃ in a neighborhood
of ξ and for some α > 0 there exist constants δ > 0 and C > 0 such that |x̃(ω)| ≤ C for
P-almost every ω ∈ Ω and all x̃ ∈ Sα(ξ̃ ) with ξ̃ ∈ Lr (Ω,F , P; R

s) and ‖ξ̃ −ξ‖r ≤ δ.
If (A3)′ is satisfied, we immediately have

Df(ξ, ξ̃ ) ≤ C sup
x∈B∞

T −1∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖r ′ =: C D∗
f,∞(ξ, ξ̃ ) (16)

where B∞ := {x : Ω → R
m : x is measurable, |x(ω)| ≤ 1 for all ω ∈ Ω}. Such

bounds of Df in terms of distances of σ -fields are already discussed in [22, Remark
2.5]. Since D∗

f and D∗
f,∞ are given as uniform distances of conditional expectation

operators, they satisfy the triangle inequality in contrast to Df and do no longer depend
on (approximate) solutions of (11).

4 Generating scenario trees

Let ξ̂ be a stochastic process on some probability space (Ω,F , P) having scenarios
ξ i = (ξ i

1, . . . , ξ
i
T ) ∈ R

T d with probabilities pi > 0, i = 1, . . . , N , and common root,
i.e., ξ1

1 = · · · = ξ N
1 =: ξ∗

1 . The process ξ̂ may be tree-structured or a fan of scenarios.
The aim of this section is to describe algorithms for constructing a tree process ξtr out
of ξ̂ such that the Lr -distance

‖ξ̂ − ξtr‖r
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is bounded by some prescribed tolerance ε > 0. Sections 4.1 and 4.2 contain backward
and forward algorithms based on recursive scenario reduction and bundling.

For later use we introduce the Lr -seminorms ‖ · ‖r,t on Lr (Ω,F , P; R
s) (with

s = T d) given by

‖ξ‖r,t := (
E[|ξ |rt ]

) 1
r =

(
N∑

i=1

pi |ξ i |rt
) 1

r

, (17)

which is needed at step t of the constructions in Sects. 4.1 and 4.2. Here, we denote
by | · |t the seminorm on R

s defined by |ξ |t := |(ξ1, . . . , ξt , 0, . . . , 0)| for each
ξ = (ξ1, . . . , ξT ) ∈ R

s .

4.1 Backward tree construction

Setting ξ̄ T +1 := ξ̂ , recursive scenario reduction on {1, . . . , t} for decreasing t leads to
stochastic processes ξ̄ t having scenarios {ξ̄ t,i := ξ i }i∈It with It ⊂ I := {1, . . . , N }
and increasing cardinality |It |. In this way we obtain a chain of index sets

I1 = {i∗} ⊆ I2 ⊆ · · · ⊆ It−1 ⊆ It ⊆ · · · ⊆ IT ⊆ IT +1 := I

and denote the index set of deleted scenarios at t by Jt := It+1\It for each t =
1, . . . , T . The probabilities π i

t of the scenarios ξ̄ t,i for i ∈ It are set by π i
T +1 := pi

for i ∈ IT +1 and further defined according to the optimal redistribution rule (see
Lemma 2.1) for the norm | · |t , i.e.,

π i
t = π i

t+1 +
∑

j∈Jt,i

π
j

t+1 (i ∈ It ), (18)

where

Jt =
⋃

i∈It

Jt,i , Jt,i := { j ∈ Jt : i = it ( j)} and it ( j) ∈ arg min
i∈It

|ξ i − ξ j |t . (19)

At time t we obtain the scenario clusters Īt,i := {i, j : j ∈ Jt,i } for each i ∈ It that
form a partition of IT , i.e., IT = ∪i∈It Īt,i . The cardinality of Īt,i corresponds to the
branching degree of scenario i at t . If | Īt,i | = 1, i.e., Jt,i = ∅, scenario i will not
branch at t . Lemma 2.1 also implies

‖ξ̄ t+1 − ξ̄ t‖r
r,t =

∑

j∈Jt

π
j

t+1 min
i∈It

|ξ i − ξ j |rt (20)

for t = 1, . . . , T . The final scenario tree ξtr consists of |IT | scenarios ξ
j

tr with probabi-

lities π
j

T for j ∈ IT . Each of its components ξ
j

tr,t is a node of degree | Īt, j | = 1+|Jt, j |
with probability π

j
t and belongs to the set {ξ i

t }i∈It . The corresponding index i ∈ It is
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given by i = αt ( j), where the index mappings αt : I → It are defined recursively by
setting αT +1 to be the identity and

αt ( j) :=
{

it (αt+1( j)), αt+1( j) ∈ Jt ,

αt+1( j), otherwise,
(21)

for j ∈ I and t = T, . . . , 1. We obtain the following estimate for the Lr -distance of
ξ̂ and ξtr .

Theorem 4.1 Let the stochastic process ξ̂ with fixed initial node ξ∗
1 , scenarios ξ i

and probabilities pi , i = 1, . . . , N, be given. Let ξtr be the stochastic process with
scenarios ξ i

tr = (ξ∗
1 , ξ

α2(i)
tr,2 , . . . , ξ

αt (i)
tr,t , . . . , ξ i

tr,T ) and probabilities π i
T for i ∈ IT .

Then we have the estimate

‖ξ̂ − ξtr‖r ≤
T∑

t=2

⎛

⎝
∑

j∈Jt

π
j

t+1 min
i∈It

|ξ i − ξ j |rt
⎞

⎠

1
r

. (22)

Proof Let ξ̂ τ be the stochastic process having scenarios ξ̂ τ,i and probabilities π i
T for

i ∈ IT , where

ξ̂
τ,i
t :=

{
ξ

αt (i)
t , t ≥ τ,

ξ
ατ (i)
t , t < τ,

for τ = 1, . . . , T . The processes ξ̂ τ are illustrated in Fig. 1, where ξ̂ τ corresponds to
the (T − τ + 2)-th picture for τ = 2, . . . , T . According to the above constructions
we have ξ̂ T = ξ̄ T and ξ̂1 = ξ̃tr . Next we show for t = 1, . . . , T − 1 that

‖ξ̂ t+1 − ξ̂ t‖r = ‖ξ̄ t+1 − ξ̄ t‖r,t . (23)

We have
‖ξ̂ t+1 − ξ̂ t‖r =

∑

i∈IT

π i
T |ξ̂ t+1,i − ξ̂ t,i |r . (24)

Since the final T − t components of the elements ξ̂ t+1,i and ξ̂ t,i are identical, the
norm | · | may be replaced by the seminorm | · |t in (24). Moreover, since the first t
components of ξ̂ t+1,i and ξ̂ t,i are ξ

αt+1(i)
τ and ξ

αt (i)
τ , respectively, τ = 1, . . . , t , we

have
∑

i∈IT

π i
T |ξ̂ t+1,i − ξ̂ t,i |r =

∑

i∈IT

π i
T |ξαt+1(i) − ξαt (i)|rt .

Since αt ( j) = αt+1( j) holds for αt+1( j) /∈ Jt (see (21)), we obtain

∑

i∈IT

π i
T |ξαt+1(i) − ξαt (i)|rt =

∑

i∈IT
αt+1(i)∈Jt

π i
T |ξαt+1(i) − ξαt (i)|rt .
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

Fig. 1 Illustration of the backward tree construction for an example including T = 5 time periods starting
with ξ̂ containing N = 58 scenarios. A possibly existing tree structure of ξ̂ is disregarded

With (21) and (20) the latter sum may be rewritten as

∑

i∈IT
αt+1(i)∈Jt

π i
T |ξαt+1(i) − ξαt (i)|rt =

∑

j∈Jt

∑

k∈IT
αt+1(k)= j

πk
T |ξαt+1(k) − ξαt (k)|rt

=
∑

j∈Jt

⎛

⎜
⎜
⎝

∑

k∈IT
αt+1(k)= j

πk
T

⎞

⎟
⎟
⎠ |ξ j − ξ it ( j)|rt

=
∑

j∈Jt

π
j

t+1|ξ j − ξ it ( j)|rt = ‖ξ̄ t+1 − ξ̄ t‖r
r,t .

Hence, the proof of (23) for t = 1, . . . , T is complete.
Finally, we prove (22) by applying repeatedly the triangle inequality for ‖ · ‖r , using
(23) and the identities ξ̂ = ξ̄ T +1, ξ̂ T = ξ̄ T and ξ̂1 = ξtr .
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‖ξ̂ − ξtr‖r ≤ ‖ξ − ξ̂ T ‖r + ‖ξ̂ T − ξtr‖r

≤ ‖ξ̄ T +1 − ξ̄ T ‖r +
T −1∑

k=1

‖ξ̂ T −k+1 − ξ̂ T −k‖r

=
T −1∑

k=0

‖ξ̄ T −k+1 − ξ̄ T −k‖r,T −k

=
T∑

t=2

‖ξ̄ t+1 − ξ̄ t‖r,t ,

where the summand for t = 1 vanishes. Together with the representation (20) of ‖·‖r,t ,
the proof is complete. ��

The preceding result allows to estimate the quality of scenario trees that are gene-
rated by the backward tree construction algorithm. For example, if the tree structure
is stagewise fixed, say, to decreasing numbers Nt ≤ N as t decreases from T to 1,
the algorithm selects almost best possible candidates for deletion and Theorem 4.1
allows to estimate the quality of the tree. In addition, the estimate (22) provides the
possibility to quantify the relative error at time t and, hence, to modify the structure. If
the tree structure is free, the following flexible algorithm allows to generate a variety of
scenario trees satisfying a given accuracy tolerance with respect to the Lr -distances.

Algorithm 4.2 (Backward tree construction).
Let N scenarios ξ i with probabilities pi , i = 1, . . . , N, fixed root ξ∗

1 ∈ R
d , r ≥ 1,

and tolerances ε, εt , t = 2, . . . , T , be given such that
T∑

t=2
εt ≤ ε.

Step 0: Set ξ̄ T +1 := ξ̂ and IT +1 = {1, . . . , N }. Determine an index set IT ⊆ IT +1
and a stochastic process ξ̄ T with |IT | scenarios such that ‖ξ̄ T +1 − ξ̄ T ‖r ≤ εT .
Step t: Determine an index set IT −t ⊆ IT −t+1 and a stochastic process ξ̄ T −t with
|IT −t | scenarios such that ‖ξ̄ T −t+1 − ξ̄ T −t‖r,T −t ≤ εT −t .

Step T-1: Construct the stochastic process ξtr having |IT | scenarios ξ
j

tr , j ∈ IT , such

that ξ
j

tr,t := ξ
αt ( j)
t , t = 1, . . . , T , where αt (·) is defined by (21).

While the first picture in Fig. 1 illustrates the original process ξ̂ (disregarding a possibly
existing tree structure), the second one corresponds to the situation after the reduction
Step 0 and the third, fourth and fifth one to the Steps 1–3, respectively. The final picture
corresponds to the final Step 4 and illustrates the scenario tree ξtr .

Corollary 4.3 Let a stochastic process ξ̂ with fixed initial node ξ∗
1 , scenarios ξ i

and probabilities pi , i = 1, . . . , N, be given. If ξtr is constructed according to
Algorithm 4.2, we have

‖ξ̂ − ξtr‖r ≤
T∑

t=2

εt ≤ ε.
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Proof This is a direct consequence of the estimate (22) in Theorem 4.1, which reads

‖ξ̂ − ξtr‖r ≤
T∑

t=2

‖ξ̄ t+1 − ξ̄ t‖r,t .

��
If the Algorithm 4.2 is used to generate scenario trees in practical applications, one

has to select r > 1 and the tolerances εt , t = 1, . . . , T . Often there are good reasons
for selecting r according to the properties of the original process ξ and the desired
approximation quality of the solutions expressed by the norm ‖ · ‖r ′ . The choice of
the tolerances εt , however, is essentially open so far. Clearly, branching at t occurs
more often if εt gets larger and εt = 0 leads to no branching of scenarios at time
t . Some experience on selecting the tolerances is reported in Sect. 7.1, where the
(non-vanishing) tolerances are chosen according to the exponential rule (42).

4.2 Forward tree construction

The forward selection procedure determines recursively stochastic processes ξ̂ t having
scenarios ξ̂ t,i endowed with probabilities pi , i ∈ I := {1, . . . , N }, and partitions
Ct = {C1

t , . . . , C Kt
t } of I , i.e., such that

Ck
t ∩ Ck′

t = ∅ ∀k �= k′ and
Kt⋃

k=1

Ck
t = I. (25)

The elements of such a partition Ct will be called (scenario) clusters. The initialization
of the procedure consists in setting ξ̂1 = ξ̂ , i.e., ξ̂1,i = ξ i , i ∈ I , and C1 = {I }. At step t
(with t > 1) every cluster Ck

t−1, i.e., every scenario subset {ξ̂ t−1,i }i∈Ck
t−1

, is considered

separately and subjected to scenario reduction with respect to the seminorm | · |t as
described in Sect. 2. This leads to index sets I k

t and J k
t of remaining and deleted

scenarios, respectively, where

I k
t ∪ J k

t = Ck
t−1

and

J k
t =

⋃

i∈I k
t

J k
t,i , J k

t,i :=
{

j ∈ J k
t : i = i k

t ( j)
}

and i k
t ( j) ∈ arg min

i∈I k
t

|ξ̂ t−1,i − ξ̂ t−1, j |rt .

Next we define a mapping αt : I → I such that

αt ( j) =
{

i k
t ( j), j ∈ J k

t , k = 1, . . . , Kt−1,

j, otherwise.
(26)

Then the scenarios of the stochastic process ξ̂ t = {ξ̂ t
τ }T

τ=1 are defined by
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

Fig. 2 Illustration of the forward tree construction for an example including T = 5 time periods starting
with ξ̂ containing N = 58 scenarios. A possibly existing tree structure of ξ̂ is disregarded

ξ̂ t,i
τ =

{
ξ

ατ (i)
τ , τ ≤ t,
ξ i
τ , otherwise,

(27)

with probabilities pi for each i ∈ I . The processes ξ̂ t are illustrated in Fig. 2, where
ξ̂ t corresponds to the t-th picture for t = 1, . . . , T . The partition Ct at time t is defined
by

Ct =
{
α−1

t (i) : i ∈ I k
t , k = 1, . . . , Kt−1

}
, (28)

i.e., each element of the index sets I k
t defines a new cluster and the partition Ct is

a refinement of the partition Ct−1. The scenario sets It , scenario clusters Īt,i and
cluster probabilities π i

t in the description of the backward reduction procedure in the
preceding subsection have now the form

It :=
Kt−1⋃

k=1

I k
t

Īt,i :=
{

i, j : j ∈ J k
t,i

}
= Ck

t and π i
t =

∑

j∈Ck
t

p j if i ∈ I k
t for some k = 1, . . . , Kt−1.
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The branching degree of scenario i at t coincides with the cardinality of Īt,i .
Finally, the scenarios and their probabilities of the scenario tree ξtr := ξ̂ T are given

by the structure of the final partition CT , i.e., they are of the form

ξ k
tr =

(
ξ∗

1 , ξ
α2(i)
2 , . . . , ξ

αt (i)
t , . . . , ξ

αT (i)
T

)
and π i

T if i ∈ Ck
T

for each k = 1, . . . , KT . Furthermore, we have the following error estimate with
respect to the Lr -norm.

Theorem 4.4 Let the stochastic process ξ̂ with fixed initial node ξ∗
1 , scenarios ξ i

and probabilities pi , i = 1, . . . , N, be given. Let ξtr be the stochastic process with
scenarios ξ k

tr = (ξ∗
1 , ξ

α2(i)
2 , . . . , ξ

αt (i)
t , . . . , ξ

αT (i)
T ) and probabilities πk

T if i ∈ Ck
T ,

k = 1, . . . , KT . Then we have the estimate

‖ξ̂ − ξtr‖r ≤
T∑

t=2

⎛

⎝
Kt−1∑

k=1

∑

j∈J k
t

p j min
i∈I k

t

|ξ i
t − ξ

j
t |r

⎞

⎠

1
r

. (29)

Proof We recall that ξ̂1 = ξ̂ and ξ̂ T = ξtr and obtain

‖ξ̂ − ξtr‖r ≤
T∑

t=2

‖ξ̂ t − ξ̂ t−1‖r ,

using the triangle inequality of ‖ · ‖r . Since the scenarios of ξ̂ t and ξ̂ t−1 coincide on
{t + 1, . . . , T }, the latter estimate may be rewritten as

‖ξ − ξ̃tr‖r ≤
T∑

t=2

‖ξ̂ t − ξ̂ t−1‖r,t . (30)

By definition of ξ̂ t and ξ̂ t−1 we have ξ̂ t,i
τ = ξ̂ t−1,i

τ for all τ = 1, . . . , t − 1. Hence,
we obtain

‖ξ̂ t − ξ̂ t−1‖r
r,t =

N∑

i=1

pi |ξ̂ t,i − ξ̂ t−1,i |rt =
Kt−1∑

k=1

∑

j∈Ck
t−1

p j |ξ̂ t, j
t − ξ̂

t−1, j
t |r

=
Kt−1∑

k=1

∑

j∈Ck
t−1

p j |ξαt ( j)
t − ξ

j
t |r =

Kt−1∑

k=1

∑

j∈J k
t

p j |ξ i k
t ( j)

t − ξ
j

t |r

=
Kt−1∑

k=1

∑

j∈J k
t

p j min
i∈I k

t

|ξ i
t − ξ

j
t |r ,
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using, in addition, the partition property (25) and the definitions (26) of the mappings
αt and i k

t . Inserting the latter result into (30) completes the proof. ��
The error estimate in Theorem 4.4 is very similar to that in Theorem 4.1. Both

estimates allow to quantify the relative error of the t-th construction step. As in
the previous section, we provide a flexible algorithm that allows to generate a va-
riety of scenario trees satisfying a given approximation tolerance with respect to the
Lr -distance.

Algorithm 4.5 (Forward tree construction).
Let N scenarios ξ i with probabilities pi , i = 1, . . . , N, fixed root ξ∗

1 ∈ R
d and

probability distribution P, r ≥ 1, and tolerances ε, εt , t = 2, . . . , T , be given such
that

∑T
t=2 εt ≤ ε.

Step 1: Set ξ̂1 := ξ̂ and C1 = {{1, . . . , N }}.
Step t: Let Ct−1 = {C1

t−1, . . . , C Kt−1
t−1 }. Determine disjoint index sets I k

t and J k
t such

that I k
t ∪ J k

t = Ck
t−1, the mapping αt (·) according to (26) and a stochastic process

ξ̂ t having N scenarios ξ̂ t,i with probabilities pi according to (27) and such that
‖ξ̂ t − ξ̂ t−1‖r,t ≤ εt . Set Ct = {α−1

t (i) : i ∈ I k
t , k = 1, . . . , Kt−1}.

Step T+1: Let CT = {C1
T , . . . , C KT

T }. Construct a stochastic process ξtr having KT

scenarios ξ k
tr such that ξ k

tr,t := ξ
αt (i)
t if i ∈ Ck

T , k = 1, . . . , KT , t = 1, . . . , T .

While the first picture in Fig. 2 illustrates the original process ξ̂ (disregarding a possibly
existing tree structure), the second, third, fourth and fifth ones correspond to the
situation after the Steps 2–5. The final picture corresponds to Step 6 and illustrates the
scenario tree ξtr .

Corollary 4.6 Let a stochastic process ξ̂ with fixed initial node ξ∗
1 , scenarios ξ i and

probabilities pi , i = 1, . . . , N, be given. If ξtr is constructed by Algorithm 4.5, we
have

‖ξ̂ − ξtr‖r ≤
T∑

t=2

εt ≤ ε.

Proof This is a direct consequence of (30). ��
When using Algorithm 4.5, the selection of r > 1 should be done according to the

same reasons as mentioned at the end of Sect. 4.1. The choice of the tolerances εt ,
however, is different. Here, it is suggested to choose nonincreasing εt , t = 2, . . . , T .
The smaller εt is, the more branchings occur at t . Some experience on selecting the
tolerances is provided by the rule (43) in Sect. 7.2.

5 Convergence

Let ξ be the original stochastic process on some probability space (Ω,F , P) and ξ̂

another stochastic process on (Ω,F , P) having scenarios ξ i = (ξ i
1, . . . , ξ

i
T ) ∈ R

T d
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with probabilities pi > 0, i = 1, . . . , N , and common root, i.e., ξ1
1 = · · · = ξ N

1 =: ξ∗
1 ,

as in Sect. 4. Let ξtr be a process obtained by one of the tree generation algorithms in
Sect. 4 starting from ξ̂ with tolerance εr > 0, i.e., it holds

‖ξ̂ − ξtr‖r ≤ εr . (31)

Our aim is to establish conditions on ξ̂ implying that ξtr is a good approximation of ξ

in terms of the Lr -distance and in terms of Df , D∗
f or D∗

f,∞. In this section we assume

that one of the following conditions (C1) and (C2) on ξ̂ is satisfied:

(C1) ‖ξ − ξ̂‖r and D∗
f (ξ, ξ̂ ) or D∗

f,∞(ξ, ξ̂ ) are small.

(C2) ‖ξ − ξ̂‖r is small and ξ̂ is adapted to the filtration of ξ , i.e., Ft (ξ̂ ) ⊆ Ft (ξ) for
all t = 1, . . . , T .

It will turn out in both cases (see Propositions 5.2 and 5.4) that the distance of
optimal values |v(ξ) − v(ξtr)| gets small if εr is small and ξ̂ is a sufficiently good
approximation in the sense stated in (C1) or (C2). The two conditions are illustrated
by two special cases, namely, by sampling from finitely discrete probability mea-
sures (Example 5.3) and discretization schemes for general probability distributions
(Example 5.5).

Proposition 5.1 Let ξtr be obtained by one of the tree generation algorithms in Sect. 4
starting from ξ̂ . Then Ft (ξtr) ⊆ Ft (ξ̂ ) holds for all t = 1, . . . , T .

Proof According to the construction of ξtr we have F1(ξtr) = F1(ξ̂ ). Now, let t ∈
{2, . . . , T } and At,i := (ξ̂1, . . . , ξ̂t )

−1({(ξ∗
1 , ξ i

2, . . . , ξ
i
t )}), i = 1, . . . , N . Then Ft (ξ̂ )

is the smallest σ -field containing {At,i }N
i=1. With the notation in Sect. 4 we obtain for

t ∈ {2, . . . , T } and k ∈ It that

(ξtr,1, . . . , ξtr,t )
−1(ξ k

tr,1, . . . , ξ
k
tr,t ) = {ω : ξtr,τ (ω) = ξατ (i)

τ , τ = 2, . . . , t, i ∈ Īt,k}

=
t⋂

τ=2

⋃

i∈ Īt,k

Aτ,ατ (i) ∈ Ft (ξ̂ ).

Hence, we have Ft (ξtr) ⊆ Ft (ξ̂ ). ��
Proposition 5.2 Let 1 ≤ r ′ < ∞, (A1), (A2) and (A3) be satisfied and X1 be bounded.
Let L > 0, C > 0 and δ > 0 be the constants appearing in Theorem 3.1 and (15),
and let ‖ξ − ξ̂‖r ≤ δ − εr . Then we have

|v(ξ) − v(ξtr)| ≤ L(εr + ‖ξ − ξ̂‖r + C D∗
f (ξ, ξ̂ ) + C D∗

f (ξ̂ , ξtr)) (32)

If (ε
(n)
r ) is a sequence tending to 0 such that the corresponding tolerances ε

(n)
t in

Algorithms 4.2 and 4.5 are nonincreasing for all t = 2, . . . , T , the corresponding
sequence (ξ

(n)
tr ) has the property D∗

f (ξ̂ , ξ
(n)
tr ) −→

n→∞ 0.
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Proof The assumption on ξ̂ implies ‖ξ − ξtr‖r ≤ δ. Hence, Theorem 3.1, (16) and the
triangle inequality for ‖ · ‖r and D∗

f provide the estimate

|v(ξ) − v(ξtr)| ≤ L(‖ξ − ξtr‖r + C D∗
f (ξ, ξtr))

≤ L(‖ξ − ξ̂‖r + C D∗
f (ξ, ξ̂ ) + εr + C D∗

f (ξ̂ , ξ
(n)
tr )).

If the sequences (ε
(n)
t ) are nonincreasing for all t = 1, . . . , T , the σ -fields Ft (ξ

(n)
tr ) are

nondecreasing with respect to n ∈ N and for every t = 1, . . . , T . If the sequence (ε
(n)
r )

converges to 0, (ξ
(n)
tr ) converges to ξ̂ in Lr . Hence, ξ̂t is measurable with respect to

F̂t := σ

(
⋃

n∈N

Ft (ξ
(n)
tr )

)

(t = 1, . . . , T ).

Hence, for any x ∈ Lr ′(Ω,F , P; R
m) with ‖x‖r ′ ≤ 1, we obtain

‖E[E[xt |Ft (ξ̂ )]|Ft (ξ
(n)
tr )] − E[xt |Ft (ξ̂ )]‖r ′ = ‖E[xt |Ft (ξ

(n)
tr )] − E[xt |Ft (ξ̂ )]‖r ′ −→

n→∞ 0

for every t = 1, . . . , T due to classical convergence results for conditional expectations
(see, e.g., [11]). Moreover, we have

D∗
f (ξ̂ , ξ

(n)
tr ) = sup

‖x‖r ′≤1

T −1∑

t=2

‖E[xt |Ft (ξ
(n)
tr )] − E[xt |Ft (ξ̂ )]‖r ′

= sup
‖x‖r ′≤1

T −1∑

t=2

‖E[E[xt |Ft (ξ̂ )]|Ft (ξ
(n)
tr )] − E[xt |Ft (ξ̂ )]‖r ′

= sup
‖x̂‖r ′≤1

T −1∑

t=2

‖E[x̂t |Ft (ξ
(n)
tr )] − x̂t‖r ′

where x̂ varies in the finite-dimensional space ×T
t=1Lr ′(Ω,Ft (ξ̂ ), P; R

mt ). Hence,

the unit ball in this space is compact. Since
∑T −1

t=2 ‖E[x̂t |Ft (ξ
(n)
tr )] − x̂t‖r ′ converges

to 0 for every x̂ in the unit ball as n → ∞, we conclude by standard compactness
arguments that

D∗
f (ξ̂ , ξ

(n)
tr ) = sup

‖x̂‖r ′≤1

T −1∑

t=2

‖E[x̂t |Ft (ξ
(n)
tr )] − x̂t‖r ′ −→

n→∞ 0.

��
Since the set B∞ (see (16)) is contained in {x ∈ Lr ′ : ‖x̂‖r ′ ≤ 1}, Proposition 5.2

remains valid if (A3) and D∗
f are replaced by (A3)’ and D∗

f,∞, respectively. We note
that the case r ′ = ∞ has to be excluded in Proposition 5.2 as the convergence result
for conditional expectations with increasing σ -fields is violated for r ′ = ∞ [11].
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Example 5.3 (Sampling) Let P be a probability distribution on Ξ = {ξ1, . . . , ξ N } ⊆
R

T d , where the scenarios ξ i have a common root, i.e., ξ1
1 = · · · = ξ N

1 =: ξ∗
1 and

are possibly tree-structured, i.e., there are index sets It and Īt,i , i ∈ It , contained in
{1, . . . , N } such that ξ

j
t = ξ i

t for each j ∈ Īt,i , i ∈ It and that any two elements
of {ξ i

t }i∈It do not coincide for all t = 1, . . . , T . Furthermore, we set pi := P({ξ i }),
i = 1, . . . , N , p := (p1, . . . , pN ) ∈ X := {x ∈ R

N+ : ∑N
i=1 xi = 1}.

Let (ξn)n∈N be a sequence of independent and identically distributed Ξ -valued
random variables on some probability space (Ω∗,F∗, P

∗) such that P = P
∗ξ−1

1 . We
consider the (random) empirical measures

Pn(ω∗) := 1

n

n∑

j=1

δξ j (ω
∗) (n ∈ N, ω∗ ∈ Ω∗),

where δz denotes the probability measure on Ξ placing unit mass at z ∈ Ξ . Then the
sequence (Pn(ω∗)) converges to P in the sense of weak convergence for P

∗-almost
every ω∗ ∈ Ω∗ (see, e.g., [6, Chap. 11.4]). Since P and Pn(ω∗) belong to the set
Pr (Ξ) (see Sect. 2) for any r ≥ 1, �r (P, Pn(ω∗)) tends to 0 as n → ∞ for P

∗-almost
every ω∗ ∈ Ω∗. Let ω̄∗ be such that (Pn(ω̄∗)) converges to P with respect to �r . The
measure Pn(ω̄∗) is of the form

Pn(ω̄∗) =
N∑

i=1

p(n)
i δξ i ,

where p(n)
i ≥ 0 and p(n)

i −→
n→∞ P({ξ i }) due to the weak convergence of (Pn(ω̄∗)) to

P . We set p(n) := (p(n)
1 , . . . , p(n)

N ) ∈ X and P̂ := Pn(ω̄∗) for some n ∈ N that will
be specified later on.

Let r ≥ 1 and r ′ according to (10) be fixed. In order to define a probability space
(Ω,F , P) and Ξ -valued random variables ξ and ξ̂ having probability distributions P
and P̂ , respectively, we consider the parametric linear transportation problem

min

⎧
⎨

⎩

N∑

i, j=1

ηi j |ξ i − ξ j |r : ηi j ≥ 0,
∑

i

ηi j = q j ,
∑

j

ηi j = pi , i, j = 1, . . . , N

⎫
⎬

⎭
,

(33)
where q = (q1, . . . , qN ) ∈ X plays the role of a parameter. Let Σ(q) ⊂ R

N×N denote
the solution set of the minimization problem (33). Its optimal value coincides with
�r

r (P, Q), where Q = ∑N
j=1 q jδξ j (see also (5) and (7)). Clearly, the diagonal matrix

diag(p1, . . . , pN ) belongs to Σ(p). The set-valued mapping Σ from X to R
N×N is

polyhedral, i.e., its graph is the union of finitely many polyhedral convex sets, and,
hence, is locally upper Lipschitzian at each element of X [37, Proposition 1]. Hence,
there exists constants L > 0 and γ > 0 such that

inf
E∈Σ(q)

‖diag(p1, . . . , pN ) − E‖∗ ≤ L‖p − q‖ (34)

123



Scenario tree modeling for multistage stochastic programs

for all q ∈ X with ‖p − q‖ ≤ γ . Here, the norm ‖ · ‖∗ is some matrix norm on
R

N×N and the norm on the right-hand side is defined on R
N . For each n ∈ N, let

E∗,(n) = (η
∗,(n)
i j )i, j=1,...,N be selected such that

‖diag(p1, . . . , pN ) − E∗,(n)‖∗ = inf
E∈Σ(p(n))

‖diag(p1, . . . , pN ) − E‖∗.

Due to (34) we have that

‖diag(p1, . . . , pN ) − E∗,(n)‖∗ ≤ L‖p − p(n)‖

for sufficiently large n. Hence, the matrix norm ‖diag(p1, . . . , pN ) − E∗,(n)‖∗ gets
small for large n and, thus, η

∗,(n)
i i converges to pi for each i = 1, . . . , N and η

∗,(n)
i j

converges to 0 if i �= j .
Now, let Ω = {ωi j : i, j = 1, . . . , N }, F be the power set of Ω and P defined

by P(ωi j ) = η
∗,(n)
i j , i, j = 1, . . . , N . Furthermore, we define ξ, ξ̂ : Ω → Ξ by

ξ(ωi j ) := ξ i and ξ̂ (ωi j ) := ξ j for all i, j = 1, . . . , N . Then we have

�r
r (P, P̂) =

N∑

i, j=1

η
∗,(n)
i j |ξ i − ξ j |r = ‖ξ − ξ̂‖r

r . (35)

Let ε > 0 be some tolerance. Our preceding arguments imply that ‖ξ − ξ̂‖r ≤ ε for
some sufficiently large n ∈ N. Next we show that the filtration distance D∗

f,∞(ξ, ξ̂ )

gets small for large n. To this end, we first consider the σ -fields Ft (ξ) and Ft (ξ̂ ). They
are generated by the partitions {Etk}k∈It and {Êtk}k∈It , respectively, of Ω , where

Etk := (ξ1, . . . , ξt )
−1({ξ k}) = {

ωi j : i ∈ Īt,k, j = 1, . . . , N
}

Êtk := (ξ̂1, . . . , ξ̂t )
−1({ξ k}) = {

ωi j : j ∈ Īt,k, i = 1, . . . , N
}

for every k ∈ It . The probabilities of the sets in each partition are

P(Etk) =
N∑

j=1

∑

i∈ Īt,k

η
∗,(n)
i j =

∑

i∈ Īt,k

pi = πk
t

P(Êtk) =
N∑

i=1

∑

j∈ Īt,k

η
∗,(n)
i j =

∑

j∈ Īt,k

p(n)
j = π

k,(n)
t .

Thus, we obtain
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E[xt |Ft (ξ)] =
∑

k∈It

E[xt |Etk]χEtk =
∑

k∈It

1

πk
t

N∑

j=1

∑

i∈ Īt,k

xt (ωi j )η
∗,(n)
i j χEtk

E[xt |Ft (ξ̂ )] =
∑

k∈It

E[xt |Êtk]χÊtk
=
∑

k∈It

1

π
k,(n)
t

N∑

i=1

∑

j∈ Īt,k

xt (ωi j )η
∗,(n)
i j χÊtk

for any random variable xt : Ω → R
mt , where χA : Ω → R denotes the characteristic

function of A ∈ F . Hence, we have

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̂ )]‖r ′
r ′ =

N∑

i, j=1

η
∗,(n)
i j |E[xt |Ft (ξ)](ωi j ) − E[xt |Ft (ξ̂ )](ωi j )|r ′

=
N∑

i, j=1

η
∗,(n)
i j |E[xt |Eti ] − E[xt |Êt j ]|r ′

,

where the factor of η
∗,(n)
i j in each summand is of the form

|E[xt |Eti ] − E[xt |Êt j ]|=

∣
∣
∣
∣
∣
∣
∣

1

π i
t

N∑

j=1

∑

k∈ Īt,i

xt (ωk j )η
∗,(n)
k j − 1

π
j,(n)

t

N∑

i=1

∑

k∈ Īt, j

xt (ωik)η
∗,(n)
ik

∣
∣
∣
∣
∣
∣
∣

.

Now, we consider the set B∞ (see (16)) in R
m N 2

. Since it is compact, there exist � ∈ N

and random variables xl : Ω → R
m , l = 1, . . . �, such that B∞ is contained in the

union of the balls Bl := {x ∈ B∞ : maxω∈Ω maxt=1,...,T |xt (ω) − xlt (ω)| ≤ ε
4T },

l = 1, . . . , �. Next we select n ∈ N such that the conditions

∣
∣
∣
∣

1

π i
t

N∑

j=1

∑

k∈ Īt,i

xlt (ωk j )η
∗,(n)
k j − 1

π i
t

∑

k∈ Īt,i

xlt (ωkk)pk

∣
∣
∣
∣ ≤ ε

8T

∣
∣
∣
∣

1

π
j

t

∑

k∈ Īt, j

xlt (ωkk)pk − 1

π
j,(n)

t

N∑

i=1

∑

k∈ Īt, j

xlt (ωik)η
∗,(n)
ik

∣
∣
∣
∣ ≤ ε

8T

N∑

i, j=1

η
∗,(n)
i j

⎛

⎜
⎝

ε

4T
+
∣
∣
∣
∣

1

π i
t

∑

k∈ Īt,i

xlt (ωkk)pk − 1

π
j

t

∑

k∈ Īt, j

xlt (ωkk)pk

∣
∣
∣
∣

⎞

⎟
⎠

r ′

≤
( ε

2T

)r ′

are satisfied for all l = 1, . . . , �, t = 2, . . . , T − 1, and i, j = 1, . . . , N . This implies

‖E[xlt |Ft (ξ)] − E[xlt |Ft (ξ̂ )]‖r ′ ≤ ε

2T
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for all l = 1, . . . , �, t = 2, . . . , T − 1. Thus, we have for any x ∈ B∞

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̂ )]‖r ′ ≤ ‖E[xt |Ft (ξ)] − E[xlt |Ft (ξ)]‖r ′ + ‖E[xlt |Ft (ξ)]
−E[xlt |Ft (ξ̂ )]‖r ′ +‖E[xlt |Ft (ξ̂ )]−E[xt |Ft (ξ̂ )]‖r ′

≤ 2‖xt − xlt‖r ′ + ‖E[xlt |Ft (ξ)] − E[xlt |Ft (ξ̂ )]‖r ′

≤ ε

2T
+ ε

2T
= ε

T
,

where l ∈ {1, . . . , �} is chosen such that x ∈ Bl , i.e.,

‖xt − xlt‖r ′ ≤ max
ω∈Ω

|xt (ω) − xlt (ω)| ≤ ε

4T
.

Hence, we obtain D∗
f,∞(ξ, ξ̂ ) = supx∈B∞

∑T −1
t=2 ‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̂ )]‖r ′ ≤ ε.

Proposition 5.4 Let 1 ≤ r ′ < ∞, (A1), (A2) and (A3) be satisfied and X1 be boun-
ded. Assume that S(ξ) is nonempty. Let (ξ̂ (n)) be a sequence of discrete processes that
converge to ξ in Lr (Ω,F , P; R

s) and has the property that the σ -fields Ft (ξ̂
(n)) are

nondecreasing and contained in Ft (ξ), t = 1, . . . , T . Furthermore, let ξ
(n)
tr be pro-

cesses obtained by one of the Algorithms 4.2 and 4.5 starting from ξ̂ (n) with tolerance
ε
(n)
r tending to zero as n → ∞ and such that the corresponding tolerances ε

(n)
t in the

algorithms are nonincreasing for all t = 2, . . . , T . Then we have

lim
n→∞ Df(ξ, ξ

(n)
tr ) = 0 and, hence, lim

n→∞ |v(ξ) − v(ξ
(n)
tr )| = 0.

Moreover, if 1 < r ′ < ∞ and ξtr := ξ
(n0)
tr for some n0 ∈ N, it holds

lim inf
n→∞ inf

x (n)∈S(ξ̂ (n))

T −1∑

t=2

‖x (n)
t − E[x (n)

t |Ft (ξtr)]‖r ′ ≥ Df(ξ, ξtr).

Proof Let L > 0 and δ > 0 denote the constants in Theorem 3.1. For sufficiently
large n ∈ N, ξ (n)

tr satisfies ‖ξ − ξ
(n)
tr ‖ ≤ δ. Hence, we conclude from Theorem 3.1 that

|v(ξ) − v(ξ
(n)
tr )| ≤ L(‖ξ − ξ

(n)
tr ‖r + Df(ξ, ξ

(n)
tr ))

≤ L(ε(n)
r + ‖ξ − ξ̂ (n)‖r + Df(ξ, ξ

(n)
tr ))

Proposition 5.1 implies Ft (ξ
(n)
tr ) ⊆ Ft (ξ̂

(n)) ⊆ Ft (ξ). In particular, we conclude that

xt = E[xt |Ft (ξ)] holds for every t = 1, . . . , T and x ∈ Sε(ξ
(n)
tr ). Thus, we obtain for

some x∗ ∈ S(ξ)

Df(ξ, ξ
(n)
tr ) = sup

ε>0
inf

x∈Sε(ξ)

T −1∑

t=2

‖xt − E[xt |Ft (ξ
(n)
tr )]‖r ′ ≤

T −1∑

t=2

‖x∗
t − E[x∗

t |Ft (ξ
(n)
tr )]‖r ′ .
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As in the proof of Proposition 5.2 we consider the smallest σ -fields F̂t (t = 1, . . . , T )
containing Ft (ξ

(n)
tr ) for each n ∈ N. Again the convergence of (ξ

(n)
tr ) to ξ in Lr

implies ξt ∈ Lr (Ω, F̂t , P; R
d) for every t = 2, . . . , T . Since the σ -fields Ft (ξ̂

(n)) are
nondecreasing and the tolerances ε

(n)
t in both algorithms are nonincreasing, theσ -fields

Ft (ξ
(n)
tr ) are nondecreasing with respect to n ∈ N for every t = 2, . . . , T . Moreover,

the sequence (ξ
(n)
tr ) also converges to ξ in Lr . Hence, ξt and, thus, x∗

t is measurable
with respect to F̂t . Classical convergence results for conditional expectations (e.g.,
[11]) then imply

‖E[x∗
t |Ft (ξ

(n)
tr )] − E[x∗

t |F̂t ]‖r ′ = ‖E[x∗
t |Ft (ξ

(n)
tr )] − x∗

t ‖r ′ −→
n→∞ 0.

for all t = 1, . . . , T . Hence, we obtain Df(ξ, ξ
(n)
tr ) −→

n→∞ 0 and, thus, according to

Theorem 3.1 that |v(ξ) − v(ξ
(n)
tr )| −→

n→∞ 0.

Now, let ξtr = ξ
(n0)
tr for some n0 ∈ N. We note that S(ξ̂ (n)) is nonempty for large

n (due to (A2), (A3)). Let x̄n ∈ S(ξ̂ (n)) for n ≥ n1 ≥ n0 be selected such that

T −1∑

t=2

‖x̄ (n)
t − E[x̄ (n)

t |Ft (ξtr)]‖r ′ ≤ inf
x (n)∈S(ξ̂ (n))

T −1∑

t=2

‖x (n)
t − E[x (n)

t |Ft (ξtr)]‖r ′ + 1

n
.

Then any subsequence of (x̄ (n))n≥n1 contains a further subsequence converging weakly
in Lr ′ to some element of S(ξ) (due to [21, Theorem 2.5 and Remark 2.6]). Since
E[·|Ft (ξtr)] and ‖ · ‖r ′ are continuous and lower semicontinuous with respect to the
weak convergence in Lr ′ , respectively, we obtain after setting

li := lim inf
n→∞ inf

x (n)∈S(ξ̂ (n))

T −1∑

t=2

‖x (n)
t − E[x (n)

t |Ft (ξtr)]‖r ′

the desired estimate

li = lim inf
n→∞

T −1∑

t=2

‖x̄ (n)
t − E[x̄ (n)

t |Ft (ξtr)]‖r ′ ≥
T −1∑

t=2

‖x∗
t − E[x∗

t |Ft (ξtr)]‖r ′ ≥ Df(ξ, ξtr),

where x∗ is some element in S(ξ). ��
The first part of the preceding result is related to [1, Theorem III.30]. If the

assumptions of Proposition 5.4 are satisfied and if (i) ξ̂ is adapted to the filtration
of the original process ξ and (ii) represents a good approximation to ξ in the sense
of Lr (Ω,F , P; R

s), the tree generation using Algorithms 4.2 and 4.5, respectively,
leads to a small distance |v(ξ) − v(ξtr)| of optimal values. Moreover, the quantity

∆(ξ̂ , ξtr) := inf
x∈S(ξ̂ )

T −1∑

t=2

‖xt − E[xt |Ft (ξtr)]‖r ′ (36)
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approximately represents an upper bound of Df(ξ, ξtr). Next we show that conditions
(i) and (ii) are satisfied on some probability space in case of discretization schemes
for P .

Example 5.5 (Discretization) Let P be a Borel probability measure on Ξ = ×T
t=1Ξt ,

where Ξt ∈ B(Rd), t = 1, . . . , T . We consider the probability space (Ξ,B(Ξ), P)

and the identity mapping id of Ξ as original stochastic process. We assume that Ξ is
bounded. To construct an approximation ξ̂ of id, we first consider a sequence (D(n)

t )

of Borel partitions of Ξt satisfying the following properties for any t = 1, . . . , T :

(P1) Dt ∩ D̃t = ∅ for all Dt , D̃t ∈ D(n)
t , Dt �= D̃t , n ∈ N.

(P2) ∪
Dt ∈D(n)

t
Dt = Ξt for all n ∈ N.

(P3) δt,n := sup
Dt ∈D(n)

t
supξt ,ξ̃t ∈Dt

|ξt − ξ̃t | −→
n→∞ 0.

In this way, we obtain a sequence (P(n)) = ({×T
t=1 Dt : Dt ∈ D(n)

t , t = 1, . . . , T }) of
partitions of Ξ . Furthermore, we select elements

ξ̂
Dt ,n
t ∈ Dt ∈ D(n)

t

for all Dt ∈ D(n)
t , n ∈ N and t = 1, . . . , T , and define ξ̂ (n) : Ξ → Ξ by setting

ξ̂ (n)(ξ) :=
∑

×T
t=1 Dt ∈P(n)

(ξ̂
D1,n
1 , . . . , ξ̂

DT ,n
T )χ×T

t=1 Dt
(ξ) (ξ = (ξ1, . . . , ξT ) ∈ Ξ)

=
∑

D1∈D(n)
1

· · ·
∑

DT ∈D(n)
T

(ξ̂
D1,n
1 , . . . , ξ̂

DT ,n
T )

T∏

t=1

χDt (ξt )

for some n ∈ N. Next we verify that ξ̂ (n) is adapted to the filtration of id, i.e., to
Ft (id) = σ({B1 × · · · × Bt × Ξt+1 × · · · × ΞT : Bτ ∈ B(Ξτ ), τ = 1, . . . , t}),
t = 1, . . . , T . By construction of ξ̂ (n) we have that

Ft (ξ̂
(n)) = σ({D1 × · · · × Dt × Ξt+1 × · · · × ΞT : Dτ ∈ D(n)

τ , τ = 1, . . . , t})

and, hence, Ft (ξ̂
(n)) is contained in Ft (id). It remains to consider the Lr -distance

‖id − ξ̂ (n)‖r
r =

∫

Ξ

|ξ − ξ̂ (n)(ξ)|r P(dξ)

=
∑

D1×···×DT ∈P(n)

∫

D1×···×DT

|(ξ1, . . . , ξT ) − (ξ̂
D1,n
1 , . . . , ξ̂

DT ,n
T )|r P(dξ)

≤
∑

D1×···×DT ∈P(n)

max
t=1,...,T

δr
n.t P(×T

t=1 Dt ) = max
t=1...,T

δn.t ,
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where the norm | · | on R
T d is defined by |ξ | = maxt=1,...,T |ξt |. Hence, ξ̂ (n) is close

to id if n is sufficiently large.
In general, it is difficult to determine the probabilities P(×T

t=1 Dt ) for all Dt ∈ D(n)
t

and some n ∈ N. However, if additional structure is available on ξ , the discretization
scheme may be adapted such that the probabilities are computationally accessible.
For example, let the stochastic process ξ be driven by a finite number of mutually
independent R

dt -valued random variables zt with probability distributions Pt , t =
2, . . . , T , i.e.,

ξt = gt (ξ1, . . . , ξt−1, zt ),

where the gt , t = 2, . . . , T , denote certain measurable functions from R
td × R

dt

to R
d (see, e.g., [28,31,39,40]). Then there exists a measurable function G such that

ξ = G(z2, . . . , zT ). If D(n)
t is now a partition of the support of zt in R

dt , t = 2, . . . , T ,
then ξ̂ (n) may be defined by

ξ̂
(n)
t = gt (ξ̂

(n)
1 , . . . , ξ̂

(n)
t−1, z(n)

t )

z(n)
t =

∑

Dt ∈D(n)
t

ẑDt ,n
t χDt

where ẑDt ,n
t ∈ Dt , t = 2, . . . , T . The probability distribution of ξ̂ (n) is then known if

Pt (Dt ) is known for all Dt ∈ D(n)
t , t = 2, . . . , T . This covers situations, where ξ is a

Gaussian process or is given by certain time series models.

If, in Example 5.5, the partitions D(n+1)
t represent a refinement of D(n)

t for each n ∈ N

and t = 1, . . . , T , the approximations ξ̂ (n) have the additional property

v(ξ̂ (n)) −→
n→∞ v(id)

due to Proposition 5.4 (if the relevant assumptions are satisfied). This is not surprising
when recalling the convergence results for discretizations in [30,31].

If ξ̂ := ξ̂ (n) is obtained by a discretization scheme based on some partition D(n)
t for

each t = 2, . . . , T , the action of the backward and forward Algorithms 4.2 and 4.5 may
be interpreted as finding appropriate partitions and elements belonging to the subsets
of each partition (for t = 1, . . . , T ) such that ξtr is a good discrete approximation of
the original stochastic process.

6 Bounds on the filtration distance

Let ξ̂ be a (discrete) approximation of the original stochastic process ξ and ξtr be a
process obtained by means of one of the tree construction approaches in Sects. 4.1
and 4.2, respectively. Let all processes be defined on a probability space (Ω,F , P).
So far we obtained estimates of the form (31). In this section, we derive estimates
for ∆(ξ̂ , ξtr) (see (36)). Recall that the latter quantity may serve as an approximate
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upper bound of Df(ξ, ξtr) if ξ̂ is adapted to the filtration of the original process ξ and
‖ξ − ξ̂‖r is small.

We assume that conditions (A2) and (A3) of Sect. 3 are satisfied and that the
stochastic processes ξ̂ and ξtr belong to the ball {ξ̃ ∈ Lr : ‖ξ̃ − ξ‖r ≤ δ} (see (A2)).
Hence, the solution set S(ξ̂ ) is nonempty and we have

∆(ξ̂ , ξtr) = inf
x∈S(ξ̂ )

⎧
⎪⎪⎨

⎪⎪⎩

T −1∑

t=2
(E[|xt − E[xt |Ft (ξtr)]|r ′ ]) 1

r ′ , 1 ≤ r ′ < ∞,

T −1∑

t=2
‖xt − E[xt |Ft (ξtr)]‖∞, r ′ = ∞.

(37)

Let ξ i , i = 1, . . . , N , denote the scenarios of ξ̂ with probabilities pi , i = 1, . . . , N ,
and let Ai := ξ̂−1({ξ i }), i = 1, . . . , N . Then {Ai }N

i=1 is a partition of Ω , we have
P(Ai ) = pi , i = 1, . . . , N and ξ̂ is of the form

ξ̂t =
N∑

i=1

ξ i
t χAi (t = 1, . . . , T ),

where χA denotes the characteristic function of a subset A of Ω . Furthermore, let
It denote the index set of realizations of ξtr,t , t = 1, . . . , T , as in the Sects. 4.1
and 4.2 and let Et denote the families of nonempty elements of Ft (ξtr) that form
partitions of Ω and generate the corresponding σ -fields. We set Eti := {ω ∈ Ω :
(ξtr,1(ω), . . . , ξtr,t (ω)) = (ξ i

tr,1, . . . , ξ
i
tr,t )} for all i ∈ It and t = 1, . . . , T . Hence, we

have Eti = ∪ j∈ Īt,i
A j and π i

t := P(Eti ) = ∑
j∈ Īt,i

p j for i ∈ It , t = 1, . . . , T . With

xi denoting the scenarios of x ∈ S(ξ̂ ) we obtain

E[xt |Ets] =
∑

i∈It

∑

j∈ Īt,i

x j
t E[χA j |Ets] =

∑

j∈ Īt,s

x j
t E[χA j |Ets] =

∑

j∈ Īt,s

x j
t

p j

π s
t

(38)

for every s ∈ It . For 1 ≤ r ′ < ∞ we have from (37)

∆(ξ̂ , ξtr) = inf
x∈S(ξ̂ )

T −1∑

t=2

⎛

⎜
⎝E

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

N∑

i=1

xi
t χAi −

∑

i∈It

E[xt |Eti ]χEti

∣
∣
∣
∣
∣
∣

r ′⎤

⎥
⎦

⎞

⎟
⎠

1
r ′

and continue

∆(ξ̂ , ξtr) = inf
x∈S(ξ̂ )

T −1∑

t=2

⎛

⎜
⎝E

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

N∑

i=1

xi
t χAi −

∑

i∈It

E[xt |Eti ]
∑

j∈ Īt,i

χA j

∣
∣
∣
∣
∣
∣

r ′⎤

⎥
⎦

⎞

⎟
⎠

1
r ′
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= inf
x∈S(ξ̂ )

T −1∑

t=2

⎛

⎝
∑

i∈It

∑

j∈ Īt,i

p j

∣
∣
∣x

j
t − E[xt |Eti ]

∣
∣
∣
r ′
⎞

⎠

1
r ′

. (39)

Analogously, we have for r ′ = ∞

∆(ξ̂ , ξtr) = inf
x∈S(ξ̂ )

T −1∑

t=2

max
i∈It

max
j∈ Īt,i

∣
∣
∣x

j
t − E[xt |Eti ]

∣
∣
∣ .

Starting from these representations of ∆(ξ̂ , ξtr) the following estimates are valid.

Proposition 6.1 Let (A2) and (A3) be satisfied and assume that ξ̂ and ξtr belong to
the ball {ξ̃ ∈ Lr : ‖ξ̃ − ξ‖r ≤ δ}. Let the stochastic process ξ̂ have scenarios ξ i

with probabilities pi , i = 1, . . . , N, and ξtr be a scenario tree with index set It of
realizations and scenario clusters Īt,i at t . Then we have

∆(ξ̂ , ξtr) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T −1∑

t=2

(
∑

i∈It

∑

j∈ Īt,i

p j

π i
t

∣
∣
∣
∑

k∈ Īt,i

pk(x j
t − xk

t )

∣
∣
∣
r ′
) 1

r ′
, 1 ≤ r ′ < ∞

T −1∑

t=2
max
i∈It

max
j,k∈ Īt,i

|xk
t − x j

t |, r ′ = ∞
(40)

∆(ξ̂ , ξtr) ≤ K

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T −1∑

t=2

(
∑

i∈It

∑

j∈It,i

p j |x j
t − xi

t |r ′
) 1

r ′
, 1 ≤ r ′ < ∞

T −1∑

t=2
max
i∈It

max
j∈It,i

|x j
t − xi

t |, r ′ = ∞
(41)

for any solution x ∈ S(ξ̂ ) and some constant K > 0.

Proof Let x ∈ S(ξ̂ ). Notice that S(ξ̂ ) is nonempty according to (A2) and (A3).
The proof is carried out for the case 1 ≤ r ′ < ∞. In case r ′ = ∞ the estimates
follow by immediate modifications. To derive (40), we start from (39) and insert the
representation (38) of the conditional expected values. This leads to

∆(ξ̂, ξtr) ≤
T −1∑

t=2

⎛

⎝
∑

i∈It

∑

j∈ Īt,i

p j

π i
t

∣
∣
∣π

i
t x j

t −
∑

k∈ Īt,i

pk xk
t

∣
∣
∣
r ′
⎞

⎠

1
r ′

.

and, thus, to (40). For the second estimate (41) we consider for any i ∈ It the index
αt (i) defined by (21) and (26), respectively. Starting again from the representation
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(39) of ∆(ξ̂ , ξtr) we get

∆(ξ̂ , ξtr) ≤
T −1∑

t=2

⎛

⎜
⎝
∑

i∈It

∑

j∈ Īt,i

p j

⎛

⎝|x j
t − xαt (i)

t | +
∑

k∈ Īt,i

pk

π i
t
|xαt (i)

t − xk
t |
⎞

⎠

r ′⎞

⎟
⎠

1
r ′

≤ K̄
T −1∑

t=2

⎛

⎝
∑

i∈It

∑

j∈ Īt,i

p j

⎛

⎝|x j
t − xαt (i)

t |r ′+
∑

k∈ Īt,i

(
pk

π i
t

)r ′

|xαt (i)
t − xk

t |r ′
⎞

⎠

⎞

⎠

1
r ′

≤ K̄
T −1∑

t=2

⎛

⎝
∑

i∈It

⎛

⎝
∑

j∈ Īt,i

p j |x j
t − xαt (i)

t |r ′ +
∑

k∈ Īt,i

pk |xαt (i)
t − xk

t |r ′
⎞

⎠

⎞

⎠

1
r ′

= 2K̄
T −1∑

t=2

⎛

⎝
∑

i∈It

∑

j∈ Īt,i

p j |x j
t − xαt (i)

t |r ′
⎞

⎠

1
r ′

= 2K̄
T −1∑

t=2

⎛

⎝
∑

i∈It

∑

j∈It,i

p j |x j
t − xi

t |r
′
⎞

⎠

1
r ′

,

where the identity αt (i) = i for each i ∈ It is used in the final step and K̄ > 0 is some
constant depending on r ′ and the maximum of the cardinalities of It,i . ��

Proposition 6.1 may be used to obtain a posteriori estimates of the filtration distance.
Unfortunately, the solution process x = {xt }T

t=1 ∈ S(ξ̂ ) of the stochastic programming
model (11) is only available at certain extra cost.

Estimates for D∗
f (ξ̂ , ξtr) (appearing in Proposition 5.2) or D∗

f,∞(ξ̂ , ξtr) may be
obtained from (40) by taking the supremum of the right-hand side of (40) with respect
to some ball containing S(ξ̂ ). This leads to some matrix norm that might be evaluated
or further estimated. Such matrix norms will be dealt with in a follow-up to this paper.

7 Numerical experience

The tree generation Algorithms 4.2 and 4.5 have been tested on data provided by the
French electricity company Electricité de France (EDF). The data consists of a finite
number of scenarios representing realizations of a bivariate stochastic process whose
components are electrical load and water inflow to a hydro unit of a power generation
system for a time horizon of 2 years. Equal probabilities are assigned to each scenario.
Both stochastic processes appear as right-hand sides of linear constraints in stochastic
electricity portfolio optimization models. The time horizon was discretized with three
time steps per day, where each time step is associated with a set of hours during which
the demand does not change much.
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Table 1 Discretization of the
2-year time horizon

Random variable Discretization Number time steps

Electrical load 3 per day 2,184

Water inflow Weekly 104

Table 2 Dimension of the
initial scenario fan

Number

Scenarios 456

Time periods 2,184

Initial nodes 995,449

Tables 1 and 2 show the discretization of the data for the time horizon of 2 years and
provide the number of scenarios, the total number of time periods and the correspon-
ding number of nodes of the initial scenario set. The first node (root node) corresponds
to the mean value of all scenarios at time period t = 1. The weekly amounts of water
inflows were uniformly distributed to the corresponding time steps of the week.

To test the scenario tree construction approach, we performed test series for the
Algorithms 4.2 and 4.5 to generate scenario trees such that branching is allowed at all
time steps, and branching is only allowed at the beginning of a week, respectively. To
measure the distances between the original and approximate probability distributions
r = 1 and a relative tolerance εrel := ε

εmax
were used in all test runs. Here, εmax

denotes the best possible distance between the probability distribution of the initial
scenario set and the distribution of one of its scenarios endowed with unit mass. Since
the stochastic optimization model of EDF was not accessible to us, the computation of
bounds for the filtration distance and a comparison of optimal values was impossible.
The test runs were performed on a PC with a 3 GHz Intel Pentium CPU and 1 GByte
main memory.

Table 3 Results for backward
tree construction without
branching restriction

εrel Scenarios Nodes Stages Time (s)

0.10 442 584,270 151 172.86

0.20 429 371,046 150 129.11

0.30 417 268,201 146 117.42

0.40 405 193,014 135 110.83

0.50 393 140,536 115 106.30

Table 4 Results for backward
tree construction with weekly
branching restriction

εrel Scenarios Nodes Stages Time (s)

0.10 442 589,575 88 118.47

0.20 429 397,047 83 110.65

0.30 416 293,403 86 108.40

0.40 405 219,714 83 106.15

0.50 393 170,520 81 105.16
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Fig. 3 Scenario trees obtained with εrel = 0.2/0.5 and weekly branching structure

7.1 Results of backward tree construction

For the backward variant of scenario tree construction individual tolerances εt at
branching points were chosen recursively such that
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Table 5 Results for forward tree construction without branching restriction

εrel Scenarios Nodes Stages Time (s)

0.10 378 743,087 129 108.11

0.20 305 529,994 162 109.15

0.30 216 289,324 161 114.18

0.40 145 138,175 121 134.11

0.50 93 67,696 84 202.42

Table 6 Results for forward tree construction with weekly branching restriction

εrel Scenarios Nodes Stages Time (s)

0.10 389 746,613 49 106.53

0.20 300 509,103 57 106.84

0.30 228 310,653 64 107.59

0.40 163 151,809 69 109.78

0.50 92 60,501 46 119.12

εT = ε · (1 − q), q ∈ (0, 1) and εt = q · εt+1, t = T − 1, . . . , 2. (42)

According to our numerical experience a choice of q ∈ (0, 1) closer to 1 leads to
a higher number of remaining scenarios and branching points (stages). Choosing q
closer to 0 leads to the opposite effect. For the test runs of Algorithm 4.2 we used
q = 0.95. The Tables 3 and 4 display the numerical results for the test series and
different relative tolerances.

The second and third columns compare the sizes of the initial scenario set and the
constructed scenario tree in terms of the numbers of scenarios and nodes, respectively.
The last but one column contains the number of stages, i.e., the number of time periods
where branching occurs. The computing times for constructing the trees can be found
in the last column. The computing time already contains the CPU time of (about) 100
seconds for computing the distances of scenarios, which are needed in all test runs.

It turns out that for a small relative tolerance an approximate scenario tree that
contains only 50% of the original nodes can be constructed. The pictures of Fig. 3
show the structure of two generated scenario trees with weekly branching structure
and epsilon tolerances εrel = 0.2 and εrel = 0.5, respectively.

7.2 Results of forward tree construction

In a second series of tests, scenario trees were constructed out of the EDF data by
Algorithm 4.5. In case of forward tree construction, individual tolerances εt at bran-
ching points were chosen such that
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0  210  420  630  840  1050  1260  1470  1680  1890  2100

0  210  420  630  840  1050  1260  1470  1680  1890  2100

Fig. 4 Scenario trees obtained with εrel = 0.4/0.5 and weekly branching structure

εt = ε

T

[

1 + q

(
1

2
− t

T

)]

, t = 2, . . . , T, (43)

where q ∈ [0, 1] is a parameter that affects the branching structure of the constructed
trees very similar to q in case of backward reduction. For the test runs we used q = 0.6.
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The Tables 5 and 6 provide numerical results for Algorithm 4.5. Just as before,
the tables correspond to the series of tests, i.e., the first one contains results for trees
without branching restriction and the second one by allowing branching only at the
beginning of a week.

The numerical results illustrate that the forward variant of scenario tree construc-
tion performs as well as the backward version. Nevertheless, a comparison discloses
noticeable differences. Namely, it turns out that, for small relative tolerances, the trees
obtained by Algorithm 4.2 contain less nodes than in the forward case. For increa-
sing relative tolerances the forward construction algorithm provides trees containing
(much) less nodes than the backward counterpart. This is due to the fact that the error
estimate (22) in Sect. 4.1 is derived by employing the triangle inequality extensively
and, hence, is more pessimistic than (29).

Figure 4 shows the generated scenario trees with weekly branching structure for
εrel = 0.4 and εrel = 0.5. For these trees it turns out that about 15% of all nodes
are sufficient to guarantee 60% accuracy, while 6% of the nodes still guarantee 50%
accuracy.

8 Conclusions

In many applications of multistage stochastic programming the available statistical
data allows to generate a (large) number of scenarios including their probabilities.
This constitutes an initial approximation ξ̂ , which is considered as a good represen-
tation of the underlying stochastic process ξ . In this paper, we develop algorithms for
generating scenario trees ξtr starting from ξ̂ and provide conditions on ξ̂ under which
the distance |v(ξ)−v(ξtr)| of optimal values of the stochastic programming model gets
small. The theoretical results rely on a stability result (Theorem 3.1) for multistage
stochastic programs. The conditions on ξ̂ are justified for two relevant cases in appli-
cations, namely, if ξ̂ is obtained by sampling from a discrete probability distribution
or by discretization schemes for general probability distributions. In other cases, the
algorithms are considered as heuristics for scenario tree generation. Some computatio-
nal experience is provided for generating load-inflow scenario trees in electric power
management. Further experience is reported in [10,12,29] for multistage stochastic
programs in electricity and airline revenue management.
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