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Abstract

Various nonlinear scenarios are given for the evolution of energetic particles that

are slowing down in a background pl,_sma and simultaneously causing instability of the

background plasma waves. If the background damping is sufficiently weak, a steady-

state wave is established as described by Berk and Breizm;t,_ [Phys. Fluids B 2, 2246

(1990)]. For larger background damping rates pulsations ,I,.velop. Saturation occurs

when the wave amplitude rises to where the wave trapping fr,,quency equals thegrowth

rate. The wave then (lamps due to the small background dissipation present and a rela-

tively long quiet interval exists between bursts while the free energy of the distribution

is refilled by classical transport. In this scenario the anomalous energy loss of energetic

particles due to diffusion is small compared to the cla.ssical collisional energy exchange

with the background plasma, t[owever, if at the trapping frequency, the wave am-

plitude is large enough to cause orbit stochasticity, a phase space "explosion" occurs

where the wave amplitudes rise to higher levels which leads to rapid loss of energetic

particles.

_)Permanent address: Institute for Nuclear Physics, Novosibirsk, Russia
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The problem of alpha particle confinement under ignition conditions has been of consid-

.erable interest recently as there is concern that they can be anomalously lost due to their

excitation of Alfven waves. 1-r Recent experiments with neutral beams s'9 have established

such behavior. The nonlinear consequences of this instability has been the topic of sev-

eral theoretical treatments. 5.r In this letter we generalize the previous works by Berk and
i

. Breizman 5 (BB) to obtain a broader description of the nonlinear behavior of high energyi

particles (which we will refer to as alpha particles; in deuterium-tritium fusion conditions

this is a proper designation, though more generally these particles need only be supertherrnal
',

and they can arise from beam injection, ion cyclotron heating, etc.).

In BB the. nonlinear problem was considered as a generic problem where similar math-

ematics applies to the bump-on-tail electrostatic plasma instability or the universal insta-

bility drive that excites electrostatic drift waves or electromagnetic Alfv6n waves. As the

wave-particle interaction for the electrostatic plasma oscillation is a paradigm in nonlinear

dynamics, we will discuss this problem in parallel with the mathematically "isomorphic"

problem of alpha particles exciting Alfven waves in a tokamak. What is required in these

problems is to have a weakly damped wave existing in the background plasma in the absex_ce
z

of energetic particles. The energetic particles are injected at high energy, slow down by drag,

and their pitch angles diffuse in velocity space through classical scattering. These classical

- processes establish an equilibrium with the source of energetic particles.

Instability will be possible if the shape of the alpha particle distribution, F_, is destabi-

i lizing in the vicinity of a phase space region where particles resonate with the background

wave. For the bump-on-tail instability, we require, in the vicinity of k. v = w,

k, v OF_
(v)> 0, (1)

with k the wave number, _o the wave frequency, and v the energetic particle velocity. For

2

....... ,, r,,, '"11 ..... tiiqT,,lI,,,l_, ,Ii I 'TIllS,,' irll_l,,_l,rll_ ,,,,,,_lllllli[],IPl]lll',,'rllirlilr I'r tl ]1''Ul'P IIII ..... I,,'11 IIr)I,'_r"sT'" _llllll_'ll '' "'l]"l'"rl'l''' ,la,', ",'Na' _'la"ll?Ill" rll ....



i'he universal instability in a tokamak we require, in tile vicinity of t_0 = co - rTw_=- _,

pOF<_lOr'2 co,<_- > I (2)
co_Ols_/Ov2- co

where p is an integer, f_ is the alpha particle gyrofrequency, coo is the poloidal transit

frequency, co,,,is the toroidal trallsit frequency, and it is assumed that OFfOy 2 < 0. Becallse

of toroidal symmetry, the wave amplitude is taken to be proportional to exp(i'mt_), with n

an integer.

In BB a steady-state nonlinear wave was predicted when the classical transport of alpha

particles is accounted for. The solution allows for a balance between the nonlinear alpha

particle instability drive and plasma dissipation. In this note we show that such a solution

requires the background damping to be sufficiently weak. However, for stronger background

damping rates, we now show that the nonlinear solution is unstable. In this case a new

nonlinear scenario emerges. The system no longer maintains a steady-state solution. Instead

the response is that of pulsations, as described below.

Suppose 7L >> (Td, uefr), where 7L is the linear growth rate t,llat_ would be predicted from

the distribution function that forms from a_classical relaxation process in the absence of

excitations, 7d the dissipation rate of the excited wave caused by the background plasma,

and u_n is the rate of reconstruction of the unperturbed distribution function after it has been

flattened in phase space by a nonlinear wave. Typically, pitch angle diffusion dominates this

process, and in this case u_fr ,_, u(co/cob)2, where u is the 90° velocity pitch angle scattering

rate, and cobthe trapping frequency of resonant particles trapped in the wave.

Let us first suppose that u_.n>> "Yd. In this case the BB solutions are appropriate. In

steady-state a wave is found, where the power, [_, which is transferred from the alpha

particles, is given by

P_ _TL (u_--¢) WE, (3)COb

where WE is the energy of the wave. (For electrostatic plasma waves, WE = f dar [i_E['2/,l_r,

3
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where the bar refers to time average, 5E is the perturbed electric field, and equal energy

contributions are taken into account for perturbed electric field energy and perturbed kinetic

energy. For Alfv6n waves, WE =fdar 5BI2/47r, where 5B the perturbed magnetic field

and with the equal contribution of perturbed kinetic energy accounted for.) Generically,

wb cn _1/2 with • a measure of the perturbed field.amplitude (e.g. _ = _E for plasma waves

2 = (e/M_)kSE). This power is absorbed by background dissipation' Pa - -27dWE.with wb ,t

Hence, with P_ + Pa = 0, the saturated wave amplitude satisfies

co b _ ")'L/left _ "/L v_2
"_ 7,t (4)

1

As we assumed 7d < Pelf, we see that the relaxation process pumps the wave to an

1amplitude 4>that gives a trapl)ing frequency higher than the linear growth rate. We further

find v_fr/7d ._ (v_f_o/"/d)_/a, with ro.n0 = vw2/7'].. The significance of u_0 will be clarified

below. We also note that in this regime v_._r0> v_.fr> Td.

If v_ << Ta, the predicted trapping in Ect. (4) is lower than 7L. In this case the nonlinear

steady-state distribution function found in BB is unstable, basically to the same linear

instability that exists in the unperturbed state. This observation readily follows from closely

examining the response of linear theory. The linear growth rate for a smooth distribution

function formed in the absence of nonlinear waves is proportional to a quantity D given by

the following expression

D = _ im f dav k. v OF_ f OF,w- k. v Ova =Tr davk. vTv.2 5(w- k. v) (5)

(For Alfv6.n wave problem there is a similar structure for D with

k. V-_v2 --, (w .-_,,) ap,_(v) ; co- k. v ._ _- pcoo ,

where Gp,,(v) is a positive slowly varying function of phase space.) One readily demonstrates

that 7L o¢ D.

4
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Now in the case uefr<< Ta, the nonlinear distribution function found in BB is essentially

the same ns the unperturbed case, except in a small resonance region where particles are

trapped in tile wave. There the distribution is flattened over a phase space region

_V _ Wb/k =-- Vb (6)

(note that it is shown in BB that for the Alfv6n wave problem _v transforms to a position-

like variable in the case 02 << 02,,, viz. _v/v _ _r/r). Outside this region virtually the

same self-consistent F_ is obtained ns in the unperturbed case. Ifence, if one attempts to

evaluate D(02) in Eq. (5), with this locally flattened distribution function, one finds that

though D(020) _ 0 with 020the real frequency of the background oscillation, the value for

D(020 + i7c) is hardly changed at all from the smooth case (the difference is O(wb/Tc)).

Hence the BB steady-state solution is unstable for sufficiently large Ta, viz. 7a >> v_fr > uefr0.

This result indicates that the nonlinear response in the 7a >> v_fr0limit cannot be a

steady state. Instead the following pulsation scenario seems consistent. Suppose the linear

instability with the smooth/;_, distribution develops at the ra.t._,"/L. The distribution function

for the bump-on-tail instability would initially look like the slnooth solid line in Figure l,
4

just when instability begins. Then, ns basic and straightforward arguments indicate, the

wave amplitude will grow until the trapping frequency of the wave reaches the linear growth

rate 7L (we define 02b0ns that trapping frequency iri which COb= 7C). The wave flattens

the distribution function in the resonant region which destroys the resonant particle drive,

much irl the same manner as described by O'Neil w and Mazitov, 11 and it is depicted by

the dashed curve in Figure 1. However, with background dissipation present, this wave will

now damp according to the equation dl/VE/dt = -27_WE. Simultaneously, the classical

transport mechanism attempts to reconstitute the unstable distribution function at a rate

u_frons the flattening of the distribution function only occurred in a phase space region

_SV/Vo_. 02bo/02_ 7L/02, where k.v0 = 02 (or ptao(v0) = _). Thus the time for the wave

5

"'_ir,T',r'I,....... _"P'rllIlli"," Tlr_,p,,...... ,',,_qr_r_'Pill,ill,'Iii" ',_I,,i, 'a',,,,',,' ,....... ,,, 'rr3"llnl,i' 'lllil'aP' IIII"II



energy to disappear is 1/Td, while the time for reconstitution is 1/u.fro, After a time 1/ueero

the distribution is again ready to excite waves and grow to an amplitude where wb "" 7L,

During intermediate times 1/q'd < t < 1/u.fro, precursor instability may arise, for example

when the distribution is shaped like the dotted curve in Figure 1', Saturation by particle

trapping with a trapping frequency Wbl _ 7cv_.frot will then occur, However these precursor

waves do not destroy tile free energy of the distribution between

k.v-_o Iw--hA< < 1.
¢obO COb0

Thus, low level precursor waves ,hre expected prior to the largest "crash." After the largest

crash, when wb _ wb0 _ 7L, the distribution is again flattened over the interval 5v ..m 5vb , i_!with 5rb defined in Eq. (6), and then the process described repeats itself with an overall

period u_j_lo"_,u- l('lL/W) 2.

The need for a pulsation scenario can also be explained in terms of energy balance. Over

long time scale, the average background dissipation can be estimated as7dWE , with I,VE

the time-averaged wave energy. This dissipation must be balallced by the free energy that is

brought to the resonant region by collisions. In a time 1/u,tfo file free energy of the particles

is built up and then converted to the maximum wave energy WEm,,x dctermined from the

condition wb ._ %. Hence the estimate for the feed power into the wave is vem_l/V£'_,,×.

Equating the feed power to the eLverage dissipative power gives WE = (u, fro/Td)WEm,,x, or

equivalently
. ,.

( /_b = 7_ "_.fr0 , (7)
\Td/

where _b is a trapping frequency based on the time averaged wave energy. Since u_.ff0is

assumed to be much less than Td, the average wave energy is much less than the maximum

one. Such a condition can only be achieved with relaxation oscillations, as depicted in the

solid curves in Figure 2. Also note that _b in Eq. (7) is larger t.han the s_turation level

predicted in Eq. (4), as u_._o< Td. Further, as previously discussed, s for UeffO/Td > 1, the
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wave energy s_turates at a level WE* (u_fro/Td)4/aWEm_,, as depicted by the dashed curve

of Figure 2.

This suggested scenario is w_lid in tlm toktmaak problem if at t,he perturbation atl_plit, ude

wb, the alpha particle orbits are not stochastic. Then it is easy to show that ttae radial

spreading of a typical alpha particle, caused by it,s interaction with the pulsating field, is

small. Hence the desired mechanism of heating the background plasma by collisions with

the fusion produced alpha particles is attained.

On the other hand, if at the fluctuation level corresponding to ._b _ wb0, the stochasticity

' level is exceeded, catastrophic development is expected. This is because now orbits really

_ difl'use and there are no longer b_rriers to maintain an overall "inverted" phase space gradient

in the vicinity of the resonance region. This is illust, rated by allowing for multiple modes

in the bump-on-tail instability. Below the critical amplitudes for mode overlapping, the 'I
situation is depicted in Figure 3(a), where the distribution flattens in the shaded region, with

an energy release proportional to the number of modes. The picture changes drastically, as in

. Figure 3(b), when the resonances overlap. Then all the fl'ee e_lergy at the inverted gradient is

available to pump the wave to yet higher levels, thereby even illcreasing the particle diffusion.

For Alfv6n waves in a tokamak, resonance overlap may occur even for a single mode structure,

because of the multiple resonances in the particle Hamiltonian. Further, the mode may be

spatially spread, as typically occurs iii the toroidal Alfv6n eigenmode where the mode is

excited at difl'erent poloidal mode numbers throughout the radial profile, a Hence the alpha

particles can then be either lost, to the boundaries, or if the system is large enough, the

distribution function is flattened to _ profile that is stable to linear analysis.

To obtain a feel for the stochastic threshold we note that from Ref. 12 one finds that

7L/W "_ 5q'2_ for moderately high n modes, where/3a is the beta value of the alpha particles.

: For these modes the trapping frequency and stochasticity threshold has been reported in

7
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respectively, Thus a very rough criterion for the onset of stochasticity is

I
_ >

20<t_l,_.n t12 ,

Though only rough scaling arguments are given here, these suggested scenarios seem

compatible with experimental observation,S ,_ More careful quantitative studies are of course

needed.
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Figure captions

Figure l. Time behavior of the bump-on-tail distribution function near the r.sonanten

mode phase velocity, The solid curve indicates distriblltion jlist before its major relax_ttion',

the dashed c_lrve is just after the major relaxation; and the dotted curve is at _n intermediate

time d_lring which the distrii_lltiotl is being reconstittlted,

Figure '2 Rele_xation oscillations, If v'_,.o < _',i, relaxation oscillations arise as shown

by solid curves, If _.fr0 > "Y',_,the w_ve energy saturates in steady-state at a level WE" =

Figure 3. Effect of resonance overlapping, In (a) modes do no,t overlap, and the relaxed

distribution just has local flatterning, with the general shape of the inverted equilibrium

distribution preserved, When there is mode overlapping as in (b), the distribution flattens

completely over the entire spectrum, {vith a much larger conversion of free energy to wave

energy,
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