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2 ESAT-PSI, KU Leuven, Belgium

3 Microsoft Research Ltd, Cambridge, UK
{mansfield, pgehler, vangool}@vision.ee.ethz.ch, carrot@microsoft.com

Abstract. Image retargeting algorithms often create visually disturb-
ing distortion. We introduce the property of scene consistency, which
is held by images which contain no object distortion and have the cor-
rect object depth ordering. We present two new image retargeting algo-
rithms that preserve scene consistency. These algorithms make use of a
user-provided relative depth map, which can be created easily using a
simple GrabCut-style interface. Our algorithms generalize seam carving.
We decompose the image retargeting procedure into (a) removing im-
age content with minimal distortion and (b) re-arrangement of known
objects within the scene to maximize their visibility. Our algorithms op-
timize objectives (a) and (b) jointly. However, they differ considerably
in how they achieve this. We discuss this in detail and present examples
illustrating the rationale of preserving scene consistency in retargeting.

1 Introduction

The increasing diversity of modern displays calls for methods able to transform
images so as to best exploit the display form factor. Such media retargeting has
received much attention lately [1, 2, 4–8, 10, 11, 14, 18, 19, 22, 23]. Recent success
can be attributed to two developments: firstly, the use of “content-aware” al-
gorithms with more accurate image models; secondly, the formulation of the
problem as a graph labelling problem, for which efficient solvers exist [3, 21].

Most existing approaches are fully automatic, using low level visual saliency
to determine image region importance. These suffer problems with structured
objects, which low level saliency is not able to detect. However, we assume that a
relative depth map is available, provided by the user. By a relative depth map, we
refer to object segmentations with a depth order label, as illustrated in Fig. 1(b).

Given this depth map, our novel retargeting algorithms are capable of re-
targeting such that objects are protected (i.e. not distorted) and maintain their
correct depth ordering. We term this condition scene consistency. We extend
the well-known seam carving algorithm [1] to achieve this. To the best of our
knowledge, these are the first retargeting algorithms that are able to re-arrange
objects such that object occlusions are created, as illustrated in Fig. 1.
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(a) (b) (c) (d)

Fig. 1. For image (a) with relative depth map (b), illustrated in 3D in (c), we produce
the scene consistent retargeted image (d) by the new scene carving algorithm

We acknowledge that assuming our additional input is a strong assumption,
but the improvement in the output can make its acquisition worthwhile. Fur-
thermore, recent developments allow the input to be acquired relatively easily.
Firstly, efficient interactive user interfaces are now available for such annotation.
In our work we make use of an interface employing the GrabCut algorithm [13],
with which all our depth maps were created within a few minutes. Secondly,
recent work [9, 16] has begun to succeed in detecting occlusion boundaries and
acquiring 3D models from single images. These techniques could be used in au-
tomating, at least partially, the annotation process. Thirdly, commercial stereo
cameras are hitting the market.4 With state-of-the-art stereo depth estimation
techniques [17], this technology may allow complete automation of this process.

In the next section we discuss related work on image retargeting. In Sect. 3
we discuss the properties of scene consistent retargeted images. Sections 4 and 5
contain the proposed algorithms. Real world examples are shown in Sect. 6 and
we conclude with a discussion on future work in Sect. 7.

2 Related Work

There exists a large body of literature on media retargeting. In this section we
discuss work which is most relevant to ours. Please note that we focus on image
retargeting, although many algorithms have been extended to video.

On Retargeting. Two main strategies exist for image retargeting: minimizing
applied distortion or maximizing similarity between the input and output images.

Arguably the simplest retargeting methods are cropping and scaling. These
methods usually are not content aware and tend to give inferior results to algo-
rithms that are. Some work exists on content-aware scaling and cropping [15, 19,
20] but these methods alone have limited ability to retain content or can cause
distortions such that interesting parts of the image are no longer clearly visible.

Seam carving [1, 14] has received a lot of attention due to its elegance. It
iteratively removes connected paths of pixels so as to minimize the resulting

4 E.g. Fuji FinePix 3D W1. www.fujifilm.com/products/3d/camera/finepix_

real3dw1.
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distortion. It can be thought of as forgetting the input image altogether, as the
distortion it measures is relative only to the previous image. Together with our
algorithms and other extensions [7, 8, 15], it falls under the first strategy. We
build on it for reasons of speed and because of the ability to explicitly control
the modifications of pixels. We discuss this in greater detail in Sect. 4.1.

The second strategy requires a notion of distance between the input and
output image. Many have been proposed and used in retargeting, based on e.g.
patch colour similarity [2, 15, 19] with dominant colours [5], saliency with image
gradients [22] or with face attention [18], and colour and gradient difference [11].

On Protecting Objects. Object protection (i.e. non-distortion) is important
for the realism of synthesized images. In dynamic video synopsis [12], objects are
detected using background subtraction, and protected in the synopsis. In [6] the
user is requested to mark parts of the image where shape should be preserved.
In [1], users can specify regions to be protected or removed during retargeting.

The method proposed by [18] is closest to our approach with regard to object
protection. Importance maps are created automatically, from which important
regions are detected. The retargeted output is constructed by removing the im-
portant regions, inpainting the resulting holes in the background, rescaling the
background, and finally re-inserting and re-arranging the removed regions to
create the output. The important regions thus avoid the rescaling, and so are
protected. The authors show results which are visually pleasing, but the method
relies on the strength of the inpainting algorithm. Also, unlike our methods, it
is not able to create consistent object occlusions.

3 Scene Consistency

We first introduce the key concept of scene consistency. We model image for-
mation as projection of flat fronto-parallel objects at different depths onto a
background plane. An image can be decomposed into such a model as illus-
trated in Fig. 1(c). A retarget of the image is scene consistent if objects (1) are
not distorted but kept as in the original image and (2) are placed in their correct
depth ordering. We also define the concept of object consistency, which is held
by retargets for which property (1) holds, that objects are not distorted.

This concept provides a formalization of scene realism, which we want to
maintain during retargeting. To do so requires the model decomposition of the
original image, which for a single image can be described simply in terms of
a relative depth map, giving object segmentations each with a depth ordering
label as illustrated in Fig. 1(b). Object segmentations alone allow scene consis-
tent retargeting, by enforcing no distortion for the objects, but with the depth
information, scene consistent occlusions may also be generated. The benefits of
scene consistent retargeting are illustrated for a toy image in Fig. 2. Note that
we distinguish between occlusions that require reappearance and those that do
not, a distinction we find arises in practice. By “reappearance” we refer to pixels
previously occluded becoming visible again while iterative retargeting.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Toy image (a) with depth layers (b) is retargeted by seam carving [1] (c), seam
carving with object protection (Sect. 4.1, [1]) (d) and (e), seam carving with occlusions
(Sect. 4.2) (f) and scene carving (Sect. 5) (g). Our two new algorithms (f, g) may
form occlusions: in seam carving with occlusions (f), occlusions that do not require
reappearance may be formed (see Sect. 4.3); in scene carving (g), all scene consistent
occlusions may be formed

Occlusion in the original image means some parts of the model decomposi-
tion are unknown. We refer to these as holes. Holes constrain scene consistent
retargeting: all holes must be kept occluded, to prevent the need to inpaint.

We use the following notation throughout. The image intensity is Ir,c for
pixels (r, c) in the image domain P. An object map is defined over the same
domain as O(r, c) = o at pixels belonging to object o > 0; otherwise, O(r, c) = 0.

4 Towards Scene Consistent Seam Carving

In this section, we recap seam carving (S.C.) (Sect. 4.1), which we extend to be
able to create scene consistent object occlusions (Sect. 4.2) by enabling seams
to pass through occlusion boundaries. This extension we call seam carving with

object occlusions (S.C.+Obj. Occ.). We discuss a complication of this algorithm,
namely that it does not easily allow for object reappearance, in Sect. 4.3.

4.1 Seam Carving

Our algorithms build on seam carving with forward energy [14]. Seam carving
greedily removes seams with minimum energy from an image. A seam is an 8-
connected path through the image, containing a single pixel on each row (assum-
ing vertical seams are removed as we do throughout without loss of generality).
Removing pixel (r, c) causes the following distortions: it brings into horizontal
contact its Left (r, c−1) and Right neighbours (r, c+1) in row r. Depending on
where the seam passed in row r − 1, it may additionally bring into vertical con-
tact its Upper and Left or its Upper and Right neighbours. The energy of these
distortions is captured in the following terms, used as illustrated in Fig. 3(a):

ELR
r,c = |Ir,c−1 − Ir,c+1|

ELU
r,c = |Ir,c−1 − Ir−1,c|

EUR
r,c = |Ir−1,c − Ir,c+1| . (1)

These terms measure distortion by magnitude similarity of neighbouring pixels.
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Fig. 3. Graphs for dynamic programming (a) and graph cut (b) optimization of forward
energy seam carving. Only terms related to pixel (r, c) are shown. The red arc in (a)
corresponds to the red cut in (b), removing pixels (r − 1, c − 1) and (r, c)

The seam that corresponds to minimal energy can be efficiently found using
dynamic programming (D.P.), or using a graph cut (G.C.) [14]. In the latter, the
problem is cast as a binary graph labelling problem. The corresponding graph is
shown in Fig. 3(b). After the graph is cut, the pixel on each row directly left of
the cut is the seam pixel, as exemplified by the red arc and cut in Fig. 3. These
two frameworks are equivalent but have different properties [14].

The aim of this paper is to maintain scene consistency in retargeting. A
simple method for preventing object distortion is given in [1], which we refer
to as seam carving with object protection (S.C.+Obj. Prot.). The energies of all
arcs pointing to pixels that belong to an object are set to infinity:

ELR
r,c = ELU

r,c = EUR
r,c = ∞ ∀(r, c) ∈ {(r, c) : Or,c > 0} . (2)

This ensures that no seams pass through objects. As seams are progressively
removed, objects are moved together until they abut. Continuing to remove
seams, with infinite energy, would lead to great distortion (see Fig. 2(d)). For
object consistency we enforce that seams may then pass only through edges of
the image, resulting instead in a cropping (see Fig. 2(e)).

Neither of these methods allows seams to cut through the occlusion bound-
aries, moving objects behind one another. This would allow more flexibility for
seams to be removed. In the next section we present an algorithm to do this.

4.2 Seam Carving with Object Occlusions

We now describe seam carving with object occlusions (S.C.+Obj. Occ.). This
algorithm behaves like seam carving in background regions, but protects objects
and allows seams to pass through occlusion boundaries between objects, as il-
lustrated in Fig. 4(a). Two modifications are made, to the energies at occlusion
boundaries and to the graph structure, with the use of “supernodes”.

Occlusion Boundaries. For background pixels that border the edge of the
image or an object, the standard forward energy does not apply. Removing
these pixels can be viewed as an occlusion, with no visual distortion created. We
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replace the energies for these pixels with a small value us = 10. For ELR
r,c ,

ELR
r,c = us ∀(r, c) ∈ {(r, c) : Or,c = 0 ∧ ((r, c − 1) /∈ P ∨ (r, c + 1) /∈ P)}

∪{(r, c) : Or,c = 0 ∧ (Or,c−1 > 0 ∨ Or,c+1 > 0)} (3)

gives the formal condition for use of this term, with similar definitions for ELU
r,c

and EUR
r,c . This energy modification could also be applied to S.C.+Obj. Prot.

Introducing Supernodes. We must allow seams to run along object occlusion
boundaries while protecting objects. With occlusions possible, object protection
cannot be ensured by infinite energy terms as in (2). Consider the object in
Fig. 4(a) that is occluded and separated into two parts. Consistency requires
that seams pass all visible parts of an object on the same side, so seam (b)
in the figure is invalid. As can be seen, consistency does not exhibit optimal
substructure and cannot be optimized with dynamic programming.

We resolve this problem by considering the graph cut formulation and mod-
ifying the graph structure to protect objects. We introduce supernodes, nodes
that subsume a group of pixel nodes. A supernode takes only a single label, so
pixels subsumed by the supernode are assigned the same label.

Supernodes are constructed as follows, as illustrated in Fig. 4(b). Recall that
in the graph cut formulation, the seam pixels are those directly left of the cut
(c.f. Fig. 3(b)). We take the object closest to the camera and create a supernode
from all object pixels as well as their right neighbours. This procedure is now
iterated from the closest to the furthest object. At each step all object pixels and
their right neighbours are included in the supernode, if they are not already in
an existing supernode (e.g. the node in the second row, fourth column in 4(b)).

Energy Terms for Supernodes. The energy of object-background occlusion
was defined in (3). We now define the energy of object-object occlusion. We set
the energy terms of pixels in the occlusion boundary to a term uo where

uo =
uobj

|{(r, c) : Or,c = o}|
(4)

for a fixed constant uobj. Setting this constant high increases the energy of
occlusion of an object pixel, and even more so for smaller objects. We use uobj =
107. Note that the borders of the image are treated in the same way, as an
occluding object. Note also that if the occlusion is not valid, because it would
lead to reappearance of part of an object behind another or because the objects
next to each other are at the same depth, we can simply merge the supernodes
for the two objects to prevent any further occlusion occurring.

Occlusion boundaries cannot be carved with the algorithm so far described
if it is not possible for an 8-connected seam to pass through them. We therefore
relax the connectivity constraint around objects, allowing seams to jump through
horizontal occlusion boundaries. We do this by not attaching to supernodes the
infinite cost arcs that enforce this constraint (e.g. the arc from (r − 1, c + 1) →
(r, c) in Fig. 3(b)). An example of a seam this allows is the red cut in Fig. 4(b).
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4.3 Limitation to Non-Reappearance

The described algorithm can only remove pixels, hence the need to prevent
occlusions that would cause part of an object to reappear. We would like to
relax this constraint and include an energy term for this reappearance, as in
many images this is necessary to create useful occlusions as in Fig. 2(g). However,
we found that extending the algorithm so far described to this would lead to an
energy with higher order potentials, which are in general non-submodular and
cannot be optimized efficiently. We demonstrate this with an example before
describing, in Sect. 5, an algorithm which does not suffer this limitation.

Consider Fig. 5. Without reappearance, seams simply determine object move-
ments: if the object is to the right of the seam, it is moved left, and if it is to
the left, it maintains its position, relative to the left edge of the image. With-
out loss of generality we assume the same rule even with reappearance. The
seams passing through the boundaries between the blue and purple objects sim-
ply determine the behaviour at this boundary: seams on the left (c) and (f)
lead to reappearance on the right, and similarly with seams (d) and (e). Hence
the reappearance energy can be associated with passing through the boundaries.
However, no such relationship exists for the occlusion boundary between the blue
and green objects (seams (e) and (f)), where the reappearance also depends on
the purple object. In general, it would be necessary to encode the reappearance
energy to depend on the positioning of all of the objects. This energy would
contain higher-order potentials and in general be non-submodular.

(a)

(b)

(a)

uo

uo

us

us

us

us

us us us

usus

(b)

Fig. 4. Left: The blue “C” shaped object
is occluded (indicated by transparency) and
thus split into two separate parts. Hence the
red seam (b) does not preserve object con-
sistency, while seam (a) does.
Right: Two objects, their corresponding su-
pernodes and changed energy terms. The
object with black pixels is closest and cre-
ates the supernode containing nodes in the
dark grey area. The supernode of the blue
object is the light shaded region. Also shown
are those energy terms that changed com-
pared to seam carving. The red line indicates
a possible cut along the objects

(a) (b)

(c) (d)

(e) (f)

Fig. 5. S.C.+Obj. Occ. with reap-
pearance requires higher order terms.
The seams passing through occlusion
boundaries in (a) are shown in (b) re-
sulting in (c) to (f). The objects are
shown with transparency, with purple
in front of blue in front of green. Reap-
pearing pixels are highlighted in red
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5 Scene Carving

In seam carving, including the described extensions, the seam determines the
movement of objects. This led to the problem that objects and background
reappearance could not be optimized for efficiently. We resolve this problem by
using a layered decomposition (Sect. 5.1) and adding the possibility of removing
background holes (Sect. 5.2). This yields the scene carving (Sc. Carve) algorithm.

5.1 Layered Decomposition

The main idea of scene carving is the use of a layered image decomposition as
illustrated in Fig. 1(c). Each object is stored in a separate layer. The last layer
is referred to as the background image. This contains the background, with holes
where the background is occluded by objects. From this representation an image
can be created by “flattening” the layers onto the background image. Scene
consistency is inherent if object layers are only translated in the plane, but have
no pixels removed. We then only find seams in the background image.

This decomposition allows us to store an over-complete representation of the
image. Pixels that are occluded in the flattened image are still stored in their
respective layer and thus may reappear at a later iteration, as in Fig. 2(g).

The algorithm proceeds as shown in Fig. 6. At each iteration we consider all
object positionings, and for each find the seam in the background image. Since
the background image contains no objects, as in S.C., this can be done efficiently
using dynamic programming. We calculate the total energy as the sum of the
seam energy and object positioning energy, and take the joint minimum. Note
that for V object movements and N objects, there are V N object positionings
to test at each iteration. We use the V = 2 movements of S.C.: the object stays
in the same position or moves one pixel to the left, relative to the left of the
image. In Sect. 5.3 we describe a speed up for this combinatorial problem.

5.2 Seams in the Background Image

Since the seam does not carry the burden of determining object movement it
may pass anywhere in the background image, including through holes. The only
restriction is to ensure that all holes are occluded in the resulting image. We
now define the energy of such a seam in the background image.

For all
object
positionings

Find
optimal
seam in
background

Take joint
lowest energy 
object
positioning
and seam

Total Energy =
Seam Energy 
+ Object Position-
ing Energy

Scene carved
result

Fig. 6. Scene carving jointly optimizes for a new object positioning and a seam to be
removed from the background image
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Distortion Domain. We can distinguish two choices for seam energies, calcu-
lating the distortion of either (1) the flattened image or (2) the background only.
S.C. advocates (1) and our extension in Sect. 4.2 also follows this rationale.

However strategy (1) comes at the expense of allowing high distortion to be
created in the background image at no cost behind objects. This could severely
limit our ability to move objects in further iterations and allow increased distor-
tion in the background. Empirical results show that this occurs in our images.
See Fig. 8(f) and 8(g), where this method is referred to as Sc. Carve-D.5

We therefore take the second approach (2) and optimize at each iteration
jointly for the highest fraction of objects to be visible and for the minimally
distorting seam in the background image. This leads us to the scene carving

algorithm. We pay the cost for introducing distortions that are not currently
visible (but may be at future iterations), therefore sacrificing some potential
improvement in the image at this iteration for a potentially better result image.

Seam Energy. We noted we find a seam only in the background image, so
we are able to use D.P. for better runtime behaviour than S.C.+Obj. Occ. We
construct the seam energy as follows. We reuse the graph of S.C. with the energies
of (1). Energy terms for pixels next to the image boundary or holes are set as in
(3) to a small constant, here us = 6. As seams may pass through holes, we set
energy terms for hole pixels to a non-infinite constant uh. Given a binary hole
mask H taking value 0 where the background is known and 1 otherwise:

ELR
r,c = ELU

r,c = EUR
r,c = uh ∀(r, c) ∈ {(r, c) : Hr,c = 1} . (5)

We set uh = 0 to encourage removal of hole pixels.

Remaining hole pixels constrain object movement, as all must be kept oc-
cluded by an object. This constraint is ensured by setting the following energy:

ELR
r,c = ELU

r,c = EUR
r,c = ∞ ∀r, c ∈ {c : c > cmax

r ∨ c < cmin
r } (6)

where: cmin
r = max{c : Hr,c = 1 ∧ Or,c > 0 ∧ Or,c−1 = 0}

cmax
r = min{c : Hr,c = 1 ∧ Or,c = 0} .

This constrains the seam at a row r to pass between the columns cmin
r and cmax

r .6

Object Positioning Energy. We compute the final energy by adding to the
energy of the optimal seam an object positioning energy term: the negative of
the unary used in S.C.+Obj. Occ. (4). At each iteration we take the joint object
positioning and background image seam with the lowest energy.

5 Details on how to define the energy for (1) and optimize it, taking all changes into
account, can be found in the supplementary material, along with additional results.

6 Small scale non-convexities in object segmentations can limit seams through this
constraint, so we remove these by simple dilation and erosion processes.
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Fig. 7. (a) describes a 3 step hierarchical approximation to speed up scene carving. We
set the parameters based on (b) and (c). (b) shows the relative frequency that the M

object positionings checked in step 3 includes the optimal full resolution positioning,
(c) the relative frequency against optimization time per pixel, assuming N = 5 objects

5.3 Speeding Up

Scene carving has computational complexity D.P.× 2N at each iteration. While
dynamic programming is very efficient, this algorithm is still infeasible for large
numbers of objects. We use two approaches to give a speed up.

Firstly, for a constant factor speed up, we note that objects only affect the
energy on the rows they span, c.f. (6). We iterate through object positionings in
a unit distance code, reusing the graph above and below the object moved.

Secondly, we use a hierarchical speedup, as described in Fig. 7(a). We set
M = 5 and d = 6 based on the following analysis. On 11 images containing 2-8
objects we removed 300 seams using scene carving at the full resolution and at
lower resolutions. Our results are shown in Fig. 7(b) and Fig. 7(c). Choosing
d = 6 (red curve) and M = 5 places us at the “knee” of the trade-off curves of
Fig. 7(b). Here, the optimal object positioning is obtained approximately 97% of
the time. Fig. 7(c) then shows that if we want to find the optimum approximately
97% of the time, greater downsampling would not increase the speed.

This method is still combinatorial in the number of objects, but with a lower
multiplying factor. In most cases we expect a low number of objects to be labelled
(up to 10), such that optimizing over all combinations of positionings is feasible.

6 Results

We now present results for our algorithms, and compare these results to those
gained from our implementation of seam carving.7 For convenience the key prop-
erties of these algorithms are summarized in Table 1.

The power of our algorithms can be demonstrated with the example of the
People image (from [11]) in Fig. 8. Seam carving (Fig. 8(c)) can be seen to create
visually disturbing distortion of the people. Ensuring object consistency prevents
this, but because there is no occlusion handling, this results in a cropped image
with the two left-most people removed completely. (Fig. 8(d)).

7 All code is available at www.vision.ee.ethz.ch/~mansfiea/scenecarving/ under
the GNU General Public License.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 8. People image (a) with depth map (b) retargeted by S.C. (c), S.C.+Obj.
Prot. (d), S.C.+Obj. Occ. (e), Sc. Carve-D. (f) with bkg. image (g), Sc. Carve (h)
with bkg. image (i) (300 seams removed). Note the distortion introduced by S.C., and
cropping with S.C.+Obj. Prot. and S.C.+Obj. Occ. Sc. Carve keeps all objects, with
the red boxes highlighting background distortion from Sc. Carve-D. not in Sc. Carve

Our algorithms guarantee scene consistency. S.C.+Obj. Occ. (Fig. 8(e)) moves
the people together until reappearance would occur. Further seams are removed
at the edges of the image, again cropping one person out. With Sc. Carve-D.,
reappearance is possible, but the ability to hide high gradients behind parts of
objects allows distortion to be created in the background image, which are visi-
ble in the resulting image. These distortions are shown in Fig. 8(g), highlighted
in the red box. Scene carving (Fig. 8(h)) is able to keep all people in the image,
scene consistently, combined with a pleasing background (Fig. 8(i)).

Further results, demonstrating the same effects, are shown in Fig. 9.
Limitations of our methods can also be seen in these images. For example, in

the Boat image, it can be seen that our freedom to edit the background image
has shrunk the boat reflection so it no longer spans the whole boat. Another
effect, caused by inaccurate segmentations, is shown in the London eye image,
where sky can be seen through the wheel, where the building should be visible.

Table 1. Properties of the algorithms tested

Scene Creates With re-
Optimization

consistent occlusions appearance

S.C. [1, 14] × × × DP or GC
S.C.+Obj. Prot. [1, 14] X × × DP or GC
S.C.+Obj. Occ. (Sect. 4.2) X X × GC
Sc. Carve (Sect. 5) X X X DP

`

5 + 2N/62
´
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Table 2. Time taken to produce results with our Matlab/Mex implementation

People Sledge Dancers London eye Boat

No. objects 8 5 4 3 2
Size 640 × 427 1024 × 759 500 × 333 1024 × 683 1016 × 677
No. seams removed 300 500 200 500 500

S.C. [1, 14] 22s 62s 14s 49s 64s
S.C.+Obj. Prot. [1, 14] 28s 69s 9s 60s 54s
S.C.+Obj. Occ. (Sect. 4.2) 4515s 46152s 328s 2079s 19941s
Sc. Carve (Sect. 5) 352s 596s 73s 711s 619s

Table 2 shows the time taken to produce our results. In all cases, Sc. Carve is
the fastest algorithm that allows for object occlusions. S.C.+Obj. Occ., while
a non-combinatorial optimization problem, in practice produces a graph that is
slow to optimize. S.C. and S.C.+Obj. Prot. are much faster, but may respectively
lead to object distortion, or cropping and bad background distortion.

7 Conclusions and Future Work

In this work we considered the problem of scene consistent image retargeting.
We developed two algorithms to perform such image retargeting, given a relative
depth map: seam carving with object occlusions and scene carving.

The former was derived by making use of supernodes, enabling correct oc-
clusion handling for the first time. This algorithm has the appealing property of
requiring a single optimization in each step. However, accounting for reappear-
ing material leads to graphs which cannot be optimized efficiently. Even without
reappearance, the graph can be slow to optimize in practice.

Scene carving utilizes a layered decomposition of the image to allow flex-
ible object re-arrangement. We find the joint global optimum seam and re-
arrangement at each iteration with dynamic programming, at the expense of
an overall combinatorial problem. We presented a more efficient hierarchical ap-
proximation, which still finds the global optimal in almost all iterations.

In summary, we recommend scene carving as the better algorithm, given
that it is usually faster and produces visually superior results. Seam carving
with occlusions may be competitive only when very many objects are present.

There are several possible routes to be followed. First we want to automate
relative depth map creation using either high-level computer vision such as object
detection, or stereo vision. Also, the seam carving algorithm can be understood
as “forgetting” the previous input at each iteration. Other methods optimize
an energy defined between the input and output image [5, 11, 15, 18, 19, 22]. We
plan to derive a similar retargeting method for our problem scenario.
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Fig. 9. Further results. The number by each image name indicates the number of seams removed. The final column of images shows the
background image at the end of Sc. Carve. Holes are shown in black for all images, except for Dancers where they are shown in white


