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A predator·prey ecosystem is proposed to investigate roads to chaos in a differential system. In this 
model, Malthusian rate of prey is driven by a periodic external force. Feigenbaum scenarios and a torus 
to chaos with frequency locking as 1 ... torus'" 5'" chaos'" 4'" chaos'" 3'" chaos'" 5'" chaos'" 4'" 2 are obser· 
ved numerically and their scaling properties and multi· basins are investigated. 

§ 1. Introduction 

There are two important models to discuss population dynamics of ecosystems. One 
of the two is a differential logistic model for a one-species ecosystem. The model can 
well explain an observed saturation phenomenon of a population of an ecosystem such as 
a bacterium in a test tube. The other model is the Lotka-Volterra model which was 
proposed to interpret a periodic oscillation of the two populations in a predator-prey 
ecosystem. 

A discrete version of the logistic model has been used when a generation of a species 
is non-overlapping. I) In 1974, May2) discovered numerically that the logistic difference 
equation gives a period doubling bifurcation and a chaotic motion. A noisy oscillation of 
a fly's population, which was observed by Nicholson,3) is considered as an example of the 
chaotic motion. Since the pioneering work of May, there are many studies on chaotic 
behavior of deterministic dynamical systems, but there are only a few studies on the 
predator-prey ecosystem from the viewpoint of chaos.4),S) 

In this paper we introduce a modified Lotka-Volterra model and study scenarios 
leading to chaos, where we will find that Feigenbaum scenario,S) namely the period 
doubling scenario, coexists with a torus to chaos scenario. The torus to chaos scenario 
was observed in the Rayleigh-Benard system7

) and the phenomenon was studied by using 
a map of a circle onto itself.8)-12) However, only a few studies were carried out in a 
differential system.13) The set of differential equations of our model is introduced in §2. 
The torus to chaos scenario and the scaling property of the frequency locking states are 
investigated in §3. Feigenbaum scenarios and some multi-basins are found in §4. 
Section 5 is devoted to discussion and some remarks. 

§ 2. Model and its equations of motion 

The original Lotka-Volterra model is described by the following pair of equations:14) 

d~:;I/ = alNI - /3ININ2 , (1) 

(2) 
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where al is the Malthusian rate of prey, a2 is the die out rate of predator, and NI and N2 
are the populations of prey and predator, respectively. The term - fJIN IN2 represents the 
loss rate of prey due to collisions with predator, and fJ2NIN2 represents the growth rate 
of the population of predator through the same collisions. This model gives a peri09ic 
solution but the periodicity and the amplitude of it depend on its initial condition and the 
model has lack of a structual stability.IS) A stable limit cycle solution is necessary to 
explain the observed oscillative populations of prey and predator.16

) Various modified 
Lotka -Volterra models have been proposed by many authors.l7) Gausel8

) obtained a 
reasonable collision term which proportional to .; NI . *) We modify the collision terms in 
Eqs. (1) and (2) according to Gause's result and obtain 

(3) 

(4) 

where the logistic term y INI2 is introduced. The original Lotka-Volterra's collision 
terms are proportional to NI but in this case they are proportional to .; NI that provide 

Latka -Volterra modified Latka -Volterra 

E 

N2~ ~~ 
Ii; ..... 
0 

:;::; 
III 

~ 
0 

N, ~ 
c 

E ~ liL ~ '"' (\.I ..... 
0 

~ 

UL ~ ~ .~ 

1:. -·3 

Fig.l.. The possible types of motions in the Lotka·Volterra model (Eqs. (1) and (2)) and the modified 
Lotka-Volterra model (Eqs. (3) and (4)). A logistic term is added to Eq. (1) in the lower part of 
the left column. 

*) Gause's coIlisi6n is obtained if only the surface part, whose population is proportional to ,fJI[;, of the prey· 

community contributes to the collision. 
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a saturation effect for the collision. The saturation effect causes a population explosion 
of prey when the logistic term is disregarded. If we put the logistic term to the original 
Lotka·Volterra model, the periodic solution disappears. On the other hand, the term 
together with Gause's collision terms brings us some limit cycles for certain parameter 
regions. These results are easily obtined by the method of isoclines and stability 
theory,lS) and these are summarized in Fig. 1. 

The limit cycle solution gives a simple ,oscillative evolution of the two populations. 
However, in a real two-species ecosystem such as mountain cat-hare community,I9) the 
periodic oscillation is not so simple but it seems a weakly chaotic oscillation. We will 
propose a predator-prey model in which the evolution of the two populations chaotically 
oscillates without external noise. 

It needs more than three variables to get a chaotic solution in a differential system. 
Therefore, a two-species ecosystem with a time dependent external force or an n-species 
(n~3) ecosystemS) has a possibility to behave chaotically. In this paper we choose the 
former one. We assume that the environment of prey changes periodically. Then the 
Malthusian rate in Eq. (3) turns out to be 

(5) 

where a is the positive constant and, band ware the amplitude and the angular frequency 
of the oscillative part of the Malthusian rate, respectively. Time-delay due to recovery 
of grass causes a periodic oscillation of grass-eating animal's population.20

) The Malthu· 
sian rate Eq. (5) is considered to be one of the effective expression of the oscillative 
phenomenon. 

We introduce the variables x =/Nl and y=N2 , thus our model (Eqs. (3) and (4) with 
Eq. (5)) can be expressed as 

~ =(a-bcos wt)x-(/31/2)Y-(Yl/2)x 3
, 

dy_ 
dt --a2y+/32xy. 

§ 3. Torus'to chaos with frequency locking 

(6) 

(7) 

In this section, we investigate 'numerically the scenario leading to chaos where we 
choose a parameter set a=a2=3.0, (/3d2)=/32=1.5 and Yl=0.48. This parameter set with 
no external field b=O gives a limit cycle whose angular frequency takes 2.3. The limit 
cycle is modulated by the external periodic force and various types of the motion appear 
in the bow phase diagram. Interesting scenarios are observed in the range 2.5~w~4.0 
with b=O.17 and a coarse diagram is shown in Fig. 2 where Runge-Kutta-Gill method has 
been used to solve the set of Eqs. (6) and (7). 

In the lower frequency part of the region, the limit cycle with b=O is entrained by the 
periodic external force because its frequency is nearly equal to the frequency of the 
external force. As w is increased from the lower frequency, a Hopf bifurcation takes 
place at w=2.64 then the entrained limit cycle becomes a torus. A new fundamental 
frequency, which is incommensurate with w, appears with the aid of. the bifurcation. 
After the quasi-periodic motion has come to an end, a significant phenomenon of frequency 
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Fig. 2. The coarse phase diagram of Eqs. (6) and (7) where parameters are taken as a=a2=3.0, (/3./2) 

=/32= 1.5, r, =0.48 and b=0.17. The quasi·periodic and chaos are represented as Q and C, 
respectively. The n-cyc1e is denoted by n. 
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Fig. 3. Poincare mappings of the torus to chaos with 
frequency locking scenario where parameters are 
taken as a=a2=3.0, (/3,/2)=/32=1.5, r,=0.48 
and b=0.17. The angular frequencies are chosen. 
as (a) w=2.65, (b) w=2.70, (c) w=2.76 and (d) w 
=2.87. 

Fig. 4. Topology of Farey series of order 11 where 
observed winding numbers are used. 

locking occurs at (0 = 2.76. In this scenario, chaos sets in at (0 = 2.81. The scenario is 
summarized as: entrained limit cycle~ torus~ frequency locking~ chaos. This may be 
regarded as a typical one leading to chaos in a periodically forced system with dissipation. 
The scenario is illustrated in Fig. 3 by Poincare mappings in which successive points 
specifying the state of the system are plotted in the x-y plane at instants separated by a 
regular time interval T=27r/(o. 

In a wide range, a period-decreasing sequence is found 
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1 --. torus --. 5 --. chaos --.4 --. chaos --.3 

as we increase W from 2.5 to 4.0. Period-adding sequence was found in various fields, and 
it was studied with the use of a one-dimensional mapping by Kaneko. lo

).1l) 

In a fine phase diagram, there are many frequency locking states and to relate all the 
different periods, we introduce a winding number P which is calculated as 

(8) 

where 8i is the angle of the ith point measured from an appropriate origin given inside the 
invariant closed curve in the Poincare mapping. When the state is characterized by the 
two fundamental frequencies, the winding number P is the ratio between the two. The 
winding number is a monotonically decreasing function of w. If there are two locking 
states, whose winding numbers are PI =ql/PI and P2=q2/P2, a locking state of P3= (ql +q2) 

/ (PI + P2) exists between the two locking states in the region w. We diagram a tree, 
which leads to a Farey series, using observed winding number. The tree is shown in 
Fig. 4. 

The frequency dependence of the winding number is shown in Fig. 5 where every 
frequency locking state gives a step for each rational value of the winding number. The 
steps compose a staircase and such a curve with infinitely many steps is called a devil's 
staircase. The step's width (Wn-Wn-I), where Wn is the set on frequency of the locking 
state whose winding number is Pn, depends on Pn and it is wide for a low order Pn such 
as 4/5, 3/4, 2/3 and 3/5. We study scaling property of frequency locking sequence where 
we treat the series Pn=3n/ (4n-l), which accumurate to p==3/ 4(n--. oo ). The result is 
shown in Fig. 6 which shows 
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Fig. 5. Graph of winding number p against the angular frequen
cy OJ in correspondence of the periodic states found in the 
interval (2.75, 3.75). 
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Fig. 6. The observed scaling law for 

the series Pn=3n/{4n-l). 
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This result agrees with Kaneko'slO) result on a map and Sano and Sawada's13) result on a 
coupled nonlinear oscillator. 

§ 4. Feigenbaum scenarios and multiple steady states 

In this section we decrease the. angular frequency W from 4.0 to 2:5 and other 
parameters are taken as the same as the preceding section. We take the reverse of the 
preceding section's course. In this course we observed a Feigenbaum scenario of 2 x 2n

, 

in which a cascade of period doubling leads to a chaos. The Poincare mappings of this 
scenario are shown in Fig. 7. 

In the chaotic case, Fig. 7(c), the mapping is represented by the asymptotic invariant 
manifold which consists of four islands. The phase point transits regularly the four 
islands but in each island the motion of the phase point is chaotic. The invariant 
manifold is a strange attractor which is created by the processes of an enlargement, a 
folding and a pressing which are similar to the processes of the baker's transformation in 
Bernoulli system. These processes can be easily visualized with the aid of a time 
development of x which is shown in Fig. 8. 

The above two islands in Fig. 7(c) are merged as the angular frequency W is de
creased. The merged island is shown in Fig. 7(d), and the phase point moves chaotically 
on the merged island.. A symmetry change of the chaos due to the merging has been 
already discussed by Fujisaka and the authors.21) Feigenbaum scenarios of 3 x 2n and 4 
x2n are found also as already shown in Fig. 2. We calculate a ratio /3=(W3--:-W6)/(W6 
- (12) for the 3 x 2n -cascade and obtain /3 = 4.754 which is nearly equal to Feigenbaum 

a b 
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c d 
-' --.,. 

" 
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Fig. 7. Poincare mappings of the Feigenbaum 

scenario of 2 x 2n where parameters are takeri as 
a= a2=3.0, (fM 2)=112=1.5, Yl =0.48 and b=0.17. 
The angular frequencies are chosen as (a) w 
=3.96, (b) w=3.84, (c) w=3.79 and (d) w=3.78. 

4. 

x 

o 

Fig. 8. The long time development of x of one orbit 
where the right end of the orbit continues to the 
left end. The folding process is recognized on 
the lower band and the band is pressed on the 
beginning on the upper part, then it is enlarged 
during the last stage. 
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Q 5 C 

2.5 3.0 
w 

Fig. 9. The schematical illustration of the bifurca
tion and the unification phenomena of the basins. 
The left basin and the right basin correspond to 
the torus to chaos scenario and the Feigenbaum 
scenario, respectively. Poincare mappings cor
respond to the basins. 

region 2_73;;; w;;; 2.87. A bifurcation and 
schematically illustrated in Fig. 9. 

Fig. 10. Time evolutions of prey's population Nl(t) 

and predator's population N 2(t) for the chaotic 
state where parameters are taken as a = a2 = 3.0, 
(.Bd2)=.B2=1.5xlO~2, Yl=0.48x10- 4

, b=0.17 
and w=3.81. In this parameter region there are 
two chaotic basins and the basins of the torus to . 
chaos scenario is chosen. Obviously the number 
of the population is a natural number, however, 
we consider it as a positive real number in this 
paper. 

ratio 4.669···. 
In this section and the preceding section, 

we have investigated characters of motions 
in the frequency region 2.5;:£w;:£4.0 where 
both the course (2_5-+4.0) and (4.0-+2.5) are 
considered. The scenario leading to chaos 
depends on the course and four bistable 
regions are observed as shown in Fig. 2. 
For example, there are two basins in the 

a unification phenomena of the basins are 

For ecologists, time evolutions of prey's population Nl (t ) = {x (t ) F and predator's 
population N2(t) = y(t) for a chaotic state are shown in Fig. 10. The behaviors are 
similar to those of the mountain cat-hare community.19) 

§ 5. Discussion and some remarks 

We have studied scenarios leading to chaos in the forced Lotka-Volterra model. 
Feigenbaum scenarios and the torus to chaos with frequency locking scenario are found 
and their scaling properties and hysteresis are investigated. From a biological point of 
view our results merely show that the forced predator-prey model has many different 
kinds of motions Which include chaos. Real two-species ecosystem are very complicated. 
Therefore, the detail structures of the motions of our model have no important meaning 
in the sense of biology. 

It is interesting that our model has some multi-basins for some ranges of parameters. 
In general, the existense of many basins brought us a rich structure in a system which 
obeys simple deterministic laws (a set of equations). One of the basins is chosen ac
cidentally by its initial condition. This situation gives a metaphor that rich structures of 
nature are produced by necessity (simple deterministic laws) and chance (accidental 
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chosen). 
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