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Abstract

Video frame interpolation is a challenging problem be-

cause there are different scenarios for each video depend-

ing on the variety of foreground and background motion,

frame rate, and occlusion. It is therefore difficult for a sin-

gle network with fixed parameters to generalize across dif-

ferent videos. Ideally, one could have a different network

for each scenario, but this is computationally infeasible for

practical applications. In this work, we propose to adapt

the model to each video by making use of additional infor-

mation that is readily available at test time and yet has not

been exploited in previous works. We first show the bene-

fits of ‘test-time adaptation’ through simple fine-tuning of

a network, then we greatly improve its efficiency by incor-

porating meta-learning. We obtain significant performance

gains with only a single gradient update without any addi-

tional parameters. Finally, we show that our meta-learning

framework can be easily employed to any video frame in-

terpolation network and can consistently improve its per-

formance on multiple benchmark datasets.

1. Introduction

Video frame interpolation aims to upscale the temporal

resolution of a video, by synthesizing intermediate frames

in-between the neighboring frames of the original input.

Owing to its wide range of applications, including slow-

motion generation and frame-rate up-conversion that pro-

vide better visual experiences with more details and less

motion blur, video frame interpolation has gained substan-

tial interest in the computer vision community. Recent ad-

vances of deep convolutional neural networks (CNNs) for

video frame interpolation [16, 20, 29, 30, 31, 48] lead to

a significant boost in performance. However, generating

high-quality frames is still a challenging problem due to

large motion and occlusion in a diverse set of scenes.

Previous approaches to video frame interpolation [16,

20, 29, 30, 31, 48], as well as other learning-based video

processing models [6, 7, 40, 49, 50], typically require a

huge amount of data for training. However, videos in the
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Figure 1. Motivation of the proposed video frame interpolation

method. Our video frame interpolation framework incorporates a

test-time adaptation process followed by scene-adapted inference.

The adaptation process takes advantage of additional information

from the input frames and is quickly performed with only a single

gradient update to the network.

wild comprise of various distinctive scenes with many dif-

ferent types of low-level patterns. This makes it difficult for

a single model to perform well on all possible test cases,

even if trained with large datasets.

This problem can be alleviated by making the model

adaptive to the specific input data. Utilizing the additional

information only available at test time and customizing the

model to each of the test data samples has shown to be ef-

fective in numerous areas. Examples include single-image

super-resolution approaches exploiting self-similarities in-

herent in the target image [12, 14, 15, 24, 39], or many vi-

sual tracking methods where online adaptation to the input

video sequence is crucial in performance [8, 10, 27]. How-

ever, most works either increase the number of parameters
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or require considerable inference time for test-time adapta-

tion of the network parameters.

Meta-learning, also known as learning to learn, can take

a step forward to remedy current limitations in test-time

adaptation. The goal of meta-learning is to design algo-

rithms or models that can quickly adapt to new tasks from

small set of training examples given during testing phase.

It has been gaining tremendous interest in solving few-

shot classification/regression problems as well as some rein-

forcement learning applications [11], but employing meta-

learning techniques to low-level computer vision problems

has yet to be explored.

To this end, we propose a scene-adaptive video frame

interpolation algorithm that can rapidly adapt to new, un-

seen videos (or tasks, in meta-learning viewpoint) at test

time and achieve substantial performance gain. A brief

overview of the main idea of our approach is illustrated

in Fig. 1. Using any off-the-shelf existing video frame in-

terpolation framework, our algorithm updates its parame-

ters using the frames only available at test time, and uses

the adapted model to interpolate intermediate frames in the

same way as the conventional approaches.Although the pro-

posed method is not applicable for videos with their total

length of less than 3 frames, most real-world scenarios have

multiple consecutive frames that we can fully utilize for our

meta-learning based test-time adaptation scheme.

Overall, our contributions are summarized as follows:

• We propose a novel adaptation framework that can fur-

ther improve conventional frame interpolation models

without changing their architectures.

• To the best of our knowledge, the proposed approach

is the first integration of meta-learning techniques for

test-time adaptation in video frame interpolation.

• We confirm that our framework consistently improves

upon even the most recent state-of-the-art methods.

2. Related works

In this section, we review the extensive literature of

video frame interpolation. Existing test-time adaptation

schemes for other low-level vision applications and the his-

tory of meta-learning algorithms are also described.

Video frame interpolation: While video frame interpo-

lation has a long-established history, we concentrate on re-

cent learning-based algorithms, particularly CNN-based in-

terpolation approaches.

The first attempt to incorporate CNNs to video frame in-

terpolation was done by Long et al. [21], where interpola-

tion is obtained as a byproduct of self-supervised learning of

optical flow estimation. Since then, numerous approaches

have focused on effectively modeling motion and handling

occlusions. Meyer et al. [22, 23] represent motion as per-

pixel phase shift, and Niklaus et al. [30, 31] model the se-

quential process of motion estimation and frame synthesis

into a single spatially-adaptive convolution step. Choi et

al. [9] handles motion with a simple feedforward network

with channel attention.

Another line of research use optical flow estimation as an

intermediate step (as a proxy) and warp the original frames

with the estimated motion map for alignment, followed by

further refinement and occlusion handling to obtain the fi-

nal interpolations [3, 4, 16, 19, 20, 29, 47, 48]. These flow-

based methods are generally able to synthesize sharp and

natural frames, but some heavily depend on the pre-trained

optical flow estimation network and show doubling artifacts

in cases with large motion when flow estimation fail. Re-

cently, Bao et al. [3] additionally use depth map estimation

model to compensate for the missing information in flow

estimation and effectively handle the occluding regions.

Test-time adaptation: Contrary to previous works, we

explore an orthogonal area of research, adaptation to the in-

puts at test time, to further improve the accuracy of given

video frame interpolation models. Our work is inspired

by the success of self-similarity based approaches in im-

age super-resolution [12, 14, 15, 24, 39]. Notably, re-

cent zero-shot super-resolution (ZSSR) method proposed

by Shocher et al. [39] has shown impressive results by in-

corporating deep learning. Specifically, ZSSR at test time

extracts the patches only from the input image and trains a

small image-specific CNN, thereby naturally exploiting the

information that is only available after observing the test in-

puts. However, ZSSR suffers from slow inference time due

to its self-training step, and it is prone to overfitting since us-

ing a pretrained network trained with large external datasets

is not viable for internal training.

For video frame interpolation, Reda et al. [35] recently

proposed the first approach to adapt to the test data in an un-

supervised manner by using a cycle-consistency constraint.

However, their method adapts to the general domain of the

test data, and cannot adapt to each test sample. On the other

hand, the proposed algorithm enables to update the model

parameters w.r.t. each local part of the test sequence, thus

better adapting to local motions and scene textures.

Meta-learning: To achieve test-time adaptation without

susceptibility to overfitting and without greatly increasing

the cost of computation, we turn our attention to meta-

learning. Recently, meta-learning has gained a lot of at-

tention for its high performance in few-shot classification,

which evaluates the capability of the system to adapt to

new classification tasks with few examples. Meta-learning

aims to achieve such adaptation to new tasks (videos in

our case) through learning prior knowledge across tasks.

[5, 13, 37, 38, 45]. Broadly, one can categorize meta-
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learning systems into three classes: metric-based, network-

based, and optimization-based. The metric-based meta-

learning manifests the prior knowledge by learning a fea-

ture embedding space, where different classes are placed

far apart and similar classes are placed close to each other

[18, 41, 44, 46]. The learned embedding space is then

used to learn relationship between a query and support ex-

amples in few-shot classification. Network-based meta-

learning achieves fast adaptation through encoding input-

dependent dynamics into the architecture itself by gener-

ating input-conditioned weights [25, 32] or employing an

external memory [26, 36]. On the other hand, optimization-

based systems aim to encode the prior knowledge into opti-

mization process for fast adaptation [11, 28, 34]. Among

optimization-based systems, MAML [11] has greatly en-

joyed the attention for its simplicity and generalizability, in

contrast to the metric or network-based systems that suffer

from the limitations in either applications or scalability is-

sues. The generalizability of its model-agnostic algorithm

motivates us to use MAML to integrate test-time adaptation

into video frame interpolation.

3. Proposed Method

In this section, we first describe the general problem set-

tings for video frame interpolation. Then, we empirically

show the advantage of test-time adaptation with a feasibility

test, and justify the need for meta-learning in this scenario.

3.1. Video frame interpolation problem setup

The goal of video frame interpolation algorithms is to

generate a high-quality, high frame-rate video given a low

frame-rate input video by synthesizing intermediate frames

between two neighboring frames. Standard settings for

most frame interpolation models receive two input frames

and output a single intermediate frame. Specifically, if

we let I1 and I3 be the two consecutive input frames, our

goal is to synthesize the middle frame Î2. Although re-

cent frame interpolation models also consider more com-

plex multi-frame interpolation problem where a frame of

any arbitrary time step between two frames can be syn-

thesized, we constrain our discussions to the single-frame

interpolation models in this work. However, note that our

proposed meta-learning framework described in Sec. 3.4 is

model-agnostic and easily generalizable to different settings

as long as the model is differentiable.

3.2. Exploiting extra information at test time

We demonstrate the effectiveness of test-time adaptation

with a feasibility test and describe the details on our design

choices. Starting from a baseline pre-trained frame interpo-

lation model, we aim to fine-tune the model parameters at

test time to improve its performance (for each test video se-

quence). To fine-tune the model, a frame triplet consisting

Figure 2. Feasibility test for test-time adaptation. Upper graph

shows that fine-tuning with the test input data can improve perfor-

mance in general, but the number of required steps greatly differs

for each sequence. Lower graph shows a ×20 zoomed in version

of the upper graph, additionally denoting the large performance

gain obtained with our meta-learned SepConv with a single gradi-

ent update.

of 3 consecutive frames are needed, where the first and last

frames become the input and the middle frame becomes the

target output. While training (fine-tuning) with triplets of

a low frame-rate video may seem not beneficial due to the

wider time gap, the overall interpolation performance boost

has been observed, as shown in the following experiment.

This implies the importance of the context and attributes of

the given video, such as unique motion and occlusion, and

signifies the benefit of test-time adaptation.

For a feasibility test on the effectiveness of test-time

adaptation, we fine-tune a pre-trained SepConv [31] model

on each sequence from Middlebury [2] dataset. Specifi-

cally, we choose 7 sequences from OTHERS set, and fine-

tune the baseline model with Adamax [17] optimizer (which

was used to train the original SepConv model) with a fixed

learning rate of 10−5. Batch construction for the gradient

update is analogous to Fig. 1, but we increase the number

of frames for test-time adaptation from 3 (t = 1, 3, 5) to 4

(t = 1, 3, 5, 7). In a sense, it can be seen as a 2-shot up-

date, since we can build 2 triplets (t = (1, 3, 5), (3, 5, 7))
from the 4 input frames. Updating the model parameters

with these 2 triplets for many iterations can tell whether or

not this test-time adaptation scheme is advantageous. We

measure the performance with peak signal-to-noise ratio

(PSNR), and the results for PSNR difference with respect
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t = (1,3,5) (3,5,7) (3,4,5)

...

Figure 3. Overview of the training process for the proposed video frame interpolation network. Left: Each task Ti consists of three

frame triplets chosen from a video sequence where two are used for task-wise adaptation (i.e., inner loop update) and one is used for

meta-update (i.e., outer loop update). Right: Network parameters θ are adapted by gradient descent on loss Lin
Ti

using triplets in DTi
and

stored for each task, and meta-update is performed by minimizing the sum of each loss Lout
Ti

using the triplets in D′
Ti

for all tasks.

to the number of gradient update steps are shown in Fig. 2.

The characteristics for performance improvements,

shown in the upper graph of Fig. 2, greatly differs from se-

quence to sequence. While the PSNR scores for Minicooper

and Walking steadily improve for 200 gradient updates and

do not overfit even after over 1dB gain, updating with Dog-

Dance sequence hurts the original model’s performance in

its early stage. Notably, the graph for RubberWhale shows

a strange characteristic, where the performance severely

drops after the first gradient update but suddenly shifts back

to the positive side after the subsequent steps. From these

results, we can arguably conclude that test-time adaptation

is beneficial for video frame interpolation, but how much

to adapt (or not adapt at all to avoid overfitting) for each

different sequence is hard to decide.

By incorporating meta-learning techniques, our method

can enhance the original SepConv model to rapidly adapt

to the test sequence, without changing any architectural

choices or introducing additional parameters. With just a

single gradient update at test time, our meta-learned Sep-

Conv can achieve large performance gain, as illustrated in

the lower graph of Fig. 2. Compared to hundreds of itera-

tions required for fine-tuning the baseline model, our meta-

learned SepConv extremely reduces the computation time

needed to obtain the same amount of performance boost.

3.3. Background on MAML

Meta-learning aims at rapidly adapting to novel tasks

with only a few examples i.e. few-shot learning. Re-

cent model-agnostic meta-learning (MAML) [11] approach

achieve this goal with only a few gradient update iterations

by preparing the model to be readily adaptable to incoming

test data. In other words, MAML finds a good initializa-

tion of the parameters that are sensitive to changes in task,

so that small updates can make large improvements on re-

ducing the error measures and boosting the performance for

each new task. Before diving into the main algorithm, we

would first like to start with the formulation of the general

meta-learning and MAML.

Under the assumption of the existence of task distribu-

tion, p(T ), the goal of MAML is to learn the initialization

parameters that represent the prior knowledge that exists

throughout the task distribution. In k-shot learning setting,

DTi
, a set of k number of examples, are sampled from each

task, Ti ∼ p(T ). The sampled examples, along with its cor-

responding loss LTi
, roughly represent the task itself and

are used for the model to adapt to the task. In MAML, this

is achieved by fine-tuning:

θ′i = θ − α∇θLTi
(fθ). (1)

Once the model is adapted to each task, Ti, new examples,

D′
Ti

, are sampled from the same task to evaluate the gen-

eralization of the adapted model on unseen examples. The

evaluation acts as a feedback for MAML to adjust its ini-

tialization parameters to achieve better generalization:

θ ← θ − β∇θ

∑

Ti

LTi
(fθ′

i
). (2)
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3.4. Metalearning for frame interpolation

For video frame interpolation, we define a task as per-

forming frame interpolation on a frame sequence (video).

Fast adaptation to new video scenes via MAML introduces

our scene-adaptive frame interpolation algorithm, which is

described in detail later in this section.

We consider a frame interpolation model fθ, parameter-

ized by θ, that receives two input frames (It, It+2T ) and

outputs the estimated middle frame Ît+T for any time step

t and interval T . Thus, a training sample needed to update

the model parameters can be formalized as a frame triplet

(It, It+T , It+2T ). We define a task T as minimizing the

sum of the losses L : {(It, It+T , It+2T )} → R for all time

steps t in low frame-rate input video. In our scene-adaptive

frame interpolation setting, each new task Ti drawn from

p(T ) consists of frames in a single sequence, and the model

is adapted to the task using a task-wise training set DTi
,

where training triplets are constructed only with frames ex-

istent in the low frame-rate input. Updating parameters at

meta-training stage is governed by the loss Lout
Ti

for a task-

wise test set D′
Ti

, where the test triplets consist of two input

frames and the target ground-truth intermediate frame that

is non-existent in the low frame-rate input. In practice, we

use 4 input frames {I1, I3, I5, I7} as described in Sec. 3.2,

and 1 target middle frame I4. The task-wise training and

test set then become DTi
= {(I1, I3, I5), (I3, I5, I7)} and

D′
Ti

= {(I3, I4, I5)}. These configurations are illustrated

in the left part of Fig. 3.

Given the above notations, we now describe the flow of

our scene-adaptive frame interpolation algorithm in more

detail. Since our method is model-agnostic due to integra-

tion with MAML, we can use any existing video frame in-

terpolation model as a baseline. However, unlike MAML

where the model parameters begin from random initializa-

tion, we initialize the model parameters from a pre-trained

model that is already capable of generating sensible interpo-

lations. Thus, our algorithm can also be viewed as a post-

processing step, where the baseline model is updated to be

readily adaptive to each test video for further performance

boost.

The detailed flow of the algorithm is illustrated in the

right part of Fig. 3. Let us denote the update iterations for

each task as inner loop and the meta-update iterations as

outer loop. For inner loop training, given two frame triplets

from task-wise training set DTi
for each task Ti, we first

calculate the model predictions as

Î3 = fθ(I1, I5), Î5 = fθ(I3, I7), (3)

where the superscript i is hidden to reduce notation clutter.

These outputs are then used to compute the loss for inner

loop update Lin
Ti
(fθ), calculated as the sum of two losses as

in

Lin
Ti
(fθ) = LTi

(Î3, I3) + LTi
(Î5, I5). (4)

Algorithm 1: Scene-Adaptive Frame Interpolation

Require: p(T ): uniform distribution over sequences

Require: α, β: step size hyper-parameters

1 Initialize parameters θ

2 while not converged do

3 Sample batch of sequences Ti ∼ p(T )
4 foreach i do

5 Generate triplets

DTi
= {(I1, I3, I5), (I3, I5, I7)} from Ti

6 Compute Î3, Î5 in Eq. (3)

7 Evaluate ∇θL
in
Ti
(fθ) using LTi

in Eq. (4)

8 Compute adapted parameters with gradient

descent: θ′i = θ − α∇θL
in
Ti
(fθ)

9 Generate and save triplet

D′
Ti

= {(I3, I4, I5)} from Ti for the

meta-update

10 end

11 Update θ ← θ − β∇θ

∑
Ti∼p(T ) L

out
Ti
(fθ′

i
) using

each D′
Ti

and LTi
in Eq. (5)

12 end

Next, we calculate the gradients for Lin
Ti
(fθ) and update θ

with gradient descent to obtain customized parameters θ′i
for each task Ti. Note that we can use any gradient-based

optimizer (e.g. Adam [17]) for the updating step, and we

choose the same optimization algorithm used to train the

baseline pre-trained model in practice. Also note that the

inner loop update can optionally consist of multiple itera-

tions such that θ′i is a result of k gradient updates from θ,

where k is the number of iterations. We analyze the ef-

fect of hyperparameter k in Sec. 4.3, and choose k = 1
throughout our experiments for performance and simplic-

ity (see Table 2). To further reduce computation, we em-

ploy a first-order approximation as suggested in [11] and

avoid calculating the second-order derivatives required for

the nested-loop updates in meta-training.

When training the outer loop, the parameters are updated

to minimize the losses for fθ′

i
with respect to θ, on each of

the task-wise test triplet {(I3, I4, I5)} ∈ D
′
Ti

. Loss function

for the outer loop meta-update is defined as

Lout
Ti
(fθ′

i
) = LTi

(fθ′

i
(I3, I5), I4), (5)

and the summation of all losses for the sampled batch of

sequences (tasks) Ti ∼ p(T ) are used to calculate the gra-

dient and update the model parameters. The overall training

process is summarized in Algorithm 1.

At test time, the base parameters θ for the outer loop

are fixed, and only the inner loop update is performed to

modify the parameter values to θ′i for each test sequence Ti.
The final interpolations can then be obtained as the output

of the adapted model fθ′

i
.
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Table 1. Quantitative results for meta-training for recent frame interpolation algorithms. We evaluate the benefits of our scene-

adaptive algorithm on 3 datasets: VimeoSeptuplet [48], Middlebury-OTHERS [2], and HD [4] dataset. Performance is measured in PSNR

(dB). Note how our Meta-trained performance consistently improves upon the Baseline or Re-trained correspondents.

VimeoSeptuplet [48] Middlebury-OTHERS [2] HD [4]

Method Baseline Re-trained Meta-trained Baseline Re-trained Meta-trained Baseline Re-trained Meta-trained

DVF [20] 26.60 32.21 32.27 26.70 29.51 29.70 — — —

SuperSloMo [16] 30.85 32.76 33.12 30.28 33.54 33.70 26.05 29.66 29.81

SepConv [31] 33.70 33.72 34.17 35.14 34.90 35.81 30.04 30.01 30.19

DAIN [3] 34.73 34.86 34.94 36.57 36.50 36.50 30.35 30.45 30.51

Note that, the biggest difference from our algorithm from

the original MAML is that the distributions for the task-

wise training and test set, DTi
and D′

Ti
, are not the same.

Namely, DTi
have a broader spectrum of motion and in-

cludes D′
Ti

, since the time gap between the frame triplets

are twice as large. Though this case with a distribution gap

is an unexplored area in meta-learning literature, it shows an

encouraging effect for the task of video frame interpolation;

the model trained with our algorithm learns to update itself

in considerably more difficult scenarios with larger motion,

learning the overall context and motion present in the video

as a result. Interpolations for the original input frames then

become an easy task for our well-adapted model, which re-

sults in performance gain. Both quantitative and qualitative

results in the experiments show that our algorithm actually

improves the original model to better handle bigger motion.

4. Experiments

4.1. Settings

Datasets Most of the existing works on video frame inter-

polation use the video data pre-processed into frame triplets.

Though our baseline model is pre-trained with conventional

triplet datasets, it is not applicable for training the outer

loop since multiple input frames are needed to construct

the task-wise training samples for inner loop update. To

this end, we use Vimeo90K-Septuplet (VimeoSeptuplet)

dataset [48], which consists of 91,701 7-frame sequences

with a fixed resolution of 448 × 256. Though this dataset

is originally designed for video super-resolution or denois-

ing / deblocking, it is also well suited for training video

frame interpolation models that require multiple frames at

test time, and we train all of our models with the training

split of VimeoSeptuplet dataset. For evaluation, we use the

test split of VimeoSeptuplet dataset, as well as sequences

from Middlebury-OTHERS [2] and HD [4] dataset.

The OTHERS set from Middlebury contains 12 examples

in total, with maximum resolution of 640× 480. We use 10

sequences with multiple input frames and remove the other

two that only have two input frames and are thus not suitable

for test-time adaptation.

HD dataset proposed by Bao et al. [4] consists of rela-

tively high-resolution frames, from 1280 × 544 to 1920 ×

1080. Also, the length of the sequences in HD dataset is

either 70 or 100, enabling test-time updates to our model.

Implementation details For our experiments, we use 4

conventional video frame interpolation models as baselines:

DVF [20], SuperSloMo [16], SepConv [31], and DAIN [3].

We first initialize each model with pre-trained parameters,

provided by the authors if possible.1 We denote these mod-

els as Baseline. Then, since we use additional training set

from VimeoSeptuplet for meta-training, we also fine-tune

each Baseline models with VimeoSeptuplet training set, de-

noted as Re-trained models. For our final Meta-trained

models, we start from the Baseline model parameters and

follow the iterative steps for inner and outer loop training

in Algorithm 1. The reported performance for Meta-trained

models use a single inner loop update iteration at test time,

and we examine the effects of increasing the number of gra-

dient updates in the ablation study (Sec. 4.3).

We match the type of loss functions and optimization

schemes for the gradient updates with the original methods

used to train the Baseline models, which differs for each

method. However, since we are fine-tuning from the pre-

trained networks, we modify the inner/outer loop learning

rates to be small and set α = β = 10−5. Throughout

training, α is kept fixed, while β is decayed by a factor

of 5 whenever validation loss does not decrease for more

than 10,000 outer loop iterations. We do not crop patches

and instead train with the full images of VimeoSeptuplet se-

quences with a mini-batch size of 4. While the number of

training iterations differs for each interpolation model, the

full meta-training step for any model requires less than a

day with a single NVIDIA GTX 1080Ti GPU since we start

from the baseline pre-trained network. The source code for

our framework is made public2 along with the pre-trained

models to facilitate reproduction.

4.2. Video frame interpolation results

Quantitative results for all considered baseline frame in-

terpolation models for all evaluated datasets are summa-

rized in Table 1. For all experiments in this section, we

standardize the evaluation metric to PSNR only. To check

1For SuperSloMo [16], we use the implementations and pre-trained

models from [33].
2https://github.com/myungsub/meta-interpolation
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Figure 4. Qualitative results on VimeoSeptuplet [48] dataset for recent frame interpolation algorithms. Note how our Meta-trained outputs

infer motion substantially better than the Baseline or Re-trained models, as well as generate realistic textures similar to the ground truth.

the results for other metrics such as interpolation error (IE)

or structural similarity index (SSIM), we refer the readers

to the supplementary materials.

In Table 1, note the consistent performance boost

achieved by the Meta-trained model compared to both

Baseline and Re-trained models, regardless of the method

used for video frame interpolation. Also, even though meta-

training for our scene-adaptive frame interpolation algo-

rithm is only done in VimeoSeptuplet dataset, it general-

izes well to the other datasets with different characteristics,

presenting the benefits of test-time adaptiveness of our ap-

proach. Between two baselines, the Re-trained model gen-

erally performs better than the Baseline model. We believe

this is due to the quality (i.e. degree of noise, artifacts,

blurriness, etc.) of the training frames, since the frame se-

quences in VimeoSeptuplet are relatively clean. Since DVF

is trained with videos from UCF-101 [42] dataset that has

severe artifacts, its performance increase for fine-tuning to

VimeoSeptuplet was the largest. The original training set,

Adobe-240fps [43], for SuperSloMo [16] implementation

also contains some degree of noise so that re-training helps

to build a stronger baseline. An exception to this is Sep-

Conv [31], where re-training rather hurts the model’s gen-

eralization capability to the other datasets. Nonetheless, our

Meta-trained model considerably outperforms both base-

lines even for DAIN [3], the most recent state-of-the-art

framework.

Qualitative results for VimeoSeptuplet dataset are shown

in Fig. 4, where we compare the Meta-trained model with

both Baseline and Re-trained models for each video frame

interpolation algorithm. Note that our focus is on analyzing

the benefits of Meta-trained models with its corresponding

baselines, rather than comparison between different frame

interpolation algorithms. For many cases where the baseline

models fail due to large motion, our Meta-trained model

adapts to the input sequence remarkably well to synthe-

size better texture and more precise position of the moving

regions. In particular, the most notable improvements are

shown for SepConv, which is the only model that does not

utilize optical flow and the warping operation based on the

predicted flow. Based on this evidence, we presume that ex-

plicit form of optical flow estimation constrains the possible

performance gain obtainable by test-time adaptation. Addi-

tional qualitative results for HD dataset obtained with Sep-

Conv are presented in Fig. 5. Similar characteristics can be

observed as in Fig. 4, and our Meta-trained model produces

clearer interpolations with less artifacts. For more qualita-

tive comparisons and the full video demos, please see the

supplementary materials.
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GTBaseline Re-trained Meta-trained

Figure 5. Qualitative results on HD [4] dataset for SepConv [31].

We show the cropped regions for Shields, Alley2, Temple2, and

Temple1 sequences.

Table 2. Effects on varying the the number of inner loop updates.

Zero updates correspond to the Re-trained setting. PSNR (dB) for

SepConv [31] is shown for Middlebury-OTHERS [2] dataset.

# gradient updates 0 1 2 3 5

Naive Fine-tune 34.90 34.90 34.95 34.99 35.03

Meta-trained 34.90 35.81 35.63 35.58 35.45

PSNR gain — +0.91 +0.68 +0.59 +0.42

4.3. Ablation studies

Effects on the number of inner loop updates We vary

the number of iterations for test-time adaptation and ana-

lyze the effects. Table 2 demonstrates how the final per-

formance changes while varying the number of inner loop

updates from 1, 2, 3, and 5. We also show the results for

naive test-time fine-tuning (from Re-trained model) along

with our Meta-trained results, similar to the feasibility test

in Sec. 3.2.

In summary, meta-training for just a single inner loop

update, used in most of our experiment settings, shows

the most PSNR gain, while increasing the number of up-

dates did not have any benefits on performance. More

updates even showed diminishing results, which is some-

what counter-intuitive compared to the tendency reported

in MAML [11]. We believe there are two possible reasons

for this phenomenon. First is overfitting to the data used for

inner loop update (DTi
). In Sec 3.2, we have shown that it is

beneficial to use DTi
as a proxy for achieving good perfor-

mance for D′
Ti

regardless of their distribution gap, but cur-

rent ablation study suggests that over-fitting toDTi
can have

negative effects on the final performance. This points out

the need for finding the sweet spot in the trade-off between

extracting from DTi
useful information that aids improv-

ing the interpolations in D′
Ti

, and overfitting to DTi
. For

Table 3. Effects on varying the learning rates for the inner loop

updates. We use SepConv [31] framework for performance com-

parison on VimeoSeptuplet [48] dataset.

Learning rate α 0 10−6 10−5 10−4

PSNR (dB) 33.72 34.10 34.17 34.15

video frame interpolation, an example of common useful

information can be the direction of existing motion or the

details on background textures. If overfitting occurs, the in-

ner loop may concentrate too much on handling the existing

large motion and forget the generic prior knowledge learned

by Baseline pre-trained model and its Re-trained version.

Second reason is due to growing complexity of training as

the number of gradient updates increase, which makes the

model susceptible to falling into local minima [11, 28]. Pre-

sumably, incorporating recent techniques for adaptive learn-

ing rates [1] can help mitigate this issue, which remains as

our future work.

Effects on inner loop learning rate Since our algorithm

starts meta-training from a pre-trained video frame inter-

polation model, we believe that large learning rates for the

inner loop update (α in Algorithm 1) can break the model’s

original performance at the early stage of training, while too

small learning rates restrict the adaptive capability of the

model. To support this claim, we report the performances

on setting different values of α in Table 3 using SepConv.

The final performance is maximized for the learning rate

of 10−5, with small gaps in PSNR compared to 10−4 or

10−6. However, regardless of the values of α, the final per-

formance is always better than when α = 0, which demon-

strates the effectiveness of our scene-adaptive frame inter-

polation algorithm via meta-learning.

5. Conclusion

In this paper, we introduced a novel method for video

frame interpolation which aims to fully utilize the addi-

tional information available at test time. We employ a meta-

learning algorithm to train the network that can quickly

adapt its parameters according to the input frames for scene-

adapted inference of intermediate frames. The proposed

framework is applied to several existing frame interpolation

networks and show consistently improved performance on

multiple benchmark datasets, both quantitatively and qual-

itatively. Our scene-adaptive frame interpolation algorithm

can be easily employed to any video frame interpolation

network without changing its architecture or introducing

any additional parameters.
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