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In this paper, we present a simple and effective scene-based nonuniformity correction (NUC) method for infrared
focal plane arrays based on interframe registration. This method estimates the global translation between two
adjacent frames and minimizes the mean square error between the two properly registered images to make
any two detectors with the same scene produce the same output value. In this way, the accumulation of the re-
gistration error can be avoided and the NUC can be achieved. The advantages of the proposed algorithm lie in its
low computational complexity and storage requirements and ability to capture temporal drifts in the nonunifor-
mity parameters. The performance of the proposed technique is thoroughly studied with infrared image sequences
with simulated nonuniformity and infrared imagery with real nonuniformity. It shows a significantly fast and
reliable fixed-pattern noise reduction and obtains an effective frame-by-frame adaptive estimation of each detec-
tor’s gain and offset. © 2011 Optical Society of America

OCIS codes: 040.1240, 100.2000, 100.2550, 100.2980, 110.3080.

1. INTRODUCTION

Infrared focal plane array (IRFPA) sensors are widely used in

the fields of aviation, industry, agriculture, medicine, and

scientific research. However, the nonuniformity, produced

by mismatches during the fabrication process of the IRFPA

can considerably degrade the spatial resolution and tempera-

ture resolvability, since it results in a fixed pattern noise

(FPN) that is superimposed on the observed images [1,2].

Corresponding nonuniformity correction (NUC) algorithms

have been proposed to solve the problem.

NUC techniques are mainly classified into two categories

[2], one of which is the calibration-based NUC method. It

applies a rather simple theory, and is easy to implement

and integrate with hardware. Two-point correction is the most

commonly used technique to counteract FPN. It employs two

blackbodies at different temperatures to calculate the exact

gain and offset of each detector on the IRFPA through the

use of a simple line fitting procedure [3–5]. However, the non-

uniformity is always influenced by such external conditions as

ambient temperature, variation in the transistor bias voltage,

and the time-dependent nature of the object irradiance. All

these factors have made each detector of the focal plane drift

slowly with the time lapse [6]. Therefore, these calibration-

based NUC methods require the procedure to be periodically

performed so as to guarantee the correction of the temporal

drift of the FPN. To make up for the inconvenience, many

scene-based NUC (SBNUC) techniques [7–18] have been pro-

posed that, to some degree, overcome the correction error

caused by the drifting response of the IRFPA. The correction

coefficients can be adaptively updated according to the scene

information.

On the whole, scene-based algorithms are generally identi-

fied by two main approaches, namely, statistical methods and

registration-based methods. Algorithms based on statistics

usually make some spatiotemporal assumptions on the irradi-

ance collected by each detector in the array. Based on these

assumptions, some quantities are extracted to estimate the

correction coefficients for the FPN. Some representatives

of this kind are the temporal high-pass filter technique [7],

the constant statistics method [8], neural-network-based

NUC [9], and the constant rangemethod and its corresponding

extensions [10–12]. The other kind of SBNUC is based on re-

gistration. These techniques all use the idea that each detector

should have an identical response when observing the same

scene point over time. Therefore, registration-based methods

require accurate estimation of the motion between frames.

Some representatives of this sort of algorithm are O’Neil’s
method [13], motion compensated average (MCA) [14], and

algebraic scene-based algorithms [15].

Statistics-based SBNUC methods are used and studied

widely because of their relatively lower computational com-

plexity, smaller storage demands, and better real-time perfor-

mance. However, they are motion dependent and sensitive to

extreme scene [16,17]. Therefore, it is hard to guarantee both

the convergence speed and stability of the algorithm. If high

convergence speed is pursued excessively, ghosting artifacts

are easily generated, superimposing on the new “corrected”
scene [17,18]. On the other hand, registration-based NUC

algorithms offer higher convergence speed, and almost no

ghosting artifacts can be found. However, they are not that

practical because of their high computational complexity

and large storage demands. Meanwhile, the registration and

correction errors can be conveyed accumulatively, seriously

affecting the correction accuracy.

This paper puts forward a novel SBNUC algorithm called

interframe registration-based least mean square (IRLMS)

NUC. In this algorithm, the irradiation of objects is as-

sumed unchanged during the interframe time interval and a

1164 J. Opt. Soc. Am. A / Vol. 28, No. 6 / June 2011 Zuo et al.

1084-7529/11/061164-13$15.00/0 © 2011 Optical Society of America



phase-correlation method is adopted for accurate motion es-

timation. Thus, NUC can be achieved by minimizing the mean

square error between two properly aligned images using the

least mean square (LMS) algorithm. This paper is organized as

follows. In Section 2, a detailed analysis of the correction

algorithm put forward by this paper is given. In Section 3,

comparisons with two related NUC techniques are presented.

The accuracy of the adopted registration method and some

performance issues are discussed in Section 4. Experimental

results are presented in Section 5. Finally, the conclusions of

the paper are summarized in Section 6.

2. NONUNIFORMITY CORRECTION

A. Nonuniformity Observation Model
First, we assume that the photoresponses of the individual de-

tectors in a focal plane array can be characterized by a linear

irradiance–voltage model [19], and their output is given by

Ynði; jÞ ¼ gnði; jÞ · Xnði; jÞ þ onði; jÞ: ð1Þ

Here, subscript n is the frame index. gnði; jÞ and onði; jÞ are,
respectively, the real gain and offset of the ði; jÞth detector.

Xnði; jÞ stands for the real incident infrared photon flux col-

lected by the respective detector, and the observed pixel value

is given by Ynði; jÞ. We assume that the gains and offsets drift

slowly in time, so they share the same subscript n.

NUC is performed by applying a linear mapping to the

observed pixel values Ynði; jÞ to provide an estimate of the

true scene value Xnði; jÞ so that the detectors appear to be

performing uniformly. This correction is given by

Xnði; jÞ ¼ wnði; jÞ · Ynði; jÞ þ bnði; jÞ; ð2Þ

wherewnði; jÞ and bnði; jÞ are, respectively, the gain and offset

of the linear correction model of the ði; jÞth detector. Their

relation with the real gain and offset can be represented by

wnði; jÞ ¼
1

gnði; jÞ
; ð3Þ

bnði; jÞ ¼ −
onði; jÞ

gnði; jÞ
: ð4Þ

Therefore, if ideal estimates of wnði; jÞ and bnði; jÞ or gnði; jÞ
and onði; jÞ can be obtained, then NUC can be realized

through Eq. (2).

B. Motion Estimation
Take two images f 1ðx; yÞ and f 2ðx; yÞ into consideration,

if there exist relative shifts of x0 and y0, respectively, in

the horizontal and vertical directions between f 1ðx; yÞ and

f 2ðx; yÞ, i.e.,

f 2ðx; yÞ ¼ f 1ðx − x0; y − y0Þ: ð5Þ

Based on the Fourier shift theorem, their relative translation

can be obtained by calculating their normalized cross-power

spectrum:

ĉðu; vÞ ¼
F2ðu; vÞF

�
1
ðu; vÞ

jF2ðu; vÞF
�
1
ðu; vÞj

¼ e−2πjðux0þvy0Þ; ð6Þ

where the asterisk denotes complex conjugation, F1ðu; vÞ and
F2ðu; vÞ are, respectively, the Fourier transforms of f 1ðx; yÞ
and f 2ðx; yÞ, and ðu; vÞ are the Fourier domain coordinates.

Once computed, the approach cited in the literature [20] is

to compute the inverse Fourier transform of ĉðu; vÞ and a

Dirac delta function can be recognized as an intensity peak.

The coordinate of this peak corresponds directly to the trans-

lation vector ðx0; y0Þ.
If the translation of a subpixel is taken into consideration,

interpolation by zero padding the cross-power spectrum to a

larger array of dimensions ðκM; κNÞ is suggested in [21],

where M and N are the image dimensions. Through this

method, an estimated translation with κ
−1 pixel accuracy

can be obtained.

In general, when the sensor is at work, the interframe

changes of the scene in the field of view are relatively small.

The translation between two adjacent observed frames can be

obtained by

ðdi; djÞ ¼ argmax
i;j

Re

�

FFT−1

�

�Ynðu; vÞ · �Y
�
n−1ðu; vÞ

j�Ynðu; vÞ · �Y
�
n−1ðu; vÞj

��

; ð7Þ

where the bar notation indicates the Fourier transform. The

changes of the irradiance mainly have an influence on ampli-

tude, with only a minor effect on phase in the frequency

domain. Therefore the phase-correlation method is resilient

to noise, bad pixels, and other defects typical of infrared

images. In this paper, the motion is assumed to consist only

of translation, neglecting any scaling, rotation or other warp-

ing of the images.

The change of scene irradiation and local motion can be

ignored because of the rather short time; if there is no non-

uniformity and registration error, then there is obviously

Ynði; jÞ ¼ Yn−1ði − di; j − djÞ ¼ FFT−1ð�Yn−1ðu; vÞe
−2πjðudiþvdjÞÞ:

ð8Þ

Equation (8) assumes that there is a one-to-one mapping of

pixels in the two adjacent frames. This is, of course not true.

Some new scene data has inevitably been introduced at the

edges of the image, while some has been translated out of

the image frame and lost. Evidently, the validity of the equa-

tion is confined to the overlapped area between frame n − 1

and frame n (see Fig. 1).

C. Nonuniformity Correction
From the discussion above, if there is an ideal situation, i.e.,

registration error can be ignored, and there is no nonunifor-

mity or irradiation change of the scene between the two

frames, then the Eq. (8) is established. However, Eq. (8) is

never valid due to the presence of random noise and nonuni-

formity. Therefore, we define the error function:

enði; jÞ ¼ X̂n−1ði − di; j − djÞ − X̂nði; jÞ: ð9Þ

Here the error function enði; jÞ is defined as the corresponding

difference between the two adjacent corrected frames. By

contrast, in Scribner’s method, the desired image is a blurred

version of the observed frame [9]. In our algorithm, the

corrected (using estimated parameters) n − 1th frame is

considered to be the reference frame and the shift of the
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nth frame is determined with respect to the reference frame.

We set the corresponding value in frame n − 1 as the “target

value” of the ði; jÞth detector in the nth frame, i.e.,

enði; jÞ ¼ Tnði; jÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞ; ð10Þ

where

Tnði; jÞ ¼ FFT−1ð
�̂
Xn−1ðu; vÞe

−2πjðudiþvdjÞÞ: ð11Þ

In particular, when the translation of two frames is of an

integral pixel, then Eq. (11) can be transformed as

enði; jÞ ¼ ðwnði − di; j − djÞ · Yn−1ði − di; j − djÞ

þ bnði − di; j − djÞÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞ:

ð12Þ

To minimize the error enði; jÞ in the mean square error sense, a

functional J is defined as

Jði; jÞ ¼
X

n

enði; jÞ
2

¼
X

n

ðTnði; jÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞÞ
2; ð13Þ

where the correction parameters wnði; jÞ and bnði; jÞ must be

recursively updated in order to minimize the cost function

equation [Eq. (13)] that allows good NUC performance.

Now, if we minimize Eq. (13) with respect to the parameters

wnði; jÞ and bnði; jÞ using a stochastic gradient-descent

strategy [9,17] over frames, the correcting parameters can

be updated as

wnþ1ði; jÞ ¼

�

wnði; jÞ þ a · enði; jÞ · Ynði; jÞ when pixel ði; jÞis in the overlapped area
wnði; jÞ other

; ð14Þ

bnþ1ði; jÞ ¼

�

bnði; jÞ þ a · enði; jÞ when pixelði; jÞis in the overlapped area
bnði; jÞ other

; ð15Þ

where the parameter a is known as the learning rate. It should

be pointed out that the correction parameters are only up-

dated in the overlapped part between frame n − 1 and frame

n. The learning rate a stands for the step size of each iteration.

The value of a governs the convergence behavior of the algo-

rithm. A higher convergence speed will be gained with a larger

a, while good stability of the algorithm can be achieved with a

relatively small a. The block scheme of the whole algorithm is

shown in Fig. 2, where a one-frame delay element is repre-

sented as a box with a z−1 symbol.

D. Convergence
In the previous subsection, the LMS algorithm with the error

function of Eq. (9) is used to realize the iterative estimation of

correction gain and offset parameters. But there is nothing to

prove the rationality of the error function. Here, a simple

analysis of when the relative displacement is of an integral

number is undertaken. Then, the cost function J should be

Jði; jÞ ¼
X

n

enði; jÞ
2

¼
X

n

ððwnði − di; j − djÞ · Yn−1ði − di; j − djÞ

þ bnði − di; j − djÞÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞÞ
2:

ð16Þ

Substitute Eq. (1) into Eq. (16):

Jði; jÞ ¼
X

n

ððwnði − di; j − djÞ · gn−1ði − di; j − djÞ

· Xn−1ði − di; j − djÞ

þwnði − di; j − djÞon−1ði − di; j − djÞ

þ bnði − di; j − djÞÞ

− ðwnði; jÞ · gnði; jÞ · Xnði; jÞ þwnði; jÞ · onði; jÞ

þ bnði; jÞÞÞ
2: ð17Þ

If the registration error and change of irradiance of the scene

can be ignored, Xn−1ði − di; j − djÞ is the irradiance that the

focal plane’s ði; jÞth detector in the nth frame has collected:

Xn−1ði − di; j − djÞ ¼ Xnði; jÞ: ð18Þ

If Eq. (17) is required to be a minimum, it is clear that

wnði − di; j − djÞ · gn−1ði − di; j − djÞ ¼ wnði; jÞ · gnði; jÞ;

wnði − di; j − djÞ · on−1ði − di; j − djÞ þ bnði − di; j − djÞ

¼ wnði; jÞ · onði; jÞ þ bnði; jÞ: ð19ÞFig. 1. Schematic diagram of the overlay of two frames.
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It should be presumed that the motion between two adjacent

frames is random, n is large enough, and the nonuniformity

drifts very slowly in time and is almost fixed with respect

to frame index n. Thus,

wnði; jÞ · gnði; jÞ ¼ wnðk; lÞ · gnðk; lÞ;

wnði; jÞ · onði; jÞ þ bnði; jÞ ¼ wnðk; lÞ · onðk; lÞ þ bnðk; lÞ;

∀i; j; k; l ∈ Z; i; l ≤ M; j; k ≤ N: ð20Þ

Without loss of generality, we assume

wnði; jÞ · gnði; jÞ ¼ 1;

wnði; jÞ · onði; jÞ þ bnði; jÞ ¼ 0;

∀i; j ∈ Z; i ≤ M; j ≤ N: ð21Þ

Then we can get

wnði; jÞ ¼
1

gnði; jÞ
; bnði; jÞ ¼ −

onði; jÞ

gnði; jÞ
: ð22Þ

It can be seen from the above analysis that minimizing the

cost function J is equivalent to approaching the ideal correc-

tion gain and offset. Hence, it is reasonable to set the corre-

sponding value in frame n − 1 as the “target value” of the

ði; jÞth detector in the nth frame. With the increase of iteration

times, the error will gradually decrease, making any two de-

tectors with the same scene generate the same output value.

When J is minimized to zero, that means the nonuniformity of

the IRFPA has been totally removed, then the LMS iteration

has reached steady state. However, due to the drift of nonu-

niformity, registration error, local motion between images,

and the temporal noise, the algorithm can never achieve stea-

dy state. Therefore, the algorithm should not stop iterating to

guarantee the correction of the temporal drift of the FPN.

Note that, if a significant number of bad pixels are present,

a bad pixel detection and replacement method may be

required prior to the registration to produce an unbiased

“desired” image.

3. COMPARATIVE STUDY OF RELATED
METHODS

In this section, the proposed IRLMS method is compared with

two well-established NUC techniques. The first one is Scrib-

ner’s algorithm [9], which is also called LMS for short since it

is a LMS-based technique. It is a representative of statistical

SBNUC methods and has been widely studied because of its

small computational load and memory requirement. Besides,

both IRLMS and the Scribner’s algorithm use the stochastic

steepest decent technique to optimize the correction coeffi-

cients. The second one is MCA [14], because it is a represen-

tative of registration-based SBNUC methods and shares the

similar idea that each detector should have an identical

response when observing the same scene point for a short

time. The comparisons are focused on the rationality and

computational load in this section. The comparisons of their

experimental performance will be illustrated in Section 5.

A. Rationality and Feasibility
The basic idea of Scribner’s method is that applying a local

neighborhood interpolating function to create the “desired”
image then using the LMS algorithm based on the stochastic

gradient drives the corrected image toward it. This method

works very well when the fixed pattern noise shows less spa-

tial correlation since the interpolating function is usually a

spatial low-pass smoothing filter and the FPN can be effec-

tively averaged. However, it is clear that the local spatial aver-

age is not always a good estimate for the real incident infrared

irradiance. Thus, an enhanced version of the Sicribner’s meth-

od, known as gated adaptive LMS (GALMS) [17] was recently

proposed to counteract the ghosting artifacts caused by this

inconsistency. In the GALMS method, the updating process

halts to prevent the signal of the scene being assumed as

the nonuniformity noise when the global motion is insuffi-

cient. In addition, an adaptive learning rate is introduced to

increase the efficiency of the learning process. The GALMS

method largely solves the “burn-in” problem in Scribner’s
method and shows great improvement in NUC performance.

In contrast, the MCA technique developed by Hardie et al.

[14] employs the idea that the average of properly registered

observed image frames gives an unbiased estimate of the true

scene. For offset-only correction, i.e., the gain is assumed

Fig. 2. Block diagram of the proposed algorithm.
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uniform across all detectors with a value of unity, the offset

parameters are given by simply subtracting the observed

image from the true scene estimate. For the linear model

[Eq. (1)], gain and offset parameters can be obtained by using

a least-square fit. MCA can get great NUC results within only

tens of frames and introduce fewer artifacts than the GALMS

since the estimate of true scene is more accurate and reason-

able. Compared with GALMS, the MCA technique does not use

any statistical assumptions about the scene and each point of

the true scene is determined by the pixel values that represent

the same scene position. Thus, the true signal is enhanced

while the fixed pattern noise is reduced, and the interference

of true scene signals in the correction parameters is almost

eliminated through the registration operation, while each

point of the “desired” image of GALMS is only a coarse

approximation from its neighborhood. And, inevitably, the

correction image will suffer degradation in visual quality to

varying degrees.

As we know, in the MCA method, the most critical step is

creating the true scene estimate, i.e., a panoramic image. With

the estimate of the desired scene data in hand, subsequent

NUC can be performed straightforwardly. However, it is

usually impractical to generate a panoramic image first and

then correct the IRFPA. So, in general conditions, panorama

accumulation and NUC should be performed simultaneously.

However, there is little information available in the literature

[14] about these problems, such as how to update the panor-

ama, especially when the scene does not remain sufficiently

unchanged over time, or how to perform the algorithm in a

more efficient way for practical applications.

Compared with GALMS and MCA, the “desired” image in

IRLMS is less intuitive since it is only a properly shifted frame

without any denoising operation, such as spatial smoothing or

temporal averaging. In IRLMS, we do not explicitly drive the

corrected image toward the true scene value, however; we fo-

cus only on the actual task for NUC, i.e., making any two de-

tectors with the same scene produce the same output value.

As discussed in Subsection 2.C, it could get an equivalent NUC

effect while avoiding the strenuous work of estimating the

true scene. When solved by the stochastic gradient-descent

method, the update is a function of only the current frame

and the previous frame, which makes the algorithm very easy

to implement in practice.

There are grounds for believing that the IRLMS method

produces even fewer artifacts andhas higher steady-state accu-

racy. First, we assume that the observed scenes do not change

significantly during the time between two consecutive frames.

This is often reasonable for most cases because of the rather

short time. Then, the IRLMS method automatically has no up-

datewhennomotion is present,which is optimumwith regards

to “burn-in” since SBNUC generally requires motion between

frames. Finally, the updating process almost stops when the

nonuniformity is totally removed since the properly shifted

twoadjacent image framesarealmost thesame,whichprevents

the correction coefficients from being wrongly updated.

B. Computational Complexity and Storage Demands
Small computational load and low memory requirements are

two important aspects for real-time applications. It seems that

GALMS is most suitable for real-time performance because

there is no need for registration. However, it poses more

problems for real-time implementations, especially if a large

filter mask is required while an IRFPA’s nonuniformity mostly

concentrates on low spatial frequency and shows great spatial

correlations. Obviously, the calculation of GALMS is mainly

concentrated on spatial smoothing and calculating local

variance for each pixel. Usually, the local variance can be

calculated within a smaller window and the spatial smoothing

convolution can be accelerated by separating the two-

dimensional filter into two one-dimensional filters. So the com-

putational complexity ofGALMS in this case isOð2nwMNÞ for a
nw × nw filter window.

MCA involves many calculations since it is not an iterative

algorithm. Without consideration of the registration opera-

tion, the complexity of the correction operation is OðLMNÞ
for offset-only correction and Oð8LMNÞ for linear correction
because the least-square fitting involves some matrix opera-

tions [14]. L stands for the number of frames used for estima-

tion and usually L should be larger than 20 to ensure accuracy.

In addition, the MCA methods require much more memory

since a panoramic image must be stored.

However, for the IRLMS method, only three multiplications

and two additions are required per sensor per update. There-

fore, the complexity of the IRLMS algorithm is essentially

determined by the registration method. The complexity of the

registration algorithm can be reduced to Oðκ
1

2MNÞ without sa-

crificing accuracy [22]. There isnocritical differencebetweena

smaller κ and a larger κ since the actual registration accuracy is

largely determined by the level of nonuniformity. Further dis-

cussionsconcerningtheregistrationaccuracyunderconditions

of nonuniformity are presented in Subsection 4.A. In general,

κ ¼ 10 is sufficient to meet the accuracy requirements since

our method is an iterative algorithm. Therefore, the computa-

tionalcomplexityofIRLMSisevenlowerthanthatoftheGALMS

algorithmwitha largewindow. Inaddition, IRLMScanbe imple-

mentedwith very littlememory since the extra storage demand

is only one previous image frame.

4. KEY PERFORMANCE ISSUES

In this section, the performance of the proposed correction

algorithm is studied using images and sequences corrupted

by simulated nonuniformity. Three main areas are studied:

the accuracy of registration in the presence of fixed pattern

noise, choosing a proper learning rate, and displacement

between frames.

A. Registration Accuracy with Nonuniformity
The performance of NUC algorithm proposed in this paper

depends greatly on the accuracy of estimation of the global

motion between the frames. In order to estimate the accuracy

of the registration algorithm adopted by this paper under the

conditions of fixed pattern noise, an 8 bit gray-scale 320 × 256

image pair with known relative displacement is studied. Nor-

mal distributed gain and offset nonuniformity are applied to

the image pair to study the relationship between registration

error and level of nonuniformity. Figure 3 shows the relation-

ship between the mean absolute error (MAE) of translation

estimates with the levels of gain and offset.

Under an ideal circumstance, the registration MAE should

be controlled under 0.1. But the proposed algorithm only

takes the relative displacement between two frames into

consideration and the error does not accumulate with the
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frames. Therefore, a value under 0.3 can be accepted, that is,

the standard deviations of gain and offset are, respectively,

under 0.4 and 40. Besides, nonuniformity will decrease with

the frame number and the registration accuracy will increase

gradually. If the level of the IRFPA’s nonuniformity exceeds

this range, the noise becomes too dominant in the image

and no relative translation can be detected. At this point,

calibration-based NUC methods or statistical scene-based

algorithms can be performed beforehand since they require

no registration. Once the nonuniformity is reduced to some

degree, the proposedmethod can be used for periodic updates.

B. Learning Rate Analysis
The following experiment is designed for studying the pro-

posed IRLMS method under different learning rates. The infra-

red sequence with artificial nonuniformity is generated from a

clear 300 frame infrared video sequence acquired at 50 frames

per second (FPS), using a synthetic gain with a unit-mean

Gaussian distribution with standard deviation of 0.2, and a

synthetic offset with a zero-mean Gaussian distribution with

standard deviation of 40. The experiment is repeated for three

learning rate values: 0.025, 0.05, and 0.1. The metric used to

measure the NUC performance is given by the root-mean-

square error (RMSE), which is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M · N

X

i;j

ðXði; jÞ − X̂ði; jÞÞ2
s

; ð23Þ

where Xði; jÞ is the ði; jÞth pixel’s value of the true frame,

while X̂ði; jÞ is the pixel’s value of the corrected frame. RMSE

is used to measure the overall difference between a clean re-

ference image against its noisy and nonuniformity corrected

versions. The RMSE curves versus frame numbers of three

different learning rates are shown in Fig. 4.

It can be observed from Fig. 4 that smaller learning rates

lead to slower and softer performance curves, but they are

more stable than those of larger values. Using a ¼ 0:1, RMSE

can be reduced below 20 within only 20 frames, after which

relatively large fluctuations appear in the curve; especially

when it is near the 100th frame, RMSE rebounds to the posi-

tion of nearly 30, and then the curve fluctuates around 20.

When a is set as 0.025, the curve falls rather stably and, after

300 frames, the RMSE reaches 5.39. However, the conver-

gence speed is relatively slow and the RMSE does not fall be-

low 20 until 100 frames are used. Therefore, a good balance

among correction quality, convergence speed, and stability

must be considered. Considering these, relatively ideal con-

vergence speed and stability can be attained when a is 0.05.

C. Relative Translation Analysis
During the previous analysis, we found that using a ¼ 0:05

provides a reasonable trade-off between convergence speed

and stability. Apart from learning rate, the displacement be-

tween frames also affects the performance of the proposed

algorithm. For some high-frame-rate infrared cameras, whose

frame rates can exceed 200 FPS, almost no translation

between two frames can be detected in most cases. The per-

formance of the proposed method will obviously degenerate if

we still use two adjacent frames to register. A simple idea in

this case is to perform correction by choosing frame pairs

with intervals of k rather than 1. Then, the error function

Eq. (9) can be modified as

enði; jÞ ¼ X̂n−kði − di; j − djÞ − X̂nði; jÞ: ð24Þ

By adjusting the value of k, the relative translation of the

image pair can be controlled.

Fig. 3. Mean absolute error of translation estimates for various levels
of gain and offset nonuniformity in an 8 bit gray-scale image.

Fig. 4. (Color online) RMSE versus frame number using different learning rates.
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The displacement between two adjacent frames is the

primary focus of this test. In order to test the relationship

between displacement between two adjacent frames and

the efficiency of correction, a 50 FPS 320 × 256 long-wave

infrared camera is used. However, it moves very slowly; thus,

a 300 frame “high-frame-rate” video sequence is gained. Then

the sequence is corrupted with the same level of nonunifor-

mity as in Subsection 4.B. The average displacement d is

defined as

d ¼

P

m
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diðnÞ
2 þ djðnÞ

2

q

m
; ð25Þ

where m is the number of iteration times, and diðnÞ and djðnÞ
are, respectively, the horizontal and vertical shifts between

the mth image pair. Different values of k are chosen to gen-

erate different values of d. With different values of d, the final

RMSE values after 300 iterations are compared. The relation-

ship between RMSE and d is shown in Fig. 5.

From Fig. 5, it is found that the final RMSE is relatively large

when the average relative displacement d is either too large or

too small. If the value of d is too small, the pixel will be in less

touch with the pixels relatively far from it, so it will be hard for

the nonuniformity of low spatial frequency to get adequate

correction. If the value of d is too large, the overlapped area

between two frames will be too small, resulting in fewer

updated correction parameters in each iteration. Meanwhile,

the registration error will increase with d since the images

obviously share less and less of the scene data. Fortunately,

d should be controlled within the range of 2–8, ideally, which

is not that narrow. When setting the value of k, it is best that

the value of d falls into this range. However, there is no guar-

antee that the value of k is appropriate throughout the video

sequence and it cannot be properly chosen beforehand in

many practical applications. A more practicable solution is

to update the correction coefficients only if sufficient dis-

placement is measured between the current frame and a re-

ference frame. The reference frame is only refreshed when the

correction coefficient is updated. Figure 5 can be used as the

reference for choosing this trigger displacement.

5. EXPERIMENTAL RESULTS

To compare the various SBNUC algorithms, and, in particular,

to demonstrate the efficacy of the proposed IRLMS algorithm,

we apply our method to both simulated and real data.

A. Applications to Simulated Nonuniformity
The performance of IRLMS is studied and compared with the

performance of GALMS and MCA by applying these algo-

rithms to 14bit infrared image sequences corrupted by simu-

lated nonuniformity. The infrared sequences with artificial

nonuniformity are generated from a clear 600 frame infrared

video sequence with the same level nonuniformity as in

Subsection 3.B. The metric used to measure the NUC perfor-

mance is given by the peak signal-to-noise ratio (PSNR),

which is widely used to quantify the differences between

two images, and it is defined as

PSNR ¼ 20 log10

�

2b − 1

RMSE

�

; ð26Þ

where b represents the number of bits per pixel in the image,

which, in this case, is equal to 14. The PSNR of the corrupted

image sequences with simulated nonuniformity are about

23:5dB for all the frames. Larger values for the PSNR indicate

better performance.

The GALMS method is tested with a step size of 0.05 and

two window sizes of 3 × 3 for an average filter and 21 × 21

for a Gaussian low-pass filter (recommended in [17]). The

change threshold is set to 20. The learning rate a takes the

value of 0.05 in IRLMS, and update trigger displacement is

set to 3.5. The single-step discrete Fourier transform approach

[22] is adopted for the implementation of the registration

method. In MCA, the first 30 frames are registered and a

panoramic image is created before correction. Then the cor-

rection gain and offset are estimated using the 30 frames by

least-square fitting and the following frames are corrected

using the estimated parameters.

1. Nonuniformity Correction Performance
The PSNR evolution of the three tested algorithms is displayed

in Fig. 6. The curve of MCA does not increase before frame 30

since its correction parameters are calculated by the first 30

frames. It can be noted from Fig. 6 that the IRLMS method

significantly outperforms the other methods due to its faster

convergence speed and higher PSNR. For the first 50 frames,

the curves of IRLMS and GALMS have a stable increasing ten-

dency. The speed of the IRLMS algorithm takes the lead and it

only takes 50 frames to cross the 35dB barrier. For the rest of

the sequence, it never goes below this quality. GALMS with a

3 × 3 window converges slower than IRLMS for the first 150

Fig. 5. (Color online) Relationship between RMSE and average displacement d (after 300 times iteration, learning rate a ¼ 0:05).
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frames and it keeps a gap of nearly 1:2dB below IRLMS for the

remaining test videos. The performance of GALMS with a 21 ×

21window is worse than that achieved with a smaller window.

This is mostly due to the spatial independence of the nonuni-

formity. A 3 × 3 window is large enough for averaging the

nonuniformity with a Gaussian distribution, while a larger

window leads to greater estimation errors. Using the para-

meters calculated by the first 30 frames, the PSNR of MCA

for all subsequent frames is around 36dB. It is rather high

in the early stage, but it is overtaken by IRLMS and GALMS

with a 3 × 3 window subsequently, since its correction para-

meters are not updated.

Figure 7 (Media 1) shows the images for the 570th frame.

Figure 7(a) shows the raw image corrupted with simulated

nonuniformity. The outputs using GALMS, MCA, and IRLMS

are shown in Figs. 7(b)–7(e), respectively. In the outputs of

GALMS, some ghosting artifacts of the wire poles can be ap-

preciated. There is also some residual nonuniformity that can

be perceived in the output of MCA. However, we can hardly

see any ghosting artifact in the IRLMS’s output and the level of

residual nonuniformity is rather low. In order to render the

results more perceptible, the error images for these methods

are shown in Fig. 8, scaled identically. It is clear that the error

images of GALMS have more scene information. These results

are ratified by the PSNR of each image displayed.

2. Computational Efficiency
In Subsection 3.B, we developed a brief analysis on the

computational complexity and memory demand of the three

algorithms. In real computer systems, however, memory

Fig. 7. (Media 1) Simulated nonuniformity image results. (a) Image with simulated gain and offset nonuniformity (PSNR ¼ 23:6 dB). (b) Corrected
with GALMS 3 × 3 (PSNR ¼ 36:6 dB). (c) Corrected with GALMS 21 × 21 (PSNR ¼ 34:7 dB). (d) Corrected with MCA (PSNR ¼ 36:4dB). (e)
Corrected with IRLMS (PSNR ¼ 38:3 dB).

Fig. 6. (Color online) PSNR results of the synthetic noisy test sequence corrected using different NUC methods.
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hierarchy, operating system planning, and many other practi-

cal factors must be taken into account and a theoretical anal-

ysis is not enough. We are more interested in how fast the

different methods are in actual operation. These tests were

made with an Intel Core2 Duo T5870 2:0GHz processor and

2Gbyte RAM in conjunction with MATLAB’s cputime func-

tion. In MCA, the estimation of the linear correction pa-

rameters takes approximately 55 s. So here we only compare

IRLMS with GALMS. Table 1 shows a rough average of CPU

time consumed per frame of the two algorithms. It seems that

IRLMS is more time consuming than GALMS with a 3 × 3 aver-

age window and its speed is very close to that of GALMS with

a 21 × 21 Gaussian window. This is probably because most of

the functions GALMS used are provided by MATLAB, while

the registration function used in IRLMS is a self-edit and with-

out any significant optimization.

B. Applications to Real Infrared Data
In this subsection, the algorithm put forward is applied to two

sets of real infrared data. The first set of data was collected at

11 a.m. by using a 320 × 256HgCdTe FPA camera operating in

the 3−5 μm range and working at 25 FPS. The second set was

acquired at 6 p.m. by using another 320 × 256 HgCdTe FPA

camera operating in the 8−14 μm range and at a rate of 50

FPS. Two sample images of the two test sequences are shown

in Fig. 9. A serious striping effect can be found in Fig. 9(a) and

it mainly exists in the high spatial frequency of the image,

while the FPN in Fig. 9(b) shows more low spatial frequency

characteristics.

When dealing with real infrared images, it is not always

possible to obtain the calibration data needed to perform a

radiometrically accurate correction to be used as a reference

for comparison purposes, so the PSNR cannot be calculated.

However, the roughness index ρ is often used as a measure or

indicator of the amount of FPN present in a real image. The

index is calculated as follows:

ρ ¼
‖h1 � I‖1 þ ‖h2 � I‖1

‖I‖1

; ð27Þ

where h1 and h2 are a horizontal and a vertical difference

filter, respectively, I is the image under analysis, ‖I‖1 is

the L1 norm of I, and � represents discrete convolution. Note

Fig. 8. Error images for (a) GALMS 3 × 3; (b) GALMS 21 × 21; (c) MCA; (d) IRLMS. All images are scaled to the same display range.

Table 1. Average CPU Time Consumed per Frame

for GALMS and IRLMS

GALMS

3 × 3

GALMS

21 × 21

IRLMS

Average CPU time per frame (s) 0.069 0.172 0.181
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the roughness index ρ does not require the knowledge of the

true image, so it can be used as a measure of NUC in real

infrared data. In addition, the video sequences were generated

from all the different versions of corrected data for visual

analysis. Afterward, the NUC over the two test sequences

was done using the selected algorithms with the same para-

meter sets as in Subsection 5.A. The results of the mean rough-

ness over each sequence are presented in Table 2. From there,

the IRLMS clearly outperformed all the other algorithms in the

mean sense.

A performance measurement like the roughness index can

help, but it does not necessarily indicate good correction per-

formance or whether there is the presence of artifacts. There-

fore, the video sequences must be watched to perform a visual

evaluation (Media 2 and Media 3). From the two video

sequences, it is very noticeable that the IRLMS compensates

the nonuniformity the fastest and performs the best over the

Fig. 10. (Media 2) NUC performance comparison of frame 50 of the first test sequence. (a) Unprocessed (ρ ¼ 2:059 × 10−3); (b) GALMS 3 × 3

(ρ ¼ 1:552 × 10−3); (c) GALMS 21 × 21 (ρ ¼ 1:419 × 10−3); (d) MCA (ρ ¼ 1:371 × 10−3); (e) IRLMS (ρ ¼ 1:355 × 10−3).

Fig. 9. Sample images of the two test sequences. (a) Frame 1 of the first test sequence. (b) Frame 1 of the second test sequence.

Table 2. Mean Roughness ρ�×10−3� Results for

the Two Test Sequences

Algorithm Sequence I Sequence II

Unprocessed 1.974 1.292

GALMS 3 × 3 1.313 0.761

GALMS 21 × 21 1.219 0.662

MCA 1.201 0.691

IRLMS 1.141 0.613
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two sequences. Besides, it effectively generates much fewer

ghosting artifacts than the other techniques. Frame samples

of the two sequences at different stages of the NUC process

are presented in Figs. 10–13.

Figures 10 and 11 show frame 50 of each individual subse-

quence. It can be seen that the proposed IRLMS algorithm

almost eliminated the FPN within only 50 frames. It is no won-

der that MCA also gives good results because its correction

Fig. 12. (Media 2) NUC performance comparison of frame 150 of the first test sequence. (a) Unprocessed (ρ ¼ 1:769 × 10−3); (b) GALMS 3 × 3

(ρ ¼ 0:997 × 10−3); (c) GALMS 21 × 21 (ρ ¼ 0:929 × 10−3); (d) MCA (ρ ¼ 0:871 × 10−3); (e) IRLMS (ρ ¼ 0:855 × 10−3).

Fig. 11. (Media 3) NUC performance comparison of frame 50 of the second test sequence. (a) Unprocessed (ρ ¼ 1:632 × 10−3); (b) GALMS 3 × 3

(ρ ¼ 1:251 × 10−3); (c) GALMS 21 × 21 (ρ ¼ 1:129 × 10−3); (d) MCA (ρ ¼ 0:971 × 10−3); (e) IRLMS (ρ ¼ 0:852 × 10−3).
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parameters are calculated by thoroughly examining the first

30 frames. The GALMS method, in contrast, converges more

slowly. Because of the spatial correlations of the nonunifor-

mity, a 3 × 3 average window is probably too small to smooth

the nonuniformity effectively, leading to a much slower

convergence rate than the Gaussian cases discussed in

Subsection 5.A. GALMS with a 21 × 21 window obtains better

results compared with the one with a 3 × 3 window. But in its

outputs, especially in Fig. 11(b), some low spatial frequency

nonuniformity and ghost artifacts are clearly visible.

Figures 12 and 13 show frame 150 of the first sequence and

frame 230 of the second sequence, respectively. It can be seen

that the nonuniformity presented in the raw frame has been

notably reduced by all the NUC methods. However, the ghost-

ing artifacts can be perceived in the outputs of GALMS. Also,

the residual low spatial nonuniformity is also visible in the out-

put of the GALMS with a 3 × 3window. In the outputs of MCA,

we can see some residual nonuniformity, especially near the

borders of the images, because the parameters are estimated

using only 30 frames and all these frames may not share the

exact same field of view. However, in the correction outputs

of IRLMS, the residual nonuniformity is too low to be detected

by the naked eyes, and almost no ghosting artifact can be

detected.

6. DISCUSSION AND CONCLUSIONS

In this paper, a novel interframe-registration-based correction

for NUC in IRFPAs has been presented. This method uses a

phase-correlation method to estimate the motion between two

adjacent images and an LMS algorithm to calculate the gain

and offset correction coefficient of the FPA. The mean square

error between the two registered images is minimized to make

every two detectors with the same scene produce the same

output value. Thus, the accumulation of the registration error

can be avoided and the NUC is easily obtained. The strength of

the proposed algorithm lies in its reasonably simple assump-

tions and smaller calculation and memory requirements,

which make it more competitive in real-time processing.

Some experiments have been done to test the proposed al-

gorithm. It is shown that its performance can be further im-

proved by properly controlling the update process. In

addition, we have compared our method with the GALMS

and MCA SBNUC algorithms, which represent perhaps the

most commonly employed statistical method and registra-

tion-basedmethod. Experimental results demonstrate its great

performance and capabilities to avoid undesirable effects.

Since our method is based on registration, it also shares

some limitations with most registration-based NUC methods

and may not work for some particular conditions. The correc-

tion errors may result from local motion, scene rotation,

changes of scene irradiation, etc. When the scene objects are

imaged at a relatively small distance, warping of the images

should also be taken into account. However, corresponding

countermeasures are not so complicated in our method. A

possible solution is to create the reference frame using a more

complex registration method that takes these factors into

consideration.
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